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Cancer evolution and progression are shaped by cellular interactions and

Darwinian selection. Evolutionary game theory incorporates both of these

principles, and has been proposed as a framework to understand tumour cell

population dynamics. A cornerstone of evolutionary dynamics is the replicator

equation, which describes changes in the relative abundance of different cell

types, and is able to predict evolutionary equilibria. Typically, the replicator

equation focuses on differences in relative fitness. We here show that this frame-

work might not be sufficient under all circumstances, as it neglects important

aspects of population growth. Standard replicator dynamics might miss criti-

cal differences in the time it takes to reach an equilibrium, as this time also

depends on cellular turnover in growing but bounded populations. As the

system reaches a stable manifold, the time to reach equilibrium depends on

cellular death and birth rates. These rates shape the time scales, in particular,

in coevolutionary dynamics of growth factor producers and free-riders. Repli-

cator dynamics might be an appropriate framework only when birth and

death rates are of similar magnitude. Otherwise, population growth effects

cannot be neglected when predicting the time to reach an equilibrium, and

cell-type-specific rates have to be accounted for explicitly.
1. Introduction
The theory of games was devised by von Neumann & Morgenstern [1], and

according to Aumann [2], game theory is an ‘interactive decision theory’, where

an agent’s best strategy depends on her expectations on the actions chosen by

other agents, and vice versa. As a result, ‘the outcomes in question might have

been intended by none of the agents’ [3]. To rank and order strategies, and to opti-

mize individual payoffs, different systems to systematically identify equilibria

have been defined. Most famously, the Nash equilibrium is a set of strategies

such that no single agent can improve by switching to another strategy [4]. This

concept includes mixed equilibria, which describe probability distributions over

strategies. Such equilibrium concepts in game theory cover various kinds of pat-

terns of play, i.e. simultaneous, non-simultaneous and asymmetric strategies [5].

This rich and complex framework allows for a wide application of game theory

beyond economics, famously in ecology and evolution [6]. In biological context,

and especially in evolutionary game theory, the focus has been on simultaneous

and symmetric strategic interactions in evolving populations [7].

Evolutionary game theory replaces the idea of choice and rationality by

concepts of reproduction and selection in a population of evolving individuals

[8] and was conceived to study animal conflict [9]. Behavioural phenotypes are

hardwired to heritable genotypes. Without the possibility of spontaneous

mutation events, offspring carry the parent strategy. Evolutionary games have

also been used extensively to study learning and pairwise comparison-based

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2017.0342&domain=pdf&date_stamp=2017-09-27
mailto:gerlee@chalmers.se
mailto:philipp.altrock@moffitt.org
http://orcid.org/
http://orcid.org/0000-0001-7731-3345
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170342

2
changes in strategy abundance in populations of potentially

erroneous players [10–12].

Selection in evolutionary games is based on the assumption

that payoff translates into Darwinian fitness, which is a measure

for an individual’s contribution to the pool of offspring in the

future. Complex deterministic dynamical systems arise when

one considers very large populations of reproducing individ-

uals. The most prominent example for such a system is the

replicator equation [13], which focuses on the relative abun-

dance of each strategy. The replicator equation does not model

population growth specifically, but rather describes changes in

relative abundances. Existence and stability of fixed points in

these dynamical systems depend on the payoffs [14], and on

the choice of fitness function [15]. In the study of animal behav-

iour, the precise measurements of payoffs, as observed from

individuals’ behaviours, is difficult. Milinski et al. [16] deter-

mined all but one payoff parameter precisely, in order to

observe tit-for-tat strategies in repeated Prisoner’s Dilemma

games in fish. Kerr et al. showed that Escherichia coli bacteria

can be observed to evolve according to rock–paper–scissors

type of interactions, if cellular dispersal is minimal. A recent

expansion of interesting theoretical considerations that apply

evolutionary games to biology [17] occurred because of the abil-

ity to assess many problems in ecological and evolutionary

population dynamics at least in qualitative terms, i.e. by predict-

ing and ranking evolutionary equilibria, how population-wide

coexistence can emerge from apparent individual conflict, or

how fast transitions between equilibria occur.

