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Abstract

Autonomous vehicles are expected to bring safer and more convenient trans-
ports in the future. When the system in the vehicle takes care of the driving,
the driver is free to spend time on other things. As the driver is no longer
part of the loop and cannot be used as a fallback, the requirements that
are put on safety and dependability of the system will be very high. To
test the system in real traffic and measure the failure rate that leads to an
accident will therefore not be feasible. However, due to the complexity of
the system, it is still desirable to be able to test the safety on a complete
system level.

With the emergence of automated driving systems, the vehicles will be
equipped with an array of sensors that gives a representation of the envi-
ronment. This opens up the possibility to use more information to estimate
how safe the system behaves in real traffic. Using an area of statistics called
Extreme Value Theory, the frequency of near-collision can be extrapolated
into a frequency of actual collisions.

These near-collisions are measured using threat assessment methods that
have been developed for active safety applications. In this thesis, two types
of measures are evaluated to determine how well they can be used for ex-
trapolation. From the results, it is clear that the measure relating to a point
where a collision is unavoidable works better than the one relating to the
actual collision.

Furthermore, several methods for automatically fitting the extreme value
model to the data are evaluated. The result shows that all tested methods
work well where some methods put emphasis on the more extreme data,
which can result in a difference of the inferences drawn. This suggests that
the whole process has the possibility to be automated, which is necessary
when performed repeatedly on multiple large data sets.

Keywords: Automotive, Autonomous Vehicles, Verification, Performance
Evaluation.
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Chapter 1

Introduction

Autonomous vehicles are expected to bring many benefits to the traffic
environment. Studies show that human errors are the cause for over 90%
of the traffic accidents [1]. With the human taken out of the equation,
there is a possibility to significantly reduce the number of accidents. It also
enables the driver to do something else with the time in the vehicle. The
vehicles could also drive without any passengers to enable relocation of taxi
services and delivery of goods. Currently, there is a lot of effort put into
developing autonomous vehicles. Many actors promise to have vehicles on
a higher level of autonomy available to be used in some way during the
coming years, e.g. [2–6].

The driver of an autonomous vehicle is effectively put out of the loop and
cannot be used as a fallback plan when things go wrong. As a consequence,
there will be very high dependability requirements in relation to safety.
To know what these requirements are in practice, it has to be understood
what safe behavior actually means. The vehicle needs to be able to handle
traffic laws, but also rare road hazards that are hard to predict. Then there
must be a strategy how to validate that the vehicle actually has reached
the required level of safety. It is argued that to solve this problem, a large
effort across many different domains has to be made [7].

1.1 Driver Assistance and Automated Driving

Advanced Driver Assistance Systems (ADAS) supports the driver and auto-
mates some type of control. The driver is still responsible for the vehicle
and often have the possibility to override the function. There is also a limit
of what the automated task can perform in order to ensure safe control
in cooperation with the driver. The driver must monitor the system and
also acts as a fallback in case there is a failure to the system. The most
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Chapter 1. Introduction

simple type of assistance systems has to the role of relieving the driver of
one specific driving task. These are referred to as Level 1 automation ac-
cording to the SAE J3016 standard [8]. An overview of the different levels
of automation can be seen in Figure 1.1.

SAE Level Name
Control of 

steering and 
acceleration

Monitors 
driving and 
environment

Fallback
responsible

Capability of 
system

1 Driver 
Assistance

Human driver
and system Human driver Human driver n/a

2 Partial 
Automation System Human driver Human driver Limited scope

3 Conditional
Automation System System Human driver Limited scope

4 High 
Automation System System System Limited scope

5 Full Automation System System System Full scope

Figure 1.1: A table illustrating the five levels of automation from the SAE
J3016 standard. The different columns highlight where the responsibility
lies within different areas for the respective level.

An example of a Level 1 system is Adaptive Cruise Control (ACC), which
job is to control the acceleration and braking to maintain a certain gap to
the vehicle in front. This relieves the driver of a substantial part of the
driving. Lane Keeping Assistance (LKA) is another Level 1 function, which
instead focuses on the steering and makes sure that the vehicle remains in
the lane. If the vehicle detects that it is about to leave the lane, it can
automatically steer the vehicle back into the lane. A detailed description of
ACC and LKA, as well as other ADAS systems, can be found in [9].

