
Thesis for the degree of Doctor of Philosophy

Robust and Energy Efficient Scheduling

Nina Sundström

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2017

Robust and Energy Efficient Scheduling
Nina Sundström
ISBN 978-91-7597-634-1

c© Nina Sundström, 2017.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4315
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Telephone + 46 (0) 31 – 772 1000

Typeset by the author using LATEX.

Printed by Chalmers Reproservice
Göteborg, Sweden 2017

to my beloveds Olle, Lou & Hjalmar

Abstract
Scheduling can generally be described as the act of allocating resources to tasks over
time such that a given performance measure is optimized. Traditionally, disturbances
are not considered while developing schedules. A rescheduling framework has thus
emerged, aiming to minimize the impact of unforeseen disruptions. In this thesis,
different rescheduling methods are proposed, where the obtained schedule is compared
with the runtime schedule to evaluate the quality in terms of robustness and stability.
The robustness is measured by the final time delay, whereas deviations in execution
order or start time deviations act as stability measures.

A method is suggested, where the order in which tasks start in a time-optimal
schedule is formulated as an event-based description. This results in a preserved
execution order if delays are present. Logical restrictions are examined, and possibly
relaxed, to avoid unnecessary delays. Another modeling approach presented, shows
that an already established rescheduling method performed partly offline and partly
online, called Affected Operations Rescheduling, can be performed completely offline.

From the aforementioned methods, stable schedules subject to sequence deviation
are obtained. To generate both stable and robust schedules, a strategy is studied
where idle time, so called slack, is inserted to schedules with the intention to
absorb possible delays. Schedules are consequently protected against both start time
deviations and makespan delay. In the literature on energy optimization, slack is
diminished and often eliminated on behalf of reduced accelerations and velocities for
robots, resulting in reduced energy consumption as well as extended execution times.
The conflict between slack-based rescheduling techniques and energy optimization
is highlighted in this thesis. The trade-off is evaluated by posing an optimization
problem with measures of energy consumption, robustness and stability as criteria.

A challenge in production systems nowadays, especially with the increase in
automation, is multiple resources sharing a restricted space. Much effort has been
devoted to handle collision avoidance in such systems. A method is proposed in this
work, where robustness is incorporated into trajectory planning for robots. When
disruptions are present, the time at which a common workspace is expected to become
available can differ. In the suggested approach, a clearance point is introduced, where
the availability of the common workspace is evaluated. If the robot reaches this point
and the shared space is not yet available, the robot has to be able to stop outside the
shared space to avoid potential collisions. This requirement restricts the velocity at
the clearance point. The impact on final time and energy consumption with respect
to the position and timing related to the clearance point is studied. Results show
the optimal clearance point position for different amount of slack available.

Keywords: Robust scheduling, energy optimization, trajectory planning, com-
mon workspace, discrete event systems.

v

Acknowledgments

What does it take to pursue a PhD? This question never entered my mind upon
starting this journey about seven years ago. I was more in shock for given this
opportunity, asking myself what I had gotten myself into. Just like the time when I,
two months after enrolling to Engineering Physics, asked myself what I was thinking,
having been away from school for six years. Well, to return to the initial question,
I think I have the answer. Not surprisingly does it take hard work and dedication,
but also one or numerous pinches of ’jävlar anamma’ and in my case, great female
role models to carry me through. Actually, when in doubts concerning the choice to
continue with the physics studies my, at the time, almost 90-year-old grandmother
said “failure is not an option, persist and you will eventually succeed”. At first,
the message felt harsh, but after earning a Bachelor’s degree, Master’s degree and
hopefully a PhD degree, I am willing to say that she was right. I feel extremely
fortunate to have met so many wonderful, inspiring and kind people on this journey,
whom I would like to express my sincerest thanks to.

First, I would like to express my gratitude to my supervisor, Professor Bengt
Lennartson, for your guidance when I couldn’t find my way in the depths of the
academic jungle, your valuable input and direction, leading me towards clarity, after
which your encouragement to keep going has helped me to complete this work.

I would like to dedicate a special thanks to Lars, you are never forgotten. One
time you said “once you get to know the postgraduate students, they are done with
their PhD and leave.” Tragically, you were the one to leave and never come back.
Maybe you have hitchhiked to the Galaxy, to find out that the answer to life, universe
and everything is not 42. Thank you for your friendship, you are forever missed.

I would like to express my appreciation to the team of administrators for being so
very helpful. Thanks also to my colleagues at Systems and Control for your expertise
in employeeship! Many thanks to Johan W, Johan N, Jonathan and Emilia for your
company during lunch times and coffee breaks which always brings a smile to my
face. Thank you Anna-Maria, Maliheh, Linnea, Mona, Sahar and Sathya for all
the great conversations on both research but also motherhood and everything in
between. Sarmad, thank you for your extreme kindness which has manifested itself
in unlimited supply of lavashak over the years!

Oskar, my brother from another mother, you have walked alongside me during
this journey and helped me in so many ways. Thanks for accepting the kind request
to become my co-supervisor. Thanks also to my Chalmers family where, besides
Oskar, Malin and Tomas are members. I miss the old times at Chalmers with you.

vii

Furthermore, I am so grateful to my family for all your support over the years. I
would also like to express my appreciation of my extended family and thank you for
always helping out whenever needed. Finally, I would like to take the opportunity to
thank you, Olle, for being so loving, understanding and patient throughout these
years. You are my rock! I’m so grateful that you came into my life, and for the lives
that you and I have created. Lou and Hjalmar, you mean the world to me, now there
will be plenty of time available to play. I love you.

Nina Sundström
Göteborg, November 2017

viii

List of Publications

This thesis is based on the following appended papers:

Paper 1. Nina Sundström, Oskar Wigström, Petter Falkman and Bengt Lennart-
son. “Optimization of Operation Sequences using Constraint Programming.”
Proceedings of the 14th IFAC Symposium on Information Control Problems in
Manufacturing, 45 (6), 1580-1585, 2012.

Paper 2. Nina Sundström and Bengt Lennartson. “Event- and Time-Based
Design of Operation Sequences with Uncertainties in Execution Times.” Pro-
ceedings of the IEEE 18th Conference on Emerging Technologies Factory Au-
tomation (ETFA), 2013.

Paper 3. Nina Sundström and Bengt Lennartson. “Rescheduling Affected Oper-
ations - a Purely Predictive Approach.” Proceedings of the 13th International
Workshop on Discrete Event Systems (WODES), 71-78, 2016.

Paper 4. Nina Sundström, Oskar Wigström and Bengt Lennartson. “Conflict
Between Energy, Stability, and Robustness in Production Schedules.” IEEE
Transactions on Automation Science and Engineering, 14 (2), 658-668, 2017.

Paper 5. Nina Sundström, Oskar Wigström and Bengt Lennartson. “Robust
and Energy Efficient Trajectories in a Common Workspace Setting.” Submitted
for possible journal publication.

Other contributions by the author not included in this thesis, either due to content
overlap with appended papers, or due to content outside the scope of this thesis:

Nina Sundström, Oskar Wigström, Sarmad Riazi and Bengt Lennartson. “On the
Conflict Between Energy, Stability and Robustness in Production Schedules.”
Proceedings of the IEEE International Conference on Automation Science and
Engineering (CASE), 1263-1269, 2016.

Nina Sundström and Bengt Lennartson. “From Time-Optimal Schedule to Robust
Event-Based Control.” Proceedings of the IEEE 20th International Conference
on Emerging Technologies and Factory Automation (ETFA), 2015.

ix

Oskar Wigström, Nina Sundström and Bengt Lennartson. “Optimization of
Hybrid Systems with Known Paths.” Proceedings of the 4th IFAC Conference
on Analysis and Design of Hybrid Systems, 45 (9), 39-45, 2012.

Patrik Magnusson, Nina Sundström, Kristofer Bengtsson, Bengt Lennartson,
Petter Falkman and Martin Fabian. “Planning Transport Sequences for Flexible
Manufacturing Systems.” Proceedings of the 18th IFAC World Congress, 44
(1), 9494-9499, 2011.

x

List of Acronyms

AOR – Affected Operations Rescheduling
CP – Constraint Programming
CSP – Constraint Satisfaction Problem
EFA – Extended Finite Automaton
FJSP – Flexible Job Shop Problem
JSP – Job Shop Problem
MINLP – Mixed Integer Nonlinear Program
NLP – Nonlinear Programming
RSR – Right-Shift Rescheduling
SP – Sequence Planner

xi

Contents

Abstract v

Acknowledgments vii

List of Publications ix

List of Acronyms xi

I Introductory Chapters 1

1 Introduction 3
1.1 Background . 4
1.2 Research Questions . 6
1.3 Contributions . 6
1.4 Thesis Outline . 8

2 Scheduling for Timed Discrete Event Systems 9
2.1 Scheduling Problems . 9
2.2 Sequence Planner . 10

2.2.1 Sequence Planner model . 11
2.2.2 Scheduling using SP and CP 12
2.2.3 Extending the SP model . 13

2.3 Disjunctive Graph . 14
2.4 Summary . 16

3 Rescheduling 19
3.1 Strategies and Methods . 19

3.1.1 Proactive Scheduling . 20
3.1.2 Predictive-Reactive Scheduling 20
3.1.3 Reactive Scheduling . 21
3.1.4 Schedule Quality . 21

3.2 Affected Operations Rescheduling . 21
3.3 Right-Shift Rescheduling . 22
3.4 Summary . 24

xiii

CONTENTS CONTENTS

4 Robustness and Stability 25
4.1 Quality Measures . 25

4.1.1 Robustness measure . 25
4.1.2 Stability measure . 26

4.2 Surrogate Measures . 26
4.2.1 Existing measures . 26
4.2.2 Proposed stability surrogate measure 27

4.3 Evaluation of Surrogate Measures . 28
4.3.1 Optimization model . 28
4.3.2 Benchmark problem . 30
4.3.3 Comparison of robustness measures 30
4.3.4 Comparison of stability measures 31

4.4 Summary . 33

5 Energy Efficient Scheduling 35
5.1 Energy Consumption Measure . 35
5.2 Conflict Between Energy, Stability and Robustness 37

5.2.1 Optimization model . 37
5.2.2 Trade-off analysis . 37

5.3 Summary . 39

6 Robust and Energy Efficient Trajectory Planning 41
6.1 Problem Formulation . 41
6.2 Minimum Time Analysis . 43
6.3 Minimum Time Sensitivity . 45
6.4 Energy Reduction . 47
6.5 Example . 49

6.5.1 Final Time . 50
6.5.2 Energy Consumption . 51

6.6 Summary . 53

7 Summary of Appended Papers 55

8 Concluding Remarks 59

Bibliography 61

II Appended Papers 67

1 Optimization of Operation Sequences using Constraint Program-
ming 69
1 Introduction . 71
2 Modeling . 73

2.1 The Flexible Job-Shop Problem 73
2.2 Modeling using Sequence Planner (SP) 73

xiv

CONTENTS CONTENTS

2.3 Work Equivalence Abstraction 74
3 Constraint Programming . 74

3.1 Scheduling using Constraint Programming 75
3.2 Mapping of SOP to CP . 75
3.3 Implementing Work Equivalence 77

4 Case study . 78
4.1 Process Description . 78
4.2 Modeling Approaches . 79

5 Results . 80
6 Conclusion . 81
References . 81

2 Event- and Time-Based Design of Operation Sequences with Un-
certainties in Execution Times 83
1 Introduction . 85
2 Modeling . 87

2.1 Operation model . 87
2.2 Operation relations . 87
2.3 Modeling using Sequence Planner 88

3 Constraint programming . 89
3.1 Scheduling using constraint programming 89
3.2 Mapping of operation sequences 90

4 Event generation . 91
4.1 Illustrative example . 92
4.2 Approach . 94
4.3 Algorithms . 96

5 Case study . 97
6 Conclusions . 99
References . 100

3 Rescheduling Affected Operations - a Purely Predictive Approach103
1 Introduction . 105
2 Preliminaries . 107

2.1 Operation Model . 107
2.2 Resource Booking . 107
2.3 Operation Relations . 108

3 Rescheduling . 108
3.1 Rescheduling Environments 108
3.2 Performance Measures . 109

4 Predictive AOR . 109
4.1 Job Shop Representation using a Disjunctive Graph 110
4.2 Generating Pre- and Postconditions 110
4.3 Obtaining a Non-Transitive Directed Acyclic Graph 111

5 AOR versus RSR . 113
5.1 Performance of AOR vs. RSR 115

xv

CONTENTS CONTENTS

5.2 Measure of Delay in Makespan 117
6 Extensions to General Shop Floors 117
7 Conclusions . 119
References . 119

4 Conflict Between Energy, Stability, and Robustness in Production
Schedules 123
1 Introduction . 125

1.1 Energy efficiency . 126
1.2 Robustness and stability measures 126
1.3 Conflict analysis by multiobjective optimization 126
1.4 Contribution . 127
1.5 Outline . 127

2 Illustrative example . 127
3 Problem Formulation . 128

3.1 Robustness, Stability and Energy 129
4 Approximate Measures . 130

4.1 Surrogate Measures for Robustness and Stability 130
4.2 Energy Consumption Measure 133

5 Optimization Model . 134
6 Experiments and Results . 135

6.1 Experimental Setup . 136
6.2 Comparisons of Surrogate Measures 136
6.3 The Trade-off between Energy, Stability and Robustness . . . 141

7 Conclusions . 144
References . 145

5 Robust and Energy Efficient Trajectories in a Common Workspace
Setting 147
1 Introduction . 149
2 Problem Formulation . 152
3 Minimum Time Analysis . 154
4 Minimum-Time Sensitivity . 156
5 Energy Reduction . 158
6 Example . 160

6.1 Final Time . 161
6.2 Energy Consumption . 163

7 Conclusions . 165
References . 166

xvi

Part I

Introductory Chapters

Chapter 1

Introduction

Subconsciously or not, most of us schedule our day time-efficiently when e.g. deciding
who’s taking the kids to school, dropping them off at soccer practice, what route
to take to work, when to work-out or go shopping for groceries etc. Generally, the
information required to develop a schedule is i) the tasks to perform, ii) the duration
of each task, iii) precedence relations between tasks, e.g. taking the kids to school
before going to work and iv) tasks that cannot be performed simultaneously, such as
working out and grocery shopping. To exercise while going to work might on the
other hand be feasible by e.g. taking the bike instead of the car. Also, alternatives
can exist such as different routes to work, which can vary in duration.

Similar to our daily schedules, production systems are scheduled with the intention
to optimize one or several criteria. The tasks can be to e.g. weld, glue, assemble,
measure etc. The steps required to manufacture a product can be interpreted as
precedence relations, e.g. parts should be glued before assembled. Furthermore, tasks
processed by the same resource cannot execute simultaneously, if this would exceed
the maximum capacity of the resource. Two robots sharing a common workspace
are also prohibited to execute in parallel to avoid collisions. The execution order in
which tasks are performed is thus constrained and the challenge lies in obtaining a
schedule, where the resource conflicts are solved such that a criterion is optimized.

In this thesis, the development of robust and energy-efficient schedules is empha-
sized. Due to disruptions such as deviations in execution time or machine breakdowns,
tasks can be delayed, which can affect the whole production system. To reduce
the impact of disturbances, different approaches to develop robust schedules are
proposed. The energy consumption for a robot is correlated with its acceleration.
By reducing the velocity and acceleration, implying an extended execution time,
energy can be saved. The duration for tasks can thus be decided such that energy
consumption is minimized.

The work in this thesis began in 2010 as a part of a project, FLEXA, aiming to
create tools and methods needed to automate the manufacturing of an aero engine
structure. Due to low volumes and high cost for introducing automation, flexibility
was deemed important, both in terms of products and parallel resources. Different
modeling approaches were analyzed with the objective to minimize the time to
manufacture 13 parts, each assembled by a set of smaller parts. Later, the thesis

3

4 1.1. Background

work continued in connection to another project called AREUS, which focused on
eco-design, eco-programming and Life Cycle Assessment of robotized factories. More
specifically, the work in this thesis considers the generation of energy efficient time
minimal robot trajectories.

The work in this thesis is also a result of an ongoing collaboration between Volvo
Cars and the Automation Research Group at Chalmers, where the goal is to improve
final time, energy consumption and robustness. The production environment at Volvo
Cars features production lines with multiple robots sharing workspaces. Although
the system has low flexibility and high throughput, it can be modeled as a problem
within the area of job shop problems (JSPs), typically characterized by low volumes
per product and high flexibility. Due to the extensive studies performed on JSPs in
scheduling literature, this thesis often regards its problems from the viewpoint of
JSPs.

1.1 Background
For more than a century, scheduling has been used in manufacturing systems in
order to allocate resources to tasks over time. The need for a graphical description
originated in production, where the workloads for workers and machines had to
be planned (Gantt 1903). As a solution, Henry Gantt created the Gantt charts,
which is still a popular tool for visualizing the timing of tasks. The optimization of
schedules, i.e. the allocation of resources such that a given performance measure is
optimized, has been extensively studied with publications appearing as early as in the
1950s (Johnson 1954). Areas of application are e.g. production, project management,
computer science, health care and transportation (Silver et al. 1998; Kerzner 2013;
Kwok and Ahmad 1999; An et al. 2012; Papadakos 2009).

Scheduling of production systems is the main focus in this thesis. Generally, a
production system is divided into a set of jobs and a set of resources (Pinedo 2005).
A job is usually reduced to a set of tasks with a given execution order. A resource
refers to e.g. a machine, robot, tool, worker etc. In literature, the terms task and
operation are commonly interchangeable for production systems. The goal, called
objective, can e.g. be to minimize the completion time of the system, referred to as
the makespan. For some systems, jobs have due dates and in this case it is common
to e.g. minimize the lateness of jobs, which describes if jobs end early or late. If only
late jobs should be penalized, this is referred to as minimizing the tardiness.

