
THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

Optimizing and Approximating Algorithms for the
Single and Multiple Agent Precedence Constrained

Generalized Traveling Salesman Problem

Raad Salman

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2017



Optimizing and Approximating Algorithms for the Single and
Multiple Agent Precedence Constrained Generalized Travel-
ing Salesman Problem
Raad Salman

Copyright c© Raad Salman, 2017.

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Fraunhofer-Chalmers Research Centre for Industrial Mathematics
Department of Geometry and Motion Planning
Chalmers Science Park
SE-412 88 Gothenburg, Sweden
Phone: +46 (0)31-772 4254
Email: raad.salman@fcc.chalmers.se

Printed in Gothenburg, Sweden 2017



In loving memory of Hassan Salman.





Abstract

In the planning phases of automated manufacturing, generating efficient programs for
robot stations is a crucial problem which needs to be solved. One aspect of the program-
ming is the optimization of task sequences, such as series of welds or measuring points,
so that the cycle time is minimized.

This thesis considers the task sequencing problem separately from the other prob-
lems related to robot station programming such as motion planning and collision avoid-
ance. The stations may have a single robot or an arbitrary (but predetermined) number of
robots. The robots are heterogeneous with respect to their ability to perform the different
tasks, and may have several movements and angles to choose from when performing a
task. Furthermore, some processes require that the tasks are performed within some par-
tial order. This may cause delays when there are more than one robot at a station. The
task sequencing problem is then modeled as the Precedence Constrained Generalized
Multiple Traveling Salesman Problem.

A metaheuristic algorithm based on Ant Colony Optimization is considered in con-
junction with several different local search heuristics. The local search neighborhoods
are analyzed with respect to the notion of improvement and induced delays due to prece-
dence constraints between robots. In the single robot case, the HACS algorithm is shown
to find solutions at least within 10% of the optimum on average, often within a couple
of seconds. For stations with multiple robots, the results indicate that the local search
procedure is good at improving solutions but that it becomes very computationally de-
manding when applied to instances with a large number of precedence constraints.

Additionally, an exact branch-and-bound based algorithm is presented for single
robot stations. A novel branching method is developed, a pruning technique used for
a related problem is generalized, and a new way of computing an assignment problem
based bound is evaluated. The algorithm is able to solve some medium sized problem
instances (around 50 tasks) within 24 hours. Many of the smaller problem instances are
solved within seconds.

Keywords: asymmetric generalized multiple traveling salesman problem; precedence
constraints; sequential ordering problem; vehicle routing problem; metaheuristic, local
search heuristic; ant colony optimization; edge exchange; branch and bound; dynamic
programming; SOP; GTSP; mTSP; VRP; PCGTSP; PCGmTSP
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1. Introduction

1.1 Background

As computer aided product development and manufacturing are increasingly
becoming the norm, efficient programs which reduce the use of resources such
as energy and material are now more important than ever. From design to
planning, and finally manufacturing, numerous mathematical problems must
be overcome when creating a robust computer aided process for product real-
ization.

The software Industrial Path Solutions (IPS) is a virtual simulation tool ca-
pable of modeling and optimizing many aspects of automated manufacturing
processes. Such a process is the generation of efficient robot programs where
the problem of task sequencing naturally arises. The task sequencing problem
consists of determining the order of tasks on a robot station such that the total
time for finishing the tasks (known as the cycle time) is minimized. The sta-
tions may have several robots working on the same object simultaneously and
be such that the robots have either shared or unshared workspaces.

In the IPS software, paths and movements for the robots are computed sep-
arately from the task sequencing in the path planner, and are fed as data into the
task sequencing algorithm in the form of distances between tasks. Since fea-
sible collision-free robot paths are very computationally demanding to obtain,
IPS uses an iterative process where the path planner calculates only a subset of
the paths by using information from the task sequence optimization algorithm.
The process begins by finding a solution to the task sequencing problem given
Euclidean distances between tasks. The sequence is then sent to the path plan-
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2 Chapter 1. Introduction

ner which checks how the robots should move in order to feasibly execute it.
This results in new (potentially longer) distances between tasks which are sent
to the task sequencing algorithm which finds a new solution etc. This process
may be stopped when some minimum threshold for improvement is not met, or
after a fixed number of iterations.

Figure 1.1: Simulation in IPS of a station with two coordinate measuring ma-
chines working on a car body.

The distances between tasks may become several times as long after finding
feasible robot paths, and generally the path planning affects the cycle time much
more than the task sequencing. Additionally, optimizing the sequence of tasks
with an incomplete set of properly planned paths is in itself an approximation
of the optimal solution. Therefore, spending large amounts of computational
power on finding an optimal task sequence in each iteration is normally not
desired, and heuristic algorithms are utilized more often. However, exact opti-
mization methods may still be interesting as solvers if they are sufficiently fast,
and as tools that can evaluate the performance of heuristics.

This thesis presents algorithms for finding approximate and optimal solu-
tions to the problem of sequencing tasks on robot stations with one or several
automated robots such that the cycle time of the whole process is minimized.
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The many degrees of freedom of the robots enable tasks to be performed in
many different ways. Moreover, tasks may be constrained to be performed in
some partial order as to ensure the integrity of the process and/or the quality of
the product. This problem is modeled as a version of the famous combinatorial
optimization problem known as the Traveling Salesman Problem (TSP).

Normally the TSP is defined as the task of finding the minimum cost Hamil-
tonian cycle (or tour) in an edge-weighted graph but many variations with extra
constraints or complications have been studied. The asymmetric case (ATSP)
allows costs between vertices to be asymmetric and is defined on a directed
graph. In the Generalized TSP (GTSP) the vertex set is partitioned into a family
of disjoint and non-empty subsets. The GTSP tour is then required to visit ex-
actly one vertex in each subset such that it minimizes the costs of the edges that
are traversed. The Precedence Constrained ATSP (PCATSP), and the equivalent
Sequential Ordering Problem (SOP), consists of finding a directed tour such that
a partial order defined by pairwise precedence relations is respected. The Mul-
tiple TSP (mTSP) requires a fixed or variable number of tours such that each
vertex is visited exactly once. Variations of the mTSP include assumptions on
the number of starting points for the travelers and the objective of the problem.
Most often the two objectives considered are minimizing the total traveling cost
or minimizing the cost of the longest tour, also known as the minmax objec-
tive. A problem closely related to the mTSP is the Vehicle Routing Problem
(VRP) [48].

The problem that this thesis considers is modeled as the Precedence Con-
strained Generalized Multiple TSP (PCGmTSP) with a fixed number of trav-
elers, one starting point per traveler, and with the minmax objective. The sin-
gle robot (or agent) case will be referred to as the PCGTSP, even though it
is a special case of the PCGmTSP, as the difference in problem structure is
enough to warrant treating it separately. The terms PCGmTSP and multiple
agent PCGTSP will also be used interchangeably.
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(a) A feasible ATSP
tour.

(b) A feasible GTSP
tour.

(c) A feasible mTSP so-
lution with two travelers.

Figure 1.2: Various TSP variants.

While the PCGTSP and the PCGmTSP can be seen as aggregates of other
well-studied problems, they themselves pose their own set of challenges as the
methodologies for tackling the different related problems tend to clash. As an
example, many effective GTSP heuristic methods rely on the fact that the edges
can be exchanged very freely in any given solution, while SOP heuristics tend to
exploit that the precedence constraints severely limit the edge exchange neigh-
borhoods and the solution space in general. However, because the PCGTSP
and the PCGmTSP incorporate the same or similar characteristics as the GTSP,
the SOP/PCATSP, the mTSP, and even the ATSP, it is still crucial to understand
how these related problems have been solved. To that end, the next section pro-
vides an overview of asymmetric TSP variants related to the PCGTSP and the
PCGmTSP, and known methods for solving them.