ACC and LKA can be combined to one function controlling accelera-
tion, deceleration, and steering. There are systems of this type that are
in production in e.g. Mercedes’ Drive Pilot, Tesla’s Autopilot and Volvo’s
Pilot Assist. These systems are referred to as Level 2 automation or partial
automation because the driver still needs to monitor the system and the
environment.

1.1.1 Unsupervised automated driving

By moving to Level 3 and higher, you remove the driver’s responsibility to
monitor, which opens up the possibility to do other things while the car is
driving. This is referred to as an unsupervised automated driving system.
The function could be limited to special conditions such as weather and
traffic. An example of this is a system which handles the driving in traffic
jam scenarios during certain conditions.

2



1.1. Driver Assistance and Automated Driving

When the vehicle is about to exit the scope of the function it hands back
the control to the driver. If the driver does not take over, the system needs
to have a backup plan that it can execute to put the vehicle in a safe state.
The operational design domain (ODD) can be expanded to increase the
capability of the system and include more driving scenarios. Ultimately, the
vehicle can be driven autonomously without a driver present in all situations
and conditions. This opens up for new models on how transportation can
be carried out in the future.

1.1.2 Implication for system design

In the case of a simple ADAS function such as ACC, the scope is limited to
keeping a certain distance to a vehicle in front. If there is no vehicle in front,
the system should act as a regular cruise control, keeping a set speed. This
function can be realized with a single radar sensor in the front, measuring
position and speed of a possible vehicle. Out of the possible objects that
are detected, it has to be selected which of them that is the target vehicle.
Based on that, an action is taken to keep the set distance to that vehicle.

Suppose that the same function with the same ODD is to be developed,
but now as an unsupervised function. The driver is no longer responsible
for monitoring and not available as a fallback option. This would result in
much higher requirements on perception to detect all possible objects that
could be in front of the vehicle. That is because there is no longer a driver
that monitors the road that can intervene if an object is missed. This might
result in added sensors for redundancy that also has to be handled in the
perception. Decision-making will also have higher requirements on inter-
preting the situation correctly, choosing the right target to follow. There
will also be a requirement on vehicle control that guarantees the execution
of a braking maneuver. To fulfill this it might be necessary to add a redun-
dant braking system.

When the function’s scope expands towards unsupervised automated
driving and a complete ODD, the function needs to handle many more types
of situations compared to the ACC case. This means that the environment,
that the system should be designed to act in, will be much more complex.
The implications of this on perception is that there will be high requirements
to detect objects all around the vehicle and at long distances. To fulfill these
requirements many more sensors need to be added that give a surround
view of the environment around the vehicle. There will also be a need
for redundant sensors at many places to reach the high level of robustness
needed. For decision-making, there will be a lot more scenarios that should

3



Chapter 1. Introduction

Solid State 
Lidar High 

Definition 
Maps

Surroundings Planned Path
Environment
Perception
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making
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Deep 
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Control
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Computer	
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Motor
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Figure 1.2: An illustration of the main building blocks for an automated
driving system. Some parts that belongs to the blocks are mentioned to
illustrate the complexity of safely bringing everything together.

be correctly interpreted and complex traffic scenarios with many different
participants, which behavior needs to be predicted. There also needs to be
decisions on multiple levels taking care of strategic as well as operational
planning with logic determining what is currently the most important to
safely reach the target. For vehicle control, the scope now also include
steering, which probably needs to be redundant to guarantee high enough
availability. The scope of actions that should be possible to actuate has also
now increased to include a large variety of highly dynamical maneuvers. The
end result is a highly complex system with very tough safety requirements
that need to be handled by every part of the whole system, as illustrated in
Figure 1.2.

1.2 Safe system design

In order to develop a complex system such as an automated driving sys-
tem, one needs to define what needs to be developed, how it going to be
implemented and to make sure that the system is doing what it is supposed
to. This process falls under an area called systems engineering, which deals
with how to design and manage this type of complex systems.