Traditionally, deterministic systems are considered in scheduling (Graham et al.
1979; Taillard 1993). However, production systems are subject to a number of
different disruptions, e.g.

• Process time variation

• Machine breakdown

• Machine maintenance

• Tool breakdown/Tool tear

Chapter 1. Introduction 5

Due to the stochastic nature of production systems, a framework called rescheduling
has emerged, aiming at developing schedules that are insensitive to unforeseen
disruptions (Vieira et al. 2003). Numerous techniques have been proposed to cope
with disturbances (Sabuncuoglu and Goren 2009). In redundancy-based methods,
additional idle time is inserted into the schedule, with the purpose of absorbing
possible delays (Jorge Leon et al. 1994; Lambrechts et al. 2011; Davenport et al.
2014). Another approach focuses on maintaining the execution order in the schedule
when disturbances are present. The schedules developed in these approaches are
referred to as baseline schedules.

To evaluate the quality of baseline schedules, concerning the ability to withstand
disruptions, measures of robustness and stability are addressed in rescheduling (Goren
and Sabuncuoglu 2008). For a robust schedule, the performance does not deteriorate
in the presence of disturbances. The makespan deviation between the runtime
schedule and the baseline schedule is commonly used as a robustness measure. A
schedule is said to be stable if the realization of the schedule does not deviate
from the baseline schedule. The stability is frequently measured by the start time
deviation, i.e. the start time for operations in the runtime schedule is compared with
the start time for the corresponding operations in the baseline schedule. Another
type of stability measure is the deviation in execution order between the baseline
and realized schedule (Sabuncuoglu and Goren 2009; Katragjini et al. 2013).

Energy minimization is increasingly used as an objective in scheduling (Dietmair
and Verl 2009; Dai et al. 2013). In (Vergnano et al. 2012), a method to reduce
the energy consumption of robots is proposed by reducing, and often eliminating,
idle time between operations. The energy consumption of robots is embedded into
the scheduling model, where each operation has an energy consumption signature,
parametrized by its execution time. This signature is also considered in (Riazi et al.
2017), where the results show that energy can be saved, even without changing the
operation sequences. As a result of common workspaces, the schedule contains gaps,
i.e. idle time, where a robot waits for the shared space to become available. By
reducing the velocity and acceleration for a waiting robot, and thus extending the
execution time such that the idle time diminishes, a reduction in energy consumption
is achieved without affecting the final time.

In (Salido et al. 2015), energy consumption and robustness of schedules are
studied, where machines with three modes is regarded. Each mode corresponds to
a certain processing time and energy consumption. A shorter processing time is
associated with higher energy consumption. Hence, a decrease in energy consumption
implies a longer makespan. Robustness is measured by the ability to recover from a
delay, by running the machine at a higher speed. The slack is thus diminished on
behalf of longer processing times, which is advantageous both in terms of energy
consumption and robustness. This approach is feasible due to the multi-modes
machines. However, robustness was not included into the optimization model, only
estimated by simulating random delays in a schedule generated with makespan and
energy consumption as criteria.

Due to the increase in automation and limited space, robots usually work closely
together. Collision avoidance is hence an important topic in multi-robot systems

6 1.2. Research Questions

(Liu et al. 2000). Apart from assigning resources to operations, scheduling is also
used to decide the order in which robots can use a common workspace. Disjunctive
constraints are frequently used to model collision avoidance. Typically, multi-robot
systems are coordinated without considering robot dynamics (LaValle and Hutchinson
1998; Siméon et al. 2002), while work related to trajectory planning for a single robot
does. In (Bobrow et al. 1985), a space formulation for a single robot generates a
time-optimal trajectory for a specified path, while regarding dynamics. A method
to integrate robot dynamics into a multi-robot system model is presented in (Peng
and Akella 2005). A time dependent formulation is posed, where the robots are
modeled as double integrators and the path is assumed to be known. In (Wigström
et al. 2017), computationally efficient space formulations for the multi-robot system,
with multiple objectives including final time and energy consumption, are presented.
Prespecified paths as well as double integrator models for robots are considered. None
of the work on trajectory planning has included robustness in terms of uncertainties
concerning the time at which the common workspace becomes available.

1.2 Research Questions
Based on the background previously described, different areas arise where further
research is required. To set the boundaries of the topics to explore, the following
research questions are to be answered:

RQ1 Based on a general timed discrete event system, how can the system design and
optimization be integrated? How can the optimization results be formalized
and retrieved by the original model?

RQ2 How can disturbances be accounted for?

RQ3 How can the potential conflict, which appears when energy optimization is
combined with redundancy-based rescheduling techniques, be evaluated and
what is the trade-off?

RQ4 Regarding collision avoidance, how can robustness be included in a problem
formulation? How does the incorporation of robustness affect the performance?

1.3 Contributions
A general theme of this thesis concerns how to handle uncertainties in production
systems. The research areas considered are: i) modeling and scheduling of production
systems, including protection against disruptions, ii) energy optimization versus
rescheduling and iii) robust trajectory planning. Attempting to answer research
questions RQ1-RQ4, resulted in the following contributions.

C1 An operation model representing a general shop floor, modeled in Sequence
Planner (SP), is formulated as a constraint programming (CP) model to

Chapter 1. Introduction 7

develop a minimum time schedule. An abstraction method, work equivalence,
is proposed resulting in computational benefits. To close the loop, the conditions
in the original operation model are altered, to also reflect the execution order
in the time minimum schedule. The conditions are evaluated and, if possible,
relaxed to avoid unnecessary delays if uncertainties are present. Due to the
event-based description of the schedule, the related timing of operations, such
as start times, can be disregarded.
In Paper 1, the integrated design and optimization of a system is presented.
The contribution in Paper 2 concerns the remaining part of the contribution
described above. Paper 1 and Paper 2 answer RQ1. Since the timing can be
ignored as a consequence of the event-based formulation, the contribution in
Paper 2 also answers RQ2.

C2 For a special case of scheduling problem, the JSP, a rescheduling method
called Affected Operations Rescheduling (AOR) has been proposed. An initial
time-optimal schedule is first developed and, if disruptions are present, the
operations are rescheduled online. Only operations directly or indirectly affected
by disturbances are delayed. In scheduling, disjunctive graphs are commonly
used to model and optimize JSPs. An offline approach is proposed by using
the disjunctive graph, resulting in the same behavior as AOR. A conservative
approach, Right-Shift Rescheduling (RSR), commonly used as a benchmark
in the rescheduling literature, delays all succeeding operations if disruptions
are present. A proof is posed to show that the performance of AOR is always
better than, or equal to, RSR.
The contribution is presented in Paper 3 and answers both RQ1 and RQ2 when
a JSP is considered. If disturbances are present, the concept in Paper 3 is less
restrictive, compared to the approach in Paper 2.

C3 A systematic method is proposed to evaluate the conflict between energy
consumption, robustness and stability. An energy consumption signature,
parameterized by processing time, is derived based on experiments on an
industrial robot. The accuracy of existing surrogate measures for robustness
and stability is analyzed together with a proposed stability measure. To study
the trade-off, the best performing measures, together with makespan and
energy consumption, are used in a multi-objective mixed-integer quadratically
constrained optimization formulation. The suggested stability measure enables
for different operation sequences to be examined. The results show that a
conflict between energy efficiency, robustness and stability exists. A decrease
in energy consumption yields a decrease in robustness and stability. Also, an
increase in robustness results in a decrease in stability and vice versa.
The contribution is presented in Paper 4 and answers RQ2 and RQ3.

C4 To include robustness into trajectory planning where common workspaces
exist, a space formulation is posed including robot dynamics with final time
and energy consumption as criteria. A predefined path is assumed. Robust

8 1.4. Thesis Outline

constraints are included as velocity and timing constraints regarding a clearance
point. At this point, a decision is taken to either enter, or come to a halt at
the boundary of a shared space. The effect on the performance is evaluated for
different positions of the clearance point, as well as the timing corresponding to
when the clearance point can be traversed. The analysis alleviates the decision
concerning the location of the clearance point if disruptions in the time at
which the shared space becomes available are present.
The contribution is presented in Paper 5 and answers RQ2 and RQ4.

1.4 Thesis Outline
The thesis is outlined as follows. Chapter 2 addresses scheduling for timed discrete
event systems. Different problems, commonly considered in the scheduling literature,
are presented. The tool SP which can be used to e.g. model operation sequences is
introduced together with the SP model and its underlying extended finite automaton
(EFA). The translation of the SP model to a CP model is discussed and retrieving
the optimization result to SP is discussed. Furthermore, the disjunctive graph is
presented.

The rescheduling framework is addressed in Chapter 3. Rescheduling strategies
and underlying methods are presented, where two approaches, AOR and RSR, are
explained in more detail. Schedule quality is discussed together with two terms used
to assess the quality, robustness and stability. Measures of robustness and stability
are stated in Chapter 4. Existing surrogate measures are presented as well as a
proposed surrogate stability measure. These measures are individually included as
objectives in an optimization formulation to study the computational efficiency and
the ability to withstand disruptions for the resulting schedules.

Energy optimization is presented in Chapter 5, together with the energy con-
sumption signature. A method to combine the results from Chapter 4 with an energy
consumption measure is proposed in this chapter. Trade-off analysis is performed to
evaluate the conflict.

A problem formulation, including robustness into trajectory planning is presented
in Chapter 6, which is posed in space and assumes a predefined path. The objectives
included are final time and energy consumption. Constraints concerning robustness
are discussed as well as their affect on system performance. Finally, the appended
papers are summarized in Chapter 7, after which conclusions and future work are
discussed in Chapter 8.

Chapter 2

Scheduling for Timed Discrete
Event Systems

In scheduling, resources are allocated to operations over time such that a given
performance measure is optimized. The literature on scheduling is dense, see e.g.
(Pinedo 2005)(Hooker 2005)(Herrmann 2006). In this chapter, commonly regarded
scheduling problems are presented. The software SP is introduced, where precedence
relations and resource requirements can be modeled (Lennartson et al. 2010). The
SP model is presented as well as an approach to translate this model to a CP model.
For JSPs, the disjunctive graph is frequently used for modeling and optimization.
The disjunctive graph is thus presented together with its properties. The outcome of
both approaches are minimum makespan schedules.

2.1 Scheduling Problems
Scheduling problems are characterized by the tasks to perform and their duration.
Also, knowledge concerning precedence relations in each job and resource requirements
are necessary. Based on the characteristics, the problems can be divided into
subclasses describing e.g. the amount of flexibility. In flexible systems, an operation
can be performed by a set of resources. For even more complex systems, an operation
can also require several resources. In this section, a selection of common scheduling
problems is presented.

Flow shop problem In the flow shop problem (FSP), there are m resources in
sequence. The resources have unit capacity, referred to as unary resources. Each
job has to be processed on all resources, i.e. the operations corresponding to a job
are each processed on different resources. All jobs follow the same route, i.e. first
processed on Resource 1, then on Resource 2 and so on. After an operation is
completed on one resource, the next operation in the job is placed in a queue to the
next resource. Usually, the queues are handled by the first in first out rule.

Job shop problem In a JSP, m unit capacity resources in sequence is also
considered. However, the sequence in which the resources are used is not identical for

9

10 2.2. Sequence Planner

the different jobs. As for the FSP, the operations in a job are processed on individual
resources. A special case of JSP is when operations can revisit resources, called
recirculation.

Flexible job shop problem As the name suggests, the flexible job shop problem
(FJSP) is an extension of the JSP. In this case, multiple resources can perform the
same operation. A modeling approach for FJSP is proposed in Paper 1, where an
abstraction method, called work equivalence, is presented. In this method, a set of c
identical unary resources can be modeled as one resource with capacity c. Different
modeling approaches are compared by analyzing the performance, see Paper 1 for
more information.

Resource constrained project scheduling problem In the resource constrained
project scheduling problem (RCPSP), an operation can require multiple resources,
either of the same type or of different types (or both). This problem was originally
considered for project scheduling, where the operations are activities and a common
resource type is personnel, which explains the requirement to have multiple resources
of the same type.

The first two papers appended in this thesis consider general systems, whereas
the following two papers focus on JSPs. In the last paper, where robust trajectory
planning is studied, no specific environment is presumed. To schedule the problems,
SP is introduced as a means to model the systems, after which an approach to
transform the SP model to an optimization model is proposed.

2.2 Sequence Planner
For more than a century, scheduling has been used in manufacturing systems in order
to decide when operations are to be performed and by what resource. Gantt charts
were early used to establish the timing of operations and is still today a popular
tool for graphical representation of operation sequences (J. M. Wilson 2003). Other
popular tools are e.g. Microsoft Excel and PERT charts (Levin and Kirkpatrick
1966)(Kerzner 2013). A more recent example is the modeling tool SP (Lennartson
et al. 2010). Compared to Gantt charts, more complex operation sequences can be
expressed in SP such as alternative sequences.

A major advantage of SP is that it can be used for both the development of the
product design, process design and the related control system. Hence, the need for
a tool like SP is highly motivated due to the possibility to integrate these areas.
Throughout the development process; new requirements can easily be added, the
system can be optimized, the result visualized, and control code generated. Hence,
the process designer can, if necessary, revise the operation sequences and iterate the
procedure until a desired system behavior is achieved.

In the following sections, the SP model is presented, as well as the contribution in
Paper 1, where the SP model is converted to a CP model to obtain a schedule. Then,
based on the resulting schedule, conditions are generated to maintain the execution

Chapter 2. Scheduling for Timed Discrete Event Systems 11

order in the schedule. Hence, the result from the CP model is retrieved by the SP
model as additional conditions. This contribution is presented in Paper 2. Also, an
approach to relax the conditions is proposed. In this case, unnecessary delays can be
avoided in the presence of disruptions in the system.

2.2.1 Sequence Planner model
The SP model has an underlying logical operation model, given by an extended finite
automaton (EFA). With this model, it is possible to use preconditions expressing
when operations can start. First, we will introduce the EFA operation model as
well as how resource booking is modeled. Then, the corresponding SP model is
introduced.

Definition 2.2.1 (Operation Model). An operation can be modeled as an extended
finite automaton where the set of locations Qj = {Oi

j, O
e
j , O

f
j }, the event set Σj =

{O↑j , O
↓
j}, the set of transition conditions Cj = {C↑j , C

↓
j }, the transition relation

→j= {〈Oi
j, O

↑
j/C

↑
j , O

e
j〉, 〈Oe

j , O
↓
j/C

↓
j , O

f
j 〉} and the initial location qij = Oi

j, see Fig.
2.1.

Oi
j Oe

j Of
j

Oj
O↑j/C

↑
j O↓j/C

↓
j

Figure 2.1: EFA for an operation Oj .

A transition between two locations is enabled when the transition condition is
satisfied. The transition is then performed when the event occurs. For operation Oj,
the transition from the initial location Oi

j to the executing location Oe
j is enabled

when the precondition C↑j is satisfied. The transition is then performed when the
start event O↑j occurs. Similarly, the completion event O↓j can only occur when the
postcondition C↓j is satisfied.

The resource booking for an operation Oj can be specified in the pre- and
postconditions, C↑j and C↓j . Let R be the set of resources. For a unary resource,
modeled by a variable R ∈ R, a value R = 0 implies that the resource is available.
The resource is booked by the next value condition, Ŕ = 1, which defines the next
value of R after the transition, at the same time as O↑j occurs. Hence, the precondition
C↑j is given by

R+ ≡ R = 0 ∧ Ŕ = 1

where Ŕ is the next value of R. Similarly, the unbooking of a resource is given by

R− ≡ R = 1 ∧ Ŕ = 0

The SP model is a high-level representation of the EFA operation model. As
previously mentioned, a production system can be split up into operations and

12 2.2. Sequence Planner

resources. The jobs are represented by operation sequences. In SP, the core of the
operation model is the pre- and postconditions, i.e. C↑j and C↓j for an operation Oj.
These conditions can be used to specify relations between operations. Also, the
resource booking and releasing of a resource are included in the preconditions and
postconditions.

A graphical representation of a straight sequence specifying an operation relation
between two operations, O11 and O12, is depicted in Fig. 2.2a. Resource booking
and unbooking of two resources, R1 and R2, are included. The operations can also
be viewed as self-contained by reformulating the preconditions to include operation
relations. In Fig. 2.2b, the relation between operation O11 and O12 is expressed in
the precondition C↑12 for operation O12. Hence, the pre- and postconditions for O11
and O12 are specified as

C↑11 = R+
1 C↓11 = R−1

C↑12 = Of
11 ∧R+

2 C↓12 = R−2

O11

R+
1

R−1

O12

R+
2

R−2

(a) Operations in sequence

O11

R+
1

R−1

O12

Of
11∧R

+
2

R−2

(b) Self-contained operations

Figure 2.2: Different representations of operation relations.

In this section, modeling of operation sequences as well as resource booking in
SP were presented. Next, the procedure to map this information to an optimization
model is introduced in order to generate a production schedule.

2.2.2 Scheduling using SP and CP
CP has its roots in the artificial intelligence and computer science communities
(Hooker 2000). Originally it was applied to constraint satisfaction problems. The
constraints can be viewed as relations, and the result from the constraint satisfaction
problem states what relations should hold among the decision variables (Rossi et al.
2006). In more recent decades, CP has evolved to also include optimization. In
scheduling, this corresponds to assigning start times to operations such that the
relations between operations are satisfied, as well as the resource constraints where
the resource usage can not exceed its capacity. An objective can e.g. be to minimize
the makespan, which corresponds to minimizing the maximum completion time for
the last operation in each job sequence.