1.2 A Review of Methods for TSP Variants

Algorithms with the purpose of solving optimization problems, in particular the
TSP and variants thereof, can be mainly classified as either exact or heuris-
tic. An exact algorithm is guaranteed to find an optimal solution or a solution
within some error of the optimal solution, while a heuristic algorithm gives no
guarantee on how good the produced solution is. However, for a hard problem
such as the TSP, using exact algorithms for solving particularly large problem
instances can easily become computationally impractical. One says that a prob-
lem instance is solvable by an exact algorithm if the algorithm finds an optimal
solution and terminates within some reasonable time frame, usually 24 or 48
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hours.
One of the most used types of exact algorithms for TSPs, and combinato-

rial optimization problems in general, is the branch-and-bound algorithm. For
TSPs, the bounding procedure is commonly one of three types: relaxing inte-
ger constraints on variables in an integer linear programming (ILP) formulation
and then solving the resulting linear programming (LP) problem, relaxing the
vertex outdegree constraints and solving the resulting minimum spanning ar-
borescence problem (MSAP), or relaxing the subtour elimination constraints
and solving the resulting assignment problem (AP). Bounding methods based
on the MSAP or the AP often involve Lagrangian relaxation coupled with some
subgradient method.

(a) A spanning arborescence. (b) A cycle cover.

Figure 1.3: Feasible solutions to the MSAP and AP in a graph.

Branch-and-bound algorithms based on LP relaxations are often augmented
with some special purpose cutting plane procedure which adds additional valid
constraints to the subproblems in order to tighten the lower bound produced
by solving the LP problem. These so called branch-and-cut algorithms can be
very powerful but require an extensive investigation of the feasible region of the
problem at hand [7, 19, 20, 43]. Branch-and-cut algorithms have been proposed
for the ATSP, SOP, the symmetric GTSP, and the mTSP in [22], [3], [21], and [8]
respectively.

Spanning tree based bounds were first proposed for the TSP in [30, 31]
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and later evaluated for the asymmetric case and compared to AP based bounds
(see [6]) in [49]. In the case of the GTSP and the PCATSP, the additional
constraints complicate the resulting problems when relaxing the vertex outde-
gree constraints or the subtour eliminations constraints. For the GTSP it has
been shown in [38] and [28] that the MSAP and the AP defined on a parti-
tioned vertex set are NP-hard problems. For the PCATSP and the SOP the
precedence constraints severely complicate the problem definitions. However,
AP based bounds have still been considered for the GTSP in [39], where the
GTSP is appropriately relaxed in order to obtain a regular AP. In [18] and [44],
bounds based on the MSAP are considered for the SOP where the precedence
constraints have been relaxed. For the mTSP, bounds based on polynomially
solvable variations of the AP and the MSAP have been considered in [26], [1],
and [24].

The dynamic programming approach (first proposed in [29]) to solving TSP
variants is much less common but is still considered as a viable option. It has
been shown that the PCATSP is solvable in linear time given a special structure
on the precedence constraints [5]. Because of the extreme memory require-
ment of the dynamic programming algorithm, normally only smaller problem
instances are solvable. However, so called state space relaxation schemes which
limit the state space of the dynamic programming algorithm have been proposed
for both the ATSP and the SOP [9, 14, 15, 35]. The resulting bounds can then
be utilized within some branch-and-bound framework.

Since the TSP is such a hard problem to solve, there is a long tradition of
developing effective heuristic algorithms. Local search heuristics are a type of
heuristic which take a feasible solution and attempt to improve it through some
problem specific manipulation. For the TSP, one of the most widely used types
of local search heuristics are edge exchange based heuristics, also known as
k-opt and k-exchange. A very popular adaptive edge exchange heuristic is the
Lin-Kernighan heuristic [37] which was made more efficient in [32] and [33].
This heuristic has been generalized and applied to the GTSP in [36] and [34],
and to the mTSP in [41]. An efficient and more restricted form of edge exchange
heuristic has been developed for the SOP in [23].

So called metaheuristics are a very popular type of heuristic algorithms.
They make very little assumptions about the optimization problem itself and
can therefore be used as a higher level framework for a large class of prob-
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lems. They are often stochastic and inspired by natural phenomena such as ant
colonies, swarm behavior, and evolution, to name a few. Normally, the meta-
heuristics are utilized as a guided sampling of the solution space, and in con-
junction with some local search heuristic. There is an abundance of literature
on metaheuristic approaches to TSP variants. For some prominent examples
see [2, 23, 27, 45–47].

Research on the PCGTSP is fairly scarce. In [12], the PCGTSP was trans-
formed into an equivalent PCATSP and then a known SOP heuristic was uti-
lized. A dynamic programming approach which extends the results found in [5]
has been presented in [13]. A heuristic approach to the PCGTSP with some ex-
tra constraints has been considered in [16] and [17]. A metaheuristic approach
was developed and compared to a deterministic edge exchange based heuristic
and a generic exact solver in [42].

For the multiple agent case, seemingly only [25] has treated the PCGmTSP
as defined in this thesis. However, only two agents are considered, and some
extra spatial and logical constraints are imposed. In order to solve the problem a
mathematical model is presented, and a heuristic based on a large neighborhood
search is evaluated.

1.3 Contribution
The contributions in this thesis are centered around three algorithms. A meta-
heuristic approach to solving the PCGTSP (Paper I), an exact method for the
PCGTSP (Paper II), and a metaheuristic for the PCGmTSP (Paper III). For the
main contributions in each paper see the lists below.

Paper I:

• An Ant Colony Optimization based metaheuristic for solving the PCGTSP.

• An adaptation of the local search heuristic developed in [23].

• An introduction to an industrial process where the PCGTSP naturally
arises.
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Paper II:

• A first branch-and-bound based algorithm for solving the PCGTSP.

• A generalization of the history utilization pruning technique presented
in [44].

• A new branching technique applicable to the GTSP where group se-
quences are enumerated and shortest path calculations are utilized.

• A novel assignment problem based bound for the GTSP.

• An experiment based evaluation of different bounding methods for the
PCGTSP.

Paper III:

• An Ant Colony Optimization based metaheuristic for solving the PCGmTSP

• Adaptations of known local search heuristics which have been utilized in
algorithms for the VRP, the SOP, and the machine scheduling problem.

• An introductory analysis of the nature of common TSP and VRP local
search neighborhoods when applied to the PCGmTSP with the minmax
objective.

1.4 Outline
Chapter 2 formally describes the PCGTSP, the PCGmTSP, and the principal
notation for the rest of the thesis. Chapter 3 presents the algorithms for the
PCGTSP. Section 3.1 describes the metaheuristic approach and Section 3.2 de-
scribes the exact branch-and-bound based algorithm. The metaheuristic ap-
proach to the PCGmTSP and the additional local search heuristics are presented
in Chapter 4. Chapter 5 contains some additional results not found in the ap-
pended papers. In Chapter 6, some concluding remarks and suggestions for
continuing the work of this thesis is given.



