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Abstract
A stochastic model to study droplet/particle influence on the gas phase using the One-
Dimensional-Turbulence model (ODT) is evaluated. To address one of the major problems
for multiphase flow simulations, namely computational costs, the dimension-reduced model
is used with the goal of predicting certain classes of these flows more efficiently. ODT is a
stochastic model simulating turbulent flow evolution along a notional one-dimensional line
of sight by applying instantaneous maps which represent the effect of individual turbulent
eddies on property fields. A Lagrangian particle tracking method developed by Schmidt
et al. [10] was modified and extended.

For validation purposes flow configurations of turbulent particle-laden round jet were
simulated with the developed model. It could be shown that the model has the capability
to capture the impact of varying Stokes numbers and also different particle loadings. This
shows that turbulence modulation is possible to capture with the model and it can be
used for investigations of turbulent-droplet interaction at parameter ranges which are not
accesible by DNS or LES simulations.
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1 Introduction
The combustion of liquid fuel accounts for around ∼30% of the total energy consumed
globally [7]. The current big discussions about the electrification of cars aim almost
exclusively at light-duty vehicle transportation. For heavy-duty vehicles, marine vessels
and airplanes it cannot be foreseen when the technology will be advanced enough to replace
their combustion propulsion systems. In the near future the freight and passenger market
covered by these transportation systems will grow rapidly. The International Energy
Agency expects till 2050, compared to 2009, twice the transport load covered by trucks,
three-fold by ships and four-fold by airplanes [11]. The growth will result in an inevitable
environmental impact, which can be relaxed by the improvement of the combustion systems
towards efficiency increase and pollution reduction. The demand for improvements is also
forced by emission legislations of the European Union and other governmental institutions.
Therefore, emission reduction is a key priority of the industry and has achieved big steps
in the last decades, especially towards NOx and soot emissions. Despite the economic
power and effort the advancement of fuel injection systems, which mainly governs the
combustion process, is still compromised by an incomplete understanding of the physical
mechanisms.

Liquid fuel

Fuel vapor Flame zone

Figure 1.1: Fuel injection in piston engine (Pictures of spray and flame by Chengjun Du)

1.1 Sprays and HAoS
To tackle this issue eight European universities, including Chalmers University of Tech-
nology, joined by three industrial partners established a common project supported by
the European Union and their Horizon 2020 initiative. Its goal is to develop a “Holistic
Approach of Spray Injection through a generalized multi-phase framework”, short “HAoS“.
In this scope each research facility is responsible for investigating a specific mechanism of
the injected liquid jet configuration using experiments or simulations. Fig. 1.2 displays a
schematic sketch of the spray regimes and their dominant physical mechanisms. It starts
with the in-nozzle flow which is mainly governed by the pressure differences between nozzle
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inlet and the in-nozzle geometry. Inside the nozzle cavitation can occur which leads to a
partial reduction of the effective nozzle diameter. This is affecting flow and turbulence
properties and is influencing the jet atomization regimes and mechanisms downstream.
Behind the nozzle exit the liquid jet into the ambient air, which has a much lower pressure
and density. In the first stage it is still a dense liquid core which first breaks up into
larger ligaments and then into smaller droplets. The regime, where the first ligaments or
droplets are shed from the liquid core, is called primary atomization. If these ligaments
or droplets are getting smaller by breaking up further, it is called secondary atomization.
In the last regime the now really small droplets are evaporating and form a fuel gas cloud
around the spray, which can be ignited. When the spray becomes dilute, i.e. the volume
ratio of liquid to gas phase is below 10-2, the interaction between droplets and turbulence
becomes important. The so-called turbulence modulation introduced by droplets is, when
transported downstream, effecting the fuel-air mixing process and so the flame regime.
The investigation of this interaction and its governing mechanisms is the scope of this thesis.

In-nozzle flow
(Cavitation)