Tumour cell populations, including cells of the tumour

microenvironment, are part of a complex ecosystem [18],

which can have consequences for therapeutic outcomes [19].

At the same time, it has been more widely recognized that

Darwinian selection plays a key role in cancer [20]. Given the

appreciated amount of both genetic and phenotypic heterogen-

eity in tumour cell populations [21], evolutionary games have

become more widely used as a means to theoretically model

tumour evolution, especially after tumour initiation [22].

Prominent examples of recent applications of replicator

equations in cancer are concerned with the avoidance of the tra-

gedy of the commons, where a sub-population of tumour cells

produces a ‘tumour public good’ in form of an insulin-like

growth factor [23], in form of glycolytic acid and vascular

endothelial growth factor [24], or modelling the dynamic equi-

librium between lactate respiration and glycolysis in tumour

cells [25]. Such non-autonomous effects between tumour

cells had been proposed some time ago [26], and non-cell-

autonomous growth rates were recently measured empirically

[27]. Similar findings and future challenges in this field have

been summarized by Tabassum & Polyak [18].

We here focus on the time it takes to reach an equilibrium in

different approaches to model deterministic evolutionary

game dynamics. In particular, we focus on differences between

logistic growth and the replicator dynamics. We show that the

time to get arbitrarily close to an equilibrium, which we here

call the 1-fixation time, might critically depend on the under-

lying cellular birth and death rates. We focus on two

coevolving tumour cell populations, and present a discussion

of the dynamics between growth factor producers C1 and

free-riding non-producers C2. In the simplest setting, we can

assume that these closely related cell types experience popu-

lation doubling rate a, and that the tumour public good,

produced by C1 cells, has a linear positive effect on cellular

birth rates in form the additive benefit that scales with the
doubling rate ba, but bears a production cost k. The respective

game can be recast in the payoff matrix

C1 C2

C1

C2

aþ ba� k a� k

aþ ba a

� �
:

ð1:1Þ

We assume that the linear benefit of the public good arises

through growth factor diffusion that occurs on a time scale

much faster than the average times between cell divisions. In

a well-mixed population with fraction u of C1 cells, the fitness

functions of this simple game are then be given by

f1(u) ¼ a(1þ b u)� k

and f2(u) ¼ a(1þ b u):

)
ð1:2Þ

Our analysis in this paper is based on cell-type-specific dou-

bling rates, and in the case of logistic growth, also on the

apoptotic rates. We are interested in the question of when repli-

cator dynamics, that typically only models changes in relative

abundance as a result of fitness differences f1(u) 2 f2(u), pre-

dicts similar 1-fixation times as a logistic growth dynamics,

and when this is not the case. The main idea is that the replica-

tor dynamics neglects apoptotic rates, but that these rates in

turn influence the time to reach an equilibrium in a co-growing

and coevolving heterogeneous cell population.
2. Methods
In this section, we introduce our model of bounded frequency-

dependent growth. We define our basic deterministic framework

of two co-growing cancer cell populations, derive dynamic

equations for the fraction of one clone and the total size of the

population, and then derive an expression for the stable manifold

of the system.
2.1. Logistic growth model
The population is assumed to consist of two types, and we denote

their absolute numbers by x1 and x2. The carrying capacity is

denoted by K, which we consider to be a constant. It is possible

to model it as a function of the strategies present in the population

[28,29]. The growth rate of each type is assumed to depend on the

fraction of type 1 cells u ¼ x1/(x1 þ x2) according to growth func-

tions f1(u) for type 1 and f2(u) for type 2. Lastly, cells of both

types die at a constant rate m. Taken together this implies that we

get the following system of coupled logistic equations that describe

co-growth and coevolution of the two cell types:

dx1(t)
dt
¼ f1(u)x1 1� x1 þ x2

K

� �
� m1x1

and
dx2(t)