The operation relations as well as the resource booking is stated in the pre- and
postconditions in the SP model. Hence, the relations between operations based on the
job sequences can be expressed with constraints such as e.g. endBeforeStart() in IBM
ILOG CP Optimizer. For the resource booking, a unary resource can be modeled with
a disjunctive constraint such as noOverlap() in IBM ILOG CP Optimizer to specify
that operations sharing a resource cannot execute simultaneously. For resources with

Chapter 2. Scheduling for Timed Discrete Event Systems 13

a capacity greater than one, a cumulative constraint can used to express that the sum
of operations that utilizes the resource are bounded from above by the capacity of
the resource. As a result from the optimization, a schedule including the operations
and their corresponding start times are generated. The procedure to transform the
operation model in SP to a CP model and generate a minimum makespan schedule
is a part of the contribution in Paper 1.

2.2.3 Extending the SP model
The relations based on the execution order in the optimal schedule can be combined
with the relations in the SP model. Once the relations are retrieved by SP as
conditions, the resulting sequences can be visualized. Let O denote the set of
operations and N the corresponding index set. For operation Oj ∈ O, its index
j ∈ N . Let Pj denote the index set of preceding operations to Oj. In order to
maintain the execution order in the optimal schedule, a restrictive approach is to
forbid operations to start before all preceding operations have been completed. This
can be achieved by

C↑j =
∧
i∈Pj

Of
i , j ∈ N , Oi ∈ O (2.1)

If delays are present, the conditions in (2.1) will guarantee that the execution order
in the schedule is maintained. Most certainly, not all pairs of operations are related,
i.e. belonging to the same job or executed by the same resource. Hence, a procedure
to assess the relations will later be introduced with the aim to relax conditions such
that unnecessary delays are avoided when an disruption occur.

For general shop floors with resource capacities strictly greater than one, forbidden
sets are introduced to represent the sets of operations with resource conflicts, i.e.
where the resource requirements exceed the resource capacity. A minimal forbidden
set is a set such that each subset cannot contain a resource conflict. In a minimal
forbidden set, a resource conflict can be solved by posting a single constraint between
two competing operations. In a job shop environment, due to unary resources, all
pairs of operations realized by the same resource are in conflict, hence the minimal
forbidden set has size two. In this case, the resource conflicts can be solved by
invoking an order, in which the operations should be performed. However, for more
general systems, the number of minimal forbidden sets is exponential in the number
of operations. Hence, many publications have focused on ways to overcome the
limitation imposed by the large number of minimal forbidden sets (Lombardi et al.
2013; Lamas and Demeulemeester 2015).

For example, in (Cesta et al. 2015), the authors use a constraint-based scheduling
approach for the resource constrained project scheduling problem. Their approach is
based on the formulation of the problem as a constraint satisfaction problem. More
specifically, the problem is first solved as a simple temporal problem network where
the resource constraints are disregarded. Then, the authors propose an approach to
study the resource usage over time, called resource profiles, to check if the resource
requirements are greater than the capacities. If minimal forbidden sets are detected,

14 2.3. Disjunctive Graph

resource constraints are added to the model. Constraint propagation is performed in
the temporal graph to check temporal consistency, resulting in a new solution. This
is an iterative procedure which is performed until either the temporal graph becomes
inconsistent or, the resource profiles are consistent with the resource capacities. In
the latter case, the result is a simple temporal network with precedence constraints,
not only belonging to the initial temporal problem, but also due to sequencing on
the resources.

In Paper 2, a method to analyze the constraints in (2.1) is proposed. All relations
not specified in the SP model are evaluated and possibly relaxed. Feasibility tests are
performed to check if operations share a resource and if not, constraint propagation
is performed to see if an operation can start before a prior operation is completed.
However, the order in which the operations start is restrained, i.e. the preceding
operation has to start before the succeeding operation starts. Thus, if a feasibility
test is passed, conditions are generated expressing that the succeeding operation can
start during, or after, the execution of the preceding operation. Consider a preceding
operation Oi, i ∈ Pj. If the feasibility test is passed, the constraint is updated to

C↑j = Oe
i ∨O

f
i , j ∈ N , i ∈ Pj, Oi ∈ O (2.2)

However, if the test fails, the succeeding operation is constrained to start after the
completion of the preceding operation, i.e.

C↑j = Of
i , j ∈ N , i ∈ Pj, Oi ∈ O (2.3)

The proposed method is restricted to consider at most two preceding operations in
the schedule when performing the feasibility tests. However, when using minimal
forbidden sets, the solution strategy is much more complex compared to the proposed
method. For more information regarding this procedure, see Paper 2. Note that
conditions should be added to match up with the initial execution order to guarantee
feasible sequences. This can be achieved by adding a condition for all pairs of
operations Oi, i ∈ Pj and Oj , where relaxation was viable resulting in condition (2.2).
The condition

C↑k = Of
i ∧ C

↑
k , j ∈ Pk, i ∈ Pj, k ∈ N (2.4)

should be included, which adds Oi to the precondition for Ok. If Oi is delayed such
that the completion time exceeds the time at which Oj is completed, any succeeding
operation Ok, j ∈ Pk is consequently prohibited to start before the completion of Oi.
As a result, the behavior of the original schedule is eventually reestablished.

Recall that SP can be used to model general shop floors. For a job shop, the
disjunctive graph is commonly used to model and optimize the system. Next, the
disjunctive graph together with its properties are introduced.

2.3 Disjunctive Graph
Due to the property of a job shop where resources have unit capacity, the disjunctive
graph is suitable for modeling and scheduling of such systems. A job shop problem

Chapter 2. Scheduling for Timed Discrete Event Systems 15

can be represented as a disjunctive graph G(N ,A, E), where N = {1..n} is the set
of nodes corresponding to the operations to be processed on the set of resources
R, see Fig. 2.3. Node i ∈ N corresponds to operation Oi. Hence, the set of nodes
and the index set previously presented are isomorphic. Two dummy nodes, U and
V , represent a source and sink node. The set A ⊆ N 2 corresponds to pairwise
precedence relations among operations. The precedence relations are represented by
conjunctive arcs. An arc (i, j) ∈ A indicates that operation Oi has to be completed
before operation Oj can start. The conjunctive arcs are depicted as solid arcs in Fig.
2.3.

U

11 12 13

21 22 23 24

31 32 33

V

Figure 2.3: Disjunctive graph G(N ,A, E).

Due to unary resources, operations sharing a resource may not execute in parallel.
The set ER ⊆ N 2 corresponds to pairwise precedence relations between operations
processed by a resource R ∈ R. These relations are represented by disjunctive arcs.
The set E = ∪R∈R ER is the total set of disjunctive arcs, depicted as dashed arcs in
Fig. 2.3.

In order to find a feasible schedule, the disjunctive arcs have to be resolved, i.e.
the pairwise precedence order on the resources has to be determined, such that the
resulting graph is acyclic. The processing time for an operation is represented as a
weight on the arcs emanating from the corresponding node. Arcs emanating from
the source node has zero weight. A path between two nodes is represented by the
sum of weights on arcs connecting the nodes. Among the set of feasible schedules,
the time-optimal schedule has the shortest longest path from the source node to the
sink node (Pinedo 2005). In the resolved graph, redundant arcs can be removed due
to transitive relations. A transitive relation is given by

(a, b) ∧ (b, c) ⇒ (a, c), a, b, c ∈ N

For a job shop, each node has at most two incoming and outgoing arcs respectively
in the resulting non-transitive graph. Each incoming arc represents a relation to a
preceding operation in, either the job, or the resource sequence. The outgoing arcs
represent relations to succeeding operations in the job and resource sequences. The
resulting resource sequences will be straight operation sequences as a consequence of
unary resources. Parallel sequences would violate the bounds on the resource capaci-
ties with are equal to one. Hence, an operation has at most one preceding/succeeding
operation in the job, as well as in the resource sequence.

The non-transitive acyclic graph in Fig. 2.4 represents a feasible schedule based
on the disjunctive graph in Fig. 2.3, where the disjunctive arcs show that e.g. nodes
11, 22 and 31 share a resource. The resulting resource sequence for this specific

16 2.4. Summary

resource is given by 11, then 31 and finally 22 based on the arcs in Fig. 2.4. Note
the straight job and resource sequences. The relations between operations can thus
be retrieved by studying the direction of the arcs.

U

11 12 13

21 22 23 24

31 32 33

V

Figure 2.4: Directed acyclic graph representing a feasible solution to the disjunctive
graph in Fig. 2.3. The disjunctive arcs have been resolved and the resulting graph
is acyclic. Note that the number of arcs have been reduced due to transitive
relations.

So far schedules have been generated either by using SP combined with CP or by
using the disjunctive graph. Two terms used to analyze schedules are free slack and
total slack. The free slack corresponds to the time that an operation can be delayed
without delaying the start of its immediate successors.

Definition 2.3.1 (Free slack). Let ti denote the start of operation Oi while di
denotes its duration. The set Si constitutes the immediate successors to Oi. The
free slack for operation Oi, denoted by si, is given by

si = min
j∈Si

tj − ti − di (2.5)

The free slack can be viewed as a local property since it considers the impact on
the immediate successor to an operation. The total slack describes how much an
operation can be delayed without affecting the makespan of the system. Hence, the
total slack is considered as a global property.

Definition 2.3.2 (Total slack). Let `i,j denote the longest path between node i and
node j. The latest allowable start of operation Oi without affecting the makespan
is given by T − `i,V where V is the sink node and T represents the makespan. The
total slack, also referred to as the total float, of Oi, denoted by fi, is given by

fi = T − `i,V − ti (2.6)

In the following text, `i implies the longest path between node i and the sink node
V . Free slack and total slack play a crucial role when defining measures related to
robustness and stability, introduced in Chapter 4. First, this chapter is summarized
after which rescheduling and some of its underlying methods are introduced.

2.4 Summary
Scheduling, together with different scheduling problems commonly considered, were
presented in this chapter. Modeling of operation sequences in the tool SP was

Chapter 2. Scheduling for Timed Discrete Event Systems 17

introduced. A method proposed to transform the sequences of a general problem in
SP to a CP model was discussed, as well as an approach to retrieve the resulting
schedule behavior to the SP model. The disjunctive graph was presented, which is
extensively used for systems with straight operation sequences and unit capacity
resources, i.e. systems without flexibility.

Next, the rescheduling framework is presented, where uncertainties in the pro-
duction systems are taken into consideration when schedules are developed.

Chapter 3

Rescheduling

Usually, static and deterministic environments are considered when developing
production schedules. However, real-life production systems are subject to unexpected
disruptions, not considered when generating the schedules. This includes e.g. machine
breakdowns, over- and underestimation of processing time, job cancellations and
machine repairs (Pinedo 2012). In response to these disruptions, rescheduling is used
to minimize the impact on the schedule performance when disturbances are present
(Vieira et al. 2003)(Sabuncuoglu and Goren 2009).

Several rescheduling methods have been proposed in the literature. Basically, the
methods can be divided into three main strategies; proactive scheduling, predictive-
reactive scheduling and reactive scheduling. In this chapter, the different strategies
and their underlying methods are introduced. Also, stability and robustness are
defined, describing how well a schedule withstands disruptions. Two rescheduling
methods are studied more in-depth, Right-Shift Rescheduling (RSR) and Affected
Operation Rescheduling (AOR).

3.1 Strategies and Methods

The classification of a rescheduling method depends on whether the method is
performed offline, online or a combination of the two, see Fig. 3.1. As previously
mentioned, the rescheduling strategies are; proactive scheduling, predictive-reactive
scheduling and reactive scheduling. Next, the different strategies, and a selection of
underlying methods, are presented.

Offline
Offline and Online
Online

Predictive
Reactive
Scheduling

Proactive
Scheduling

Reactive
Scheduling

Figure 3.1: The different strategies considered in rescheduling.

19

20 3.1. Strategies and Methods

3.1.1 Proactive Scheduling

In proactive scheduling, schedules are generated offline with embedded protection
against disruptions. These schedules are referred to as baseline schedules. The
underlying methods are in general based on redundancy techniques or on proba-
bilistic techniques (Beck and N. Wilson 2007)(Lou et al. 2012). The methods based
on probabilistic techniques include uncertainties with known probability density
functions. In (Lamas and Demeulemeester 2015), uncertainties in processing times
are considered. A robustness measure is proposed, based on the joint probability
that an operation in the realized schedule will start at the same time as intended
in the baseline schedule. Other methods, using optimization under uncertainty to
develop baseline schedules, are presented in (Diwekar 2008)(Sahinidis 2004).

If knowledge regarding the disruptions is unavailable, redundancy-based methods
are considered. In these methods, redundant time is added to the schedule in order
to make it less sensitive to disruptions during execution (Van de Vonder et al. 2008;
Daniels and Kouvelis 1995). In (Mehta and Uzsoy 1998), idle time is added to
account for machine breakdowns, while time buffers are used to protect the schedule
against processing time variability in (Van de Vonder et al. 2008). In (Jorge Leon
et al. 1994), different robustness measures are evaluated by, for each measure, posing
an objective including makespan and robustness measure, to analyze the system
performance of baseline schedules including additional idle time. In (Lambrechts et al.
2008)(Hazır et al. 2010), more recent approaches, suggesting different robustness
measures, are presented. The schedule run in real-time is referred to as the realized
schedule. Hence, the main idea in proactive scheduling is for the realized schedule to
follow the baseline schedule as closely as possible. In this thesis, Paper 4 presents a
proactive approach to insert additional slack into a schedule.

3.1.2 Predictive-Reactive Scheduling

In predictive-reactive scheduling, an initial deterministic schedule is first generated
offline. In response to disruptions, the existing schedule is updated online, during
execution. The most conservative method, RSR, globally right-shifts all remaining
operations when a disruption occurs (Raheja and Subramaniam 2002)(Wu et al.
1992). Another, less restrictive, method is AOR, which applies to job shops (Li et al.
1993)(Abumaizar and Svestka 1997). If disruptions are present, only operations
directly, or indirectly, affected by a machine breakdown, are right-shifted during
execution. This method was in (Subramaniam and Raheja 2003) extended to cover
more types of disruptions. In (Bean et al. 1991) and (Akturk and Gorgulu 1999),
the authors propose rescheduling methods to match-up with the offline schedule
at a certain time in the future, if unforeseen disruptions occur. A partial schedule
is generated in (Wu et al. 1999), where some decisions are left to be decided on
during execution. In (Abumaizar and Svestka 1997) and (Vieira et al. 2000), total
rescheduling is used, where all remaining operations are rescheduled in response
to a disturbance. In Paper 2, a predictive-reactive method is presented, whereas a
predictive-reactive method is transformed to a purely predictive approach in Paper 3.

Chapter 3. Rescheduling 21

3.1.3 Reactive Scheduling
Reactive scheduling is solely performed online without a schedule. Mainly, dispatching
rules are used to decide the execution sequence of operations on resources (Tay and
Ho 2008). In (Jayamohan and Rajendran 2000), good performance is achieved in
terms of minimizing the maximum tardiness when two rules are combined, namely
the earliest due date and the longest remaining processing time first. Several priority
dispatching rules are evaluated for a job shop, with due date objectives, to study the
best performing approaches in (Chiang and Fu 2007).

3.1.4 Schedule Quality
The quality of a baseline schedule is evaluated by comparing it with the realized
schedule, which can considerably deviate from the baseline schedule due to dis-
turbances. One type of quality measure that regards the difference in objective
value, such as makespan or mean tardiness between schedules, is referred to as a
robustness measure. A schedule is said to be robust if the objective value does not
deteriorate as a result of disturbances in the system. Another type of quality measure
concerning stability compares the sequences in the baseline and realized schedule by
e.g. measuring deviations in start time, sequence deviation etc. A schedule is said to
be stable if the realized schedule does not deviate from the baseline schedule in the
presence of disruptions. In the following chapter, the measures of robustness and
stability concerned in this thesis are introduced. But first in this chapter, AOR and
RSR are studied more extensively.

3.2 Affected Operations Rescheduling
In (Abumaizar and Svestka 1997), the authors propose a predictive-reactive reschedul-
ing strategy for the job shop environment, considering machine breakdowns as dis-
ruptions. Initially, a deterministic, minimum time schedule is obtained, resembling
the predictive part. The reactive part considers an algorithm based on a binary tree,
where the operation affected by the machine breakdown is chosen as the root node.
For job shops, each node will have at most two emanating branches, as described for
the disjunctive graph in Section 2.3. The left branch of a node in the binary tree, is
considered as the job branch, whereas the right branch as the machine branch. Hence,
for any node, the succeeding node in the left branch, is the succeeding operation in
the job sequence. The node in the right branch is the succeeding operation in the
machine sequence, specified in the initial schedule. The basic concept is to go through
the binary tree, and delay the start of affected operations once disruptions occur.
The operation delay equals the time needed for the precedence constraints to be
fulfilled, as well as to preserve the machine sequence. Thus, compared to RSR, only
the start of operations directly affected or indirectly affected by a machine breakdown
are delayed. Hence, the approach is called Affected Operations Rescheduling.

However, identical results can be generated completely offline, by approaching
the problem as a deterministic job shop problem, and applying the disjunctive graph.

22 3.3. Right-Shift Rescheduling

The approach presented in Paper 3, is based on results in the scheduling literature,
where scheduling using disjunctive graphs has been extensively studied (Jain and
Meeran 1999). The disjunctive graph was introduced in (Roy and Sussmann 1964),
and more recently used for scheduling in e.g. (Kan 2012; Blażewicz et al. 2000).
A small example, with two robots working closely in parallel, is used to illustrate
the procedure. A common workspace, where collisions potentially can occur, is
modeled as a unit capacity resource. The job sequence for each robot is modeled
in the disjunctive graph depicted in Fig. 3.2. One robot has three operations to
perform, while the other should perform two operations. Each node, except for the
source and sink node, corresponds to an operation. As explained in Section 2.3, the
processing time for an operation is modeled as weights on the emanating arcs from
the corresponding node. For example, operation O11 has processing time 5. Hence
the outgoing arc from node 11 has weight 5.