Primary
Atomization

Secondary
Atomization

Evaporation

Turbulence-droplet interaction

Figure 1.2: Sketch of liquid spray regimes and its dominant mechanisms

The effect of droplets or more general particles on the gas phase turbulence called
turbulence modulation is of particular interest but the understanding of the phenomena
is still lacking. Despite the fact that the first research in the field of dispersed two-phase
flows can be traced back to the 17th century and research from Stevin and Newton, the
biggest issue was ever since the understanding of turbulence itself [19]. Even with modern
experimental equipment and high-performance computational flow simulations it is still
challenging to capture the effects of the dispersed phase on the turbulent structures. In
the last decades several research groups were investigating this field of interest and a
brief summary can be read in the Ph.D. thesis of Poelma [19]. Different effects have been
reported and in general it can be said that in some flow configurations the turbulence was
enhanced and damped in others. The inertial effects of droplet size and mass compared
to the one of the gas phase are mentioned to be the dominant parameter (more details in
Chapter 2). Further studies are required to increase the knowledge of these effects and
the sensitivity on this parameter.
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1.2 CFD and ODT
CFD (computational fluid dynamics) proved to be a powerful tool to investigate dispersed
two-phase flows and to acquire detailed flow information. However, many CFD approaches
for these flow types have limited predictive capabilities or rely on many assumptions, which
affects the accuracy and restricts their generality. Even with access to a high-performance
computational infrastructure, direct numerical simulation (DNS) studies for particle-laden
flow are still limited to academic cases and low particle numbers. On the other hand, the
accuracy of large eddy simulations (LES) seems to be very sensitive to its parameters,
especially on the subgrid-model, which is required to achieve a good turbulence prediction.
In this study an alternative approach called One-Dimensional-Turbulence (ODT) is used,
which was introduced in [13] and extended from several international research groups
over the last two decades. ODT has demonstrated to predict topologically simple flows
such as boundary layers and jets with large property gradients in one direction very well
compared to DNS studies and experimental data. This stochastic model is used here to
tackle one of the major problems for multiphase flow simulations, namely computational
costs, with the goal to predict these types of flow more efficiently. By reducing the costs
it will be possible to investigate parameter ranges with ODT which are unaccessible for
DNS or LES. The final goal is to provide a subgrid-model for LES based on gathered data
by ODT simulations. The numerical methodology of ODT and the Lagrangian particle
model are described in Chapter 3 and 4, respectively.
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2 Physical Fundamentals
In this chapter some features of turbulence and droplet evolution are summarized. Very
detailed descriptions of these phenomena can be found in Pope [20] (turbulence) and Clift
et al. [5] (droplets), but the important theoretical statement are summarized here for
later consideration.

Laminar Flow Turbulent Wake

Figure 2.1: Flow around a cylinder with a turbulent wake

2.1 Turbulence
In a combustion engine (e.g. a gas turbine or a diesel engine) the fuel is injected into
the combustion chamber by a high pressure drop, which results in a very high injection
velocity. This is necessary to provide enough fuel in a short time frame and for a sufficient
mixture of fuel and air. Due to the high velocity the liquid phase (fuel) is already
turbulent when it exits the injector nozzle. But also the air flow around the liquid phase
will become turbulent as a result of the high velocity gradients between the phases. These
turbulent effects are causing deformations on the liquid phase and govern the break-up
processes. The same phenomena occurs if turbulence interacts with smaller droplets
till they are small enough to evaporate. But what is turbulence and how can we quantify it?

Turbulence is seen as a three-dimensional chaotic instability of flow properties caused by
an increase of inertial forces relative to viscous damping. Above a critical value of the
ratio between inertial and viscous forces a flow configuration is called turbulent (see Fig.
2.1). This knowledge goes back to the famous experiment of Osborne Reynolds (1883),
where he found out that the occurrence of instabilities in a flow can be characterized by
a single non-dimensional parameter. The parameter is called the Reynolds number and
given as Re = L·U

ν , where L and U are characteristic integral length and velocity scales,
respectively, describing the inertial effects. ν is the kinematic viscosity. For different flow
configurations different critical Reynolds numbers exist which are seen as a boundary
between laminar and turbulent flow. For example, in case of a flow around a sphere the
intgral length scale is given by the sphere diameter and the characteristic velocity as the
relativ velocity between sphere and flow.
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Figure 2.2: Vortex stretching model by Bradshaw [4].

The instantaneous turbulent movement is always rotational. Based on Helmholtz’s theo-
rems for fluid motion in vortex filaments Bradshaw [4] described turbulence as a vortex
stretching process. If we consider a Cartesian coordinate system (x,y,z) and a vortex
filament along the z-axis, it is rotating in the xy-plane (Fig. 2.2). By stretching the
vortex filament in z direction its cross-section will get smaller and due to the conservation
of angular momentum, which is given as product of angular speed times cross-section,
angular speed will increase. It means an extension in one direction decreases the length
scale (cross-section or radius of the cross-section) and speeds up the velocity components
in the other two directions. This in turn stretches other elements of fluid with vorticity
components in these directions and so on [4], which results in a “cascade” of stretching
processes with decreasing length scales. Summarized, the mechanism of vortex stretching
shows that turbulence is distributing velocity fluctuations along all three components over
all possible length scales. The range of length scales is limited by flow specific boundary
conditions and viscosity, which is where the Reynolds number is referring to. The vis-
cosity is smoothing large velocity gradients and determines the smallest possible length
scale, called Kolmogorov scale, before kinetic energy dissipates into thermal internal energy.

Due to the appearance of instabilities in turbulent flows they are characterized by
multiplexed three-dimensional, stochastic noise over a steady flow structure. Fig. 2.3
shows the axial velocity signal in a turbulent flow at a fixed position. Turbulence includes
a randomness, which means its exact values are unpredictable. Hence, statistical tools
are helpful treating the velocity values as a random process and representing its turbulent
structure by statistical moments. Therefore, the velocity value is decomposed in an
averaged mean component (u) and a randomly fluctuating turbulent part (u′): u = u+ u′.
Depending on your gathered data different averaging procedure can be applied, e.g.
temporal, spatial or Ensemble average. Based on the first statistical moment, the second
one (variance) can be determined with regard to the fluctuations. Due to the governing
effect of turbulence the second moment is called turbulence intensity and given by the
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Root-(of-the-)mean-square (RMS) values of the velocity fluctuations:√
u′

