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Abstract

In this paper, we address the problem of classifying activities of daily living (ADL) in video. The basic idea of the
proposed method is to treat each human activity in the video as a temporal sequence of points on a Riemannian
manifold and classify such time series with a geodesic-based kernel. The main novelties of this paper are summarized
as follows: (a) for each frame of a video, low-level features of body pose and human-object interaction are unified by a
covariance matrix, i.e., a manifold point in the space of symmetric positive definite (SPD) matrices Symd+; (b) a
time-dependent bag-of-words (BoW+T) model is built, where its codebook is generated by clustering per-frame
covariance matrices on Symd+; (c) for each video, high-level BoW+T features are extracted from its corresponding
sequence of per-frame covariance matrices; and (d) for activity classification, a positive definite kernel is formulated,
taking into account the underlying geometry of our BoW+T features, i.e., the unit n-sphere. Experiments were
conducted on two video datasets. The first dataset contains 8 activity classes with a total of 943 videos, and the
second one contains 7 activity classes with a total of 224 videos. The proposed method achieved high accuracy
(average 89.66%) and small false alarms (average 1.43%) on the first dataset. Comparison with six exisiting methods on
the second dataset showed further evidence on the effectiveness of the proposed method.

Keywords: Activity of daily living (ADL), Riemannian manifolds, Time-dependent bag-of-words (BoW+T) model,
Assisted living, Healthcare

1 Introduction
Video activity recognition is a trending topic and yet
a challenging problem in the field of computer vision.
The capability of automatically recognizing human activ-
ities is a key functionality of ambient intelligence. It has
a wide range of applications, from surveillance in pub-
lic and restricted areas, traffic safety, and sports analysis
to assisted living and healthcare and many other social
aspects. Among them, assisted living and healthcare have
drawn increasing attention due to population ageing and
the noticeable trend of independent living.
In this paper, we mainly focus on two aspects. First, we

consider human activities that are typical in the context of
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assisted living and healthcare, where only several essen-
tial daily activities are handled, instead of a large number
of general activities. More specifically, activities of inter-
est in our case include activities of daily living (ADL) such
as eating and drinking and anomalies like falling down.
The purpose of studying ADL is to learn daily routines of
individuals and to generate dedicated recommendations
for a healthy living. As for anomalies, the aim is to trigger
alarms when emergency occurs.
Secondly, we focus on video data and propose a video-

based method for activity classification. Before that, we
briefly review some existing and representative work on
video activity recognition in the past few years. For exam-
ple, Lin et al. modeled the entire scene as an error-free net-
work, where each node corresponds to a patch of the scene
and each edge represents the activity correlation between
the corresponding patches. Based on this network, people
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are modeled as packages and human activities are mod-
eled as the process of package transmission [1]. Everts
et al. recognized human actions in videos based on color
spatio-temporal interest points (STIPs) [2] that are mul-
tichannel reformulations of STIP detectors and descrip-
tors [3]. Zhang and Piccardi employed structural SVM for
activity classification using spatio-temporal SIFT-based
VLAD (vector of linearly aggregated descriptors) fea-
tures [4]. Amer and Todorovic conducted activity recog-
nition by representing activities using a sum-product
network (SPN) [5]. Zhang and Parker introduced color-
depth local spatio-temporal features for activity recogni-
tion based on orientation histograms in xyzt dimensions,
where the histograms are built around interest points as
local maxima of independent filters applied to different
dimensions [6]. Recent years have also witnessed a sig-
nificant advancement in various machine learning tasks
using deep learning. Deep neural networks such as con-
volutional neural network (CNN) [7] and recurrent neural
network (RNN) [8] have become common choices for
image and video analysis, including the representation of
video activities. For example, Baccouche et al. extended
a CNN to 3D for learning spatio-temporal features and
then trained an RNN to classify each sequence that con-
tains human actions [9]. These methods mainly investi-
gated spatio-temporal relations of human motions, where
some promising results were reported. However, interact-
ing objects as an important part of many activities with
human-object interaction were paid less attention to. Fur-
ther, activities as dynamic processes involving non-planar
movement of human body lie on a nonlinear manifold,
instead of vector space. This manifold nature was also
under-explored.
In view of the issues mentioned above, we propose a

novel method that jointly represents structural features
for body pose and appearance features for interacting
objects as a unified data point on a Riemannian manifold.
By learning BoW features from this Riemannian mani-
fold, we treat each video activity as a temporal sequence
of manifold points (BoW features) on another Riemannian
manifold. Then, we classify such time series with a ker-
nel based on dynamic time warping (DTW) and geodesic
distances.
More specifically, the main contributions of this paper

include that (a) we use a unified covariance matrix to rep-
resent both structural and appearance features in each
frame. These two different types of features correspond
to body pose and human-object interaction, respectively.
In this way, we obtain low-level features of each video as
a temporal sequence of points on the Riemannian man-
ifold of SPD matrices; (b) we build a BoW+T model on
another Riemannian manifold, i.e., the unit n-sphere. The
codebook of this model is learned by clustering per-frame
covariance matrices from all videos in the training set.