The process usually contains the steps of refining requirements, func-
tional allocation, and physical implementation. Each of these steps then
has to be verified at each level and validated against the top level require-
ments. In the automotive industry, this is done according to a framework
called the V-model, shown in Figure 1.3, which is also a part of the ISO
26262 standard for functional safety [10].

To make the system behave in a safe way, possible failures have to be
detected and mitigated. These failures include both hardware and soft-
ware related faults and it needs to be shown that these are sufficiently rare

4



1.2. Safe system design

Function

System

HW/SW

Figure 1.3: Figure of the V-model for software development. The left leg
represent the refinement of requirements into implementation in hardware
and software. The right leg consist of the verification of each step of refine-
ment on the different levels of abstraction.

events. For an automated driving system, it is also important to ensure
that the nominal performance of the system is good enough to ensure a safe
operation. It must be designed to be safe when everything is working as
intended.

The function could, for example, be designed so that the host should
always keep a minimum distance to the vehicle in front. This distance
could be insufficient in some situations in order to drive in a safe manner.
Another critical area is the sensor performance, which includes, for example,
technological limitations. An example of this is when a vision sensor has
been trained on a data set that does not contain a certain type of object
and therefore fails to classify it. The ISO 26262 standard does not explicitly
describe how to extract and verify this type of requirements.

The development process of ISO 26262 starts with defining the item in
question, which could represent a function. From the basis of the function,
everything that can go wrong is investigated. These hazards are considered
without the possible causes for these events and are classified a certain
criticality level, called Automotive Safety Integrity Level (ASIL). The level
which the hazard is classified as depends on the severity, exposure, and
controllability of the situation. From the hazard analysis, safety goals are
derived and they also inherit the respective ASIL classifications. All the
safety goals need to completely cover all hazardous events for the respective
item. The safety goals forms the vehicle level safety requirements that

5



Chapter 1. Introduction

should be met in order to ensure a safe function. For an automated driving
function, the safety goals might be more general to more broadly cover
all situations, but that leads to more abstract formulations that are more
difficult to verify [11]. This might require adding more abstraction layers in
order to be able to show completeness between each layer.

These safety goals are then refined in multiple steps until there are re-
quirements on specific hardware and software components. In each of these
steps, it has to be verified that the requirements on the lower level fulfill
the scope of the higher level, showing the completeness of the requirements.
Each abstraction level also needs a verification strategy. This includes how
to prove that the relationship between input and output of the model is im-
plemented correctly in the product. For lower levels of the implementation,
it is possible to show completeness and check all relationships. However, at
the higher abstraction levels and for more complex systems, it becomes less
practically possible to do so [9].

1.3 Problem formulation

The challenge of assuring safety for an automated driving function has given
rise to the following questions: How to make sure that all safety goals are
fulfilled? Are the safety goals correct and complete? The first question
addresses the verification of the safety goals and also makes sure that the
refinement of requirements is done correctly. By answering the second ques-
tion, the safety goals are also validated that they cover all hazards which
are connected to the item definition.

1.4 Delimitation

In this thesis, only the validation of vehicle level requirements called safety
goals is considered. It is assumed that the refinement and verification of
the lower level requirements are already performed. The validation of these
safety goals is in this thesis delimited to only consider the situation of rear-
end collisions. In order to validate the method, data based on human drivers
have been used in order to be able to compare with a reference.

1.5 Contributions

This thesis presents a method to estimate the collision frequency of a vehi-
cle using Extreme Value Theory (EVT). To enable this, a measure of the
closeness to a collision is needed and in this thesis, two types of measures

6



1.6. Outline

are evaluated, see Paper 1 and 3. The method also generates confidence
intervals that take into account the uncertainty of the extrapolation, which
can be used for safety validation purpose. Using data gathered from hu-
man drivers, the method is validated by comparing the results with data
from crash statistics, see Paper 2 and 3. Several methods for automatically
applying the EVT model on the data have been evaluated in Paper 3.