2
,

√
v′

2
,

√
w′

2
. (2.1)

The above described decomposition is called Reynolds decomposition.

u(t)

u

t

Figure 2.3: Velocity signal over time in a turbulent flow

Combining the concepts of vortex stretching and Reynolds decomposition turbulent flow
contain a mean, turbulent and dissipative convection on a molecular level, where energy
is transported from the mean (not necessarily) via the turbulent and subsequently to
dissipation. These energy transport is called energy cascade.
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2.2 Droplets and Particles
Investigating the behavior of multiple droplets in a turbulent flow it is important to
understand first the fundamental behavior of a single droplet in a surrounding turbulent
flow field. Therefore, it is necessary to assume common (simplified) properties for each
droplet. In the following section the shape, equation of motion and coupling effects
between both phases are discussed with its required assumptions and simplifications.

2.2.1 Shape
Initially, it is essential for the aerodynamic effects to define the shape of droplets. The range
of droplet shapes is limited compared to solid particles due to its smooth surface caused
by surface tension effects, but can change dynamically. Often they occur axisymmetric
and under special circumstances spherical. In this study droplets are seen as spherical
particles. The spherical shape can be assumed if inertial effects are considerably smaller
than either inter-facial tension forces or the viscous forces of the surrounded phase. As
droplets sizes in the far field region of a spray are relatively small these conditions are
fulfilled. Hence, it leads to the rule-of-thumb to term droplets as spherical if the minor
to major axis ratio is smaller than 10% [5]. Fig. 2.4 shows a regime diagram of droplet
shapes depending on the non-slip Reynolds number (Rep) and the Eötvös number (Eo),
which are given as

Rep = ρg|~up − ~ug|dp
µ

, Eo =
g∆ρd2

p

σp
. (2.2)

The subscripts p and g are representing the dispersed (droplet) phase and the gas phase
respectively. ρ, µ and σp are the density, viscosity and surface tension, respectively. g
is the acceleration due to gravitation and dp is the droplet diameter. In the two papers
attached to the thesis the gravitational force was dominant and so the Eötvös number was
the defining parameter. In future investigations closer to spray applications the effect of
kinetic energy of the surrounding fluid will be more dominant. Here, a similar parameter
exists, the so-called Weber number.

As we are investigating non-reacting flows at low temperatures in this study and the
surface tension of diesel and other common fuels in sprays lies in a range of 20-30 mN/m
for these conditions, the resulting Eo is below 10 for particles diameter in the order of
10-5m. The non-slip Reynolds number will not exceed 10 as well and therefore, we are in
the regime of spherical droplets. From now on we will generalize droplets as spherical,
rigid particles due to the facts that we do not consider break-ups or surface deformation.

2.2.2 Equation of Motion
Defining the behavior of a suspended, rigid sphere in a turbulent flow is in the scientific
scope since centuries. It started with Stokes analytical solution for creeping flows (Rep < 1)
(1851) and improvement suggestions by Oseen and Lamb (1910s). Using their basic ideas
for relatively low Reynolds numbers several groups extended them resulting in the most
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Figure 2.4: Shape regimes for droplets (Adopted from Clift et al. [5])

commonly used approximation for a sphere in an unsteady flow, which is the so-called
Basset-Boussinesq-Oseen (BBO) equation. It summarizes all forces on a sphere in a
non-stationary fluid and after several updates and corrections of Tchen (1947) and Maxey
and Riley (1983) the current equation was derived as

mp
dup,i
dt

= FG + FP + FaM + FD + FB (2.3)

The equation consists of five terms on the right hand side which can be interpreted as
gravitational (FG), pressure gradient (FP ), added mass (FaM ), Stokes drag (FD) and
Basset (FB) forces. The two main assumptions, under which the equation is valid, are
that the non-slip Reynolds number is smaller than unity and the particle size is smaller
than the smallest structure of the flow (Kolmogorov scale [15]). Therefore, the particle
can be seen as a point force located at the center of mass. Due to the assumptions stated
above the flow is assumed to be symmetrical and uniform around the particle, so the
BBO equations does not consider lift effects and the higher order terms of Eq. 2.3 can
be neglected [19]. Also, if the density of the particle is assumed to be larger than the
gas phase density, Eq. 2.3 leads to a simplified version only taking into account the
dominating gravitational and drag forces, which leads to

mp
dup,i
dt

= mpgi − 3πdpη(up,i − ug,i). (2.4)
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Stokes law

Figure 2.5: Drag coefficient of a sphere depending on non-slip Reynolds number (standard
drag curve)[NASA GRC website]

The drag force term for an arbitrary shape is given as FD = 1
2ρg(up,i−ug,i) ·A ·CD, where

A is the cross-section normal to the velocity component and CD is the drag coefficient.
Based on the first experiments by Stokes the drag coefficient were derived to CD = 24

Rep
,

which leads to the second term on the right hand side of Eq. 2.4. By taking a look
in the standard drag curve (Fig.2.5) we see a discrepancy for Rep > 1. Schiller and
Naumann [21] derived an empirical correction factor (f) for non-slip Reynolds number
smaller than 200. It is given as

f = (1 + 0.15Re0.687
p ). (2.5)

Adding f to Eq. 2.4 and dividing by the mass of a spherical particle we get

dup,i
dt

= gi −
18νρg
d2
pρp

· f(up,i − ug,i). (2.6)

Eq. 2.6 will be the starting point for the Lagrangian Particle model in the One-Dimensional
Turbulence framework (Chapter 4).