Considering the manifold structure of covariance matri-
ces, geodesic distances and intrinsic means are used for
the clustering; (c) we extract high-level features from the
BoW+T model for each video as the final feature descrip-
tor. It can be seen as a time series of points on the the
unit n-sphere; (d) we formulate a positive definite ker-
nel for activity classification using BoW+T features. This
kernel is based on DTW and geodesic distances on the
unit n-sphere.
The remainder of this paper is organized as follows:

Section 2 briefly reviews the related work and theory.
Section 3 gives an overview of the proposed method
and then describes the major steps in detail. Section 4
shows experimental results on a video dataset containing
activities from 8 classes. Finally, Section 5 concludes the
paper.

2 Background information
In this paper, Riemannian manifolds are employed for fea-
ture representation of video activities. Therefore, in this
section, we briefly review some theory and existing meth-
ods on Riemannian manifolds that are closely related to
the proposed method, for the sake of mathematical and
conceptual convenience in subsequent sections.

2.1 Riemannian geometry
Generally speaking, a manifold can be considered as
a low-dimensional embedding in a high-dimensional
space [10]. It represents the original data efficiently with
lower dimensionality and still maintains key properties of
the original data, such as topology and geometry. Mani-
folds are nonlinear structures that are not vector spaces;
hence, Euclidean calculus does not apply. A Riemannian
manifold is smooth and differentiable [10], where a set of
metrics can be defined. In the tangent space of manifold
points on a Riemannian manifold, linear operations may
be performed.

2.1.1 The space of symmetric positive definitematrices
Mathematically, the space of d × d symmetric positive
definite (SPD) matrices (Symd+) is defined as

Symd+ =
⋂

x∈Rd

{
P ∈ Symd : xTPx > 0

}
, (1)

which is an open convex cone, whose strict interior is a
Riemannianmanifold [10]. Two differentmetrics are com-
monly used to compute the statistics on Symd+ (Fig. 1),
namely, the affine-invariant metric [11] and the log-
Euclidean metric [12]. The log-Euclidean metric is used in
this paper, as it has a closed-form solution and is compu-
tationally more efficient than affine-invariant metric [12].
Hence, below we only show equations under the log-
Euclidean metric.
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Fig. 1 Example of Symd+ (d = 2) embedded in a 3D space R3. O is
the origin. P and Q are the manifold points, i.e., P,Q ∈ Symd+ . TP is
the tangent space at P. � ∈ TP is the tangent vector whose projected
point on the manifold is Q. The geodesic ρ is the shortest curve
between P and Q on the manifold

Two mapping functions, the exponential map and the
logarithm map, are usually defined to switch between
the manifold and tangent space at a given point. Under
the log-Euclidean metric, the exponential map (expP(·) :
TP �→ Symd+) and the logarithmic map (logP(·) : Symd+ �→
TP) are defined as [13]:

expP(�) = exp(log(P) + �) = Q; (2)
logP(Q) = log(Q) − log(P) = �, (3)

where TP is the tangent space at a manifold point P,
� ∈ TP is the tangent vector whose projected point on
the manifold is Q, exp(·) is the matrix exponential, and
log(·) is the principal logarithm of a matrix defined as the
inverse of the matrix exponential [12].
The geodesic is the shortest curve between two points

on a manifold [14]. The geodesic distance, the length of
the geodesic, is used to measure the distance between
two manifold points. Under the log-Euclidean metric, the
geodesic distance between P andQ on the manifold Symd+
is computed by [13]

ρ(P,Q) = ‖ logP(Q)‖ = ‖ log(Q) − log(P)‖, (4)

where ‖ · ‖ is the Frobenius norm.
The Riemannian geometry of Symd+ can be exploited

when the extracted feature descriptors are covariance
matrices, e.g., region covariance [15], since the SPD cone
is exactly the set of non-singular covariance matrices [16].

2.1.2 The unit n-sphere
The unit n-sphere, Sn, is an n-dimensional sphere with a
unit radius, centered at the origin of (n + 1)-dimensional
Euclidean space. An intuitive example would be a unit

circle (n = 1) in 2-D space, or a 2-D unit sphere (n = 2)
in 3-D space. Mathematically, it is defined by

Sn = {p ∈ R
n+1 : ‖p‖ = 1} (5)

which can be considered as the simplest Riemannianman-
ifold after the Euclidean space [17]. The geodesic distance
between two manifold points p, q on Sn is the great-circle
distance (Fig. 2):

ρ(p,q) = arccos(pTq) (6)

where arccos(·) :[−1, 1]→[ 0,π ] is the inverse cosine
function [18]. The great-circle distance between twoman-
ifold points is unique.
The Riemannian geometry of Sn can be utilized when

the extracted feature vectors are normalized by the �2
norm, e.g., SIFT [19], HOG [20], LBP [21].