U

11 12 13

21 22

V
0

5 3
3

0
4

7

Figure 3.2: Disjunctive graph G(N ,A, E) with conjunctive arcs (solid) and dis-
junctive arc (dashed). The disjunctive arc corresponds to a common workspace.

The minimum time schedule is obtained by choosing the direction of the disjunctive
arc such that the shortest longest path from the source node U to sink node V is
achieved. This corresponds to node 12 executing prior to node 22, which results
in a makespan equal to 15. In this quite trivial example with only one resource,
a delay in 12 will affect both 13, which is the succeeding operation in the job
sequence, as well as 22 which is the succeeding operation in the resource sequence.
This approach is applicable to any job shop. The resulting graph, after disjunctive
arcs are resolved and transitive relations removed, contains the partial execution
order between nodes connected with arcs. For example, Pj, denoting the index set
of preceding operations to Oj, is in this case equal to nodes with emanating arcs
pointing to node j. Hence, the preconditions in (2.1), ensure that only affected
operations are delayed if disruptions are present.

RSR is often used as a benchmark when evaluating the performance of rescheduling
methods proposed in the literature (Subramaniam et al. 2005; He and Sun 2013;
O’Donovan et al. 1999). Next, RSR will be introduced by extending the example
in Fig. 3.2. The disjunctive graph will be used to point out the difference between
AOR and RSR.

3.3 Right-Shift Rescheduling
In RSR, all operations are globally right-shifted when disruptions occur. This implies
that an operation has to wait for all preceeding operations in the schedule to be
completed, before the operation can start to execute. The approach in Section 2.2.3,

Chapter 3. Rescheduling 23

where event-based conditions are obtained, results in the same system behavior as
RSR. That is, before the relaxation is performed.

The example depicted in Fig. 3.2 will be used to show the difference between
AOR and RSR. In order to prohibit operations to start before all prior operations
are completed, early and late start times for operations are introduced. The early
start time for a node i, corresponds to the longest path from the source node to that
specific node, i.e. `U,i. The late start time for a node i, is defined as the makespan
subtracted with the longest path from that specific node to the sink node, i.e. T −`i,V .
In Fig. 3.3, early and late start times for each node is depicted in the boxes next to
each node. To restrict an operation to start before prior operations are completed,
an arc has to added between two nodes if the late start time plus the processing time
is less than, or equal to, the early start of another node. The result is depicted in Fig.
3.3. Note that transitive relations have been removed. Initially, arcs between (11,22)
and (21,13) were also added. Since the graph contains the path 11→ 12→ 22, the
arc between 11 and 22 is redundant.

U

11

0
0

12

5
5

13

8
12

21
0
1

22
8
8

V
15
15

0
5 3

3

0
4

7
34

Figure 3.3: The resulting graph for the RSR approach.

In order to analyze the effect of adding arcs to the disjunctive graph, to fulfill the
requirements of RSR, the time-optimal schedule is depicted in Fig. 3.4. Based on Fig.
3.2, in AOR, the only predecessor to 12 is 11 (since the resolved arc between 12 and
22 emanates from 12). This corresponds to operations O11 and O12 in the schedule,
which belong to the same job. However, for RSR, 21 is added as a predecessor to 12
in Fig. 3.3. Hence, O12 cannot start before both O11 and O21 are completed. If an
operation is delayed, this approach delays the immediate successors and the delay is
propagated through the graph. However, if slack exists, the delay is diminished as it
propagates through the schedule.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

O11

O12

O13

O21

O22

Figure 3.4: The time-optimal schedule.

24 3.4. Summary

The total slack, defined in (2.6) in Section 2.3, expresses the amount of time
that an operation can be delayed without affecting the makespan. The total slack
can also be expressed as the late start time, subtracted with the early start time.
When arcs are added between nodes, the late start might be affected. Before the
addition of arc (21, 12) in Fig. 3.3, the late start was equal to 4. Thus, the total
slack was, in this case, also equal to 4 since the early start time equals 0. Due to idle
time between O21 and O22 in Fig. 3.4, O21 can be delayed with 4 time units without
affecting the makespan. However, in RSR, the late start time and total slack for O21
equal 1. The total slack decreases as a result of adding successors, if the late start of
the new successor is smaller than the late start of the other successors. This is due to
an increase in the longest path which, according to (2.6), results in a decrease of the
total slack. For O21, a delay greater than 1 delays the start of O12, which affects the
makespan. In Paper 3, a proof is posed to show that AOR always performs better
than, or equal to, RSR in the face of disruptions.

The illustrative example presented shows that idle time can be used to protect
the schedule against disruptions. Idle time in deterministic, minimum time schedules
is due to operations sharing resources and, as a consequence, operations have to wait
for a common resource to become available. In redundancy-based methods, where
addition slack is inserted to the schedule, a non-optimal makespan is allowed, in
pursuance of a robust and/or stable schedule.

3.4 Summary
In this chapter, the rescheduling framework was introduced. Different strategies
to implement protection against disruptions were presented as well as examples of
underlying methods. Two predictive-reactive methods were studied more in-depth,
namely Affected Operations Rescheduling and Right-Shift Rescheduling. In this
thesis, Paper 2 concerns a predictive-reactive approach, while a predictive-reactive
approach is formulated as a completely predictive method in Paper 3. Furthermore,
proactive scheduling is considered in Paper 4. The quality of the resulting schedules
in terms robustness and stability is briefly mentioned.

Next, robustness and stability measures are defined. Also, existing surrogate
measures of robustness and stability are presented together with a proposed surrogate
stability measure.

Chapter 4

Robustness and Stability

For deterministic systems, the realized schedule is equal to the initial schedule,
developed offline. However, if disruptions are present and the system thus stochastic,
the realized schedule will most certainly deviate from the initial schedule. When
protection against disruptions is embedded in the schedule, the aim is for the
realized schedule to adequately imitate the baseline schedule. To assess the quality
of a baseline schedule, different measures of robustness and stability have been
proposed. In this chapter, two frequently used measures for robustness and stability
are introduced. Then, surrogate measures used in the literature on rescheduling are
presented, after which a new surrogate measure is proposed. A benchmark problem
is used to evaluate the quality of the different measures when disruptions are present.

4.1 Quality Measures
Measures of robustness and stability are commonly used to evaluate the quality of
schedules in rescheduling (Goren and Sabuncuoglu 2008). These measures were intro-
duced in Section 3.1.4. In this thesis, robustness is measured in terms of makespan
delay between the baseline and the realized schedule. The average start time de-
viation between the baseline and the realized schedule is used to measure stability
when the redundancy-based approach is addressed, whereas sequence deviations are
otherwise regarded. Next, quality measures for makespan delay and average start
time deviation are formally defined.

4.1.1 Robustness measure
A common robustness measure in the literature on rescheduling is given by the
expected delay in makespan (Jorge Leon et al. 1994). LetM0(S) denote the makespan
of the baseline schedule S. The actual makespan in the realized schedule is denoted
byM(S), which is a random variable. Hence, the delay in makespan can be expressed
as M(S) −M0(S). Since M0(S) is deterministic, the expected makespan delay is
given by

E[M(S)]−M0(S) (4.1)
As the difference in (4.1) decreases, the robustness increases.

25

26 4.2. Surrogate Measures

4.1.2 Stability measure

For a schedule to be stable, the realization of the schedule should not deviate from
the baseline schedule in the presence of disruptions. The weighted expected absolute
deviation in start times, between the realized schedule and the baseline schedule, is
selected as the stability measure (Lambrechts et al. 2011). As defined in Section
2.3, N denotes the index set of operations, |N | = n, whereas wi is the weight of
operation Oi. The random variable Ti represents the start time of Oi and E[Ti] is
the expected value of the start time Ti in the realized schedule. The planned start
time in the baseline schedule is denoted as ti. The stability measure is given by∑

i∈N
wi|E[Ti]− ti| (4.2)

Unit weights wi, i ∈ N , are used in this thesis. As the deviation in start times in (4.2)
decreases, the stability increases. Due to tractability problems where the effect of a
disruption depends on the outcome of all previous disruptions, surrogate measures
are used to evaluate the quality. Next, existing surrogate measures are presented, as
well as a suggested surrogate measure.

4.2 Surrogate Measures
In the rescheduling literature, several surrogate measures of robustness and stability
have been proposed (Sabuncuoglu and Goren 2009)(Jensen 2003)(Al-Hinai and
ElMekkawy 2011). The measures can either be based on the assumption that no
information regarding the disruptions is known, or that some knowledge exists such as
probability density functions describing the uncertainties. Methods using surrogate
measures for stability and/or robustness, either embed the measure into the decision
process or in a post-process step to evaluate the performance of the schedule. In this
section, existing slack-based surrogate measures are presented as well as a proposed
surrogate measure.

4.2.1 Existing measures

In (Jorge Leon et al. 1994), a surrogate robustness measure, based on the average
total slack, is presented. Evaluations show a high correlation between robustness and
average total slack, such that an increase in average total slack results in a system
less sensitive to disruptions. The proposed measure is given by

RM1 = 1
n

∑
i∈N

fi (4.3)

where fi is the total slack given by (2.6). In (Hazır et al. 2010), a surrogate robustness
measure is presented, based on a function that has diminishing returns per extra
unit slack. With this measure, it is more beneficial to add slack to an operation with

Chapter 4. Robustness and Stability 27

little slack, compared to an operation with large slack. The robustness measure is
expressed as

RM2 = 1
n

n∑
i=1

fi∑
j=1

e−j, fi ∈ Z (4.4)

In (Hazır et al. 2010), the number of successors to each operation is included in
the first sum, which makes it more favorable to add slack to an operation with
many successors. Since the goal is to compare different types of measures, where
the result of introducing the exponential term in the measure is of interest, unit
weights are considered, in correspondence with the other measures. The measure
in (4.3) is applicable to both discrete and continuous time formulations. In Section
4.3.1, the presented measures are included in a problem formulation, used to evaluate
their quality and computational efficiency. Due to the inclusion of energy in Section
5.2.1, a continuous-time formulation is proposed. Hence, the robustness measure
in (4.4) is reformulated. When the second sum is evaluated using an integral, the
continuous-time measure is given by

RM3 = 1
n

n∑
i=1

∫ fi

0
e−tdt = 1

n

n∑
i=1

(
1− e−fi

)
, fi ∈ R (4.5)

The measures in (4.3) and (4.5) incorporate the total slack for operations. They are
thus considered as robustness measures, since the total slack is related to robustness.
However, the measures can easily be transformed to stability measures, by exchanging
the total slack, fi, with the free slack, si, given by (2.5). This property is general.
When exchanging total slack with free slack, the measure will generate a stability
criterion that evaluates start time deviations. Let SMi, i ∈ {1, 2, 3} denote a stability
measure corresponding to RMi, i ∈ {1, 2, 3}, but where the total slack has been
replaced with free slack.

For delays larger than the free slack, the start of succeeding operations are
affected. Next, a stability measure is proposed that will impose a cost for delays of
that extent.

4.2.2 Proposed stability surrogate measure
Let the delay of an operation Oi be represented by a random variable with known
probability distribution. The duration of Oi is denoted as di = d0

i + δi, di ∈ R, where
d0
i is the nominal duration and δi is a realization of the delay. If δi > si, the delayed

operation will delay the start of a succeeding operation. A stability measure, which
imposes a cost if the delay of an operation exceeds its free slack, is proposed. Let
p(δi) denote the probability density function, describing the likelihood that operation
Oi has a delay δi. The suggested cost is given by

c(si) =
∫ ∞

0
p(δi) ·max(0, δi − si) dδi (4.6)

Delays with uniform distribution is considered, U(δmini , δmaxi). In this case, p(δi) =
1

δmax
i −δmin

i
for δi ∈ (δmini , δmaxi), and 0 otherwise. Hence, for a uniform probability

28 4.3. Evaluation of Surrogate Measures

density function, the cost in (4.6) is given by

c(si) =
∫ δmax

i

δmin
i

1
δmaxi − δmini

·max(0, δi − si) dδi (4.7)

A minimum delay equal to 0 is considered, i.e. δmini = 0. The integral in (4.7) equals
0 for δi ≤ si. Hence, for delays δi > si, the cost can be expressed as

c(si) = 1
δmaxi

∫ δmax
i

si

δi − si dδi = 1
2δmaxi

(
δmaxi − si

)2

To conclude, the cost for an operation Oi is given by

c(si) =

1

2δmax
i

(
δmaxi − si

)2
, if δmaxi > si

0, otherwise
(4.8)

The proposed stability measure is given by

SM4 = 1
n

∑
i∈N

c(si) (4.9)

The stability measure SM4 is reformulated to a robustness measure, RM4, by
replacing the free slack with total slack. For a uniform probability distribution, the
resulting measure in (4.9) is quadratic. In the literature on rescheduling, uniform
distributions are commonly used for processing time delays. Other distributions
considered are e.g. the beta distribution or the log-normal distribution. The use of
these distributions results in much more complex expressions. A quadratic measure
is preferable considering computation time during optimization.

The measures RM1/SM1 and RM3/SM3 are linear and exponential respectively
while the proposed measure is quadratic. Thus, the computation time for generating
schedules should also be taken into consideration while comparing the different
measures. Next, the measures are evaluated.

4.3 Evaluation of Surrogate Measures
In this section, the surrogate measures are evaluated based on the quality of the
schedules obtained with the different surrogate measures included as objectives. For
the robustness measures, the makespan delay for random processing time delays, as
well as the computation time, are considered. Similarly, for the stability measure,
the average start time deviation and computation time are studied when disruptions
are present. First, an optimization model is formulated to perform the analysis.

4.3.1 Optimization model
Based on the disjunctive graph presented in Section 2.3, a mixed integer nonlinear
programming (MINLP) model is formulated for the job shop problem (Wigström
and Lennartson 2013). The MINLP formulation is derived based on the precedence

Chapter 4. Robustness and Stability 29

relations originating from job sequences, as well as mutual exclusion constraints, for
the pairwise execution order for operations requiring the same resource. Due to the
total slack, included in the robustness measures, constraints are formulated for the
longest path. Also, free slack is included into the formulation due to the stability
measures. Each operation Oi, i∈N , has a start time ti, duration di, free slack si and
longest path `i. For all i ∈ N , ti, di, si, `i ∈ R. The preconditions for operations in
job sequences affect the timing as

ti + di + si ≤ tj ∀ (i, j) ∈ A (4.10)

and the longest path of an operation is always longer than its duration together with
the succeeding operation’s longest path

`j + di ≤ `i ∀ (i, j) ∈ A (4.11)

As for the mutual exclusion constraints, for each pair (i, j) ∈ E , introduce a boolean
variable bij, where bij = 1 if operation Oi is before Oj, and bij = 0 otherwise. The
timing is modeled as

ti + di + si ≤ tj +M(bij − 1)
tj + dj + sj ≤ ti +Mbij ∀ (i, j) ∈ E (4.12)

where M is a sufficiently large constant. The longest path constraint becomes

`j + di ≤ `i +M(bij − 1)
`i + dj ≤ `j +Mbij ∀ (i, j) ∈ E (4.13)

The optimization model has multiple objectives corresponding to either makespan T
and robustness R, or makespan T and stability S depending on whether a robust or
stable schedule is developed.

min (T ,R) or min (T ,S) (4.14)

The makespan T is given by max(ti + di + si),∀i ∈ N . The robustness R is defined
by one of the robustness measures presented in Section 4.2, i.e.

R , −RM1,−RM3 or RM4 (4.15)

Note that RM1 and RM3 have negative signs since these should be maximized. The
stability S is defined by one of the corresponding stability measures.

S , −SM1,−SM3 or SM4 (4.16)

The performance of the surrogate measures are evaluated based on the presented
optimization model. A measure might be more suitable as a robustness measure,
compared to a stability measure and vice versa. Hence, this possibility is also taken
into consideration during the analysis. Before the evaluations begin, the benchmark
problem is presented.

30 4.3. Evaluation of Surrogate Measures

4.3.2 Benchmark problem

The well-known Fisher Thompson benchmark problem is used to compare the
measures presented in Section 4.2 (Taillard 1993). The problem instance considered
is the 6× 6 problem, where each job has 6 operations, each processed on 6 different
resources, giving a total of 36 operations.

During the following analysis, the minimum makespan of a schedule is denoted
as T ∗. Let RT ∗ and ST ∗ denote the reference measures for the robustness and
stability of the minimal makespan schedule. In the same way, R∗ denotes minimal
robustness, while TR∗ and SR∗ denote the makespan and stability of the minimal
robustness schedule etc. The effect on makespan for random duration delays is
studied for different upper bounds on makespan, equal to (x + 100)% T ∗, x ∈
{10, 12.5, . . . , 20}. Delays δi are uniformly distributed, δi ∈ (0, δmaxi), where δmaxi ∈
{0.2d0

i , 0.3d0
i , 0.4d0

i , 0.5d0
i }.

All optimization was run on a Windows 7 64 bit system with 2.67 [GHz] Intel
Core i5 CPU and 8 [GB] RAM. The optimization problem was modeled in AMPL.
The solvers used were CPLEX, IPOPT and BONMIN.

4.3.3 Comparison of robustness measures

As a first step to compare the robustness measures, a minimum time schedule is
initially developed where the makespan is given by T ∗. Then, robust schedules are
generated by minimizing R and introducing an upper bound for the makespan T .
For each choice of makespan upper bound, as well as δmaxi , delays are randomly
generated 20 times. A total of 400 instances are studied, 100 for each δmaxi . The
makespan delay, i.e. the difference between the makespan of the disrupted schedules,
compared to the makespan TR∗ of the baseline schedules, is retrieved. This procedure
is performed for all robustness measures in (4.15). In Section 4.1.1, the makespan of
the realized schedule S is denoted as M(S). Hence, the makespan of the disrupted
schedules resembles outcomes of M(S). Note that TR∗ = M0(S).