As the factor 18νρg

d2
pρp

has the dimensions s-1 it can be interpreted as the inverse of the time
a particle needs to reach the velocity of the surrounding gas. It is the so-called Stokes
time scale or particle relaxation time τp. An important parameter for particle-turbulence
interaction is the ratio of particle relaxation time (τp) to a characteristic flow time scale,
the so-called Stokes number (St). In this study the characteristic flow time scale will be
the Kolmogorov time scale [15], which can be estimated by

τη ≈
( νL
|u|3

)1/2
, (2.7)
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where L is the integral length scale of the flow and u the velocity vector. This leads to

St = τp
τη
. (2.8)

As described in Chapter 1 the Stokes number represents the ratio of inertial forces of
particle compared to the one of the gas phase.

2.2.3 Coupling effects
The interacting effects inside two-phase flows are classified in three groups based on the
volume load, which are defined as a ratio of the volume occupied by the dispersed phase
to the total volume plus gas phase (Elghobashi [8]),

α = Vdispersed
Vtot

. (2.9)

In reality the two-phases are interacting with each other and additional the particles can
collide with each other. Capturing each interaction is high-costly for CFD solvers and
therefore it is necessary to define regimes in which we can neglect some of the stated effects.

For the one-way coupling the momentum of the gas phase is coupled with the motion of
the dispersed phase. The back-coupling effect is neglected. This is sufficient if the volume
loading is in an order of 10-6-10-5 depending on the density ratio. Above these values the
energy and momentum transfer from the dispersed phase back to the gas phase increases
significantly, which requires a so-called two-way coupling. Hence, both transport equations
have to be solved in parallel and the governing gas phase equations contain a source term
obeyed by the dispersed phase. If the volume loading increases further and the dispersed
phase can not be characterized as diluted any more collision or hydrodynamic interactions
can occur between the particles (four-way coupling). In the literature this regime starts
from a volume loading of 10-2. However, more parameter are playing a key role here, i.e.
relative velocity of the dispersed phase.

For spray applications the volume loading can be estimated by considering the spray
dispersion as a cone geometry and taking the ratio of nozzle outlet area to the cross-section
area further down stream (see Fig. 2.6). We assume that at the outlet the crossection
is only occupied by liquid fuel. To determine the distance from where we can assume a
two-way coupling the spray cone angle γ is necessary to know. Based on the experimental
data of Du [6] we assume a constant spray angle γ = 15◦. After using trigonometric
relations and considering a very small axial distance ∆x the volume loading is assumed
as,

α = V

V ′
= A∆x
A′∆x = π

4
4
π

D2

D′2
= D2

(D + 2cos(γ)L)2 . (2.10)

Solving Eq. 2.10 for L gives,

L = D

2cos(γ)

( 1√
α
− 1
)
. (2.11)
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L = 20 D

L = 200 D

α = 10-2

α = 10-4

D
γ

L

D′ = D + 2 cos(γ) L

Figure 2.6: Determination of volume loading in spray. a) shows a representation of
liquid(green) and vapor(blue) phase of a spray (adopted from Du [6]) and the regime
boundaries for two- and four-way coupling. b) shows a sketch to determine the volume
loading α by weighting the inlet area (A = π

4D
2) to the area downstream depending (A′ =

π
4D
′2)on spray cone angle γ.

Here, the two-way coupling approach is valid after a distance of ∼20D using the regime
boundary α = 10-2. As the scope of this thesis is the area after the atomization regimes
this assumption is reasonable and collision effects can be neglected.

Due to the developing steps of the Lagrangian tracking method the first study were made
assuming a one-way coupling effect. For tracking a single particle this assumption is
sufficient. The following studies focused on the two-way coupling approach, as the mass
loadings are in the range 0.5 till 1 corresponding to volume loading from 2·10-4 - 4·10-4.
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3 One-Dimensional-Turbulence
This section describes the concept of the ODT model in the spatial-cylindrical framework,
which is used to simulate the carrier gas phase. ODT is a numerical method to simulate
realizations of turbulent flows using a stochastic model to capture the turbulent cascade
along a one-dimensional line, which is usually oriented in the direction of the largest
expected velocity gradient. The spatial-cylindrical domain can be seen as a radial line
representing a slice of an axisymmetric phenomena evolving in an additional spatial dimen-
sion,which can be interpreted as a representation of a 3D unsteady flow field (Fig. 3.1). In
the cylindrical coordinate system r,x and θ are representing the radial, stream-wise and
angular direction, respectively, whereas the latter will not be used due to a pre-assumed
axisymmetry. Two main mechanism govern the ODT simulation, which are a diffusive flow
advancement and a random sequence of eddy events to capture the impact of turbulence
along the one-dimensional domain.