1.6 Outline

This thesis is made up out of two parts where Part I acts as an introduction
to what is presented in Part II. In Part II there are three scientific papers,
which are the base of the thesis. Part I provides background information
and puts the appended papers into context with the following structure.
In Chapter 1, the setting of the thesis is introduced by first describing an
unsupervised automated driving function. It is then described what it takes
to design this type of system in a safe way. This background is followed by a
formulation of the problem that this thesis addresses and what delimitations
have been made. In Chapter 2, different types of verification and validation
methods are described. Chapter 3 provides an introduction to EVT and
describes how it can be applied to traffic safety. In Chapter 4, the papers
included in Part II are briefly summarized and in Chapter 5 the thesis is
concluded with suggestions for further research.

7
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Chapter 2

Verification
and validation methods

In Chapter 1 it is described how the refined requirements of an automated
driving function need to be verified on different levels. This is in order to
ensure that the requirements have been implemented correctly and thereby
create a safe function. There are several different approaches to verifying
requirements that could be used to verify and validate the vehicle level
safety goals. In this chapter, some methods are presented together with a
description of their respective strengths and weaknesses.

2.1 Formal methods

Formal methods use mathematical models to verify that the system fulfills
the requirements. They can be used in the whole development process from
requirements engineering to implementation [12]. At the implementation
level, the software is connected to mathematical contracts between input
and program variables. With these mathematical models present, the code
can also be automatically generated. In [13] reachability analysis and viabil-
ity theory are used to formally verify a collision avoidance system. Unsafe
and safe sets are computed to determine if an ideal system should intervene
or not. Similarly, in [14] the safety of an autonomous vehicle has been veri-
fied using reachability analysis. The set all possible occupancies of the ego
and surrounding vehicles are predicted. Mathematical models are used to
consider all possible behaviors and uncertainties of sensors and actuators.

+ Powerful to mathematically prove that requirements are always ful-
filled

− Need validated mathematical models of every part of the system

9



Chapter 2. Verification and validation methods

2.2 Statistical methods

To capture the stochastic behavior of the system due to the uncertainty
of the sensor information, one can use stochastic verification methods. For
estimating the frequency of failures, the system is often modeled as a Poisson
process for the number of failures during a certain time. A confidence
interval can be created to verify with a certain confidence that the failure
rate is lower than the requirement. This is the basis for the proven in use
argument in ISO 26262 [10]. An autonomous driving function has very
tough requirements on failure rates, which leads to that a large amount
of driving data is needed in order to verify them [15]. In order to get a
representative sample of the driving, a real-world user profile is used as
in [16, 17]. In these examples, statistical methods are used to verify that
the false positive rate is sufficiently low. This can be done in a similar way
to verify false negatives for sensor detection in the case of missed objects.

In the included papers, a statistical method using the theory presented
in Chapter 3, is presented. This method utilizes more of the available data
compared to Poisson statistics to verify similar requirements and therefore
needs less amount of driving data.

+ Possibility of having a high content validity

− Requires a large amount of data for each new version of the system

2.3 Directed testing

For testing the performance of collision avoidance systems, directed testing
on test tracks have been used in [16,17]. There, a number of scenarios based
on real-world driving situations are tested. This is also done in several
different weather and light conditions together with variations of similar
situations. A benefit of using this method is that the whole system from
sensors to actuators are used as it is implemented. It is also possible to test
rare difficult scenarios repeatedly, which is not possible in real traffic.

With directed testing at a test track, it is hard to recreate variations
of situations realistically. When using directed testing on a test track for
verification, the worst-case scenarios are often tested. An example of how
worst-case scenarios can be defined for a collisions avoidance system is found
in [18]. It is in those situations where a system error is most likely and
from there it can be argued that less challenging scenarios are also handled.
However, for an autonomous vehicle, it is not obvious in many situations
what is the worst-case situation and how to argue that all other situations
are handled.