2.2 Bag-of-words model
The bag-of-words (BoW) model is originally used in doc-
ument classification, where each document is considered
as a bag of words and is represented as a vector of occur-
rence counts of words (a histogram over the vocabulary).
This model has also been applied to image classification
[22], treating each image as a document (a bag of visual
words). The BoW representation of an image is obtained
by first clustering a set of selected local image descriptors
such as SIFT (usually with k-means clustering) to generate
a visual vocabulary (or, codebook), followed by extract-
ing a histogram by assigning each descriptor to its closest
visual word.

Fig. 2 Example of an n-sphereSn (n = 2) embedded in an (n + 1)-D
spaceRn + 1. p and q aremanifold points, i.e., p,q ∈ Sn . The geodesic
ρ is the shortest curve between p and q on the manifold
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The learning and recognition based on the BoW model
can be roughly divided into two categories, namely, gen-
erative and discriminative models. Generative models
estimate the probability of BoW features given a class,
including Naïve Bayes classifier, and hierarchical Bayesian
models such as probabilistic latent semantic analysis
(pLSA) and latent Dirichlet allocation (LDA). Discrimina-
tive models learn a decision rule (classifier) to assign BoW
representation of images to different classes, including
nearest-neighbor classifier, SVM, AdaBoost, and kernel
methods such as pyramid match kernel.
Since the BoW model is an orderless representation

that counts frequencies of visual words from a dictionary,
efforts have been made to incorporate spatial informa-
tion into the model. For example, one can compute BoW
features from sub-windows of the entire image, or based
on part-based models [23]. Also, spatial pyramid rep-
resentation is an extension of BoW features that gives
locally orderless representation at several levels of resolu-
tion [24]. Moreover, the BoW model has been extended
to encode higher-order statistics of the difference between
visual words and pooled local features, such as Fisher
Vectors (FV) [25] or vector of locally aggregated descrip-
tors (VLAD) [26]. In this paper, we use the very basic
BoW model other than its extensions, since we mainly
focus on (i) building themodel onmanifold and (ii) adding
temporal information into this model. Hence, a baseline
approach would suffice our purpose as a proof of concept.

2.3 Distances and kernels for time series
A time series is an ordered finite set (a sequence) of data
points, typically consisting of measurements observed
successively over a time interval. Mathematically, it is
defined as

Z = {xt}nt=1 = {x1, x2, · · · , xn} (7)

where xt is the data point at time t and n is the total
number of data points.
For time series classification, we first need to define a

distance function d(Zi,Zj) that measures the difference
between each pair of time series Zi and Zj. Then, a kernel
function K(d(Zi,Zj)) can be constructed, as a function of
the distance function, to measure the similarity between
each pair of time series Zi and Zj.
Some commonly used distance functions include

dynamic time warping (DTW) [27], edit distance with real
penalty (ERP) [28], and time warp edit distance (TWED)
[29]. Kernel functions based on these distance measures
have often been found to perform well in practice. How-
ever, they are not strictly positive definite, since DTW,
ERP, and TWED in general are not positive definite [30].
Positive definiteness is a preferable property for kernel

functions. It ensures that the optimization problem is con-
vex and the solution is unique [31]. To this end, some

positive definite kernels for time series classification have
been suggested, e.g., global alignment (GA) kernels [32],
recursive edit distance kernels (REDK) [30], which are
shown to outperform indefinite kernels in general. In this
paper, we propose to use a special type of REDK kernels
in combination of a geodesic distance function, with the
proof of its positive definiteness.

3 Proposedmethod for activity classification
This section first gives an overview of the proposed
method, and then describes each important step of the
method in details.

3.1 Overview of the proposedmethod
The proposed method can be summarized into three
major steps, as depicted in Fig. 3. First of all, for each
frame of a video activity, a unified covariance matrix is
formed to jointly represent structural features of body
pose and appearance features of interacting objects at
hands. This covariancematrix can be viewed as amanifold
point in the space of SPD matrices. Thus, a video activ-
ity is initially represented as a time sequence of covariance
descriptors on the Riemannian manifold of SPD matri-
ces. Then, a BoW model is learned by clustering the set
of all covariance matrices from training video activities.
For each video activity, time-dependent BoW features are
extracted based on the learned BoWmodel. More specifi-
cally, a video activity is eventually characterized by a time
series of BoW features. This time series can be seen as
a trajectory on a unit n-sphere. Finally, a positive defi-
nite kernel is formulated based on DTW and geodesic
distances on the unit n-sphere for activity classification,
using these time-dependent BoW features.