∆x = ux ·∆tx
r

ODT line

Figure 3.1: ODT domain in a cylindrical coordinate system evolving in spatial direction
∆x.

3.1 Diffusive advancement

Deriving the governing equations of an arbitrary quantity φ for a control volume (seen in
Fig. 3.2) we start with the Reynolds transport theorem (RTT) advanced in time t:

d

dt

∫
Ω

ρφdV = ∂

∂t

∫
Ω

ρφdV +
∫
∂Ω

ρφvr · ndS, (3.1)

where Ω is the control volume and ∂Ω its boundary surface. The relative velocity between
neighbor cells and control volume boundaries is represented by vr. If we consider a
strictly-positive stream-wise velocity, the temporal evolution can be transformed into a

13



spatial evolution by using the local stream-wise velocity ux, dt = dx
ux

. The transformed
RTT is given as

d

dx

∫
Ω

ρuxφdV = ∂

∂x

∫
Ω

ρuxφdV +
∫
∂Ω

ρφvr · ndS. (3.2)

∆r

∆θ

−ex

−er

er

−eθ

∆x

Ω(x)

∂Ω(x)

Figure 3.2: Sketch of control volume Ω. ei is a unit vector of the i-th direction.

Before deriving the governing equations for mass and momentum it is important to
determine the control volume and its boundary surface on a cylindrical ODT line. The
volume of a cylinder segment with the inner radius r0, an outer radius r1, an angel θ and
a length L is defined as V = θ

2L(r2
1 − r2

0). Its boundary surface is given by the two flat
surfaces east e and west w and the two convex surfaces north n and south s. The area of
the flat surface is given by Ae,w = 4r · L, where 4r = r1 − r0, and the convex surface
area as An,s = θr · L. As we assume an axisymmetric flow configuration, which means an
independence of the angular direction and velocity, the angle θ is arbitrary and set to
be 1 for simplicity. Additionally, a unit length L is assumed. This leads to the following
definitions of control volume and convex surface

V = 1
2(r2

1 − r2
0) (3.3)

An,s = r. (3.4)
To derive the mass balance equation the modified RTT (Eq. 3.2) is considered taken with
φ = 1. As no source terms are considered in the control volume Ω during spatial step dx,
the first term on the right hand side is zero and the general mass balance is given as

d

dx

∫
Ω

ρuxdV =
∫
∂Ω

ρvr · ndS + dρ. (3.5)

Here, dρ is the mass change during an eddy event, which has just an effect in the eddy
region and is zero outside of it. For an axisymmetric flow it is assumed that the angular
velocity component is zero and therefore no fluxes exist over the planar surfaces east and
west. After rearranging terms the mass balance in a given grid cell is given as

dρV

dx
= 1
ux

(
ρur,sAs − ρur,nAn + dρ

)
. (3.6)
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Figure 3.3: Examples for applying a cylindrical triplet map to a linear profile of quantity
φ. I: r0, r0 + l < 0, II: r0 < 0, r0 + l > 0, III: r0, r0 + l > 0, where r0 and l are eddy
position and length, respectively.

For the momentum balance Eq. 3.2 is used with φ = ui and vr = 0, where ui represents
the i-th velocity component. As the pressure term is neglected in this flow configuration
and only viscous stress terms are considered, the momentum balance equation is given as

d

dx

∫
Ω

ρuxuidV =
∫
∂Ω

µτidS + dρui
+ Sp,i, (3.7)

where τi = ∂ui

∂r is the stress tensor, Sp,i represents the momentum exchange between
dispersed and gas phase and dρui

is the momentum change during an eddy event. The
latter is only non-zero in the eddy region. By rearranging and integrating over the cell
volume and surfaces the momentum balance for a given grid cell is defined as

dui
dx

= 1
ρuxV

(
τi,sAs − τi,nAn + dρUi

+ Sp,i

)
. (3.8)

Eq. 3.6 and 3.8 are the set of equation, which governs the diffusion and non-advective
advancement, i.e. momentum exchange between phases, of the ODT line.

3.2 Eddy events
In ODT simulations turbulence, which can be seen as a three-dimensional vortex stretching
process, is modeled through eddy events. These result in remapping the flow quantity
profiles over a sampled eddy region. This model consists of two key components, the
mapping method, which is called triplet map, and a model to define the rate of eddy
events [13].

3.2.1 Triplet map
The original triplet map function, as introduced in Kerstein [13], used a planar coordinate
system. Here, the original profile would be compressed by a factor of three over the eddy
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region and three copies are filled in. To ensure continuity of the profile the second copy
in the middle is inverted. In planar ODT the cell sizes depend only on the length in
ODT line direction. However, in a cylindrical framework it depends on the square of
the length due to the conservation requirements of mass, momentum and energy. As a
result, in cylindrical coordinates the mapping process compresses the profiles with respect
to the square of the length, which leads to the following inverse mapping function for a
post-mapping position r0, which is here r0 ≥ 0:

f(r) = r0 +


√

9(r − r0)2 if r ∈ [r0, r0 + l
3 ]

2l −
√

9(r − r0)2 if r ∈ [r0 + l
3 , r0 + 2l

3 ]√
9(r − r0)2 − 2l if r ∈ [r0 + 2l

3 , r0 + l]
r − r0 otherwise.