10



2.4. Simulation

+ Effective when testing the system in extreme scenarios

− Difficult to define a complete set of test cases

2.4 Simulation

The aim of using simulation for verification is to test the system in closed-
loop based on computer-generated inputs. Some parts of the system and
the environment are then modeled to create as close to the real experience
as possible. One type of simulation is Model-In-the-Loop (MIL), where the
whole system is a model of what is implemented. Another type of simulation
is called Software-In-the-Loop (SIL), which uses the actual implementation
of the system in the simulation. Examples of implementations of MIL and
SIL can be found in [17,19,20]. In both these types of simulation virtually
generated scenarios are sent as input to the system. The scenarios can be
generated from the specifications, but also based on what has been expe-
rienced in real traffic, as seen in [21]. One benefit of using this type of
simulation instead of in real traffic is that it can be performed offline and
done multiple times faster than real-time. It is also possible to control the
process and test multiple variations of the same situation in a simple way.

Another type of simulation is called Hardware-In-the-Loop (HIL), which
is the case when the software is run on the actual hardware in the vehicle,
as seen in [22]. Thereby it is possible to test the system performance with
both the software and actuators working together. However, the sensors
still need to be modeled, which is a difficult task.

+ Can perform tests of scenarios much faster than in real-world and also
test variations that have not been seen

− Needs to have validated models for the system and the environment

11



12



Chapter 3

Extreme Value Theory

Extreme Value Theory (EVT) is an area of statistics which focuses on the
rare instead of the common events. It was first applied in the area of
civil engineering to better understand the requirements for what structures
need to be able to handle over a long period of time [23]. It provided
a framework to describe the magnitude of forces that could be expected
based on historical data. The framework of EVT contains a set of models
that enable the usage of observed levels of data and extrapolate that into
estimates of unobserved levels.

An example of how EVT is being used today is in the design of coastal
defense barriers. You may have data on the sea level at the specific location
for the last 10 years, but the barriers should be able to protect against high
sea levels for maybe the next 100 years. EVT can then be used to model the
observed sea levels from the last 10 years in order to estimate the highest
expected sea level during the expected lifetime of the barrier.

3.1 Block Maxima

The statistical behavior that is modeled in the classical extreme value theory
is the maximum, Mn, of a sequence of independent random variables.

Mn = max{X1, ..., Xn} (3.1)

These measurements, X1, .., Xn, could, for example, be daily measurements
of sea-level, as visualized in Figure 3.1. The valueMn is then the maximum
of these measurements during a certain time, for example, one year.

If the cumulative distribution F of the max value is known, this could
be used to estimate the frequency of more rare events. In practice, the
distribution F is unknown but can be approximated to a set of models based
only on the extreme data [23]. This is similar to the normal approximation

13



Chapter 3. Extreme Value Theory

1 2 3 4 5 6 7 8 9 10

Figure 3.1: This figure illustrates how the block maxima values are selected
in the example of daily sea-level measurements. The selected maximum
values of each block are highlighted with a red ring.

of sample means, using the central limit theorem. The set of models can be
represented by the Generalized Extreme Value (GEV) distribution, as seen
in Figure 3.2.

Figure 3.2: This figure illustrates how the GEV distribution is fitted to data.
The probability density function for the distribution is shown as the red solid
line. The values on the x-axis represent the maximum measurement from
each block.

The distribution consists of the three parameters location (µ), shape (ξ)
and scale (σ) with the following probability density function:

f(x|ξ, σ, µ) = 1

σ
exp

(
− (1 + ξ

(x− µ)
σ

)−
1
ξ
)
(1 + ξ

(x− µ)
σ

)−1− 1
ξ . (3.2)
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3.2. Peak Over Threshold

If data is collected for multiple years, a series of block maxima,Mn,1, ...,Mn,m,
can be used to fit a GEV distribution. Then the probability that a yearly
maximum is exceeding the value xp can be found using the inverse cumula-
tive distribution function:

p = 1− F (xp). (3.3)

When implementing this model on a data set, the choice of block size
can have a significant impact on the result. Choosing a too small block size
leads to bias in the estimation due to the poor approximation of the limit
theorem. A large block size will instead lead to few maxima and thereby
large variance of the estimation. Another important aspect in choosing
the block size is that maxima need to be equally distributed. Therefore, if
there are seasonal differences in the measured variable, these need to have
the same conditions in each block. Using block maxima could mean that a
large part of the available data is wasted. This is especially true if many of
the extreme events occur in the same block.