3.2 Covariance descriptor for combining local
appearance and global pose features

We adopt a part-based approach for feature extraction of
a target person in each image frame, where the positions
of left/right hand, head, feet, and torso axes of the person
are required. The basic idea is to extract both appear-
ance and structural features from body parts. The former
may give important cues for local human-object interac-
tion, while the latter can provide information on the global
body pose and motion. These body parts can be detected
by a Kinect sensor with skeleton tracking [33], or by exist-
ing toolboxes for pose estimation [34, 35]. The reason for
detecting hand points is that interacting objects, as use-
ful cues for activity recognition, are likely to appear in the
vicinity of the human hands. It may be argued that hand
regions are less important for activities without human-
object interaction (e.g., falling down, lying down, walking,
sitting down). However, they still provide useful informa-
tion on arm movement relative to other body parts and
serve as a discriminative feature between activities with
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Fig. 3 Illustration of major steps in the proposed method. Notations and notes:
• It is the t-th frame of an input video, and L is the total number of frames
• “◦” are key points (head, hands, waist center, midpoint of feet), and the areas with dotted edges are local patches centered at hands
• C is the frame-based covariance feature (as a point on the manifold of SPD matrices Symd+) extracted from local patches and key points in It
• The codebook for BoW+T model is generated by clustering covariance matrices on Symd+
• The video is encoded by the BoW+T model as a time series of manifold points on a unit n-sphereSn and then classified by a kernel machine
based on geodesic distance on that sphere

and without human-object interaction. It is also benefi-
cial to detect the head, feet, and torso axes, as they may
provide structural information about the body pose of the
person.
For each image frame of a video activity containing a

certain class of activity performed by a single person, a
pair of 2-D hand points {pi} are detected as pi = (xi, yi)T ,
where i = 1, 2 is the hand index. For either hand point, a
local image patch Ri of size l × l centered at pi is obtained.
For the j-th pixel in Ri, a feature vector fi,j is formed by
concatenating the following two component vectors:
a) Appearance feature vector [15, 16]

f ai,j =
[
r, g, b, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
I2x + I2y , arctan

( Iy
Ix

)]T

(8)

where r, g, and b are the RGB values of the pixel, |Ix|,
|Iy|, |Ixx|, and |Iyy| are the magnitudes of the first and sec-
ond derivatives along x, y directions, and

√
I2x + I2y and

arctan
( Iy
Ix

)
are the gradient magnitude and orientation,

respectively.
b) Structural feature vector

f si,j =
[
x, y,dT1 ,d

T
2 ,d

T
3 , d4

]T
(9)

where (x, y)T is the pixel coordinate in Ri, d1, d2, d3,
and d4 are the distances from the pixel to the head point
pa = (xa, ya)T , the other hand point pk (k �= i, k = 1, 2),

the midpoint pb = (xb, yb)T of two feet, and the torso
axis, respectively. It is worth mentioning that (i) all these
distances are normalized by the length of the torso axis L;
(ii) d1, d2, and d3 are the 2-D vectors that contains dis-
tances in x and y directions; and (iii) d4 is a scalar, i.e.,
distance from a point (the pixel) to a line (the torso axis).
Thus, the feature vector fi,j for the j-th pixel in i-th local

patch Ri related to the left (or right) hand is defined as

fi,j = �

[(
f ai,j

)T
,

(
f si,j

)T]T
(10)

where fai,j and fsi,j are feature vectors in (8) and (9) encoding
local appearance of the interacting object and global pose
of the target person, respectively, and � > 0 is an empir-
ically determined diagonal matrix that adjusts the weight
of features.
The local patch Ri for the i-th hand is represented by an

r × r covariance matrix as

Ci = 1
|Ri| − 1

|Ri|∑

j=1
f̃i,j f̃Ti,j ∈ Sym+

r (11)

where |Ri| is the total number of pixels in patch region Ri
and f̃i,j is the mean-subtracted feature vector.
Finally, assuming image patches at two hands are statis-

tically independent, a covariancematrix of d × d (d = 2r)
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is formed for each frame by using the local patch-based
descriptors as follows:

C =
[
Ci∗ 0
0 Cn

]
∈ Sym+

d (12)

where Ci∗ and Cn are computed from (11), and their
indices (subscripts) i∗ = argmini∈{1,2} ‖pa − pi‖, and
n �= i∗, n ∈ {1, 2}. Since covariance matrix C ∈ Symd+, it
may be viewed as a point on a Riemannian manifold [16].
In this way, for each image frame of the video activ-

ity, the local appearance information of two hand regions
which may potentially contain interacting objects and the
global posture information as hand positions with respect
to the head, feet, and torso axes are encoded into a uni-
fied covariance matrix, disregarding whether the person is
left-handed or right-handed.

3.3 Temporal BoWmodel on the Riemannian manifold of
SPDmatrices

We employ the bag-of-words model for representing
activities in videos. Since each image frame of a video
activity is represented by a covariance descriptor (see
Section 3.2), a most straightforward way would be to
directly treat the video activity as a bag of covariance
descriptors. However, temporal information as an impor-
tant cue for activity recognition is neglected, which may
lead to inferior results. Instead, in our case, each video
activity is treated as a temporal sequence (time series) of
bags of covariance descriptors. Further, comparing to rep-
resenting the video activity as a time series of covariance
matrices, the BoW model is more efficient and has been
shown to be effective inmany classification tasks.We refer
to this temporal BoW model on Riemannian manifold as
Riemannian BoW+T model.
The motivations for exploiting Riemannian manifolds

in feature representation are threefolds: first, the non-
linear nature of manifolds enables effective description
of dynamic processes of human activities involving non-
planar movement, which lie on a nonlinear manifold
other than a vector space; secondly, many video fea-
tures of human activities may be effectively described by
low-dimensional data points on the Riemannian man-
ifold while still maintaining the important property of
human activities such as topology and geometry; thirdly,
the Riemannian geometry provides a way to measure the
distances of different activities on the nonlinear manifold,
hence is suitable tool for the classification.
Given a set of covariance descriptors (manifold points)