dt
¼ f2(u)x2 1� x1 þ x2

K

� �
� m2x2,

9>>=
>>; ð2:1Þ

defined for x1,x2 [ Rþ. In the following analysis, we first assume

m1,2 ¼ m and f1,2(u) . m for u [ [0, 1], i.e. the net growth rate of

both cells types will always be positive. In the second part of the

discussion, we will relax the assumption of equal rates and turn

to the more general case of a1 = a2, m1 = m2, as we analyse the

system implementing previously measured cellular rates of pro-

liferation and apoptosis. Note that the logistic growth model

emerges from a spatial setting that includes cell movement if cell

migration occurs on a much faster time scale compared to cell div-

ision. It has been shown that in this case spatial correlations are

negligible and the population dynamics can be described using a

logistic growth equation [30]. In this parameter regime, it is also

justified to assume that interactions that influence the rate of cell

http://rsif.royalsocietypublishing.org/


r

3
division become independent of specific local configurations, and

depend solely on the frequency of different cell types.
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2.2. Analysis
To simplify the analysis of the system (2.1), we apply the

following change of variables:

u ¼ x1

x1 þ x2

and s ¼ x1 þ x2,

9=
; ð2:2Þ

where u is the fraction of type 1 cells and s is the total population

size. By differentiating u and s with respect to time we obtain the

following system of ODEs:

du
dt
¼ (f1(u)� f2(u))u(1� u) 1� s

K

� �

and
ds
dt
¼ (f1(u)� f2(u))su 1� s

K

� �
þ f2(u)s 1� s

K

� �
� ms,

9>>=
>>;
ð2:3Þ

defined on u [ [0, 1] and s [ Rþ. We note that in the case when s
is small compared with the carrying capacity K, such that s/K � 0

the system reduces to

du
dt
¼ (f1(u)� f2(u))u(1� u)

and
ds
dt
¼ f1(u)suþ f2(u)s(1� u)� ms,

9>>=
>>; ð2:4Þ

and we see that the equation for u is independent of the popu-

lation size s and that u changes according to the standard

replicator equation [13,14]. We will now proceed to a more gen-

eral analysis of our model.
2.2.1. Fixed points
By solving the equations

(f1(u)� f2(u))u(1� u) 1� s
K

� �
¼ 0

and (f1(u)� f2(u))su 1� s
K

� �
þ f2(u)s 1� s

K

� �
� ms ¼ 0,

9>=
>;
ð2:5Þ

we see that for all growth functions f1 and f2 the system has the

following set of fixed points on the boundary (see appendix A

for details):

(1) (u1, s1) ¼ (0, 0) with corresponding eigenvalues l1 ¼ f1(0) 2

f2(0) and l2 ¼ f2(0) 2 m . 0, which is unconditionally

unstable,

(2) (u2, s2) ¼ (1, 0) with corresponding eigenvalues l1 ¼ f1(1) 2

f2(1) and l2 ¼ f1(1) 2 m . 0, which is unconditionally

unstable,

(3) (u3, s3) ¼ (0, K(1 2 m/f2(0)) with corresponding eigenvalues

l1 ¼ (m/f2(0))( f1(0) 2 f2(0)) and l2 ¼ m 2 f2(0) , 0, which is

stable iff f1(0) , f2(0), and

(4) (u4, s4) ¼ (1, K(1 2 m/f1(1)) with corresponding eigenvalues

l1 ¼ (m/f1(1))( f2(1) 2 f1(1)) and l2 ¼ m 2 f1(1) , 0, which is

stable iff f2(1) , f1(1).

Here, fixed points 1 and 2 are trivial in the sense that they

correspond to a system void of cells. Fixed points 3 and 4 corre-

spond to monoclonal populations and are stable if the resident

type has a larger growth rate compared with the invading type.

If there are points u* [ (0, 1) such that f1(u*) ¼ f2(u*), then

these give rise to fixed points (u*, K(1 2 m/( f1(u*)u* þ f2(u*)(1 2

u*)))), which are stable if f 01(u*) 2 f 02(u*) , 0 (see appendix A for

proof).

We note that the stability criteria for the non-trivial fixed

points at u ¼ 0 and 1, including potential internal fixed points,
are identical to those of the two-type replicator equation with

payoff functions f1 and f2.

2.2.2. Invariant manifold
We now focus our attention to the dynamics when the system is

close to saturation (s � K ) with the aim of obtaining a simpler

description of how the frequency u(t) changes in time. This can

be achieved since the phase space contains a stable invariant mani-

fold that connects all the non-trivial steady states. The invariant

manifold is simply a curve s ¼ h(u), which attracts the dynamics

and once the system enters the manifold it will not leave it.