In Fig. 4.1, a bar plot representing the average delay in makespan for different
values on δmaxi is depicted. For each value, three bars are depicted, representing the
different robustness measures used to generate robust schedules. The average delay
in makespan is quite similar for all robustness measures. For greater duration delays,
RM4 results in an average makespan delay that is slightly smaller compared to the
results for RM1 and RM3.

In Fig. 4.2, the computation time is depicted as a function of the upper bound on
makespan, ranging from an increase in 2.5% to 40%. The CPU time for minimizing
robustness measure RM3 is much worse than for the other measures. This is
anticipated due to the exponential terms in RM3, whereas the terms in RM1 are linear
and quadratic for RM4. For smaller upper bounds on makespan, the computation
time for RM1 is shorter than for RM4. However, the opposite holds for greater upper
bounds on makespan. At a 25% makespan increase, the computation time for RM3
drops. A possible reason to this behavior is that, when the increase in makespan
is large, the exponential terms in the measure will become so small that solutions

Chapter 4. Robustness and Stability 31

Maximum delay
0:2d0

i 0:3d0
i 0:4d0

i 0:5d0
i

A
ve

ra
ge

m
ak

es
p
an

d
el
ay

0

2

4

6

8
Average delay in makespan for di,erent /max

i

RM1

RM3

RM4

Figure 4.1: The average delay in makespan for schedules generated by RM1,
RM3 and RM4 with a makespan upper bound equal to (x + 100)% T ∗, x ∈
{10, 12.5, . . . , 20}. The makespan in the delayed schedule is compared with the
makespan in the baseline schedule. Delays δi are generated from the interval
(0, δmaxi), where δmaxi ∈ {0.2d0

i , 0.3d0
i , 0.4d0

i , 0.5d0
i }, d0

i : deterministic duration,
i ∈ N .

close to the relaxed root node are found. Thus, the branch and bound algorithm will
terminate quite fast.

% Makespan increase
0 10 20 30 40

C
P
U

ti
m

e
[s
]

10!1

100

101

102

103
CPU time vs. makespan upper bound

RM1

RM3

RM4

Figure 4.2: The computation time (CPU time) for optimizing the robustness
measures as a function of the increase in makespan equal to (x+ 100)% T ∗, x ∈
{2.5, 5, . . . , 40}.

Based on the comparison of robustness measures, a conclusion can be drawn that
both RM1 and RM4 results in quite similar performance, both in makespan delays
and computation time. The makespan delay for RM3 is comparable to that of the
other measures. However, the computation time is much worse when generating
robust schedules with an upper bound on makespan less than 1.25T ∗.

4.3.4 Comparison of stability measures
Mainly the same procedure is repeated for the comparison of stability measures.
A time-optimal schedule is first generated to determine the minimum makespan

32 4.3. Evaluation of Surrogate Measures

T ∗. As a next step, stable schedules are developed, by individually minimizing the
stability measures in (4.16), together with an upper bound on makespan. For each
choice of makespan upper bound, as well as δmaxi , delays are randomly generated
20 times. A total of 400 instances are studied, 100 for each δmaxi . The start time
deviations between operations in the disrupted schedules and the baseline schedules
are retrieved. Referring back to Section 4.1.2, the outcome of Ti corresponds to the
start time of operation Oi in the realized, i.e. disrupted, schedule. The planned start
time, ti, corresponds to the start time in the stable baseline schedule.

In Fig. 4.3, the average deviation in start times for the different stability measures,
is depicted. The execution order of schedules generated with SM3 is fixed, due to
computational complexity. When a MINLP problem was attempted to be solved to
maximize SM3, the optimization procedure was terminated due to long execution
times. Instead, a nonlinear programming (NLP) problem was solved, enforcing an
execution order equal to the minimum makespan schedule. Based on the results,
these sequences give fairly good performance in terms of start time deviation. The
average deviation in start time for SM1 is outperformed by the other measures. Since
the average free slack is considered for SM1, a solution can place all free slack after
one single operation, whereas the other operations are left without protection. As a
consequence of not distributing the free slack, the resulting schedule is more sensitive
to delays.

Maximum delay
0:2d0

i 0:3d0
i 0:4d0

i 0:5d0
i

A
ve

ra
ge

st
ar

t
ti
m

e
d
ev

ia
ti
on

0

2

4

6

8
Average deviation in start times for di,erent /max

i

SM1

SM3

SM4

Figure 4.3: The average deviation in start times for schedules with delays compared
to baseline stable schedules based on stability measures SM1, SM3 and SM4. A
makespan upper bound equal to (x + 100)% T ∗, x ∈ {10, 12.5, . . . , 20} is used.
Delays are in the range (0, δmaxi) where δmaxi ∈ {0.2d0

i , 0.3d0
i , 0.4d0

i , 0.5d0
i }, d0

i :
deterministic duration, i ∈ N .

The computation time for different upper bounds on makespan, ranging from an
increase in 2.5% to 40%, is depicted in Fig. 4.4. The computation time for SM3 is
not included since the optimization was terminated, due to long computation times,
> 103 s, for makespan increases > 5 % for this measure. The performance of SM4
exceeds SM1 in terms of average start time deviation. However, the computation
time for SM4 is worse, but overall still quite short.

The proposed measure performs better as a stability measure. This is due to
the local property of free slack, which is connected to one operation. If the delay is

Chapter 4. Robustness and Stability 33

Upper bound on makespan (%)
0 10 20 30 40

C
P
U

ti
m

e
[s
]

10!1

100

101

102
CPU time vs. makespan upper bound

SM1

SM4

Figure 4.4: The computation time (CPU time) for optimizing the stability mea-
sures as a function of the increase in makespan equal to (x + 100)% T ∗, x ∈
{2.5, 5, . . . , 40}.

smaller than the free slack, succeeding operations will not be affected by the delay.
However, for total slack, an operation with a delay smaller than the total slack, will
still reduce the total slack for succeeding operations that are directly or indirectly
connected to the delayed operation.

4.4 Summary
Measures of robustness and stability were introduced in this chapter. Existing
surrogate measures for robustness and stability in the literature on rescheduling
were presented together with a proposed surrogate measure. An optimization model
was stated for which robust and stable schedules can be obtained. The surrogate
measures were evaluated by using a benchmark problem. The makespan delay was
used to measure robustness, while the start time deviation was considered in the
stability measure. According to the results, the proposed stability measure performs
better as a stability measure compared to a robustness measure.

Next, an objective, considered when developing energy efficient schedules, is
introduced. The optimization model presented in this chapter is extended to also
include energy consumption. Then, a conflict between energy, stability and robustness
is high-lighted.

Chapter 5

Energy Efficient Scheduling

In order to generate energy-efficient schedules, much effort has been devoted to
reducing the energy consumption of industrial robots, due to their extensive use in
automated manufacturing systems. In (Vergnano et al. 2012), a method to reduce
the energy consumption for robots is proposed by reducing, and often eliminating,
idle time between operations. The energy consumption for robots is embedded into
the scheduling model. Each operation is equipped with an energy consumption
signature parameterized by its execution time. In (Wigström et al. 2013), an
extension was introduced, resulting in further improvements on energy consumption
by using dynamic time scaling of the robot trajectories. The reduction of peak
energy consumption in a flexible flow shop was studied in (Bruzzone et al. 2012). In
(Riazi et al. 2017), results show that energy can be saved, even without changing
the operation sequences. An assumption of a convex energy consumption signature
is made. Shared zones for robots give rise to gaps, i.e. idle time, in the schedule.
By extending the execution time for a waiting robot, a reduction in energy usage is
achieved. Hence, idle time in the resulting schedule is reduced.

Clearly, a conflict exists between redundancy-based techniques used in reschedul-
ing and energy optimization, since the former depends on idle time while the latter
benefits from reducing, and often, eliminating it. In this chapter, the conflicts that
arise when these techniques are combined, are highlighted.

5.1 Energy Consumption Measure
In this thesis, the energy consumption signature for an operation, parameterized by
its duration, is based on an experimentally derived energy consumption signature for
an industrial robot. During experiments, a specific motion is repeated using different
execution times, while measuring the energy consumption. The resulting measures
of energy consumption are depicted in Fig. 5.1.

Let d0
i represent the nominal, unextended duration of operation Oi, while ei(di)

denotes its energy consumption for a duration di. The recorded energy function
for the robot is generalized in the following way: (i) at nominal execution time d0

i ,
operations consume e0

i units of energy; (ii) at twice the original execution time, 2d0
i ,

energy is reduced by 20%; (iii) at 3.5d0
i , the energy consumption increases in a purely

35

36 5.1. Energy Consumption Measure

Execution Time [s]
0 5 10 15 20

E
n
er

gy
C

on
su

m
p
ti

on
[J

]

1200

1250

1300

1350

1400

1450

1500

1550

1600
Energy Consumption Signature

Measurements
Model -t

Figure 5.1: The energy consumption signature for a robot given by the energy
consumption as a function of execution time. The stars correspond to measure-
ments of energy consumption for different execution times. The solid line is the
model fit of the measurements.

linear fashion due to friction; (iv) at 5d0
i , the energy consumption is once again e0

i .
The following convex model is posed for the energy functions

ei(di) =

α(3.5d0
i − di)4 + βdi + γ, if di ≤ 3.5d0

i

βdi + γ, otherwise
(5.1)

The above specification gives roughly α = e0
i /(3.32d0

i)4, β = e0
i /(12.4d0

i) and γ =
e0
i /1.675. The resulting fit for the model is also shown in Figure 5.1. The root mean
square error of the model fit is 19.66 J and the worst case error is 43.68 J.

The derived signature is adopted for all operations. In reality, each operation has
a unique energy consumption signature. However, any convex function describing
the energy consumption, as a function of the execution time of an operation, could
be used to demonstrate the concept of this method. The results can be extended to
other resource types if their energy signature can be approximated with a convex
function, such that a unique minimum exists. An assumption is made, where the
nominal execution time is considered to be shorter than that achieving the minimum
energy consumption. In this case, an increase in execution time implies a decrease in
energy consumption. Otherwise, eliminating slack is not energy efficient.

The measure of energy consumption is considered to be the sum of the convex
energy functions, i.e. ∑

i∈N
ei(di)

At this point, measures for robustness, stability and energy have been presented.
Hence, the potential conflict can be evaluated. In the following section, the previously
posed optimization model is extended to also include energy. As a result, trade-off
analysis can be performed.

Chapter 5. Energy Efficient Scheduling 37

5.2 Conflict Between Energy, Stability and Ro-
bustness

When the energy measure, derived in Section 5.1, is used together with the constraints
(4.10)-(4.13) in Section 4.3.1, an energy-efficient schedule is developed. As previously
mentioned, slack is reduced on behalf of longer execution times in this case. Hence, a
conflict emerges when energy minimization is combined with slack-based rescheduling
techniques. An optimization formulation is posed to analyze the trade-off.

5.2.1 Optimization model
Let the makespan, stability and robustness be defined as in Section 4.3.1. The energy
consumption of the system is defined by the energy measure, i.e. a sum of convex
energy functions

E ,
∑
i∈N

ei(di) (5.2)

where ei(di) is the energy consumption signature for operation Oi given by (5.1).
The objectives in (4.14) are thus extended to also include the energy consumption
measure in (5.2). Together with constraints (4.10)-(4.13), the compact representation
of the optimization model is given by

min (T ,R,S,E)
s.t.

ti + di + si ≤ tj ∀ (i, j) ∈ A
`j + di ≤ `i ∀ (i, j) ∈ A
ti + di + si ≤ tj +M(bij − 1) ∀ (i, j) ∈ E
tj + dj + sj ≤ ti +Mbij ∀ (i, j) ∈ E
`j + di ≤ `i +M(bij − 1) ∀ (i, j) ∈ E
`i + dj ≤ `j +Mbij ∀ (i, j) ∈ E
ti, di, si, `i ∈ R+ i ∈ N
bij ∈ Z i, j ∈ N

(5.3)

where ti, di, si, `i and bij are decision variables.

5.2.2 Trade-off analysis
Based on the comparisons of measures performed in Section 4.3, a robustness measure
and stability measure are selected for the trade-off analysis. In Section 4.3.3, the
average delay in makespan was quite similar for all robustness measures. RM1 has a
slightly shorter computation time for small makespan increases and, thus used for
the trade-off experiments. Based on the results in Section 4.3.4, SM4 is used as a
stability measure, due to its exceeding performance. To conclude, R = −RM1 and
S = SM4.

38 5.2. Conflict Between Energy, Stability and Robustness

The optimization model is solved by using the ε-constraint method (Miettinen
2012). In this method, one of the objectives is selected to be optimized, while the
rest of the objectives are formulated as additional constraints bounded from above.
In this case, the robustness R is minimized, while introducing bounds on makespan,
stability and energy. The constraints added to the model are given by

T ≤ εT

S ≤ εS (5.4)
E ≤ εE

where εT , εS and εE are constants. A Pareto front is generated by gridding the energy
and stability and minimizing the robustness at each grid point, with εT , εS and εE
set to values given by the specific grid point. A 10% increase in makespan is allowed,
i.e. εT = 1.1T ∗, where T ∗ is the minimal makespan.

The energy grid is first determined, where the smallest value is obtained by
minimizing the energy consumption subject to the makespan upper bound. The
largest value equals the sum of the energy functions at nominal execution time, i.e.
ET ∗ . For each energy grid point, the stability grid is obtained. The smallest value is
determined by minimizing the stability subject to the makespan upper bound, as
well as an energy upper bound, equal to the current energy grid point. The largest
value for the stability grid is obtained by minimizing the robustness, subject to the
same upper bounds on makespan and energy. Thus, the robustness is minimized
in each grid point of the 2-dimensional energy and stability grid with bounds on
makespan, energy and stability, based on the values for that specific grid point.

The resulting Pareto front is depicted in Fig. 5.2. Each curve corresponds to
a constant level of energy consumption. Based on the Pareto front, the following
results are achieved

• Given a certain εE and εT , as R decreases S increases;

• Given a certain R and εT , as S decreases E increases;

• Given a certain εS and εT , as R decreases E increases.

As expected, low energy consumption corresponds to poor stability and robustness
resulting in schedules more sensitive to delays in makespan and start time deviations.
The Pareto front reaches smaller values for R and S as E increases. In other words,
an increase in energy consumption enables more robust and stable solutions. The
problem is symmetric, i.e. if either S or E is minimized with bounds on the other
measures, the result would be the same.

With the convex energy model used, a unique minima of the energy consumed by
an operation exists for a certain duration. A decrease in execution time corresponds
to an increase in energy consumption if the energy minimum have already been
reached and passed. In (2.5), the free slack increases as the duration decreases.
Hence, a smaller value for SM4 is achieved. For the total slack in (2.6), a decrease in
duration corresponds to a shorter longest path. As a result, RM1 becomes greater.

Chapter 5. Energy Efficient Scheduling 39

R
-8 -7 -6 -5 -4 -3 -2 -1 0

S

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Energy vs. Robustness vs. Stability

2400

2600

2800

3000

3200

3400

E [J]

Figure 5.2: Pareto front for energy consumption (E), robustness (R) and stability
(S) with εT = 1.1T ∗ and δmaxi = 0.3d0

i . Each curve represents the trade-off
between robustness and stability for a constant energy consumption [J].

Hence, smaller values for R and S are achieved. Also, a conflict between stability
and robustness is evident. A small value for S comes at the cost of an increase in
R and vice versa. For robustness, it is beneficial to add idle time at the end of
the schedule. On the contrary, the stability gains from adding idle time in between
operations, throughout the schedule.

Changing δmaxi would only affect S which is defined by stability measure SM4.
An increase in δmaxi would require extra free slack to keep the cost in (4.9) down if
operation Oi is delayed. Hence, S increases as δmaxi increases.

An increase in εT enables for solutions with lower energy consumption since further
increments in execution time for operations are possible. That is, if the minimum of
the energy consumption signatures have not yet been reached. A makespan increase
that corresponds to the free slack si becoming greater than the maximum delay, δmaxi ,
would result in a zero cost c(si) for that operation. Hence, as εT increases, SM4
would eventually reach 0. Note that this is based on the assumption on bounded
delays due to delays with uniform distribution. The robustness measure, RM1, does
not consider delays and will hence increase as εT increases. The conflict between E,
R and S will terminate once the makespan is increased to a point where the energy
consumption signatures for all operations have reached a minimum and the stability
S has reached 0.

5.3 Summary

In this chapter, a measure for energy consumption was presented corresponding to a
sum of energy signatures where each function is parameterized by the duration for
the corresponding operation. This measure was then included in the optimization
model previously presented. By minimizing the robustness and bounding the other
objective values, a Pareto front was generated to show the trade-off between energy
consumption, stability and robustness.

40 5.3. Summary

In the next chapter, a trajectory planning approach is presented, guaranteeing
collision free trajectories for robots in a common workspace setting when the time
at which a shared space becomes available can deviate from an initial schedule. In
such scenarios, robust constraints can be used to ensure the possibility to stop before
entering the common workspace.

Chapter 6

Robust and Energy Efficient
Trajectory Planning

Due to the increase in automation and restricted space, robots can often be placed
such that the workspace of one robot overlaps with the workspace of neighboring
robots. This overlapping space, referred to as the common workspace, is a critical
region where collisions might occur. Traditionally, collision-free trajectories are
planned such that the time at which a robot enters the common workspace, is greater
than the time at which a prior robot leaves the shared space. If a disruption occurs
and the shared space is not yet available when the robot enters, a collision could
potentially occur.

In this chapter, a method is proposed for which robust trajectories are obtained,
guaranteeing under all circumstances collision-free paths. A clearance point is
introduced along the path, where the occupancy of the shared space is evaluated.
The velocity is restricted at this position, such that the robot is able to stop before
entering the common workspace. A problem formulation is stated, where multiple
objectives including final time and energy consumption are considered. The impact
on the performance is analyzed, concerning the position and timing related to the
clearance point.