2. Problem Descriptions

2.1 Single Agent PCGTSP

Let G = (V,E) be a directed edge-weighted graph with vertex set V , |V | = n,
directed edge set E ⊆ V ×V , and edge costs cij . Let V1, . . . , Vm be a partition
of V , i.e. a family of subsets of V such that Vp ∩ Vq = ∅ for p, q = 1, . . . ,m,
p 6= q, and

⋃m
p=1 Vp = V . Each subset in the partition is called a group. Let

M = {1, . . . ,m} be the set of group indices and let g(v) ∈ M be the index of
the group in which the vertex v is contained. So, v ∈ Vg(v) always holds. Let
the directed acyclic graphG′ = (M,Π), Π ⊂M ×M , define a partial ordering
of the groups. This partial ordering is what defines the precedence constraints.
These constraints dictate that if (p, q) ∈ Π, then Vp must be visited before Vq .
Any precedence relation induced by transitivity is assumed to be included in Π.
Which is to say, if (p, q) ∈ Π and (q, r) ∈ Π, then (p, r) ∈ Π. Assume that V1
is a predetermined start group.

The Precedence Constrained Generalized Traveling Salesman problem is
then to find a cycle in G, hereby known as a tour, such that it starts at V1, visits
exactly one vertex in every group in an order which respects the precedence
constraints, returns to V1, and minimizes the total cost of all traversed edges.

2.2 Multiple Agent PCGTSP

As in the single agent case, assume a directed edge-weighted graphG = (V,E)

with a partitioned vertex set, V1, . . . , Vm, and group index setM = {1, . . . ,m}.

9
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Now let A be a predetermined number of travelers, hereby known as agents,
which are to share the task of visiting exactly one vertex in each group. Assume,
without loss of generality, that each vertex v ∈ V has been assigned a unique
agent which is able to visit it, and denote this by Λ(v). In other words, agents
may never have access to the same vertex. However, agents will be allowed
to have access to the same groups. Let Λ(s, p) ∈ {1, . . . , A} denote the agent
which visits group Vp in a solution s.

Let c(e)ij be the time it takes to traverse edge (i, j), and let c(v)i be the time it

takes to process vertex i. Furthermore, let c̃ij = c
(e)
ij + c

(v)
j . Whenever vertex

processing costs are present in a single agent setting one can simply add them
to the incoming or outgoing edge costs and then discard them. However, in a
multiple agent setting it will be necessary to separate the start and end times of
every vertex visited in a solution. Let Tsta(s, p) and Tend(s, p) be the start and
end time, respectively, of the processing of the group Vp in a solution s.

For each agent a = 1, . . . , A, assume that g0(a) is the index of a prede-
termined start group for the tour of agent a. So for all a = 1, . . . , A, and any
feasible solution s it must hold that Λ(s, g0(a)) = a and Tsta(s, g0(a)) = 0.

As before, define the precedence constraints by a directed acyclic graph
G′ = (M,Π). However, since the PCGmTSP requires A disjoint tours, the in-
terpretation of what it means to fulfill the precedence constraints needs to be re-
vised. A natural interpretation of precedence constraint fulfillment is to require
that Tend(s, p) ≤ Tsta(s, q) for every (p, q) ∈ Π. For precedence constraints
with (p, q) ∈ Π and Λ(s, p) = Λ(s, q), so-called intra agent constraints, this is
a correct and equivalent interpretation as in the single agent case. But when one
has (p, q) ∈ Π and Λ(s, p) 6= Λ(s, q), so-called inter agent constraints, labeling
any solution where Tend(s, p) > Tsta(s, q) as infeasible is unnecessary. Instead,
assume that whenever such a scenario occurs, a delay is added to Tsta(s, q) such
that Tend(s, p) = Tsta(s, q).

The Precedence Constrained Generalized Multiple Traveling Salesman prob-
lem is then to find A disjoint tours which respect the precedence constraints
according to the definition above, and cover each group exactly once such that
the length of the longest tour is minimized.
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2.2.1 Disjunctive Graph

In order to better understand how inter agent constraints affect a PCGmTSP
solution, in particular if and how delays are incurred, a disjunctive graph repre-
sentation of the solution will be utilized.

A disjunctive graph representation is depicted in Figure 2.1. It consists of
all agent tours represented as paths, and directed edges with zero processing
time for every inter agent constraint. All edges which represent the sequencing
within the agents’ tours are called conjunctive, while the edges which represent
the inter agent constraints are called disjunctive. In Figure 2.1, the disjunctive
edge from vertex 3 to vertex 6 means that 3 must precede 6.

1 2 3

4 5 6 7

1

4

Figure 2.1: Disjunctive graph representation of a two agent solution. Disjunc-
tive edges are dotted.

Any feasible PCGmTSP solution must have an acyclic disjunctive graph
representation. Otherwise the order imposed by the agents’ tours is incom-
patible with the partial ordering enforced by the precedence constraints. Such
a cyclic solution is illustrated in Figure 2.2. This will be particularly impor-
tant to keep in mind when developing local search heuristics as known means
of manipulating and improving feasible TSP solutions, such as edge exchange
heuristics, may easily lead to cyclic solutions if one is not careful.



12 Chapter 2. Problem Descriptions

1 2 3

4 5 6 7

1

4

Figure 2.2: Disjunctive graph representation of an infeasible solution. Disjunc-
tive edges are dotted.

A known result [4] is that the cost of the longest path to any vertex i ∈ V
in the disjunctive graph representation of a solution s is equal to Tsta(s, g(i)),
with any eventual delays included. Furthermore, the algorithm for computing
the longest path includes a topological sorting step which detects if any cycles
occur within the graph. The processing times of the vertices may be used to
determine the time margin of each inter agent constraint, which is the amount
of time the groups involved in the constraint can be shifted before incurring a
delay. The time margins can then in turn be used to estimate the delays incurred
by manipulating a given solution without recomputing the longest path.

The longest path algorithm will be utilized to fully analyze a PCGmTSP
solution by checking for cycles, incurred delays, computing the time margins
of inter agent constraints, and determining the cycle time and time length of
the individual agents’ tours. However, because of its relatively expensive com-
putational time, it will be used conservatively and simpler estimations will be
employed within the heuristic algorithms.



3. Approximating and Solving
the Single Agent PCGTSP

This chapter describes a metaheuristic approach based on the Hybridized Ant
Colony System (HACS) algorithm [23], and a novel branch-and-bound algo-
rithm for the PCGTSP.

3.1 Hybridized Ant Colony System (HACS)

The HACS metaheuristic is a non-deterministic algorithm which is inspired by
the behavior of ants. The overarching idea is to model K generations of P
ants, each of which generate paths in a probabilistic manner in a given graph.
A generation consists of letting every ant generate one path each, and the ant
which has produced the “best” path so far deposits pheromones along the edges
of its path. This makes these edges more attractive to traverse for ants in the
following generations.

Let τij ∈ [0, 1] be the pheromone deposited along edge (i, j) ∈ E and let
ηij = 1/cij be a fixed visibility parameter which gives a fixed measurement of
how attractive an edge is. The pheromone deposits contribute to the exploita-
tion of good solutions. However, in order to avoid stagnation, a pheromone
dissipation parameter, ρ ∈ [0, 1], is introduced. When an edge (i, j) ∈ E is
traversed by an ant, the corresponding pheromone deposit is updated according
to the local rule:

13



14 Chapter 3. Approximating and Solving the Single Agent PCGTSP

τij = (1− ρ)τij + ρτ0 (3.1)

where τ0 is the initial pheromone level of all edges. Moreover, after each
generation the pheromone deposits are updated according to the global rule:

τij = (1− ρ)τij + ρ/C(s̄) (3.2)

for every (i, j) ∈ s̄, where s̄ is the best solution found so far and C(s̄) is its
total cost.