This implies that the dynamics along the manifold is effectively

one-dimensional, and can be captured with a single ODE for u(t).
If we write the invariant manifold as a function s ¼ h(u),

then, since it is invariant it must be tangent to the vector field

(du/dt, ds/dt) at every point. This implies the condition

ds
dt
¼ h0(u)

du
dt

ð2:6Þ

which is known as the manifold equation [14,31]. By substituting

du/dt and ds/dt from (2.3) and letting s ¼ h(u), we obtain the

following equation for h(u):

ð f1ðuÞ � f2ðuÞÞhðuÞu 1� hðuÞ
K

� �

þ f2ðuÞhðuÞ 1� hðuÞ
K

� �
� mhðuÞ

¼ h0ðuÞ ð f1ðuÞ � f2ðuÞÞuð1� uÞ 1� hðuÞ
K

� �� �
:

This equation is a nonlinear ordinary differential equation

and in order to solve it we express h(u) as a series expansion in

the death rate m, which typically is a small parameter

h(u) ¼
X1
i¼0

ai(u)mi, ð2:7Þ

where ai(u) are coefficients that depend on u. We insert

this ansatz into equation (2.6) and equate powers of m to

solve for the ai’s. We do this for i ¼ 0, 1, 2, introduce
�f (u) ¼ uf1(u)þ (1� u)f2(u), and get

a0ðuÞ ¼K,

a1ðuÞ ¼ �
K

uf1ðuÞ þ ð1� uÞf2ðuÞ
¼ � K

�f ðuÞ

and a2ðuÞ ¼
Kuð1� uÞð f1ðuÞ � f2ðuÞÞð f1ðuÞÞ

�f ðuÞ4

þ uf 01ðuÞ þ ð1� uÞf 02ðuÞÞ � f2ðuÞ
�f ðuÞ4

:

Numerical comparison shows that the invariant manifold is closely

approximated by the first two terms, and we therefore drop all

higher order terms and approximate the invariant manifold with

~h(u) ¼ K 1� m

�f (u)

� �
: ð2:8Þ

Note here that the complete solution would be more complicated,

as can be seen from the fact that this first order expression does not

solve the original manifold equation.

The dynamics along the invariant manifold are given by

replacing s with ~h(u) in (2.3), and we get the following expression

(to first order in m):

du
dt
¼ ð f1ðuÞ � f2ðuÞÞuð1� uÞ 1� S

K

� �

¼ m
�f ðuÞ

ð f1ðuÞ � f2ðuÞÞuð1� uÞ: ð2:9Þ

With the unusual prefactor that is inversely proportional to the

total fitness of the population, �f (u), this equation for the

http://rsif.royalsocietypublishing.org/
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frequency of type 1 cells is similar to the version of the replicator

equation introduced my Maynard-Smith [32], and the one

derived by Traulsen et al. [33] (if we disregard the demographic

noise term). The difference compared to previous derivations is

the factor m, which implies that the rate of change of u along

the invariant manifold is proportional to the death rate.
 typublishing.org
J.R.Soc.Interface

14:20170342
3. Results and discussion
It is often argued that prefactors to the replicator equation are

irrelevant since the dynamic flow and fixed points remain

unchanged. However, the time scale of selection leading to

an equilibrium might be altered. In this section, we explore

the difference between the standard replicator equation and

the logistic model considered here. We examine this relation-

ship in the context of a tumour public goods game, in which

some cells produce a public good at a cost, rendering a

benefit to all cells in the population.

3.1. Diffusing public goods game
Autocrine production of growth factors is a common feature of

cancer cells, and has previously been modelled using evolution-

ary game theory [23,34]. Let us now consider two cell types that

only differ in one aspect. Type 1 cells produce growth factor at a

cost k. Type 2 cells do not produce the growth factor and are

termed free-riders. Otherwise, both cell types have the same

growth rates, which are a linear function of growth factor avail-

ability. We assume that the growth factor production rate is

given by r and that the growth factor is bound and internalized

by both cell types at rate d.