6.1 Problem Formulation

Consider an n-degree-of-freedom robot with joint angles q ∈ Rn. Let q(s) denote a
fixed path, given in joint space coordinates, where s ∈ [0, 1] is a normalized scalar
path coordinate and q : [0, 1] → Rn. The path coordinate determines the spatial
geometry of the path. Let the time t, path velocity ṡ and path acceleration s̈ be
functions of s, i.e. the problem is posed in space rather than in time. The path
velocity is positive, i.e. ṡ(s) ≥ 0 with boundary conditions

ṡ(0) = 0 ṡ(1) = 0. (6.1)

41

42 6.1. Problem Formulation

The derivatives of q(s) corresponding to joint velocities and accelerations are given
by

q̇(s) = q′(s)ṡ(s) (6.2)
q̈(s) = q′(s)s̈(s) + q′′(s)ṡ2(s) (6.3)

where ()′ = d/ds, such that q′ and q′′ are the first and second spatial derivatives of
the path respectively. The joint velocities and accelerations are constrained along
the path

|q̇(s)| ≤ vlim(s) (6.4)
|q̈(s)| ≤ alim(s), (6.5)

where vlim and alim are path varying bounds for joint velocities and accelerations
respectively. The bounds have been made symmetric without loss of generality.

Constraints concerning collision avoidance are required due to a common workspace.
The order in which robots use a shared space is assumed to be given. The perspective
of the robot with lower priority is taken in this problem formulation. This robot
cannot enter the shared space before the preceding robot exits. Let τ denote the
time at which the common workspace becomes free to traverse. The boundary of the
common workspace is located at s = β. A traditional collision avoidance constraint
would state that t(β) ≥ τ .

Due to uncertainties in the system, the shared workspace might become available
later than expected. In such a case, the robot might inadvertently traverse β before
the common workspace is actually free, and hence, a collision could potentially occur.
In this thesis, an approach guaranteeing collision-free trajectories is proposed. A
clearance point α, 0 ≤ α ≤ β is introduced. As the robot reaches the clearance
point α, the availability of the common workspace is evaluated. The robot enters
the common workspace if it is free. However, if the shared workspace is not yet
available due to a disruption, the robot must be able to stop at β. The velocity at
the clearance point is thus limited by

ṡ(α) ≤ vmax(α) (6.6)

where vmax(α) is the maximum velocity at α still ensuring that, if needed, the robot
can stop before traversing β. Note, as the location of α approaches β, the more
strictly bounded the velocity is due to the necessity to be able to stop at β. The
earliest time at which the robot can traverse α is at time τ . Hence, we pose a timing
constraint given by

t(α) ≥ τ (6.7)

The time t(s) and path velocity ṡ(s) are related as

t′(s) = dt(s)
ds

= 1
ṡ(s) (6.8)

Chapter 6. Robust and Energy Efficient Trajectory Planning 43

where (˙) = d/dt, or on integral form as

t(s) =
s∫

0

1
ṡ(σ)dσ (6.9)

The boundary of t(s), is given by

t(0) = 0 t(1) = T (6.10)

where T is the time at which the robot arrives at the end of its path. Multiple
objectives corresponding to minimization of final time and energy consumption are
considered,

minimize
(
T,E

)
(6.11)

Minimum final time is prioritized and energy consumption is thus secondary. To
summarize, the compact representation of the mathematical model is given by

minimize
(
T,E

)
subject to t(0) = 0, t(1) = T

ṡ(0) = 0, ṡ(1) = 0
t′(s) = 1/ṡ(s)
|q′(s)ṡ(s)| ≤ vlim(s)∣∣∣q′(s)s̈(s) + q′′(s)ṡ2(s)

∣∣∣ ≤ alim(s)

∀s ∈ [0, 1]

ṡ(α) ≤ vmax(α)
t(α) ≥ τ

(6.12)

where t, ṡ and s̈ are optimization variables.

6.2 Minimum Time Analysis
Based on the problem formulation, both the position of α as well as the time τ
impact the performance. In this section, an expression for the minimum time in
which a path is traversed is derived, denoted as T ∗(α, τ). First, τ = 0 is regarded,
corresponding to the shared space being instantaneously available, i.e. τ = 0. The
final time expression is thereafter extended to hold for an arbitrary τ . Analysis is
performed in the following section to study how α and τ affect the final time.

In our analysis, we rely heavily on the velocity profile of the minimum time
solution and its properties. Let ṡ∗(s) denote the velocity profile of the minimum time
solution as a function of the path coordinate s. In (Bobrow et al. 1985), the results
show that obtaining a minimum time trajectory includes selecting the acceleration
profile that produces the largest possible velocity profile such that, at each point
along the path, the velocity is not greater than the maximum velocity at which the
actuators can hold the manipulator on the path. As a result, ṡ∗(s) will always attain
its maximal possible velocity for each point along the path, taking into account
maximal accepted accelerations whilst satisfying the boundary conditions.

44 6.2. Minimum Time Analysis

Due to the velocity bound at the clearance point in (6.6), ṡ∗(s) is affected by the
position of α. To distinguish between solutions for different α, ṡ∗α(s) is introduced,
denoting the minimum time velocity profile for an arbitrary α ∈ [0, β], see Fig. 6.1.

α0=0 γ α1 β 1
0

vlim

s

ṡ

ṡ∗0(s) ṡ∗α1
(s) ṡ∗β(s)

Figure 6.1: Three minimum time velocity profiles ṡ∗α(s) for α ∈ {0, α1, β}. The
point s = γ denotes the position where the robot starts to decelerate.

Note that, when α = τ = 0, the robot traverses the path without braking before
traversing β, since constraints (6.6) and (6.7) are satisfied. This gives rise to an
unrestricted solution, denoted as ṡ∗0(s) (since α = 0), also illustrated in Fig. 6.1. If
the clearance point is located at the boundary of the common workspace, i.e. α = β,
the robot must stop at β in case the shared space is assessed as occupied. Let ṡ∗β(s)
denote the minimum time velocity profile which includes a stop at β, see Fig. 6.1. In
the evaluation of the velocity profile ṡ∗α(s) for an arbitrary α ∈ [0, β], the velocity
upper bound vmax(α) is used to guarantee that the robot can stop before entering
the common workspace. The profile ṡ∗β(s) is thus used to determine vmax(α) to fulfill
this requirement. The maximal permitted velocity at the clearance point is obtained
from the corresponding point on ṡ∗β(s). The constraint in (6.6) is therefore updated
to

ṡ(α) ≤ ṡ∗β(α), α ∈ [0, β] (6.13)

The velocity is at every path position less than, or equal to, the velocity of the
unrestricted solution, i.e. ṡ∗α(s) ≤ ṡ∗0(s), ∀s ∈ [0, 1], α ∈ [0, β]. Consider a point γ
corresponding to the maximal path position where, for an arbitrary α, ṡ∗0(s) and
ṡ∗α(s) are identical.

Definition 6.2.1. Let γ be a point defined as

γ = max s s.t. ṡ∗α(ξ) = ṡ∗0(ξ), ∀ξ ∈ [0, s] (6.14)

for an arbitrary α ∈ [0, β]. Hence, γ is the maximal path position for which ṡ∗α(s)
equals ṡ∗0(s) for all prior points along the path, see Fig. 6.1.

The time difference, denoted as ∆T , between executing a trajectory specified for
a given α, i.e. T ∗(α, 0), compared to the unrestricted solution, T ∗(0, 0), is given by

∆T (α) = T ∗(α, 0)− T ∗(0, 0) =
1∫

0

1
ṡ∗α(s) −

1
ṡ∗0(s) ds (6.15)

Chapter 6. Robust and Energy Efficient Trajectory Planning 45

In Paper 5, we show that ∆T (α) = 0 if α ≤ γ and ∆T (α) > 0 if α > γ. As illustrated
in Fig. 6.1, the robot decelerates after reaching γ, since the velocity bound vmax(α)
becomes more restrictive as α approaches β, which explains why the time to traverse
the path ṡ∗α(s), α > γ exceeds the time for the unrestricted solution.

So far, τ = 0 has been considered, corresponding to a minimum final time given
by T ∗(α, 0). To incorporate τ to the final time expression, T ∗(α, 0) is first divided
into two parts. The first part considers the minimum time in which α is reached,
while the second part relates to the minimum time to move from α to the end
position. Let t∗α(s) denote the minimum time in which a path position s can be
reached when executing ṡ∗α(s). Hence, the shortest time to reach α is expressed as
t∗α(α). For notational convenience, this expression is reduced to t∗α. The time to
move from α to the end position is denoted as t̄∗α, resulting in a final time given by

T ∗(α, 0) = t∗α + t̄∗α (6.16)

Due to the timing constraint in (6.7), the robot is not allowed to traverse α before
time τ . Hence, when also considering τ , the minimum final time is expressed as

T ∗(α, τ) = max(t∗α, τ) + t̄∗α (6.17)

where max(t∗α, τ) corresponds to the time at which α is reached. For τ > t∗α, ṡ∗α(s) can
have infinite number of solutions. For one of these solutions, the robot waits in the
initial position until time τ − t∗α, after which it moves to α in minimum time, arriving
at time τ . Note that the corresponding velocity profile, when parametrized by
position, is identical to the velocity profile for the case τ < t∗α, when the robot starts
immediately and executes the minimum time velocity profile. However, expressed in
terms of time, i.e. ṡ∗(t), the velocity profiles differ since for τ > t∗α, the robot waits
in its initial position. Another feasible solution when τ > t∗α is to start immediately
and execute the path up to α with reduced velocity. This approach is studied in
Section 6.4. Arriving early, implying that the common workspace is occupied, results
in the robot coming to a stop at the boundary of the shared space. The impact on
the final time for changes in α and τ is studied next, after which the possibility to
reduce the energy consumption is examined.

6.3 Minimum Time Sensitivity
The final time in (6.17) is a function of both α and τ . To analyze how changes in
these parameters impact the final time, the partial derivative of T ∗(α, τ) with respect
to τ is studied,

∂T ∗(α, τ)
∂τ

=
{

0, if τ ≤ t∗α
1, else (6.18)

According to (6.18), the final time is not affected by changes in τ as long as
τ ≤ t∗α. In this case, the minimum time in which the robot is able to reach α is
greater than the time at which the common zone assumingly becomes free. The

46 6.3. Minimum Time Sensitivity

robot will thus execute its time minimal trajectory to achieve the best possible final
time. As τ increases and τ ≤ t∗α still holds, the final time remains unaffected. While
τ > t∗α, the final time increases linearly as τ increases in (6.18), since in this case
T ∗(α, τ) = τ + t̄∗α. To analyze how changes in α impact the final time, we study the
partial derivative of T ∗(α, τ) with respect to α,

∂T ∗(α, τ)
∂α

=
{
t∗
′
α + t̄∗

′
α , if τ ≤ t∗α

t̄∗
′
α , else (6.19)

where ()′ = d/dα. In Paper 5, we show that the time difference between executing
ṡ∗α(s) and ṡ∗0(s) is equal to 0 if α ≤ γ. Note that τ = 0 was considered. However,
the velocity profile is in this case equal to the velocity profile when τ ≤ t∗α and the
robot executes its path in shortest possible time. The partial derivative in (6.19) is
thus equal to 0 if α ≤ γ and τ ≤ t∗α, which gives

t∗
′

α = −t̄∗′α , if α ≤ γ, τ ≤ t∗α (6.20)

The minimum time required to reach α is strictly increasing as α increases, i.e. t∗′α > 0.
As a consequence, t̄∗α is strictly decreasing as α increases when α ≤ γ. The position
of the clearance point can thus be changed without affecting T if α ≤ γ and τ ≤ t∗α.
Recall that ∆T (α) > 0 if α > γ which implies that (6.20) no longer holds. When
τ > t∗α, the change in final time equals t̄∗′α . The time t̄∗α can be expressed as

t̄∗α =
1∫
α

1
ṡ∗α(s)ds =

1∫
α

1
ṡ∗0(s)ds, α ≤ γ (6.21)

since for s ∈ [α, 1], ṡ∗α(s) = ṡ∗0(s) if α < γ. The derivative is given by

t̄∗
′

α = − 1
ṡ∗0(α) ≤ 0, α ≤ γ (6.22)

which is based on the fact that ṡ∗0(α) > 0, ∀α ∈ {0, γ} \ 0. As a result, the final time
decreases as α increases when α ≤ γ and τ > t∗α.

The sign of t̄∗′α for α > γ cannot be established. In this case, an increase in α
implies a decrease in vmax(α). The robot will execute the path after α as fast as
possible since minimum time is prioritized. An increase in α thus implies a reduction
in the initial velocity for the path s ∈ [α, 1]. A question left to be answered is if
the additional distance traveled as α increases, results in a decrease in t̄∗α, or if the
reduced initial velocity for traversing the remaining path results in an increase in t̄∗α.

Based on the performed analysis, conclusions concerning the position of α, as
well as the timing τ can be drawn. In (6.18) and (6.19), when τ ≤ t∗α and α ≤ γ, the
resulting solutions achieve a final time corresponding to the unrestricted solution. In
this case, the common zone becomes free before the robot is able to reach it. For
an arbitrary τ > t∗α when α ≤ γ, the final time decreases as α increases. Hence, the
clearance point should be placed as far along the path as possible, which in this
case equals α = γ. We will later return to (6.19) and the behavior of t̄∗′α for α > γ
in Section 6.5 to study the effect on the final time for increasing α. Next, energy
reduction analysis is performed.

Chapter 6. Robust and Energy Efficient Trajectory Planning 47

6.4 Energy Reduction
In this section, the impact on the energy consumption for different choices of τ and α
is studied. In (Riazi et al. 2017), the results show that the energy consumption can
be approximated as the squared joint acceleration. As a result, the system becomes
more energy efficient by reducing the velocities and accelerations while moving along
a path. A drawback is extended execution times which can affect the final time,
regarded as the prioritized objective in this work. When τ > t∗α, redundant time is
available. The path s ∈ [0, α] can thus be executed with reduced velocities, without
affecting the final time. Two terms indicating if energy reduction is feasible, slack
time and slack interval, are presented. First, points where the robot switches to and
from maximum acceleration are introduced.

Definition 6.4.1 (Switch Points). Let si, i ∈ [1, N] define N points where the robot
switches to and from maximum acceleration. Let s0 = 0 and sN+1 = β.

Note that the total number of switch points N is uneven, since the robot will
start with an acceleration segment and end with a stop, see Fig. 5.2. If the robot
can reach the clearance point before the common workspace becomes available, i.e.
τ > t∗α, the redundant time equals τ − t∗α. The slack time is characterized in the
following definition.

0 s1 β

0

vlim

s

q̇

(a) The switch point s1 for a robot with
one joint.

0 s1 s2 s3 β

0

vlim

s

q̇

q̇1
q̇2

(b) The switch points si, i ∈ {1, 2, 3} for
a robot with two joints, q1 and q2. The
bound for both q̇1(s) and q̇2(s) is equal
to vlim.

Figure 6.2: Minimum time velocity profiles for a robot with (a) one joint and (b)
two joints specifying the switch points in the interval s ∈ [0, β]. The solid lines
corresponds to the segments where maximum acceleration is maintained.

Definition 6.4.2 (Slack time). Let tE denote the slack time in the system, charac-
terized as

tE =

0, if α < s1 or

τ ≤ t∗α
τ − t∗α, else

(6.23)

If α is located during the first acceleration phase, i.e. α < s1, the slack time is
equal to 0 since maximum acceleration is required to satisfy ṡ(α) = vmax(α). Note

48 6.4. Energy Reduction

that, although redundant time is available, i.e. τ − t∗α > 0, and α < s1, the slack
time equals 0, which is also the case when redundant time is unavailable, i.e. τ ≤ t∗α.
The slack interval is used to determine the stretch along the path, starting from the
initial position, where slack time can be used to reduce the velocities for the robot
without affecting the final time.

Definition 6.4.3 (Slack interval). The slack interval is given by [0, sE], where sE,
is defined as

sE =
{
si, if i even,
α, if i uneven,

}
si ≤ α ≤ si+1,
i ∈ [0, N] (6.24)

If α ∈ [s0, s1], which represents the first acceleration segment, the slack interval
equals [0, s0 = 0], implying that no stretch is available for energy reduction. For
a robot with one joint, the slack interval equals [0, α] when α > s1. Furthermore,
if tE > 0, the robot can use the redundant time τ − t∗α and execute the path up
to α with reduced velocities, as illustrated in Fig. 6.3. Note that ṡ∗α(α) = ṡ∗β(α),
which shows that the maximum possible velocity, guaranteeing the possibility to
stop at β, is attained at the clearance point. A remark has to be made regarding
α > γ. Since this implies that ṡ∗α(α) ≤ ṡ∗0(α) and the path s ∈ [α, 1] is executed in
minimum time, the robot will accelerate as soon as α is traversed. As a result, the
energy consumption increases due to the correlation between acceleration and energy
consumption previously mentioned.

0 α0 α1 α2α3β 1

0

vlim

s

ṡ

ṡ∗α0
ṡ∗α1

ṡ∗α2
ṡ∗α3

Figure 6.3: Velocity profiles ṡ∗α, α ∈ {α0, α1, α2, α3} for τ ≥ t∗α. When tE > 0,
the robot can traverse the path with reduced velocities if α > s1. Note that for
α0 < s1, this is not possible. The dotted line corresponds to ṡ∗β(s).

A velocity profile considering a robot with two joints is depicted in Fig. 5.2b.
Initially, one of the joints has 0 velocity. At some point, both joints are in motion and
finally, the joint with the later start is solely in motion. The number of switch points
increases in this case. Note, if α ∈ [s2, s3], the robot has to achieve the maximum
possible velocity at s2 in order to complete the path after α in minimum time, i.e.
to be able to reach ṡ∗α(α) then ṡ(s2) = ṡ∗α(s2). In Fig. 6.4, sE is depicted together
with the switch points for a robot with two joints. Based on Definition 6.4.3, sE
corresponds to the length of the slack interval. If the acceleration segments are

Chapter 6. Robust and Energy Efficient Trajectory Planning 49

disregarded, an increase in α corresponds to an increase in slack interval. Hence, the
further along the path the clearance point is located, the longer the stretch is where
eventual slack time can be distributed.