In each step of the path generation algorithm, an ant must choose which
edge to traverse given that the ant has generated a path leading up to vertex
i ∈ V . Assume that α, β ≥ 1 are parameters which regulate the relative impor-
tance of the pheromone deposit and the visibility parameter, respectively, when
choosing an edge. Let ψij denote the attractiveness of edge (i, j) ∈ E and let it
be computed as:

ψij = (τij)
α(ηij)

β . (3.3)

Furthermore, assume that V (s̃) is the set of vertices which are allowed to
be visited next given the partial solution s̃ that ends in vertex i. The ant then
chooses to traverse edge (i, j∗) ∈ E, j∗ ∈ V (s̃), such that

ψij∗ ≥ ψij ∀(i, j) ∈ E : j ∈ V (s̃), (3.4)

with probability d0. This is the deterministic rule which chooses the edge
which is the most attractive. The probabilistic rule is chosen with probability
(1− d0), and dictates that the ant chooses edge (i, j) ∈ E with probability

fij =





ψij∑
l∈V (s̃)

ψil
, if j ∈ V (s̃)

0, otherwise.

(3.5)

Moreover, for each path that is generated a 3-opt local search heuristic and
a vertex optimization procedure is applied. These algorithms are described in
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Sections 3.1.1 and 3.1.2. The HACS framework and the path generation algo-
rithm are outlined below in Algorithm 3.1 and 3.2, respectively.

Algorithm 3.1 HACS framework

1. Set k := 1 and set s̄ = 0m with C(s̄) =∞.

2. Set p := 1

3. Generate a solution skp according to solution generation algorithm, and apply local
search heuristics. If C(skp) < C(s̄) then set s̄ = skp .

4. If p < P then set p := p+ 1 and go to step 3.

5. Set k := k+ 1. Take the best solution found so far, s̄, and update the pheromone
levels as τij = (1− ρ)τij + ρ/C(s̄) for every (i, j) ∈ s̄.

6. If k < K then go to step 2. Otherwise return overall best solution that was found
and stop.

Algorithm 3.2 Path generation for HACS
1. Initialize the solution s̃ by setting the first vertex to the predetermined start vertex

and set k := 2.

2. Compute the set of vertices allowed to be sequenced next in the solution, V (s̃),
by taking into account the precedence constraints and the groups already visited
in s̃.

3. Let d ∈ [0, 1] be a uniformly distributed random number. If d ≤ d0 then choose
the edge (i, j) according to the deterministic rule in Equation 3.4, i.e. the edge
which is feasible and has the highest probability is chosen. If d > d0 choose to
traverse the edge (i, j) according to probabilistic rule in Equation 3.5.

4. If edge (i, j) is traversed then update the pheromone deposits according to τij :=
(1− ρ)τij + ρτ0 and add (i, j) to s̃.

5. If k < m set k := k + 1 and go to step 2. Otherwise return s̃.

3.1.1 Vertex Selection

Choosing an optimal vertex selection given a sequence of groups can be formu-
lated as a simple shortest path problem in a layered network [21]. Assume a
given feasible tour represented as a straight path of groups, i.e.
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σ = (Vp1 , . . . , Vpm , Vpm+1) (3.6)

with Vp1 = Vpm+1
= V1. Now take the shortest of the |V1| shortest paths

which run through the group sequence σ represented as a layered network where
each group’s vertices consists of one layer (see Figure 3.1).

Figure 3.1: A layered network representation of a feasible group sequence.
Shortest path through the network gives an optimal vertex selection.

There are known algorithms with polynomial worst case time complexity
which are able to solve the shortest path problem in a directed acyclic graph.
This makes vertex selection a relatively simple problem compared to group
sequencing. However, applying a full optimization of the vertex selection every
time a solution is modified is still quite cumbersome. Therefore, full vertex
selection optimization is only applied after a solution has been constructed and
after a local search heuristic is not able to improve the solution any further.

3.1.2 Path Preserving 3-opt

The heuristic which is applied after a feasible solution is generated in the HACS
algorithm (step 3 in Algorithm 3.1), is the path preserving 3-opt (PP3opt) de-
veloped for the SOP in [23].

Normally, a 3-opt heuristic takes a feasible tour, and attempts to remove 3



3.1. Hybridized Ant Colony System (HACS) 17

edges and add 3 edges, an operation known as a 3-exchange, such that feasibil-
ity is retained and the cost of the tour is reduced. For the symmetric TSP, one
can check both feasibility and eventual improvement in constant time for each
candidate 3-exchange. However, verifying precedence constraints and checking
for improvement with asymmetric costs increases this toO(n). The idea behind
the PP3opt heuristic is simple yet powerful. Since precedence constraints and
the asymmetric costs severely hamper the ability of traditional k-opt heuristics
to efficiently search most of the space of feasible exchanges, the PP3opt heuris-
tic limits the search to 3-exchanges which are efficiently verifiable, namely 3-
exchanges which preserve the orientation of the solution (see Figure 3.2). This
restriction of the search neighborhood together with the utilization of a special
labeling procedure for fast verification of the precedence constraints, enables
the PP3opt to retain the same worst case time complexity as a regular 3-opt
applied to the symmetric TSP.

Figure 3.2: The four different types of 3-exchange when edges (v1, v2),
(v3, v4), and (v5, v6) are removed. (A) is path preserving.
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When applied to the PCGTSP, small modifications are done in order to im-
prove vertex selection. If one ignores vertex selection completely, the improve-
ment which is computed for each 3-exchange in the PP3opt is a misrepresen-
tation of what the actual improvement is. Conversely, checking every possible
vertex selection for each candidate 3-exchange is very computationally expen-
sive. In order to achieve a middle ground, a local vertex improvement pro-
cedure is introduced. Assume that the edges (v1, v2), (v3, v4), and (v5, v6)

are removed, and some combination of edges which reconnect these vertices is
added. Then for each group g(vi), i = 1, . . . , 6, a new vertex is chosen such
that the cost of the tour is reduced. This is done sequentially in the order in
which the groups are visited in the tour without reconsidering vertex selections
of previous groups. The local vertex improvement procedure is applied after
every 3-exchange. When no more improving and feasible 3-exchanges can be
found, a full optimization of the vertex selection is performed.

3.2 Branch-and-Bound Algorithm

The branch-and-bound algorithm proposed in this thesis utilizes a novel branch-
ing strategy where vertex selection is never fixed. Instead of branching on the
vertices, which would correspond to enumerating all feasible tours, the algo-
rithm branches on the order of groups. In other words, the search tree starts
with a root node where only the starting group is fixed, and every branch corre-
sponds to which group is to be visited next. The idea is that since the number
of feasible group sequences must be less than or equal to the number of feasible
tours, this strategy will limit branching.

Subproblems are formulated by utilizing shortest path calculations for their
corresponding group sequence. Assume that a node in the branch-and-bound
search tree attempting to solve the PCGTSP instance P corresponds to the fixed
group sequence σ = (V1, . . . , Vpr ). The corresponding subproblem P(σ) is
then the PCGTSP instance P but constrained to find a tour which begins with
the group order defined by σ. A problem equivalent to P(σ) can be formulated
as following:

Definition 3.1. Given a PCGTSP instance P and a feasible group sequence
σ = (V1, . . . , Vpr ), define P1(σ) as a PCGTSP instance with
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• the same groups, vertices and edges as in P , with the exception of
Vp2 , . . . , Vpr−1 and all their associated vertices and edges,

• the same precedence constraints as inP (taking into account the removed
groups),

• all outgoing edges from V1 and all incoming edges to Vpr removed except
for (i, j) ∈ E : i ∈ V1, j ∈ Vpr ,

• and all edge costs cij for the edges (i, j) ∈ E : i ∈ V1, j ∈ Vpr , replaced
by the cost of the shortest path from i ∈ V1 to j ∈ Vpr when traversing
the groups Vp2 , . . . , Vpr−1 in the order defined by σ.