(3.9)

For the case r0 < 0 the algebraic signs have to be adjusted in consideration of the
possibility that r0 + l is greater or smaller zero. Examples for the cylindrical triplet map
are illustrated in Fig. 3.3.

An essential part of turbulence is the phenomena of return-to-isotropy, which requires a
re-distribution of energy among the velocity components. This phenomena is modeled
by introducing kernel transformations to the mapping function, which gives a profile
transformation

ui(r)→ uTM
i (r) + ciK(r) + biJ(r), (3.10)

where ui is the velocity in i-th direction before and uTM
i after the mapping process,

respectively. The Kernel K(r) is defined as the fluid displacement profile under the triplet
map and integrates to zero over the eddy region. J(r) is the absolute of K(r) and ensures
momentum transfer if its kernel coefficient bi is non-zero. ci defines the kernel amplitude
of K(r) and is mainly responsible for energy transfer (Fig. 3.4a and 3.4b). Thus, both
kernels are important in the case of particle-gas phase coupling.
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(a) Triplet map and its kernel function K

−0.4 −0.2 0.0 0.2 0.4
r

−1.0

−0.5

0.0

0.5

1.0

u
(m

/s
)

ci = 0, bi = 0 ci = 0, bi = 0.5 ci = 0.5, bi = 0
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Figure 3.4: Triplet map and the influence of its kernel functions
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For the momentum flux conservation it is required that

r0+l∫
r0

ρ̇uir dr =
r0+l∫
r0

ρ̇(uTM
i + ciK + biJ)r dr + Sp,i, (3.11)

where ui is the velocity in i-th direction before and uTMi after the mapping process,
respectively. ρ̇ is the mass flux in stream wise direction. Sp,i represents the sum of
momentum penalties caused by particles

Sp,i =
np∑
j

ṁj(uPEI
j,i − u0

j,i), (3.12)

where ṁj represents the stream-wise mass flux of the j-th particle. uPEI
j,i and u0

j,i

determine the particle velocity component i after and before particle-eddy interaction,
respectively. Due to the conservation of momentum flux during triplet mapping, which
implies

∫
ρ̇uir dr =

∫
ρ̇uTM

i r dr, it gives

bi =
−(Sp,i + ci

∫
ρ̇Kr dr)∫

ρ̇Jr dr
= −(M + ciD). (3.13)

For simplification M and D are used representing Sp,i∫
ρ̇Jr dr

and
∫
ρ̇Kr dr∫
ρ̇Jr dr

, respectively.
Similar to the momentum flux conservation, the energy flux conservation is used to define
ci. As a result of the energy flux balance it is required that

4Ei = 1
2

∫
ρ̇(uTM

i + ciK + biJ)2r dr − 1
2

∫
ρ̇u2

i r dr. (3.14)

Due to energy flux conservation during triplet mapping, which means
∫
ρ̇u2

i r dr =∫
ρ̇(uTM

i )2r dr, it follows

4Ei = 1
2

∫
ρ̇(2ciuTM

i K + 2biuTM
i J + 2cibiKJ + c2iK

2 + b2iJ
2)r dr. (3.15)

Reordering with respect to ci and inserting Eq. 3.13 for bi yields

4Ei = c2i

(1
2

∫
ρ̇K2r dr −D

∫
ρ̇KJr dr + 1

2D
2
∫
ρ̇J2r dr

)
+ ci

(∫
ρ̇uTM

i Kr dr −M
∫
ρ̇KJr dr +MD

∫
ρ̇J2r dr −D

∫
ρ̇uTM

i Jr dr
)

+ 1
2M

2
∫
ρ̇J2r dr −M

∫
ρ̇uTM

i Jr dr.

(3.16)
This can be written as

4Ei = c2iA+ ciBi + Ci, (3.17)
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with

A = 1
2

∫
ρ̇K2r dr −D

∫
ρ̇KJr dr + 1

2D
2
∫
ρ̇J2r dr

Bi =
∫
ρ̇uTM

i Kr dr −M
∫
ρ̇KJr dr +MD

∫
ρ̇J2r dr −D

∫
ρ̇uTM

i Jr dr

Ci = 1
2M

2
∫
ρ̇J2r dr −M

∫
ρ̇uTM

i Jr dr.