0 s1 s2 s3 β

0

s1

s2
s3

β

Clearance point (α)

L
en

gt
h

of
sl

ac
k

in
te

rv
al

(s
E

)

Figure 6.4: The slack position sE for the robot with two joints where si, i ∈
{1, 2, 3}, are switch points. As long as α is not located during the acceleration
segments, i.e. α /∈ [0, s1] and α /∈ [s2, s3], the slack position increases as α increases.

Based on the performed analysis, slack time is a key factor when energy con-
sumption reduction is feasible. Another requirement considers the placement of α,
where the initial acceleration phase should be avoided in order to reduce the energy
consumption. As α approaches β, the slack interval increases. On the downside,
when α > γ, an increase in α implies that the acceleration required to complete the
remaining path in minimum time increases, which has a negative impact on energy
efficiency.

6.5 Example
The impact on the final time and energy consumption for different combinations of
α and τ is illustrated in this section by introducing an example, where a robot with
one joint is analyzed. The robot moves along a path given by q(s) = s, s ∈ [0, 1].
The workspace for the robot overlaps with the workspace of another robot, assumed
to have higher priority in terms of the order in which the common workspace is
occupied. The boundary of the common workspace is located at the middle of the
path, i.e. β = 0.5. The clearance point is hence restricted to 0 ≤ α ≤ 0.5. The
velocity and acceleration limits for the joint are vlim(s) = 1.25 and alim = 4, whereas
the energy consumption E is estimated by

E =
∫ 1

0
q̈(s)T q̈(s)ds (6.25)

To study how the timing and position related to the clearance point impact the
performance, a weighted sum of objectives prioritizing the final time T is considered
when solving the mathematical model in (6.12). The results are discussed and
compared to the conclusions made in Section 6.3 and Section 6.4.

50 6.5. Example

6.5.1 Final Time
The final time for different values of α and τ is depicted in Fig. 6.5. Based on the
analysis performed in Section 6.3, the effect on the final time will differ depending on
whether τ is less than, or greater than, t∗α as well as the position of α. Next, results
obtained from Fig. 6.5, are analyzed by studying Regions I-IV individually.

Figure 6.5: The final time, T ∗(α, τ), for different combinations of α and τ . The
dots indicate the time minimum choice of α, given a certain τ . In region I and II,
τ ≤ t∗α whereas in region III and IV, τ > t∗α. For a given τ ≤ t∗α, the optima is
located in region I where α ≤ γ. For τ > t∗α, a unique optimum is obtained along
the dotted line in region IV.

Region I

In this region, where τ ≤ t∗α and α ≤ γ, the final time T is constant. Based on (6.18),
this result is expected since when the robot is unable to reach α before τ , the robot
will execute its minimum time velocity profile. Hence, as τ increases and τ ≤ t∗α, T
is not affected since the robot can not traverse the path faster than its minimum
time trajectory. According to (6.19) and (6.20), the final time is constant for changes
in α. However, when α > γ, corresponding to region II, this no longer holds.

Region II

The clearance point is located along the deceleration phase in this region, i.e. α > γ,
and τ ≤ t∗α. In region II, T increases as α increases. This is due to the behavior in
Fig. 6.6, where t∗′α ≥ −t̄∗

′
α for α > γ resulting in a larger T according to (6.19).

Region III

In this region, τ > t∗α and α ≤ γ. As illustrated in Fig. 6.6 and stated in (6.18), T
increases as τ increases. In (6.19), the change in final time as α increases equals t̄∗′α
in this region. Since t̄∗′α decreases as α ≤ γ increases, T decreases, see Fig. 6.6.

Chapter 6. Robust and Energy Efficient Trajectory Planning 51

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

T ∗(0, 0) γ

Clearance point (α)

M
in

im
um

tim
e

t∗α
t̄∗α

Figure 6.6: The minimum time in which α can be reached, t∗α, and the minimum
time to complete the remaining path after α, t̄∗α. For α < γ, it can be noticed
that the curves are symmetric such that t∗′α = −t̄∗′α . For α = 0, t∗α = 0 whereas t̄∗α
equals the final time of the unrestricted solution, T ∗(0, 0).

Region IV

The change in final time as τ increases is equal to the behavior in region III. In
Section 6.3, a question was raised regarding the impact on T when α > γ increases
and τ > t∗α, i.e. region IV. As for region III, the partial derivative in (6.19) is equal to
t̄∗
′
α . However, in this region, where α > γ, t̄∗α reaches a minimum when α approaches
β, after which it increases. Hence, the same behavior applies for T . For a given
τ , the optimal clearance point is obtained by choosing an α such that the solution
T (α, τ) coincides with the dotted line in region IV, depicted in Fig. 6.5.

Based on the presented results, the final time is constant in region I. Hence, for
τ < t∗α, α can in this case be arbitrarily positioned along the path up to s = γ
without impacting the final time. In Section 6.3, we concluded that for an arbitrary
τ > t∗α, the position of the clearance point should be located at α = γ, since the
behavior of t̄∗α nor its derivative could not be established for α > γ. Based on this
example, the results show that for a 1-joint robot, the optimal placement of α for a
given τ , is in region IV where α > γ. This results in a clearance point located along
the deceleration segment for the robot. However, if α is placed too close to β, the
time to traverse the remaining path increases resulting in an increase in final time.

6.5.2 Energy Consumption
In Fig. 6.7, the energy consumption for different combinations of α and τ is depicted.
As before, different regions are introduced representing the cases when τ ≤ t∗α and
τ > t∗α. According to Fig. 5.2a, a robot with one joint has one switch point s1. The
regions are thus determined based on whether α ≤ s1, s1 < α ≤ γ or α > γ. This
results in six regions where the energy consumption is studied, as well as the optimal
location of α for a given τ .

52 6.5. Example

Figure 6.7: The energy consumption, E(α, τ), for different combinations of α and
τ . The dots indicate the energy minimum choice of α, given a certain τ . Regions
I-VI distinguish between the cases when τ ≤ t∗α and τ > t∗α, as well as whether
α ≤ s1, s1 < α ≤ γ or α > γ. For small τ , the optima is obtained in the region
where α ≤ γ. As τ increases, a unique optimum is obtained along the dotted line
in region V (s1 ≤ α ≤ γ). For even larger τ , the optimum is located in region VI
(α > γ).

Region I and II

In these regions, τ ≤ t∗α. Moreover, α ≤ s1 in Region I, while s1 ≤ α ≤ γ in Region
II. For both cases, ṡ∗α(s) = ṡ∗0(s) since the common workspace becomes available
before the robot is able to reach it. Based on (6.23), tE = 0 when τ < t∗α and a
reduction in E is not achievable. Note that the energy consumption is equal and
constant in these regions since the velocity profiles are identical.

Region III

Since τ ≤ t∗α and α > γ in this region, the velocity achieved at α is less than the
maximal velocity, i.e. ṡ∗α(α) < ṡ∗0(α). Since the remaining path after α is executed
in minimum time, implying α is followed by an acceleration phase, an increase in
the energy consumption is expected. Hence, the closer to β that α is positioned, the
more E increases. For a given α, E is constant as τ increases as long as τ ≤ t∗α still
holds.

Region IV

The slack time, enabling energy reduction, is non-existing in the regions examined
so far. Even though τ > t∗α in this region, E is not reducible since α ≤ s1, and
hence tE = 0. The energy consumption is equal to the one in Regions I and II,
implying that the velocity profiles are identical. The robot waits in its initial position,
after which the unrestricted velocity profile is executed such that α is reached at
time τ , thus consuming the same amount of energy. For a certain τ in the interval

Chapter 6. Robust and Energy Efficient Trajectory Planning 53

represented by the dotted area in Fig. 6.7, the energy minimal solution is obtained
by positioning the clearance point anywhere in between 0 ≤ α ≤ γ. For greater τ ,
the optimum is found in the following regions.

Region V

In this region, where τ > t∗α and s1 ≤ α ≤ γ, there is redundant time available in
the system. Hence, a reduction in E is possible since the robot can execute its path
up to α with reduced velocities and accelerations. As a consequence, E decreases
as α increases, see Fig. 6.7. The dotted line shows that as τ increases, the optimal
solution is obtained by placing α further along the path.

Note that, for a certain α, when τ increases beyond the value of the optimal
solution represented by the dotted line, E is constant. Even though slack time
is available, E cannot be further reduced. A possible explanation is that after
traversing α, the robot should execute the remaining path in minimum time. As a
consequence, the robot achieves its maximal possible velocity at α, i.e. vmax(α). In
order to obtained a more energy efficient solution, a reduction in velocities along the
stretch s ∈ [0, α] is necessary. However, this is only possible as long as vmax(α) is
still achievable at α. Hence, after a certain increase in τ , the energy consumption
becomes constant. There is a thus a trade-off between energy consumption versus
minimum time.

Region VI

As illustrated in Region VI in Fig. 6.7, the energy consumption decreases for a certain
τ when α > γ increases. Even though the cost for accelerating after α is introduced,
the most energy efficient solutions are obtained in this region. Due to the increase in
slack time since τ > t∗α, as well as the increase in slack position resulting from the
increase in α, the cost for accelerating is compensated for. Note that E increases
as α approaches β. The dots depicts the optimal clearance point positions as τ
increases. If a friction cost and/or gravitation cost are added to the objective, E is
expected to eventually increase as τ increases.

To summarize the results on energy reduction, one necessary requirement to
retrieve an energy efficient solution is to have slack time, i.e. that tE > 0. If this
condition is fulfilled and α is placed along the stretch s1 ≤ α ≤ γ, this results in
reduced energy consumption. When α > γ, a further decrease in E is possible.
However, a trade-off exists between increasing the slack position and the acceleration
required to complete the remaining path after α in minimum time.

6.6 Summary
In this chapter, an approach to embed robustness into trajectory planning was
presented. Influenced by an industrial approach, a clearance point α was introduced,
where the availability of a common workspace was evaluated. The velocity is restricted

54 6.6. Summary

at the this location, guaranteeing that the robot can stop before entering the common
workspace in case it is not yet available due to an uncertainty. The time τ at which
the shared space is expected to become available is assumed to be known. The
impact on the performance for changes in τ and α is studied. The results show
the optimal placement of α given a certain τ in terms of the final time and energy
consumption, when minimum time is prioritized.

Chapter 7

Summary of Appended Papers

This chapter summarizes the appended papers in Part II. The contributions are
highlighted and the relation between papers is briefly discussed.

Paper 1

Nina Sundström, Oskar Wigström, Petter Falkman and Bengt Lennartson. “Opti-
mization of Operation Sequences using Constraint Programming". Proceedings of the
14th IFAC Symposium on Information Control Problems in Manufacturing, 45 (6),
1580-1585, 2012.

This paper presents a method to connect the design and optimization of a
production system. The modeling of operation sequences, corresponding to the
considered production system, is performed in SP. The operation model is transformed
to a CP optimization model. An abstraction method, called work equivalence, is
introduced to enable alternative model formulations. A case study of an aero
engine assembly structure plant is presented, where the efficiency of the different
formulations is evaluated. The performance of the abstraction formulations exceeds
the performance of a standard formulation.

Paper 2

Nina Sundström and Bengt Lennartson. “Event- and Time-Based Design of Operation
Sequences with Uncertainties in Execution Times". Proceedings of the IEEE 18th
Conference on Emerging Technologies Factory Automation (ETFA), 2013.

In this paper, the approach in Paper 1 is extended. The aim is to close the loop
by retrieving the results from the optimization of a production system modeled in
SP. More specifically, conditions expressing when operations can start based on the
sequences in the time-optimal schedule is added to the original operation model in SP.
Hence, the time-based solution becomes an event-based description, ensuring that the
sequences in the schedule are maintained. If uncertainties are present, unnecessary
delays are avoided by examining, and possibly relaxing, the logical restrictions added
in the first step.

55

56

Paper 3

Nina Sundström and Bengt Lennartson. “Rescheduling Affected Operations - a
Purely Predictive Approach". Proceedings of the 13th International Workshop on
Discrete Event Systems (WODES), 2016.

The rescheduling framework and two underlying methods are studied in this
paper. AOR is a method used in the literature on rescheduling with the purpose
to repair schedules if disruptions are present. Only operations directly or indirectly
affected by a disruption are rescheduled. The approach is based on a deterministic,
minimum time schedule for a job shop generated offline which is used online to
update the schedule in response to machine breakdowns. This paper presents a
purely offline approach to retrieve the same behavior and results. The proposed
procedure is based on scheduling results using a disjunctive graph. Any type of
disruption causing delays can be considered. The paper also includes RSR which
is a method where all remaining operations are postponed if a delay occurs. This
conservative method is a common benchmark in performance analysis. A formal
proof is presented to show that AOR always performs better than, or equal to, RSR
if delays are present.

Prior to performing feasibility tests, the proposed method in Paper 2 will, if
disruptions occur, delay the start of all succeeding operations, such that the order in
which they start resembles the order in the time-minimal schedule. This behavior is
similar to RSR. If logical restrictions can be relaxed as a consequence of performing
feasibility tests, the solution thus becomes less restrictive. However, in comparison
to Affected Operation Rescheduling, the solutions based on the approach in Paper
2 are more restrictive. In Paper 1 and Paper 2 general shop floors are considered,
whereas the approach presented in this paper considers the JSP.

Paper 4

Nina Sundström, Oskar Wigström and Bengt Lennartson. “Conflict Between En-
ergy, Stability, and Robustness in Production Schedules". IEEE Transactions on
Automation Science and Engineering, 14 (2), 658-668, 2017.

Due to methods considered in rescheduling where idle time can be inserted into a
schedule to protect it against disruptions, a possible conflict arise when rescheduling
techniques are combined with energy optimization. In energy optimization, results
show that idle time in a schedule can be used to extend the duration of an operation
and, as a result, reduce the energy consumption. In this paper, a systematic approach
to evaluate this conflict is proposed.

In rescheduling, robustness and stability are terms used to evaluate the perfor-
mance of a schedule. Existing surrogate measures of robustness and stability are
presented as well as a proposed stability measure. The performance of the measures
are evaluated. An energy consumption signature for an operation is derived from
experiments on an industrial robot, resulting in a convex model parameterized by
processing time.

To analyze the trade-off, surrogate measures of robustness and stability are
used together with makespan and energy consumption in a multi-objective MINLP

Chapter 7. Summary of Appended Papers 57

formulation. The results show that an increase in energy efficiency results in a
system less sensitive to disruptions. Also, a conflict between stability and robustness
becomes apparent.

Paper 5

Nina Sundström, Oskar Wigström and Bengt Lennartson. “Robust and Energy
Efficient Trajectories in a Common Workspace Setting". Submitted for possible
journal publication, 2017.

A trajectory planning approach is presented in this paper, where robustness is
embedded to, under all circumstances, guarantee collision-free scenarios. A clearance
point is introduced along the path for a robot where a decision is taken to either
enter a shared zone, or stop at the boundary of it. This puts a restriction on the
velocity at the clearance point. The closer to the boundary of the shared space the
clearance point is located, the more restricted the velocity is.

A problem formulation is stated, assuming a predefined path including robot
dynamics and robust constraints with multiple objectives, to minimize final time
and energy consumption. The impact on the performance concerning the timing
and position related to the clearance point is analyzed. Based on the time at which
the common workspace is expected to become available, the optimal clearance point
location is obtained.

Chapter 8

Concluding Remarks

Four research questions, RQ1-RQ4, were stated in Section 1.2, which have been
addressed throughout this thesis. The overall topic related to these questions concerns
scheduling of production systems, with emphasis on robustness and energy efficiency.
This chapter will conclude the presented work and discuss directions of future work.

The goals when developing schedules for production systems are manifold. How-
ever, systems do not always progress as intended due to unforeseen disruptions,
which can result in out-of-date schedules and goals not met. To cope with distur-
bances, methods to develop robust and stable schedules are presented in this thesis.
In literature, different measures have been presented to evaluate the quality of a
schedule. This work considers delay in makespan between the obtained schedule
and the run-time schedule as a robustness measure, whereas stability is measured in
terms of start time deviations or sequence deviation.

The production systems regarded in this thesis are modeled by either using
the SP model or the disjunctive graph. To address RQ1 and RQ2, an approach is
proposed in Paper 1 where the SP model is converted to a CP model to generate a
time-optimal schedule. The precedence relations, based on the execution order in the
schedule, are formulated as event-based conditions in the SP model, which preserves
the order if delays are present. The resulting schedule is hence stable with respect
to sequence deviations. Furthermore, the method attempts to relax conditions by
examining logical restrictions between tasks, with the intention to reduce the effect of
disruptions. The stated procedure is presented in Paper 2. The disjunctive graph is
used to show that an already established offline and online method, called AOR, that
generates stable schedules with maintained sequences, can be performed completely
offline. This work is presented in Paper 3 to give an answer to RQ1 and RQ2.

In minimum time schedules, idle time is a result of tasks sharing resources and
consequently have to wait for a resource to become available. If a task which is
succeeded by slack is delayed, the schedule is unaffected. Approaches where additional
slack is embedded into schedules are thus used in the literature to develop robust and
stable schedules, often by considering surrogate measures of robustness and stability
that includes slack. A method, proposed to answer RQ2 and RQ3, is introduced
in Paper 4, where surrogate measures are included as objectives into a problem
formulation to generate robust and stable schedules. A convex stability measure is

59

60

proposed with the goal to distribute slack such that the impact of delays with known
probability density functions can be minimized in terms of start time deviations.