X = {Xi}Mi=1, Xi ∈ Sym+
d , extracted and collected from a

training set of video activities, we aim to learn a codebook
(or, a dictionary) for our BoWmodel. In the simplest case,
one can ignore the Riemannian geometry of SPDmatrices
and learn a codebook straight from the vectorized form
of these matrices. That is, Euclidean geometry is applied

and arithmetic mean is used for computing the clusters.
Despite the simplicity, this method often yields undesir-
able outcome due to the swelling effect 1 [12]. Hence, the
underlying Riemannian geometry should be taken into
account for creating the codebook without swelling effect
2. One common alternative is to first project the set of
manifold points to a global tangent space at a particular
point on the manifold and then apply Euclidean tools for
clustering. However, mapping data to a tangent space only
produces a first-order approximation of the data that can
be distorted, especially in regions far from the origin of the
tangent space. Therefore, we propose to use the intrinsic
mean for obtaining the codebook, by extending k-means
clustering to the case of Riemannian manifolds with the
Karcher mean (also known as the Fráchet or Riemannian
mean).
In this case, we aim to partition the set of M manifold

points into k (k ≤ M) subsets (or, clusters) C = {C1,
C2, · · · , Ck} by minimizing the sum of squared geodesic
distances of eachmanifold point in the cluster to its center.
The objective is to seek:

argmin
C

k∑

j=1

∑

Xi∈Cj
ρ2(μj,Xi) (13)

where ρ(·, ·) is the geodesic distance defined in (4) and
μj ∈ Sym+

d is the Karcher mean of points in the j-th
cluster, which is found by

argmin
μj

∑

Xi∈Cj
wiρ

2(μj,Xi) (14)

where wi ∈ R is the weight for the i-th point that is
inversely proportional to the distance from the point to
its cluster center. The minimization problem in (14) can
be solved by iteratively mapping frommanifold to tangent
spaces and vice versa until convergence [13]:

μm+1
j = expμm

j

⎛

⎝
∑

Xi∈Cj
wi logμm

j
(Xi)/

∑

Xi∈Cj
wi

⎞

⎠ (15)

where exp·(·) and log·(·) are the pair of exponential and
logarithm mapping functions defined in (2) and (3) under
log-Euclidean metric and m is the index for the cur-
rent iteration. Although one may argue that the iterative
approach in (15) is computationally expensive, it shows
superior performance comparing to extrinsic methods in
our experiment.
Given a codebook of covariance descriptors {μj}kj=1 that

is learned from (13), each video activity as a time series
of covariance matrices {Ct}Lt=1, where Ct ∈ Sym+

d and L
is the length of the video activity (number of frames) can
be encoded by the Riemannian BoW+T model as a time
series of bags of covariance descriptors as follows.
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1. Assign each covariance descriptor to its closest
vocabulary word in the dictionary according to the
geodesic distance in (4):

vt = arg min
j∈{1,2,··· ,k}

ρ(μj,Ct) (16)

2. Temporally divide the video activity into N (fixed)
segments {Zi}Ni=1, each of length 	L/N
. If L < N ,
then the segment length is chosen as 1, and the
number of segments becomes L.

3. For each segment, generate a histogram hi with k
bins, and set the j -th bin to

cij =
∑

t:Ct∈Zi

I
[
vt = j

]
(17)

where cij denotes the count of covariance descriptors
that belong to the i -th segment Zi and are assigned
to the j -th codeword (cluster), and I[A] is an
indicator function which equals 1 if event A is true,
and 0 otherwise.

4. Normalize each histogram hi by �2 norm.

In this way, each video activity is represented as a time
series of histograms {h1,h2, · · · ,hl} over the vocabulary
learned from (13), where each histogram hi is a BoW
feature vector based on covariance descriptors. Since all
histograms are �2-normed, the Riemannian geometry of
Sn can be utilized where video activities can also be
viewed as temporal sequences of manifold points on a unit
n-sphere Sn, for some n.
Alternatively, one can temporally divide each video

activity into segments with a fixed time interval and gen-
erate BoW feature vector from each segment in a same
way. However, this may not be suitable for datasets con-
taining video activities with significantly different length,
especially for activities from the same class.