(3.18)

Solved for ci we get

ci = 1
2 ·A

(
−Bi + sign(Bi) ·

√
B2
i − 4A(Ci −4Ei)

)
. (3.19)

4Ei governs the re-distribution of energy among velocity components and the loss and
gain of energy from the particle phase. For the re-distribution the maximum available
energy Qi to subtract has to be determined(∂∆Ei

∂ci
= 0), which is valid for:

ci = −Bi2A. (3.20)

Inserted in Eq. 3.17 it gives

−4Ei|max = Qi = B2
i

4A − Ci. (3.21)

Including the particle energy transfer during an eddy event, 4Ei is defined as:

4Ei = α

[
Qj − SpE,j

2 + Qk − SpE,k

2 −Qi
]

+ (α− 1)SpE,i. (3.22)

SpE,i represents the sum of energy penalties caused by particles

SpE,i = 1
2

np∑
j

ṁj

(
(uPEI
j,i )2 − (u0

j,i)2
)
. (3.23)

The resulting kinetic energy of the sampled region, given by Ekin =
∑
iQi − SpE,i, is

used to determine the eddy timescale te(l, r0) and so to define the eddy event. Based on
the scaling assumption for kinetic energy E ∼ ρl3

2t2e
, the eddy time scale is modeled as

1
te

= C

√
2KK
ρKK l2V

(Ekin − ZEvp). (3.24)

The viscous penalty energy is given as Evp = µ2

2ρl . C is the adjustable eddy rate parameter
and scales the overall eddy event frequency. V is the volume of the eddy region. Z is
the viscous penalty parameter, which suppresses unphysical small eddies. Also for large
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eddies an equivalent procedure exists with a parameter noted as ZLES . KK and ρKK
are given by the following volume integrals over the eddy region:

KK =
∫
V

K(r)dV, (3.25)

ρKK =
∫
V

ρK(r)dV. (3.26)

In the spatial version of ODT the eddy time te is multiplied by the favre-averaged velocity
ũ over the eddy region to be transformed in a spatial dimension xe. It can be interpreted
as the way an eddy would need to develop the triplet map on the profile.

3.2.2 Eddy sampling
As a next step it is important to define the rate of eddy events λ, which is assumed to be
depended on the eddy origin and length (r0, l) and so on the current line state. This rate
is modeled by using dimensional arguments, which are leading to

λ = 1
xel2

. (3.27)

The rate λ is the rate of eddies of length l in ODT-line and length xe in stream-wise
direction. Its integral over both quantities defines the rate of all eddies Λ. With both
rates we can construct an instantaneous joint probability density function (PDF) of eddy
size and location, which is given as

P (r0, l) = λ(r0, l)∫ ∫
λ(r0, l)dr0 dl

= λ

Λ . (3.28)

We assume that the occurrence of eddies of a certain size follows a Poisson process in
space with a mean rate Λ, i.e. P (∆x) = Λexp(−Λ∆x). Technically this is solved by
oversampling, i.e. generation of candidate eddies at a much higher rate than requested,
and thinning of the Poisson process with an acceptance-rejection method. For details we
refer to [16].
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4 Lagrangian Particle Model
In this chapter the particulate phase model is described which is modeled in a Langragian
setting. The model consits of two parts corresponding to the two parts of the gas phase.
the first part is for the diffusive advancement of particles and the second part for the in-
stantaneous eddy events, which impose an instataneous behaviour of the particulate phase.

4.1 Particle motion during diffusive advancement
The particulate phase is modelled in a Lagrangian way where individual particles are
tracked following Newton’s second law of motion. Here we consider the assumptions
stated in Chapter 2. The set of equations governing the particle motion are:

dup,i
dt

= −up,i − ug,i
τp

f + gi,

drp
dt

= up,r.

(4.1)

The subscripts p and g represent the particle and the gas phase, respectively, and gi
is the i-th component of the gravity acceleration vector. The particle response time,
τp = ρpd

2
p/18µ based on Stokes flow, is given here with consideration of mass mp and

density ρp of the particle and the fluid viscosity µ. The factor f is defined as

f = 1 + 0.15Re0.687
p . (4.2)

The drag law (4.1) is solved by a first-order Euler method. As the ODT line evolves
in spatial dimension (∆x) this step has to be transformed to a temporal step wit cor-
responding time step ∆t. It means that each particle has its own time history and is
time-independent of the ODT line. Therefore, a constant particle velocity over ∆x is
assumed, which yields to

∆t = ∆x
up,x

. (4.3)

Again, we assume a strictly positie velocity ux > 0.

4.2 Particle-eddy interaction model
The particle-eddy interaction (PEI) model is defined as the only effect of particle phase
motion in ODT line-direction and so the relative velocity up,r − ug,r in this direction for
the drag law (Eq. 4.1) is zero. The PEI model in this study was developed by Schmidt et
al. [22,23] as a so-called instantaneous PEI model (noted as type-I ) and governs the lateral
displacement due to an eddy event. Each particle obeys the model if they are located in
the sampled eddy region. The main model assumption is that the eddy length scale xe,
tranformed after Eq. 3.24, defines the distance an eddy needs to create the remapped
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profile. That means before an eddy event the particle motion in (4.1) is integrated over
the eddy time without a ODT-line velocity, which has to be corrected to account for a
finite time a particle needs to cross an eddy of size xe.

Therefore, the analytical solution for the drag law in ODT line-direction is used, which is
given as

rp = rp0 + vgt+ τpgrt− τp(τpgr + vg − vp0)(1− e−t/τp),
vp = vg + τpgr − (τpgr + vg − vp0,i)e−t/τp .