Result in energy optimization literature show that energy consumption can be
decreased by reducing the acceleration for a robot, implying an increase in execution
time. Available slack can thus be diminished on behalf of reduced energy consumption.
A problem formulation is stated with RQ3 in mind, taken both makespan, energy
consumption, stability and robustness into consideration to show the conflict that
arises and the trade-off that has to be made when developing both robust and energy
efficient schedules. The results are presented in Paper 4. A convex energy signature
parameterized by execution time is used to measure the energy consumption with the
assumption that the nominal execution time is lower than that achieving minimal
energy consumption.

A robust trajectory planning approach is also suggested in this thesis, attempting
to answer RQ4. The path as well as the order in which two robots use a common
workspace are predefined. The velocity is bounded at a certain position along the
path, called the clearance point, where the availability of the shared space is evaluated.
If occupied, the robot has to stop at the boundary of the common space. Otherwise,
the robot can continue on its path and enter the shared space. By studying the
impact on the final time and energy consumption for different positions and time at
which this point is traversed, the optimal clearance point is presented for different
amount of slack. The method and results are given in Paper 5.

An interesting extension would be to include multiple points where the availability
is evaluated. Another approach could be to regard the time at which the common
workspace becomes available as stochastic with a probability density function to
analyze the effect on the performance. The order in which the robots use the
common workspace is assumed to be known in this work. A possible continuation
could therefore be to include this decision into the problem formulation.

Future work, combining robustness and energy efficiency, can regard resources
with a speed scaling functionality. If disturbances are present, the effect of delays
in final time can be reduced, or possibly eliminated, by executing tasks faster. A
necessary prerequisite is the existence of redundant time. If the minimum time in
e.g. workstations multiple robots, is less than the cycle time, this approach would
result in an energy-efficient system with the capability to compensate for delays.
Challenges arise concerning e.g. collision avoidance, which have to be tackled.

Bibliography

Abumaizar, R. J. and J. A. Svestka (1997). “Rescheduling job shops under random
disruptions”. In: International Journal of Production Research 35.7, pp. 2065–
2082 (cit. on pp. 20, 21).

Akturk, M. S. and E. Gorgulu (1999). “Match-up scheduling under a machine
breakdown”. In: European journal of operational research 112.1, pp. 81–97 (cit. on
p. 20).

An, Y.-J., Y. Kim, B. Jeong, and S.-D. Kim (2012). “Scheduling healthcare services
in a home healthcare system”. In: Journal of the Operational Research Society
63.11, pp. 1589–1599 (cit. on p. 4).

Bean, J. C., J. R. Birge, J. Mittenthal, and C. E. Noon (1991). “Matchup scheduling
with multiple resources, release dates and disruptions”. In: Operations Research
39.3, pp. 470–483 (cit. on p. 20).

Beck, J. C. and N. Wilson (2007). “Proactive algorithms for job shop scheduling with
probabilistic durations”. In: Journal of Artificial Intelligence Research, pp. 183–
232 (cit. on p. 20).

Blażewicz, J., E. Pesch, and M. Sterna (2000). “The disjunctive graph machine
representation of the job shop scheduling problem”. In: European Journal of
Operational Research 127.2, pp. 317–331 (cit. on p. 22).

Bobrow, J. E., S. Dubowsky, and J. Gibson (1985). “Time-optimal control of robotic
manipulators along specified paths”. In: The international journal of robotics
research 4.3, pp. 3–17 (cit. on pp. 6, 43).

Bruzzone, A., D. Anghinolfi, M. Paolucci, and F. Tonelli (2012). “Energy-aware
scheduling for improving manufacturing process sustainability: a mathematical
model for flexible flow shops”. In: CIRP Annals-Manufacturing Technology 61.1,
pp. 459–462 (cit. on p. 35).

Cesta, A., A. Oddi, N. Policella, and S. F. Smith (2015). “A Precedence Constraint
Posting Approach”. In: Handbook on Project Management and Scheduling Vol. 1.
Springer, pp. 113–133 (cit. on p. 13).

Chiang, T.-C. and L.-C. Fu (2007). “Using dispatching rules for job shop scheduling
with due date-based objectives”. In: International journal of production research
45.14, pp. 3245–3262 (cit. on p. 21).

Dai, M., D. Tang, A. Giret, M. A. Salido, and W. D. Li (2013). “Energy-efficient
scheduling for a flexible flow shop using an improved genetic-simulated annealing
algorithm”. In: Robotics and Computer-Integrated Manufacturing 29.5, pp. 418–
429 (cit. on p. 5).

61

62 Bibliography

Daniels, R. L. and P. Kouvelis (1995). “Robust scheduling to hedge against process-
ing time uncertainty in single-stage production”. In: Management Science 41.2,
pp. 363–376 (cit. on p. 20).

Davenport, A., C. Gefflot, and C. Beck (2014). “Slack-based techniques for robust
schedules”. In: Sixth European Conference on Planning (cit. on p. 5).

Dietmair, A. and A. Verl (2009). “A generic energy consumption model for decision
making and energy efficiency optimisation in manufacturing”. In: International
Journal of Sustainable Engineering 2.2, pp. 123–133 (cit. on p. 5).

Diwekar, U. (2008). “Optimization under uncertainty”. In: Introduction to Applied
Optimization. Springer, pp. 1–54 (cit. on p. 20).

Gantt, H. L. (1903). “A graphical daily balance in manufacture”. In: Transactions of
the American Society of Mechanical Engineers 24, pp. 1322–1336 (cit. on p. 4).

Goren, S. and I. Sabuncuoglu (2008). “Robustness and stability measures for schedul-
ing: single-machine environment”. In: IIE Transactions 40.1, pp. 66–83 (cit. on
pp. 5, 25).

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. R. Kan (1979). “Optimization
and approximation in deterministic sequencing and scheduling: a survey”. In:
Annals of discrete mathematics 5, pp. 287–326 (cit. on p. 4).

Hazır, ö., M. Haouari, and E. Erel (2010). “Robust scheduling and robustness
measures for the discrete time/cost trade-off problem”. In: European Journal of
Operational Research 207.2, pp. 633–643 (cit. on pp. 20, 26, 27).

He, W. and D.-h. Sun (2013). “Scheduling flexible job shop problem subject to
machine breakdown with route changing and right-shift strategies”. In: The
International Journal of Advanced Manufacturing Technology 66.1-4, pp. 501–514
(cit. on p. 22).

Herrmann, J. (2006). Handbook of Production Scheduling. International Series in
Operations Research & Management Science. Springer. isbn: 9780387331171
(cit. on p. 9).

Al-Hinai, N. and T. ElMekkawy (2011). “Robust and stable flexible job shop schedul-
ing with random machine breakdowns using a hybrid genetic algorithm”. In:
International Journal of Production Economics 132.2, pp. 279–291 (cit. on p. 26).

Hooker, J. (2000). Logic-based methods for optimization: combining optimization
and constraint satisfaction. Wiley-Interscience series in discrete mathematics and
optimization. John Wiley & Sons. isbn: 9780471385219 (cit. on p. 12).

Hooker, J. (2005). “Planning and Scheduling to Minimize Tardiness”. In: Principles
and Practice of Constraint Programming - CP 2005. Springer Berlin Heidelberg
(cit. on p. 9).

Jain, A. S. and S. Meeran (1999). “Deterministic job-shop scheduling: Past, present
and future”. In: European journal of operational research 113.2, pp. 390–434
(cit. on p. 22).

Jayamohan, M. and C. Rajendran (2000). “New dispatching rules for shop scheduling:
a step forward”. In: International Journal of Production Research 38.3, pp. 563–
586 (cit. on p. 21).

Bibliography 63

Jensen, M. T. (2003). “Generating robust and flexible job shop schedules using
genetic algorithms”. In: Evolutionary Computation, IEEE Transactions on 7.3,
pp. 275–288 (cit. on p. 26).

Johnson, S. M. (1954). “Optimal two-and three-stage production schedules with
setup times included”. In: Naval Research Logistics (NRL) 1.1, pp. 61–68 (cit. on
p. 4).

Jorge Leon, V., S. David Wu, and R. H. Storer (1994). “Robustness measures and
robust scheduling for job shops”. In: IIE transactions 26.5, pp. 32–43 (cit. on
pp. 5, 20, 25, 26).

Kan, A. R. (2012). Machine scheduling problems: classification, complexity and
computations. Springer Science & Business Media (cit. on p. 22).

Katragjini, K., E. Vallada, and R. Ruiz (2013). “Flow shop rescheduling under
different types of disruption”. In: International Journal of Production Research
51.3, pp. 780–797 (cit. on p. 5).

Kerzner, H. (2013). Project management: a systems approach to planning, scheduling,
and controlling. John Wiley & Sons (cit. on pp. 4, 10).

Kwok, Y.-K. and I. Ahmad (1999). “Static scheduling algorithms for allocating
directed task graphs to multiprocessors”. In: ACM Computing Surveys (CSUR)
31.4, pp. 406–471 (cit. on p. 4).

Lamas, P. and E. Demeulemeester (2015). “A purely proactive scheduling procedure
for the resource-constrained project scheduling problem with stochastic activity
durations”. In: Journal of Scheduling, pp. 1–20 (cit. on pp. 13, 20).

Lambrechts, O., E. Demeulemeester, and W. Herroelen (2008). “A tabu search
procedure for developing robust predictive project schedules”. In: International
Journal of Production Economics 111.2, pp. 493–508 (cit. on p. 20).

Lambrechts, O., E. Demeulemeester, and W. Herroelen (2011). “Time slack-based
techniques for robust project scheduling subject to resource uncertainty”. In:
Annals of Operations Research 186.1, pp. 443–464 (cit. on pp. 5, 26).

LaValle, S. M. and S. A. Hutchinson (1998). “Optimal motion planning for multi-
ple robots having independent goals”. In: IEEE Transactions on Robotics and
Automation 14.6, pp. 912–925 (cit. on p. 6).

Lennartson, B., K. Bengtsson, C. Yuan, K. Andersson, M. Fabian, P. Falkman,
and K. Åkesson (2010). “Sequence planning for integrated product, process
and automation design”. In: IEEE Transactions on Automation Science and
Engineering 7, pp. 791–802 (cit. on pp. 9, 10).

Levin, R. and C. Kirkpatrick (1966). Planning and control with PERT/CPM. New
York, McGraw-Hill (cit. on p. 10).

Li, R.-K., Y.-T. Shyu, and S. Adiga (1993). “A heuristic rescheduling algorithm for
computer-based production scheduling systems”. In: The International Journal
Of Production Research 31.8, pp. 1815–1826 (cit. on p. 20).

Liu, F., A. Narayanan, and Q. Bai (2000). “Real-time systems”. In: (cit. on p. 6).
Lombardi, M., M. Milano, and L. Benini (2013). “Robust scheduling of task graphs

under execution time uncertainty”. In: Computers, IEEE Transactions on 62.1,
pp. 98–111 (cit. on p. 13).

64 Bibliography

Lou, P., Q. Liu, Z. Zhou, H. Wang, and S. X. Sun (2012). “Multi-agent-based
proactive–reactive scheduling for a job shop”. In: The International Journal of
Advanced Manufacturing Technology 59.1-4, pp. 311–324 (cit. on p. 20).

Mehta, S. V. and R. M. Uzsoy (1998). “Predictable scheduling of a job shop subject to
breakdowns”. In: Robotics and Automation, IEEE Transactions on 14.3, pp. 365–
378 (cit. on p. 20).

Miettinen, K. (2012). Nonlinear multiobjective optimization. Vol. 12. Springer Science
& Business Media (cit. on p. 38).

O’Donovan, R., R. Uzsoy, and K. N. McKay (1999). “Predictable scheduling of a
single machine with breakdowns and sensitive jobs”. In: International Journal of
Production Research 37.18, pp. 4217–4233 (cit. on p. 22).

Papadakos, N. (2009). “Integrated airline scheduling”. In: Computers & Operations
Research 36.1, pp. 176–195 (cit. on p. 4).

Peng, J. and S. Akella (2005). “Coordinating multiple robots with kinodynamic
constraints along specified paths”. In: The International Journal of Robotics
Research 24.4, pp. 295–310 (cit. on p. 6).

Pinedo, M. (2005). Planning and scheduling in manufacturing and services. Vol. 24.
Springer (cit. on pp. 4, 9, 15).

Pinedo, M. (2012). Scheduling: theory, algorithms, and systems. Springer Science &
Business Media (cit. on p. 19).

Raheja, A. and V. Subramaniam (2002). “Reactive recovery of job shop schedules–a
review”. In: The International Journal of Advanced Manufacturing Technology
19.10, pp. 756–763 (cit. on p. 20).

Riazi, S., O. Wigström, K. Bengtsson, and B. Lennartson (2017). “Energy and Peak
Power Optimization of Time-Bounded Robot Trajectories”. In: IEEE Transactions
on Automation Science and Engineering 14.2, pp. 646–657 (cit. on pp. 5, 35, 47).

Rossi, F., P. v. Beek, and T. Walsh, eds. (2006). Handbook of Constraint Programming
(Foundations of Artificial Intelligence). New York, NY, USA: Elsevier Science
Inc. (cit. on p. 12).

Roy, B. and B. Sussmann (1964). “Les problemes d’ordonnancement avec contraintes
disjonctives”. In: Note ds 9 (cit. on p. 22).

Sabuncuoglu, I. and S. Goren (2009). “Hedging production schedules against uncer-
tainty in manufacturing environment with a review of robustness and stability
research”. In: International Journal of Computer Integrated Manufacturing 22.2,
pp. 138–157 (cit. on pp. 5, 19, 26).

Sahinidis, N. V. (2004). “Optimization under uncertainty: state-of-the-art and op-
portunities”. In: Computers & Chemical Engineering 28.6, pp. 971–983 (cit. on
p. 20).

Salido, M. A., J. Escamilla, F. Barber, A. Giret, D. Tang, and M. Dai (2015). “Energy
efficiency, robustness, and makespan optimality in job-shop scheduling problems”.
In: Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
pp. 1–13 (cit. on p. 5).

Silver, E. A., D. F. Pyke, R. Peterson, et al. (1998). Inventory management and
production planning and scheduling. Vol. 3. Wiley New York (cit. on p. 4).

Bibliography 65

Siméon, T., S. Leroy, and J.-P. Lauumond (2002). “Path coordination for multiple
mobile robots: A resolution-complete algorithm”. In: IEEE Transactions on
Robotics and Automation 18.1, pp. 42–49 (cit. on p. 6).

Subramaniam, V. and A. Raheja (2003). “mAOR: A heuristic-based reactive repair
mechanism for job shop schedules”. In: The International Journal of Advanced
Manufacturing Technology 22.9-10, pp. 669–680 (cit. on p. 20).

Subramaniam, V., A. Raheja, and K. Rama Bhupal Reddy (2005). “Reactive repair
tool for job shop schedules”. In: International Journal of Production Research
43.1, pp. 1–23 (cit. on p. 22).

Taillard, E. (1993). “Benchmarks for basic scheduling problems”. In: european journal
of operational research 64.2, pp. 278–285 (cit. on pp. 4, 30).

Tay, J. C. and N. B. Ho (2008). “Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems”. In: Computers & Industrial
Engineering 54.3, pp. 453–473 (cit. on p. 21).

Van de Vonder, S., E. Demeulemeester, and W. Herroelen (2008). “Proactive heuristic
procedures for robust project scheduling: An experimental analysis”. In: European
Journal of Operational Research 189.3, pp. 723–733 (cit. on p. 20).

Vergnano, A., C. Thorstensson, B. Lennartson, P. Falkman, M. Pellicciari, F. Leali,
and S. Biller (2012). “Modeling and Optimization of Energy Consumption in Co-
operative Multi-Robot Systems”. In: IEEE Transactions on Automation Science
and Engineering 9.2, pp. 423–428. issn: 1545-5955. doi: 10.1109/TASE.2011.
2182509 (cit. on pp. 5, 35).

Vieira, G. E., J. W. Herrmann, and E. Lin (2000). “Analytical models to predict
the performance of a single-machine system under periodic and event-driven
rescheduling strategies”. In: International journal of production research 38.8,
pp. 1899–1915 (cit. on p. 20).

Vieira, G. E., J. W. Herrmann, and E. Lin (2003). “Rescheduling manufacturing sys-
tems: a framework of strategies, policies, and methods”. In: Journal of scheduling
6.1, pp. 39–62 (cit. on pp. 5, 19).

Wigström, O. and B. Lennartson (2013). “Integrated OR/CP optimization for
Discrete Event Systems with nonlinear cost”. In: Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on. IEEE, pp. 7627–7633 (cit. on p. 28).

Wigström, O., B. Lennartson, A. Vergnano, and C. Breitholtz (2013). “High-level
scheduling of energy optimal trajectories”. In: Automation Science and Engineer-
ing, IEEE Transactions on 10.1, pp. 57–64 (cit. on p. 35).

Wigström, O., N. Murgovski, S. Riazi, and B. Lennartson (2017). “Computationally
efficient energy optimization of multiple robots”. In: Automation Science and
Engineering (CASE), 2017 IEEE International Conference on. IEEE (cit. on
p. 6).

Wilson, J. M. (2003). “Gantt charts: A centenary appreciation”. In: European Journal
of Operational Research 149.2, pp. 430–437 (cit. on p. 10).

Wu, S. D., E.-S. Byeon, and R. H. Storer (1999). “A graph-theoretic decomposition of
the job shop scheduling problem to achieve scheduling robustness”. In: Operations
Research 47.1, pp. 113–124 (cit. on p. 20).

https://doi.org/10.1109/TASE.2011.2182509
https://doi.org/10.1109/TASE.2011.2182509

66 Bibliography

Wu, S. D., R. H. Storer, and P.-C. Chang (1992). “A rescheduling procedure for man-
ufacturing systems under random disruptions”. In: New directions for operations
research in manufacturing. Springer, pp. 292–306 (cit. on p. 20).