3.4 Time series classification with regularized DTW kernel
based on geodesic distances onSn

For each pair of video activities, we need to measure the
similarity between them. This is done by representing
each video activity as a time series of manifold points on
a unit n-sphere by the Riemannian BoW+T model (see
Section 3.3) and comparing themwith a distancemeasure.
The essence for using DTW-based kernels and geodesic
distance-based local kernels is to fit for two important
aspects of the classification problem: (i) the sequential
nature of our feature data points; (ii) the underlying non-
linear manifold structure of data sequence.
As aforementioned, dynamic time warping is a common

way for the comparison between time series. However,
DTW kernel is in general not positive definite, which may
lead to inferior results. Instead, we employ a regularized
version of DTW kernel that can be positive definite if cer-
tain conditions are satisfied. For detailed expression of

this regularized DTW kernel, readers are referred to [30].
In fact, this regularized DTW kernel is a special type of
REDK kernels [30], whose definiteness will be elaborated
in a theorem in the Appendix of this paper.
Moreover, considering the underlying geometry of given

time series, we propose to use a local kernel that is based
on geodesic distances between manifold points on a unit
n-sphere Sn in (6). More specifically, the local kernel is
defined as

k(x, y) = exp (−γρ(x, y)) (18)

= exp
(
−γ arccos

(
xTy

))
,

where γ is a stiffness parameter that weights the contri-
bution of the local elementary costs. For detailed proof
regarding the positive definiteness of the proposed kernel,
please refer to the Appendix of this paper.

4 Experimental results
This section describes the experiments and shows the
results on two video datasets containing activities from
multiple classes using the proposed method.

4.1 Video datasets on activity classification
Dataset-A: This video dataset contains a total of 943
video activities from 8 activity classes, namely, (1) eat-
ing, (2) drinking, (3) using laptop, (4) reading, (5) falling
down, (6) lying down, (7)walking, and (8) sitting down. The
videos were recorded by ourselves at Chalmers Univer-
sity of Technology, Gothenburg, Sweden, using a Kinect™
sensor. There are 34 participants involved to increase the
randomness in performing activities, without any pre-
training. The frame rate is 30 frames per second. The
frame resolution is 640 × 480. The average length of video
is approximately 100 ∼ 600 frames (≈ 3 ∼ 20 s). Detailed
information on this dataset is provided in Table 1. As
shown in Table 1, activities from different classes take
up comparable proportions. Figure 4 depicts some key
frames of the videos from Dataset-A.

Table 1 Specifications on Dataset-A

Class no. Activity No. of videos
Duration of videos
(no. of frames [min, max])

1 Eating 108 [272, 1376]

2 Drinking 108 [256, 944]

3 Using laptop 105 [240, 1160]

4 Reading 105 [72, 1184]

5 Falling down 109 [6, 30]

6 Lying down 107 [10, 76]

7 Walking 150 [5, 63]

8 Sitting down 151 [7, 40]
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Fig. 4 Key frames from Dataset-A containing activities from 8 classes. Upper row from left to right: eating, drinking, using laptop, and reading. Lower
row from left to right: falling down, lying down, walking, and sitting down

Dataset-B: This video dataset [36] contains a total of
224 RGB-D videos from 7 activity classes, namely, (1)
drinking, (2) eating, (3) using laptop, (4) reading cell-
phone, (5) making phonecall, (6) reading book, and (7)
using remote. The videos are captured by a Kinect™ sensor.
There are 16 participants involved to perform each class of
activity. The frame rate is 30 frames per second. The frame
resolution is 640 × 480. The average length of video is
approximately 260 ∼ 530 frames (≈ 8 ∼ 17 s). Detailed
information on this dataset is provided in Table 2. As
shown in Table 2, activities from different classes take up
exactly the same proportions. Figure 5 depicts some key
frames of the videos from Dataset-B.

4.2 Experimental setup
For adjusting the weight of features, the diagonal matrix in
(10) is � = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4).
For the BoW model, the number of codewords (clusters)
k = 150. For each video activity, the number of segments

Table 2 Specifications on Dataset-B

Class no. Activity No. of videos
Duration of videos

(no. of frames [min, max])

1 Drinking 32 [228, 747]

2 Eating 32 [329, 598]

3 Using laptop 32 [210, 342]

4 Reading cellphone 32 [262, 423]

5 Making phonecall 32 [297, 579]

6 Reading book 32 [297, 481]

7 Using remote 32 [211, 544]

M = 7. These parameters are empirically determined,
without much tuning or optimization.
To limit the impact of inaccurate skeleton/pose estima-

tion, we use manually marked key points in our tests for
Dataset-A. However, for Dataset-B, key points are taken
from skeletal joints that are automatically estimated by
Kinect™, to ensure the fairness in comparison with other
methods.
The libSVM [37] software was modified by using the

proposed kernel to fit for our classifier, with the regular-
ization coefficient and kernel parameters tuned by coarse-
to-fine grid search and cross-validation. For both datasets,
the classifiers were trained on approx. 50% videos from
each class, and the remaining ones (approx. 50%) were
used for testing.

4.3 Tests, evaluations, and comparisons
The proposed method is tested on both datasets, with
evaluations as well as comparisons to other methods
where applicable.