3.2 Peak Over Threshold

Another method is to avoid the blocking and instead only model the most
extreme events that exceed some threshold, u, which is visualized in Figure
3.3. The k values that are exceeding the threshold, xi : xi > u, are called
exceedances and are labeled x(1), ..., x(k).

1 2 3 4 5 6 7 8 9 10

Figure 3.3: This figure illustrates how the exceedances are selected in the
example of daily sea-level measurements. The selected peak values that
exceed the threshold are highlighted with a red circle. The threshold is
represented with a horizontal yellow line.

15



Chapter 3. Extreme Value Theory

These values then belong to a distribution family called the Generalized
Pareto (GP) Distribution as shown in Figure 3.4. The GP distribution
consists of similar parameters as the GEV distribution, with shape (ξ), scale
(σ) and threshold (µ). It has the following probability density function:

f(x|ξ, σ, µ) = 1

σ

(
1 + ξ

x− µ
σ

)−(1/ξ+1)
. (3.4)

Figure 3.4: This figure illustrates how the GP distribution is fitted to all
values exceeding a certain threshold. The threshold is represented by the
dashed yellow line and the probability density function by the red solid line.

To avoid bias or high variance of the estimation, the threshold, u, is
chosen as low as possible while still having a good fit to the model [23].
This is often done by manually inspecting the shape parameter for different
choices of thresholds. When the shape parameter is constant, the estimation
is stable, which indicates a good fit to the model. Finding a good threshold
in practice can be difficult and often relies on experience.

The probability that a specific value is exceeded can be calculated sim-
ilarly to the block maxima method. Suppose that ζu = Pr{X > u}, then
the probability, p, that the value xp is exceeded is:

p = ζu (1− F (xp)) . (3.5)

3.3 Return Level

The probability, p, that is received for a certain value, xp, can be used to
find the average time between measurements that exceed this value. In
EVT, this time is referred to as the return period and the corresponding
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3.4. Application to vehicle safety

sea-level value is called return level. Given a probability, the return period,
tp, can be found using the following formula:

tp =
ttot
np
, (3.6)

where ttot is the total time of data gathering and n is the number of blocks
for the BM method or the total number of measurements for the POT
method.

When the return level is plotted against different return periods, you get
something similar to what is seen in Figure 3.5. You can also create confi-
dence intervals of these estimates which takes into account the uncertainty
of more extreme return levels that have not yet occurred.

Figure 3.5: The figure illustrates how EVT can be used to estimate the sea-
level that is expected to be exceeded once in a certain time interval (return
period). The green solid line represents the most likely estimate, while the
red dashed lines corresponds to a confidence interval of this estimate. The
blue dots correspond to the measurements used to fit the EVT model, which
are plotted along the estimate to show how well the model fits the data.

If one is interested in how often a certain value is exceeded, the answer
would be the corresponding return period. This could be of interest to
evaluate the effectiveness of a certain height for a seawall. The return
period would then correspond to an estimate of how often the barrier would
be flooded.

3.4 Application to vehicle safety

Extreme value methods have the possibility to estimate the frequency of
events that have not yet occurred. This is done by extrapolating from the
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Chapter 3. Extreme Value Theory

models fitted to the extreme data that has been recorded. For this to be
possible for vehicle safety, there is a need for a measure that reflects the
closeness to an accident for each given time instance. The measure also
needs a definite value where a collision happens or is unavoidable.

Such measures have been developed in the active safety area for avoid-
ing, for example, rear-end collisions with an auto-braking system. These
measures are called threat assessment since they are used to decide if the sit-
uation is threatening enough for the collision avoidance system to activate.
The main differences between these threat assessment methods are what
dynamic model that is used for the host vehicles and the objects around it,
and how their respective future actions and motions are predicted [24].

3.4.1 Deterministic threat assessment

Generally, a collision can be avoided in many different ways. The vehicle
has the possibility to steer, brake and accelerate and there is a lot of combi-
nations of these inputs. Therefore, threat assessment is often simplified for
computational reasons. Deterministic threat assessment assumes a given
model which gives one prediction that result in one specific value of the
threat for a given moment. This often done for one of the vehicle’s possible
actions at a time. Below follows a description of some common determinis-
tic threat assessment methods.