However, by separating the partial group sequence defined by σ from the
rest of the instance one can formulate a powerful pruning technique which uti-
lizes information from already processed tree nodes. This will be explained
further in Section 3.2.2. The problem of finding a feasible tour (with respect to
P(σ)) which only takes into account the edge costs of the path from Vpr to V1
may be defined as:

Definition 3.2. Given a PCGTSP instance P and a feasible group sequence
σ = (V1, . . . , Vpr ), define P2(σ) as a PCGTSP instance with

• the same groups, vertices and edges as in P , with the exception of
Vp2 , . . . , Vpr−1

and all their associated vertices and edges,

• the same precedence constraints as inP (taking into account the removed
groups),

• all outgoing edges from V1 and all incoming edges to Vpr removed except
for (i, j) ∈ E : i ∈ V1, j ∈ Vpr ,

• and all edge costs cij for the edges (i, j) ∈ E : i ∈ V1, j ∈ Vpr set to
zero.

Assume that z∗(P) is the optimal tour cost of a problem instance P and that
cmin(σ) is the cost of the shortest path from V1 to Vpr when traversing the groups
Vp2 , . . . , Vpr−1

in the order defined by σ. Then the following result holds:

Proposition 3.1. z∗(P(σ)) ≥ z∗(P2(σ)) + cmin(σ)
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Proof. The left hand side is the cost of a tour which begins with the sequence
of groups σ = (V1, . . . , Vpr ) and then traverses the rest of the groups of the
problem instance P . The left hand side is the cost of the optimal solution to the
same problem as P(σ) but with the vertex selection at V1 and Vpr relaxed. That
is to say, one allows the tour to enter and exit at different vertices in V1 and Vpr .
This can only reduce the cost of the tour.

Proposition 3.1 means that one can compute a valid lower bound for the
problem P(σ) by first computing a lower bound for P2(σ) and then adding the
cost of the shortest path which traverses σ.

The branch-and-bound tree is traversed by using a depth-first search in order
to conserve memory and to rapidly obtain complete solutions. Branching is
prioritized according to the rule

arg max
p∈M

|{q ∈M : (p, q) ∈ Π}|. (3.7)

The motivation for using this priority is two-fold. Firstly, groups which are
required to precede many of the other groups should have a higher probability of
occurring early in the optimal tour. Secondly, since the precedence constraints
are almost completely relaxed in the bounding methods which are considered
in this thesis, eliminating them may strengthen the lower bounds.

3.2.1 Bounding Methods

The bounding methods considered in this thesis are based on the minimum
spanning arborescence problem (MSAP) and the assignment problem (AP). The
MSAP is obtained by taking an ATSP and relaxing the vertex out-degree con-
straints which dictate that each vertex should have exactly one outgoing edge
connected to it. The resulting problem then becomes to find the minimum cost
directed spanning tree (arborescence) such that each vertex has exactly one in-
coming edge. The AP can be formulated by taking an ATSP and relaxing the
subtour elimination constraints which ensure that only one cycle occurs in the
solution (the tour itself). The result is the vertex disjoint cycle cover problem
which can be equivalently formulated as an AP. However, due to the prece-
dence constraints and the partitioned graph, the same relaxations applied to the
PCGTSP result in intractable NP-hard problems [28, 38].
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Since it is difficult to even define what a predecessor is in an arbores-
cence or a cycle cover, the precedence constraints are almost completely re-
laxed. The weak version of a PCGTSP instance P is the GTSP without prece-
dence constraints which is defined on the same graph as P but with all edges
(i, j) ∈ E : (g(j), g(i)) ∈ Π removed. The weak version of P is a relaxation
of P and therefore its optimal tour cost must be lower than that of P .

In order to obtain an unpartitioned graph, two different approaches are con-
sidered. The first one involves applying the Noon-Bean transformation [40] to
the weak version of a PCGTSP instance. The transformation takes an asym-
metric GTSP instance and defines an equivalent ATSP with n vertices. This is
achieved by defining a directed cycle within each group where the edges that
the cycle consists of have zero cost. Furthermore, if a group Vp with |Vp| = r

is given a cycle with the order (v1, . . . , vr) then the costs of all outgoing edges
from Vp are redefined as:





c(NB)
vij

= cvi+1j ∀j /∈ Vp, i = 1, . . . , r − 1,

c(NB)
vrj

= cv1j ∀j /∈ Vp.
(3.8)

In order to ensure that the edges within the cycle are the only zero cost
edges in the graph, edges not belonging to the cycle have their corresponding
cost offset by a value c(NB)

off . In other words, for every edge (i, j) ∈ E such that
(i, j) 6= (vi, vi+1), i = 1, . . . , r − 1, and (i, j) 6= (vr, v1), the corresponding
edge costs are defined as:

c(NB)
ij = cij + c(NB)

off . (3.9)

By using these edge costs and removing the groups (but retaining the set of
all vertices) one may define the following ATSP instance:

Definition 3.3. For any PCGTSP instance P , let NB(P) denote the ATSP in-
stance which arises when applying the Noon-Bean transformation [40] to the
weak version of P .

The second approach involves relaxing the vertex choice constraints which
enforce the rule that one must enter and exit the same vertex when visiting a
group. It has been shown in [39] that by doing this one may define each group
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as a single vertex and all edge costs as:

c(NC)
pq = min

(i,j)∈Vp×Vq

cij ∀(p, q) ∈M ×M : (q, p) /∈ Π. (3.10)

In other words, the following ATSP instance with m vertices is formulated:

Definition 3.4. For any weak version of a PCGTSP instance P , let NC(P)

be the ATSP instance defined on the graph GNC = (M,ENC) where ENC =

{(p, q) ∈ M ×M : (q, p) /∈ Π}. For every (p, q) ∈ ENC the edge costs are
defined as in Equation 3.10.

V1 V2

V3

V4

(a) P

V1 V2

V3

V4

(b) NB(P)

V1 V2

V3

V4

(c) NC(P)

Figure 3.3: Feasible tours in a GTSP instanceP and the transformations NB(P)
and NC(P).
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A couple of things should be noted about these transformed problems. If
applied to the same PCGTSP instance P , the problem NC(P) is always smaller
than or equal to the size of NB(P) in terms of the size of the graphs which these
problems are defined on (since m ≤ n). However, if z∗(·) is the optimal tour
cost of a problem instance, then the following relations between the problem
instances hold (given that z∗(NB(P)) has been appropriately adjusted for the
edge cost offsets c(NB)

off ):

z∗(P) = z∗(NB(P)) ≥ z∗(NC(P)). (3.11)

So while NC(P) is defined on a smaller graph than NB(P), it is a potentially
weaker formulation. Furthermore, NB(P) is a problem which is particularly ill-
suited for the AP bound since any group Vp with |Vp| > 1 defines a zero cost
cycle in the graph. Consider a PCGTSP instance P with |Vp| > 1, ∀p ∈ M .
Then the optimal cycle cover in the graph of NB(P) has zero cost which is a
trivial bound.

3.2.1.1 An Alternative Assignment Problem Bound

One can utilize a more general version of the problem NC(P) when computing
the AP bound by replacing the edge costs with so called L-paths:

Definition 3.5. For a PCGTSP instance P and for a fixed integer L ≥ 1, an
L-path is a feasible path (a path which could be a part of a feasible tour in
P) consisting of exactly L edges visiting L + 1 groups. Let dL(p, q) denote
the length of a shortest L-path whose start vertex is in p and whose end vertex
is in q. Let the problem NCL(P) be the same as NC(P) but with edge costs
c(NC)
pq = dL(p, q).