4.3.1 Results on Dataset-A
For Dataset-A, the confusion matrix for the proposed
method on the test set is given in Table 3. The perfor-
mance of the proposed method in terms of classification
accuracy and false positive rate (FPR) on the test set are
reported in Table 4. It can be observed fromTables 3 and 4
that the proposed method overall achieved high classi-
fication accuracy and low false positive rate. Confusions
are found between eating/drinking/using laptop/reading
andwalking/sitting downwhichmay appear to be unusual.
This is probably due to the fact that in some walking or
sitting down scenarios, the person is holding something
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Fig. 5 Key frames from Dataset-B containing activities from 7 classes. Upper row from left to right: drinking, eating, using laptop, and reading
cellphone. Lower row from left to right:making phonecall, reading book, and using remote

(e.g., food, drink, book, laptop) while walking or sitting
down.

4.3.2 Results on Dataset-B
For Dataset-B, the performance of the proposed method
and several existing methods3 in terms of classification
accuracy on the test set is reported in Table 5. Below, we
briefly summarize these methods that are compared with:

• Orderlet + Boosting/SVM [36] integrates three types
of features to construct a spatio-temporal
representation, including pairwise joint distances,
spatial joint coordinates, and temporal variations of
joint locations.

• Actionlet Ensemble [38] defines an actionlet as a
particular conjunction of features for a subset of
skeleton joints, indicating a structure of the features.
Based on it, one human action can be interpreted as

an actionlet ensemble that is a linear combination of
the actionlets.

• DSTIP + DCSF [39] extends STIP to depth video as
DSTIP and extracts depth cuboid similarity feature
(DCSF) to describe the local 3-D depth cuboid
around DSTIPs for activity recognition.

• EigenJoints [40] proposes a dimension-reduced
skeleton feature, by using the spatial position
differences between detected joints as well as the
temporal differences between corresponding joints.

• Moving Pose [41] proposes a moving pose descriptor
for capturing dynamic postures, by using the
configuration, speed, and acceleration of the skeleton
joints.

It can be observed from Table 5 that the proposed
method achieved the highest classification accuracy, pro-
viding further evidence for the effectiveness of the

Table 3 Confusion matrix for the test set of Dataset-A

Predicted class

Accuracy (%)
Eating Drinking

Using
Reading

Falling Lying
Walking

Sitting
laptop down down down

True class

Eating 49 2 0 0 0 0 0 3 90.74

Drinking 3 46 1 3 0 0 0 1 85.19

Using laptop 1 1 45 3 0 0 0 2 86.54

Reading 0 2 4 46 0 0 0 0 88.46

Falling down 0 0 0 0 50 4 0 0 92.59

Lying down 0 0 0 0 4 49 0 0 92.45

Walking 1 0 3 4 0 0 67 0 89.33

Sitting down 2 0 2 2 0 0 0 69 92.00
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Table 4 Performance of the proposed method on activity
classification (8 classes) using Dataset-A: classification accuracy,
and false positive rate (FPR) on the test set

Accuracy (%) FPR (%)

Eating 90.74 1.67

Drinking 85.19 1.18

Using laptop 86.54 2.36

Reading 88.46 2.84

Falling down 92.59 0.95

Lying down 92.45 0.95

Walking 89.33 0

Sitting down 92.00 1.50

Overall (*) 89.77 –

Average 89.66 1.43

(*) Overall: the total number of true positives for all classes divided by the total
number of videos in the test set

proposed method. Also, it is worth noting the perfor-
mance drop on Dataset-B, comparing to Dataset-A. This
is probably due to the fact that key points used for
experiments on Dataset-B are automatically estimated
by Kinect™, which may be less accurate than manually
marking.

4.4 Discussions
The proposed method is shown to have better perfor-
mance than other methods on Dataset-B. This is prob-
ably due to the following major differences between
the proposed method and the other ones: (i) instead of
joint representation of features through concatenation,
we compute the covariance matrix of these features and
use it as the low-level feature descriptor. The covariance
descriptor encodes information of the variances of the
defined features, and their correlations with each other.

Table 5 Performance of different methods on activity
classification (7 classes) using Dataset-B: classification accuracy on
the test set

Method Accuracy (%)

Orderlet + Boosting [36] 71.4

Orderlet + SVM [36] 68.7

Actionlet Ensemble [38] 66.0

DSTIP + DCSF [39] 61.7

EigenJoints [40] 49.1

Moving Pose [41] 38.4

Proposed 72.34

Comparing to feature concatenation, covariance descrip-
tor is a much more compact, efficient, and effective rep-
resentation; (ii) in addition to spatio-temporal informa-
tion that is exploited in other methods, we also consider
local appearance information that encodes human-object
interactions; (iii) other than the Euclidean metrics that
is adopted in other methods, we take into account the
underlying manifold geometry of the feature data points
for classification.
For Dataset-A, to limit the impact of inaccurate skele-

ton/pose estimation on the proposed method, we used
manually marked key points in our tests. Hence, when
being replaced by automatically detected key points, some
performance degradation is expected, if the key points on
the skeleton are less accurate. This is also a possible rea-
son of the performance drop on Dataset-B, comparing to
Dataset-A. Although there are many toolboxes that can be
exploited, such as [34, 35], the study of the impact of inac-
curate skeleton/pose estimation on activity classification
is beyond the scope of this paper.