(4.4)

where vp0 and rp0,i are the initial particle velocity and location, respectively. τp includes
here the correction factor f (Eq. 4.2). As during the diffusive advancement the relative
velocity in ODT line direction was assumed to be zero and with a new defined gas velocity
for the PEI, so-called eddy velocity, the resulting correction over the time integral tpei are

∆rp = vgtpei − vgτp(1− e−tpei/τp),
∆vp = vg(1− e−tpei/τp),

(4.5)

and the post-PEI location and velocity are rp = rp0+∆rp and vp = vp0+∆vp, respectively.

Now, it is required to define an eddy velocity in lateral direction ve and an interaction
time tpei, which determines the time interval in Eq. 4.1, to correct the integration over the
time interval tpei. Determining the eddy velocity ve during the eddy event, the concept of
the displacement of a mass-less tracer particle governed by the mapping method (Eq. 3.9)
is used. The triplet map provides three possible tracer particle positions and a unique
position is sampled randomly with a uniform distribution from those three possible ones.
The final displacement 4RTM , see Fig. 4.1, divided by the eddy time scale te = xe/up
defines the gas velocity during the PEI.

Inertial particle
Current ODT
line position

tpei

particle trajectory
without PEI

particle trajectory
with PEI

ve

Tracer particle

4RTM

Figure 4.1: Example of re-integration of drag law (Eq. 4.1) over particle-eddy interaction
time tpei. Eddy velocity ve is defined as the tracer particle displacement 4RTM by the
triplet map divided by the eddy time scale te = xe/up. For the displacement one (black
circle) of three possible positions (grey circles) is chosen randomly.
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As a next step the integral time scale has to be determined and therefore a so-called eddy
box is introduced with the dimensions [l× l× βpxe], where βp is a model parameter. The
PEI integration time tpei is given as the time the particle needs to exit the box. Therefore,
the analytical solution (Eq. 4.4) is used again to compute the exit time in each direction.
For the non-radial eddy velocity components the local gas velocity at the particle position
is used . The minimum of the resulting exit times defines the particle-eddy interaction
time tpei.
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Figure 4.2: Flow chart of particle phase implementation for spatial ODT
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5 Contribution to the Field
5.1 Paper I
”Numerical study of stochastic particle dispersion using One-Dimensional-Turbulence”

The first required step for this thesis was to implement the particle model into the
ODT 2.0 framework and modify it towards for the cylindrical coordinate system and
an evolution in spatial dimension. Using the newly-developed spatial-cylindrical ODT
promised an improvement of predicting the carrier gas-phase and a better comparison
with spatial experimental results. In this paper the first validation of the new model was
published. It is investigating the radial dispersion and axial velocity decay of a hexadecane
droplets in a jet configuration with a nozzle diameter of 7mm and Reynolds numbers
ranging from 10000 to 30000. The ODT predicted data is compared with experiments of
Kennedy and Moody [12] for a broad range of different Stokes numbers. The presented
results show good agreement with the experimental data, reproducing the results of Sun
et al. [25] without needing to transform the temporal coordinate.

5.2 Paper II
”Numerical studies of turbulent particle-laden jets using spatial approach of
one-dimensional turbulence”

As we succesfully validated the particle tracking in the previous paper the next step was
to extend the model for a momentum transfer from the particle back to the gas phase, i.e.
a two-way coupling approach. Therefore, we introduced a source term for the diffusive
advancement equation and a new kernel formulation enabling to exchange momentum
and energy from and towards the particle phase. To validate this extension, simulations
were run for a particle-laden turbulent round jet with solid loadings 0, 0.5 and 1 and
particle diameter 25µm and 70µm and compared to experimental data from Budilarto [3].
It could be shown that the model was capable of capturing turbulence modulation of
particles in a turbulent round jet.
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6 Future work
The overall objective of the present ongoing work is to provide data of turbulence-droplet
interaction for the filtered scales of Large eddy simulations (LES). The initial phase
of implementing the Lagrangian particle tracking model into the ODT framework was
successfully completed. The next steps towards the overall goal will be investigation of
the mechanisms of droplet interaction with turbulent shear flows.

LES, as the name says, transport large scales and filters out the small ones. The effects
of these smaller scales is covered by subgrid-models, which are very sensitive to their
parameters. To develop an alternative, which should be less depended on user-defined
parameters, it is important to understand the filter process. Often this is done by applying
a low pass filter to the Navier-Stokes equations. Therefore, the grid resolution is not
required to be as fine as the ones of DNS grids. If we now look into two neighboring
cells we will often find two different velocity vectors. The flow between these two vectors
can be seen as a shear flow. These shear flow can be highly turbulent and influence
passing droplets or vice versa. It is important to find the governing mechanisms for
these phenomena and the depending parameters. The final goal is to use the chosen
parameters and take out data from a data base fed with statistical ODT results and
give the information back to the LES grid cells. To reach this goal intensive studies of
turbulence-droplet interaction in shear flows are required.
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