Note that d1(p, q) is simply the minimum cost of all edges from p to q and
the resulting problem NC1(P) is equal to NC(P). For every fixed L > 1

computing the L-path distances dL(p, q) can be done in polynomial time by
using a dynamic programming method. One can use the following result in
order to compute a bound for NCL(P):

Proposition 3.2. The minimum cost of a cycle cover in NCL(P) divided by L,
is a lower bound on the optimal tour cost of P .

Proof. See Paper II.
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3.2.2 History Utilization

By using the subproblem definition P2(σ) described in Definition 3.2, the his-
tory utilization pruning technique presented in [44] for the SOP can be general-
ized for the PCGTSP. In order to adequately describe the technique the follow-
ing equivalence relation among branch-and-bound tree nodes is useful:

Definition 3.6. For every pair (S, r), S ⊆ M , |S| > 1, and r ∈ S such that
(r, q) /∈ Π when q ∈ S, define T (S, r) to be the set of all tree nodes whose
group sequences begin at V1, traverse the groups in S (and no other groups),
and end at group Vr. Any tree nodes belonging to the same set T (S, r) are said
to be equivalent.

In the remainder of this section, consider an unprocessed tree nodeN (σ) ∈
T (S, r) with partial group sequence σ = (V1, . . . , Vr). Let P (σ)

ij be the shortest

path which leads from i ∈ V1 to j ∈ Vr through σ, and let c(P (σ)
ij ) denote its

cost. Also assume that P (S,r)
ij is the shortest path from node i ∈ V1 to node

j ∈ Vr which has been discovered during the branch-and-bound search, with
c(P

(S,r)
ij ) denoting its cost. If no tree node in T (S, r) has been processed then

c(P
(S,r)
ij ) =∞. The following result enables the pruning technique:

Proposition 3.3. If c(P (S,r)
ij ) < c(P

(σ)
ij ),∀(i, j) ∈ E; i ∈ V1, j ∈ Vr, then

there can’t exist a solution to the PCGTSP which includes σ and has smaller
total cost than a solution which includes P (S,r)

ij , (i, j) ∈ E : i ∈ V1, j ∈ Vr. In
other words, the tree node N (σ) can be pruned.

Proof. See Paper II.

If c(P (σ)
ij ) < c(P

(S,r)
ij ) for some (i, j) ∈ E : i ∈ V1, j ∈ Vr then the tree

nodeN (σ) ∈ T (S, r) cannot be pruned according to Proposition 3.3. However,
if another tree node N (σ̃) ∈ T (S, r) has been processed before N (σ), and the
lower bound zLB(P2(σ̃)) on the corresponding problem P2(σ̃) has been stored,
then one can obtain a lower bound for P(σ) directly by computing:

zLB(P(σ)) = zLB(P2(σ̃)) + min
(i,j)∈V1×Vr

c(P
(σ)
ij ). (3.12)

This follows from Proposition 3.1 and the fact that P2(σ) = P2(σ̃).



4. Approximating the
Multiple Agent PCGTSP

4.1 Hybridized Ant Colony System (HACS)
The HACS for the PCGmTSP largely follows the same procedure as for the
PCGTSP outlined in Section 3.1. Since every vertex edge (i, j) ∈ E is uniquely
associated with an agent, there is no need to specify the agent when an ant
chooses to traverse an edge. Therefore, the same procedures and quantities as
for the single agent case can be used.

However, it should be noted how V (s̃), the set of vertices which are feasible
to visit next given a partial solution s̃, is defined. Assume that each of the A
partial tours in s̃ end at the vertices i1, . . . , iA. Then a vertex j is in V (s̃) if the
following conditions hold:

• Vg(j) has not been visited in s̃.

• Λ(j) = Λ(ia) and (ia, j) ∈ E for some a = 1, . . . , A.

• All groups Vp such that (p, g(j)) ∈ Π have been visited in s̃.

The last condition might seem unnecessarily severe. After all, one may
formulate a rule where an agent is allowed to visit a group Vq as long as there is
at least one other agent which is able to visit all unvisited groups Vp : (p, q) ∈
Π. This rule might generate solutions with many delays but enables the HACS
algorithm to search a more diverse set of solutions. However, it turns out that

25
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such a rule often leads to cyclic solutions, and becomes harder and harder to
verify as the path generation algorithm progresses.

4.2 Local Search Procedure

For the single agent PCGTSP only one local search heuristic, PP3opt, is applied
to a single tour, and therefore the local search procedure could be formulated
as a simple descent search. For the multiple agent case, there are several chal-
lenges which motivate a revised local search procedure, such as several local
search heuristics with possible interactions, and the expensive cycle time com-
putation.

The different heuristics which are applied are: a slightly revised version of
PP3opt, String Move which tries to move a part of an agent’s tour to another
agent, and Delay Removal which attempts to eliminate delays from a solution
by moving groups that are involved in a delay forwards or backwards in their
respective tour. Details around their implementations will be described in the
coming sections.

The first thing which is modified in the local search procedure is the im-
provement criterion for the different heuristics. Normally, an improvement is
defined with respect to a problem’s objective, but using a reduction in cycle
time as a measure of improvement may lead to undesired deadlocks. Assume
that sold is a solution given to a local search heuristic and that snew is the same
solution after being manipulated. Let T (s) = (T1(s), . . . TA(s)) be a vector of
the A individual agents’ tour lengths of a solution s, sorted in ascending order
(T1(s) is the shortest and TA(s) the longest). One may then define the following
improvement measure:

I(sold, snew) = LA(T (sold),T (snew)) (4.1)

where for all a = 1, . . . , A, and x = (x1, . . . , xA), y = (y1, . . . , yA), the
recursive function La : RA× RA → R is defined as

La(x,y) =

{
La−1(x,y), if xa = ya and a > 1

xa − ya, otherwise.
(4.2)

The improvement measure I(·, ·) will naturally never consider an increase
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in cycle time as an improvement but will accept some cases of constant cycle
time while reducing the length of an agent’s tour as an improvement.

Because of possible interactions between the different local search heuris-
tics, a general framework around them is implemented. Given a solution s,
let N3opt(s), NSM(s), and NDR(s) be the neighborhoods of the PP3opt, String
Move, and Delay Removal heuristics respectively. Given a feasible initial solu-
tion s0 and a maximum number of iterations kmax, the framework for the local
search procedure can then be outlined as follows:

Algorithm 4.1 Local Search Framework
1. Set k := 1 and p := 0.

2. Try to find a solution s3opt ∈ N3opt(sk) such that I(sk, s3opt) > 0. If
I(sk, s3opt) > p, set p := I(sk, s3opt) and sk+1 := s3opt.

3. If p = 0, try to find a solution sSM ∈ NSM(sk) such that I(sk, sSM ) > 0. If
I(sk, sSM) > p, set p := I(sk, sSM) and sk+1 := sSM.

4. Try to find a solution sDR ∈ NDR(sk) such that I(sk, sDR) > 0. If I(sk, sDR) >
p, set p := I(sk, sDR) and sk+1 := sDR.

5. If k = kmax or p = 0 then terminate and return sk. Otherwise set k := k + 1,
p := 0, and go to step 2.

Note that the String Move heuristic is only invoked if the PP3opt is not
able to find an improving solution, while the Delay Removal heuristic is always
executed.

Since computing the actual improvement for every solution in the local
search neighborhoods is very expensive, heuristic specific estimations of the
individual agents’ tours will be used instead. The estimations are then used in
order to cull the number of solutions which are to be fully analyzed. Given a
solution s̃ and a max number of solutions to be evaluated jmax, then a general
procedure for finding an improving solution within a neighborhood N(s̃) is:
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Algorithm 4.2 Neighborhood Search

1. For each s ∈ N(s̃), let Î(s̃, s) be an estimation of I(s̃, s) and add s to a list
which is sorted according to the estimations in descending order. So, if the list
has |N(s̃)| elements then Î(s̃, sk) ≥ Î(s̃, sk+1) holds for k = 1, . . . , |N(s̃)|.