5 Conclusion
In this paper, we proposed a method on human activity
classification in video that is dedicated to assisted living
and healthcare. The method treats each video activity as
a temporal sequence of BoW features on a Riemannian
manifold and classifies such time series with a kernel
based on dynamic time warping (DTW) and geodesic
distances. Experiments were conducted on two video
datasets containing a total number of 943 videos from 8
classes and 224 videos from 7 classes, respectively. The
proposed method achieved high classification accuracy
and small false alarms overall, as well as for each individual
class. Comparison with several existing methods provided
further evidence for the effectiveness of the proposed
method.

Endnotes
1A consequence from the Euclidean averaging of SPD

matrices: the determinant of the Euclidean mean can be
strictly larger than the original determinants, which is
physically unacceptable.

2 The determinant of a mean of SPD matrices remains
bounded by the values of the determinants of the averaged
matrices.

3 The results of all these methods have been originally
reported in [36].

Appendix
To show the positive definiteness of the regularized DTW
kernel (REDK) with the local kernel of our choice in (18),
we start with the following theorem.
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Theorem 1 (Definiteness of REDK [30]) Let U be the
set of finite sequences (time series) and � be the empty
sequence (with null length). REDK is a positive definite
kernel on U × U if the local kernel k(x, y) = f (�(x → y))
is a positive definite kernel on ((S × T ) ∪ {�})2, where S
embeds the multidimensional space variables and T ⊂ R

embeds the time stamp variable, x → y is an edit opera-
tion on a pair (x, y) ∈ ((S × T ) ∪ {�})2, and �(x → y) is
the associated cost (or, distance) function.

From the above theorem, we know that it is the positive
definiteness of our local kernel in (18) that matters, which
leads us to the theorem below.

Theorem 2 (Schoenberg’s Theorem [42, 43]) LetX be a
nonempty set and f : (X ×X ) → R be a kernel. The kernel
exp(−γ f (x, y)) is positive definite for all γ > 0 if and only
if f is conditionally negative definite.

Therefore, we need to show that the pairwise geodesic
distance function ρ(x, y) (or, the inverse cosine function
arccos(xTy)) in (18) itself as a kernel f is conditionally neg-
ative definite. First of all, the definition of conditionally
negative definite kernels is given as follows.

Definition 1 (Conditionally Negative Definite Kernels
[44]) A kernel f : (X × X ) → R is called (conditionally)
negative definite if it it symmetric and

∑m
i,j=1 cicjf (xi, xj) ≤

0 for all m ∈ N, {x1, · · · , xm} ⊆ X and {c1, · · · , cm} ⊆ R

with
∑m

i=1 ci = 0.

Then, we recall the Taylor series of the inverse cosine
function

arccos(z) = π

2
−

∞∑

n=0

(
(2n)!

22n(n! )2

)
z2n+1

(2n + 1)
. (19)

From this series, it is clear that arccos
(
xTy

)
is condi-

tionally negative definite, because it is of the form “con-
stant minus positive definite” [44]. For detailed proof,
observe that with the above power series representation in
(19), we have

f (xi, xj) = arccos
(
xTi xj

)

= π

2
−

∞∑

n=0

(
(2n)!

22n(n! )2

) (
xTi xj

)2n+1

(2n + 1)

= π

2
− h(xi, xj), (20)

where h(xi, xj) is a positive definite kernel. To see this,
observe that the power series in (20) has nonnegative
coefficients, and since (xTi xj)2n+1 is point-wise product of
kernels, it is itself a kernel. Thus, we have in particular that
the matrix

F =

⎡

⎢⎢⎢⎢⎣

f (x1, x1) f (x1, x2) · · · f (x1, xm)

f (x2, x1) f (x2, x2) · · · f (x2, xm)

...
...

. . .
...

f (xm, x1) f (xm, x2) · · · f (xm, xm)

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

c c · · · c
c c · · · c
...
...
. . .

...
c c · · · c

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

h(x1, x1) h(x1, x2) · · · h(x1, xm)

h(x2, x1) h(x2, x2) · · · h(x2, xm)

...
...

. . .
...

h(xm, x1) h(xm, x2) · · · h(xm, xm)

⎤

⎥⎥⎥⎥⎦

= c11T − H,
(21)

where c = π
2 is a constant, 1 ∈ R

m is a column vector all
1’s. Therefore, it immediately follows

zTFz = c
(
zT1

)2 − zTHz ≤ 0, (22)

because the first term in (22) is zero whenever zT1 = 0
(as stipulated for conditionally negative matrices in Def-
inition 1), and because zTHz ≥ 0 as H is the kernel
matrix for h(xi, xj). Hence, the proposed kernel is shown
to be positive definite, which is used for classifying time
series of manifold points (BoW feature vectors) on a unit
sphere Sn.
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