One of the most simple measures is the distance to an obstacle in the
host’s path ahead. This measure is called headway, pHW , and for a straight
road, it is equal to the radial distance. For a curved road, it is the distance
that has to be traveled along the middle of the road to reach the object.
This measure can also be expressed in time headway, tHW , which is the time
it takes for the host to reach the object’s position. If the host’s acceleration
is zero, then:

tHW =
pHW
v0,host

, (3.7)

where v0,host is the initial speed of the host vehicle.
The headway measure relates to the exposure of a hazardous situation,

i.e. how sensitive the host vehicle is to sudden events. However, the measure
does not predict the future motions of the object, which becomes a problem
if there is a high relative speed. A measure that handles this is the time to
collision, tTTC . It is often assumed that the acceleration of the host and the
object is constant. This means that the tTTC is found by solving:
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3.4. Application to vehicle safety

0 = px,0 + vx,0tTTC +
ax,0t

2
TTC

2
, (3.8)

where tTTC is the lowest positive solution. This measure is directly
related to the point of a collision. There are also measures such as required
longitudinal acceleration, ax, that reflects how much effort is needed to
avoid a collision. This type of measure can also be related to the capacity
of braking or acceleration. Assuming constant acceleration for both the host
vehicle and the object, the required acceleration can be found by solving
the following system of equations:{

0 = vx,0 + axt,

0 = px,0 + vx,0t+
axt2

2
.

(3.9)

There is a difference between the measures presented here in how they
characterize a threatening situation. The measure of TTC reflects the close-
ness in time of a predicted collision. Time headway does not predict a colli-
sion but instead relates to an obstacle-free distance, which is a conservative
measure of the closeness to a collision. In the case of a standstill object or
an object that stops instantly, these measures are very similar. The measure
of required acceleration is different to the other two measures since it does
not relate to a possible collision. Instead, it measures the action needed
to avoid a collision and hence when a collision is practically unavoidable.
Required acceleration, therefore, gives an earlier indication when a collision
is happening compared to the other two measures.

3.4.2 Advanced threat assessment

Threat assessment methods such as these can be extended to include more
detailed models for actuation of actions such as braking to make them more
realistic. The simple models presented here only takes into account one
target at a time, which sometimes underestimates the threat since some
paths might be blocked by other objects. By including multiple objects in
the threat assessment this can be mitigated but at the cost of increased
complexity. There are also a lot of uncertainties in state measurement and
prediction. This can be countered by introducing safety margins in the
deterministic models or by using stochastic models instead.

Stochastic models of the uncertainties can give a more realistic measure-
ment of the current risk. This can include both measurement uncertainties
as well as to consider multiple future trajectories. Stochastic models can
be applied to the measures presented in section 3.4.1. For TTC that would
mean that the result will be a distribution of values instead of a single one,
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Chapter 3. Extreme Value Theory

as seen in [24]. The result of using stochastic models can also be a prob-
ability of collision for each given instance, as shown in [25, 26]. This can
be done by assuming stochastic models of the future paths and calculating
the risk that an object will occupy the same place as the ego vehicle at the
same time in the future. Another approach is to model the uncertainties
of the measurements together with a model of the other traffic participants
as in e.g. [27]. Then stochastic reachable sets can be used to predict the
probability of collision for a certain path of the ego vehicle.
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Chapter 4

Summary of Included Papers

This chapter provides a brief summary of the papers included in the thesis
and also describes the contributions to each paper by the author of this
thesis. Full versions of the papers are included in Part II.

Paper 1

D. Åsljung, J. Nilsson and J. Fredriksson, Comparing Collision
Threat Measures for Verification of Autonomous Vehicles using
Extreme Value Theory, in 9th IFAC Symposium on Intelligent
Autonomous Vehicles, 2016, pages 57-62, Leipzig, Germany.

As described in Chapter 3, there is a need for a measure that reflects the
closeness to a collision in order to use EVT to estimate the collision fre-
quency. The measure needs to be able to continuously show the closeness
to a collision and comparable between different situations.