2. Set k := 1.

3. Compute the actual improvement I(s̃, sk) by computing the longest path in the
disjunctive graph representation of sk. If I(s̃, sk) > 0 then terminate and return
sk.

4. If k = jmax, then terminate and return s̃. Otherwise, set k := k+ 1 and go to step
3.

It is important to note that the list of solutions sorted according to the esti-
mated improvements only give a slight indication of which solutions are good.
It is entirely possible that all of the solutions in the list are non-improving or
even infeasible.

4.2.1 Vertex Selection

In order to optimize vertex selection one can apply the same procedure as de-
scribed in Section 3.1.1 to each individual tour in a PCGmTSP solution. The
vertex selection algorithm is always applied before a solution is fully analyzed
by computing the longest path in the disjunctive graph. Other, more local, ver-
tex selection improvements are applied within the local search heuristics.

4.2.2 Path Preserving 3-opt

The PP3opt is only modified such that it searches all A tours for feasible path
preserving 3-exchanges. The estimation of improvement for the neighborhood
search are, as usual, based on the sums of costs of the edges exchanged but the
delays directly caused by the 3-exchange are also taken into account. A path
preserving 3-exchange may be visualized as two paths within the tour trading
places (see Figure 4.1).
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Figure 4.1: A path preserving 3-exchange for a tour visualized as a path. Top
path represents the tour before the exchange, and the bottom one after the ex-
change.

Assume that a 3-exchange for the tour of agent a in solution s is being
evaluated. If a vertex vi in “path_left” is involved in an inter agent constraint,
(g(vi), q) ∈ Π and Λ(s, q) 6= a, then a delay may be incurred in the tour of
agent Λ(s, q). Similarly, if a vertex vi in “path_right” is involved in an inter
agent constraint, (p, g(vi)) ∈ Π and Λ(s, p) 6= a, then a delay may be incurred
in the tour of agent a. These types of delays are the only ones that are considered
when estimating the improvement while delays caused indirectly due to chain
effects are ignored.

4.2.3 String Move

The String Move heuristic is based on a known VRP heuristic [11] adapted to
handle the precedence constraints and the vertex selection. It attempts to move
a sequence of groups σ = (Vp1 , . . . , Vpr ) from the tour of one agent af to the
tour of another agent at. This is a path preserving operation, and therefore the
same labeling procedure for fast verification of the precedence constraints used
in the PP3opt heuristic can be used here.
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Figure 4.2: A string move. Edges with an "X" over them are removed while
dashed edges are added.

Since vertices are unique to each agent, the choice of vertices within σ needs
to be determined when moving it to another agent’s tour. This is done in a
greedy fashion. Assume that σ is removed from between the vertices vprv and
vnxt in the tour of agent af and added to the tour of agent at between the vertices
vout and vinc. Also assume that that σt = (v1, . . . , vr) is the sequence of vertices
to be chosen to visit when σ is moved to at. So the edges (vprv, v1), (vr, vnxt) and
(vout, vinc) are removed, while the edges (vout, v1), (vr, vinc), and (vprv, vnxt) are
added. The String Move heuristic chooses the vertex v1 ∈ Vp1 with Λ(v1) = at

which minimizes:

λ1 = c̃voutv1 + c̃v1vinc . (4.3)

More generally, for i = 2, . . . , r, the vertex vi ∈ Vpi : Λ(vi) = at is chosen
such that

λi = λi−1 + c̃vi−1vi + c̃vivinc − c̃vi−1vinc (4.4)

is minimized.
The lengths of the agents’ tours are estimated by removing the cost of
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traversing σ in the tour of agent af and adding the cost of traversing σt in the
tour of at. Furthermore, delays incurred by moving σ are also estimated and
taken into account. These estimations are only based on the time shifts directly
caused by moving σ.

4.2.4 Delay Removal

The Delay Removal heuristic is based on a known method for job shop schedul-
ing problems [10]. It takes a solution s, identifies delays caused by inter agent
constraints (p, q) ∈ Π, and tries to reduce them. This is done by attempting to
move Vp backwards to an earlier place in the tour of agent Λ(s, p) while moving
Vq forwards to a later place in the tour of Λ(s, q) such that the delay is reduced,
and the solution remains feasible and is improved.

The estimation of the tour lengths takes into account the reduction in the
delay, the cost of the edges which are exchanged in order to move Vp backwards
and Vq forwards, and eventual new delays caused directly by the edge exchange.
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5. Results

In this chapter some updated results for the HACS approach to the PCGTSP
is presented. Many optimizations of the code and improved compiler settings
since the results presented in Paper I has increased the speed considerably.

The problem instances “cmm00x” are derived from industrial instances of
coordinate measuring machine problems. Problem instances named “020.XXX”
are derived from SOP instances in the same way as outlined in Paper II. In Table
5.1 the results measured over 10 trial runs are presented. The column “Mean
± SD” shows the mean solution value and the standard deviation, and “T (s)”
is the mean execution time. The optimality gap is the mean solution value (M)
compared to the best known lower bound (LB) and is calculated as (M−LB)/M.
The following parameter values are used in the HACS algorithm:

• α = 1, β = 2 (attractiveness weighted towards edge length)

• ρ = 0.1 (evaporation parameter)

• d0 = 0.9 (deterministic rule probability)

• τ0 = 0.5 (initial pheromone deposits)
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Table 5.1: Updated results for the HACS heuristic.

Instance m n
HACS Best known

Mean ± SD Gap T (s) UB LB
cmm001 12 14 49.1 ± 0.0 0.000 0.0 49.1 49.1
cmm002 15 24 20.7 ± 0.0 0.019 0.0 20.3 20.3
cmm003 17 35 20.3 ± 0.1 0.015 0.1 20.0 20.0
cmm004 90 215 47.5 ± 0.7 0.516 2.5 46.1 23.0
cmm005 173 404 182.1 ± 2.7 0.594 11.2 178.2 74.0
020.br17.10 17 88 44.8 ± 0.8 0.011 0.2 44.3 44.3
020.br17.12 17 92 44.2 ± 0.1 0.002 0.2 44.1 44.1
020.ESC12 13 64 1389.8 ± 0.0 0.000 0.1 1389.8 1389.8
020.ESC25 26 134 1388.2 ± 11.7 0.004 0.4 1383.1 1383.1
020.ESC47 48 245 1204.4 ± 46.7 0.144 1.5 1062.6 1030.4
020.ESC63 64 350 50.5 ± 0.1 0.018 3.5 50.4 49.6
020.ESC78 79 414 14936.1 ± 47.3 0.227 4.0 14425.0 11540.0
020.ft53.1 53 282 6265.5 ± 49.4 0.038 1.9 6197.4 6024.8
020.ft53.2 53 275 6940.6 ± 26.3 0.075 1.8 6717.8 6420.8
020.ft53.3 53 282 8863.2 ± 109.9 0.074 1.6 8718.3 8209.6
020.ft53.4 53 276 11973.5 ± 71.5 0.013 1.6 11823.2 11823.2
020.ft70.1 70 346 32996.3 ± 113.3 0.047 3.4 32794.7 31450.4
020.ft70.2 70 351 34381.7 ± 314.2 0.067 3.2 33613.7 32080.8
020.ft70.3 70 347 36129.4 ± 415.3 0.058 2.9 35532.5 34028.0
020.ft70.4 70 353 45038.1 ± 167.2 0.049 2.7 44847.0 42824.0
020.kro124p.1 101 515 34047.8 ± 375.0 0.089 8.5 33509.7 31010.0
020.kro124p.2 101 525 35775.1 ± 571.9 0.109 8.0 34775.7 31873.0
020.kro124p.3 101 535 43362.4 ± 508.9 0.190 7.4 42510.8 35123.0
020.kro124p.4 101 527 65755.2 ± 758.5 0.112 6.6 64491.5 58417.0
020.p43.1 43 204 22613.8 ± 17.6 0.005 1.1 22574.9 22512.0
020.p43.2 43 199 22875.8 ± 7.1 0.004 1.0 22854.1 22784.0
020.p43.3 43 212 23190.9 ± 12.0 0.005 1.0 23174.7 23068.0
020.p43.4 43 205 66956.5 ± 42.6 0.002 0.9 66848.4 66848.4
020.prob42 41 208 209.9 ± 4.4 0.074 1.0 202.0 194.4
020.prob100 99 510 1359.7 ± 39.1 0.312 7.2 1291.0 936.0
020.rbg048a 49 255 287.2 ± 0.6 0.022 1.4 286.4 280.8
020.rbg050c 51 259 384.0 ± 1.5 0.027 1.5 380.7 373.6
020.rbg109a 110 573 862.3 ± 4.8 0.037 7.8 856.9 830.4
020.rbg150a 151 871 1448.4 ± 5.8 0.033 19.5 1440.1 1400.0
020.rbg174a 175 962 1681.5 ± 4.0 0.033 27.2 1678.1 1626.4
020.rbg253a 254 1389 2440.6 ± 8.0 0.033 86.4 2430.2 2360.0
020.rbg323a 324 1825 2617.2 ± 10.1 0.040 235.6 2601.4 2512.0
020.rbg341a 342 1821 2248.3 ± 12.6 0.086 246.5 2237.3 2054.4
020.rbg358a 359 1967 2200.9 ± 15.3 0.075 301.9 2178.6 2036.0
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Table 5.1: Updated results for the HACS heuristic (continued).

Instance m n
HACS Best known

Mean ± SD Gap T (s) UB LB
020.rbg378a 379 1974 2421.5 ± 14.4 0.072 322.3 2392.7 2247.2
020.ry48p.1 48 256 13308.5 ± 72.9 0.050 1.5 13151.5 12644.0
020.ry48p.2 48 250 14003.5 ± 123.1 0.082 1.4 13804.6 12859.2
020.ry48p.3 48 254 16901.2 ± 184.8 0.077 1.3 16612.1 15592.0
020.ry48p.4 48 249 26275.0 ± 146.6 0.011 1.2 25980.0 25980.0
Averages 13754.0 ± 197.7 0.081 30.5

The results show a significant improvement in execution time compared to
the results in Paper I. For example, cmm005 took over 600 seconds on average
in Paper I and is now 50 times faster. This makes the HACS algorithm better
than the currently used PCGTSP heuristic in IPS with respect to both solution
quality (by over 12% on average for cmm005) and execution time.

On average the mean solution value is at least within 10% of the optimal
solution, and the average relative standard deviation is within 2%. For the
instances cmm004 and cmm005 there is probably a lot of slack in the best
known lower bound estimation and therefore the gap is quite large. For some
of the SOP derived problem instances, such as 020.ESC78, 020.kro124p.3, and
020.prob100, the algorithm is shown to perform significantly worse than aver-
age. Further investigation of why these problem instances are harder to solve is
needed.
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6. Conclusions and Future
Work

The heuristic algorithm presented in this thesis is, on average, able to produce
good solutions for single robot stations within a reasonable time frame. The
exact algorithm is able to solve some of the instances which are smaller and
more dense with precedence constraints. The evaluation of the bounding meth-
ods shows that the assignment problem bound is more efficient than the bound
obtained by solving a minimum spanning arborescence problem. The bound
obtained from the assignment problem based on L-paths is shown to be of vary-
ing quality depending on the data but does not seem to consistently give better
bounds with increasing values on L.

Because of a lack of exact methods and valid lower bounds for the test
instances in the multiple agent case, assessment of the quality of solutions pro-
duced by the HACS algorithm is not possible. Comparison with the current
solver in the IPS software shows an improvement around 2% on average. It can
however be concluded that the calculations of the makespan and delays become
more cumbersome as the number of precedence constraints increases. In par-
ticular, the local search procedure which evaluates many candidate solutions in
the local search neighborhoods becomes significantly slower.

While the HACS algorithm for the single agent PCGTSP is proven to pro-
duce acceptable results on average, vertex selection improvement which is now
only considered fairly scarcely in the algorithm process could be incorporated
more. For example, some estimation of vertex selection when evaluating a fea-
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sible 3-exchange could be considered.
The branch-and-bound algorithm for the PCGTSP may be improved in many

ways. The bounding methods that are used involve defining simpler problems
where the precedence constraints are almost completely relaxed. This weakens
the lower bounds considerably since the precedence constraints are often piv-
otal in defining the feasible region of the PCGTSP. To remedy this, one needs
to take the precedence constraints into account in the bounding process. One
of the aims of the L-paths were to reintroduce them and the vertex selection
constraints into the bounding method but instances with vertices which are par-
ticularly cheap to visit made the L-distances very short, and therefore the lower
bounds became quite weak. The L-distances could be strengthened by utilizing
a modified branching strategy where cheap vertices are identified and branched
on. Finally, dualization of constraints coupled with a subgradient method could
further strengthen the lower bounds. Even though initial tests with dualization
of the vertex degree constraints coupled with a simple subgradient method did
not give very good results, more sophisticated methods may prove to be suc-
cessful. Strengthening the bound at the root could be particularly beneficial
since this gives a better estimation of the quality of the best feasible solution
found by the algorithm.

In order to better assess the solutions produced by the HACS algorithm for
the PCGmTSP, there is a need to develop exact methods for obtaining optimal
solutions or lower bounds. While the algorithm seems to consistently produce
better solutions when the local search procedure is allowed to more thoroughly
explore its neighborhood, the time it requires to do so increases considerably for
problem instances where many inter agent constraints arise. To adapt, one could
opt for a more restricted local search procedure in cases with many inter agent
constraints, or even forgo the local search procedure completely and instead
only rely on the explorative nature of the ant path generation itself.



7. Summary of Publications

Paper I - An industrially validated CMM inspection process
with sequence constraints
Authors: R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson, R.
Söderberg.

This conference paper presents a heuristic approach for approximating the sin-
gle agent PCGTSP based on the Hybridized Ant Colony System algorithm [23].
It also gives more detailed insight on how the PCGTSP arises in industrial
applications, in particular in the process of computer generated coordinate-
measuring machine programs.

Paper II - Branch-and-bound for the Precedence Constrained
Generalized Traveling Salesman Problem
Authors: R. Salman, F. Ekstedt, P. Damaschke.

This paper showcases the results of an exact branch-and-bound based approach
to the single agent PCGTSP. Different bounding methods are evaluated and a
novel branching technique which utilizes dynamic programming is presented.
A pruning technique previously developed for the SOP is also generalized and
applied to the PCGTSP. This manuscript has been submitted to Discrete Opti-
mization.
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Paper III - A Hybridized Ant Colony System Approach to
the Precedence Constrained Generalized Multiple Traveling
Salesman Problem
Authors: F. Ekstedt, R. Salman, D. Spensieri.

This paper extends the work presented in Paper I to the multiple agent case.
A more general local search procedure is incorporated into the Hybridized Ant
Colony System algorithm and more local search neighborhoods are explored.
This manuscript has yet to be submitted for publication at the time of printing
this thesis.
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