This paper investigates how different threat measures affect the infer-
ences drawn from EVT. Two different types of threat measures are compared
and a subset of a larger field test is used as input data, where the vehicles
are driven by humans. The results show that there is a clear difference
between the two types, especially when looking at the estimated collision
frequency. The measure which shows the closeness to the point where a
collision is unavoidable looks much more promising in that regard.

The thesis author was responsible for the problem formulation, imple-
mentation, analysis and writing the paper.

Paper 2

D. Åsljung, J. Nilsson and J. Fredriksson, Validation of Collision
Frequency Estimation Using Extreme Value Theory, in Proceed-
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Chapter 4. Summary of Included Papers

ings of the IEEE Intelligent Transportation Systems Conference,
2017, pages 1857-1862†, Yokohama, Japan.

In Paper 1 it was shown that one type of measure showed greater promise of
being able to estimate the collision frequency using EVT. In order to be used
as a validation method for safety requirements, as described in Chapter 2,
the method needs to be shown to correctly estimate the collision frequency.

To address this, the measure that was more promising is investigated
more in Paper 2 . To validate the correctness of the estimation using EVT,
it is compared to an estimate from crash statistics. For the comparison to
be valid, the data used for the EVT estimate is from a larger field test made
up of 250 000 km driven by humans. The results from this confirmed the
initial conclusions from Paper 1 that this measure gives credible results. It
was also found that the EVT model could be fitted in two different ways
resulting in some differences in the inferences drawn. By fitting the model
to a few of the most extreme events, the drivers’ performance showed to be
significantly better than the average human. The conclusion is that this is
what can be expected from data based on trained test drivers.

The thesis author was responsible for the problem formulation, imple-
mentation, analysis and writing the paper.

Paper 3

D. Åsljung, J. Nilsson and J. Fredriksson, Using Extreme Value
Theory for Vehicle Level Safety Validation and Implications for
Autonomous Vehicles, Accepted for publication in IEEE Trans-
actions on Intelligent Vehicles.

The analysis of different types of threat measures made in Paper 1 was
done on a limited amount of data, which makes the results preliminary. In
Paper 2 it was shown that depending on what threshold is used for the EVT
model, the inferences drawn could differ. As described in Chapter 3, this
process is often performed manually by visual inspection. In order to to be
able to efficiently use EVT for validation of safety requirements, this has to
be done automatically.

In Paper 3, the same larger field test as in Paper 2 is used to verify
the result received from Paper 1. The result from this larger field test is
very similar to what was found in Paper 1, which further strengthens the
conclusions that a measure that reflects the closeness to a point where a
collision is unavoidable is the better choice.

The Paper also includes an evaluation of three different methods of au-
tomatically choose a threshold for the EVT model. All methods choose a
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probable threshold for both measures, suggesting that the whole process
can be automatically performed.

The thesis author was responsible for the problem formulation, imple-
mentation, analysis and writing the paper.
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Chapter 5

Summary and Future Work

The attached papers present a method that can be used to validate the
safety of a vehicle’s driving. Data captured during real traffic driving is
used to evaluate the closeness to a collision, which is extrapolated into a
collision frequency using EVT. Different types of measures for the closeness
to a collision, as well as methods to correctly fit the EVT model to the
data, has been evaluated. Based on these results, the usage of EVT for
safety validation looks promising.

The papers included in this thesis only considers rear-end collisions. In
order to use EVT for safety validation, there is a need for a set of measures
that considers all types of situations where a collision can occur. The close-
ness to a collision also needs to be comparable between two situations of
equal threat.

The data that is used as input to the methods is gathered using sensors
that interpret the surroundings. These interpretations will always have
some errors compared to the real environment. It needs to be investigated
how these errors affect the estimations and the inferences drawn from the
results.

The vehicles that have been used for data collection in the papers have
been driven by humans. A reason for this is to be able to have a reference
to compare the results from the methods against. As a next step, data from
vehicles being in some form of automation should be investigated. It needs
to be validated that the applicability of the method does not change when
automated vehicles are to be evaluated instead.
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