Two largely simplifying assumptions are that, first, we are

describing a well-mixed system and that, second, the growth

factor concentration G is assumed to be uniform in space. We

rely on the first assumption for mathematical convenience, as

otherwise we would have to resort to non-analytical, agent-

based or hybrid modelling [35]. Secondly, additional growth

factor provision was shown to be rapid and leading to high

levels of tumour public good, provided that the respective gen-

etic promoter was strong [27]. In a similar study by Cleary et al.
[36], who studied Wnt1-based cooperative tumour evolutionary

dynamics, aberrant expression of the cooperative signalling

molecule was observed on a tumour wide scale. Thus, under

these simplifying but productive assumptions, the growth

factor dynamics obeys the equation

dGðtÞ
dt
¼ rx1 � dGðx1 þ x2Þ:

Further, we assume that the growth factor dynamics occur

on a fast time scale compared to changes in x1 and x2. This

implies that

dGðtÞ
dt
¼ rx1 � dGðx1 þ x2Þ � 0

and we can solve for G to give

G ¼ b
x1

x1 þ x2
¼ bu,

where b ¼ r/d. For simplicity, we first consider a linear effect of

the growth factor on the rate of cell division, as well as equal

proliferation and death rates, which results in the growth func-

tions given by equations (1.2). In order for the growth rate to be

larger than the death rate for all u we assume the inequalitya 2

k . m. This choice of growth functions gives the following
system of ODEs for the frequency of producers u and the total

population size s:

du
dt
¼ �ku(1� u) 1� s

K

� �

and
ds
dt
¼ �ksu 1� s

K

� �
þ a(1þ bu)s 1� s

K

� �
� ms:

9>>>>>>=
>>>>>>;

ð3:1Þ

This system results from equations (2.3) and has two non-trivial

steady states given by a monomorphic population of free-

riders (0, 1 2 m/a), and a population consisting only of

producers (1, 1 2 m/(a(1 þ b) 2 k)); see analysis following

equations (2.5). The eigenvalues are

l1 ¼ m� a , 0 ð3:2Þ

and

l2 ¼ �
km

a
, 0 ð3:3Þ

and hence the free-rider steady state is stable. For the other fixed

point (producers dominate), we have

l1 ¼
km

a(1þ b)� k
. 0 ð3:4Þ

and

l2 ¼ kþ m� a(1þ b) , 0, ð3:5Þ

making it unstable. Figure 1a shows the phase space of the

system, where the open circles indicate unstable steady states

and the filled circle shows the location of the single stable

steady state. We note that for almost all initial conditions the

dynamics rapidly converge to the invariant manifold (2.8)

which is approximately given by

~h(u) ¼ K 1� m

�f(u)

� �
¼ K 1� m

a(1þ bu)� ku

� �
: ð3:6Þ

Once the system enters the invariant manifold the dynamics can

be approximated by (2.9) which for the diffusing public goods

game considered here are given by

du
dt
� � mk

a(1þ bu)� ku
u(1� u): ð3:7Þ

Thus, in order to assess the impact of cell death and turnover on

selection, we compare our description of the public goods game

(3.1) with the standard replicator equation

du
dt
¼ (f1(u)� f2(u))u(1� u) ¼ �ku(1� u): ð3:8Þ

Figure 1b shows a comparison between the solution of the logis-

tic system (3.1) and the replicator equation (3.8) for the same

initial condition u0 ¼ 0.75 (s0 ¼ 0.01K) and with a death rate

of m ¼ 0.1 h21. Whereas the two solutions agree for small

times (when s�K), they start to diverge as soon as the solution

to the logistic system enters the invariant manifold. The solution

of the replicator equation quickly converges to the steady state

u ¼ 0, while the fraction of producers in the logistic case

decreases approximately linearly with time.

To quantify the effect of the death rate m on the rate of

selection we measured the time it takes for the logistic

system to approach a steady state. For a fixed initial condition

(u0, s0) ¼ (0.75, 0.01), we measured the time it took for the

system to reach a small 1 neighbourhood of the fixed point,

i.e. ju(t) 2 u*j � 1, with u* ¼ 0 and 1 ¼ 0.01. We call this

time the 1-fixation time. All other parameters were fixed at

http://rsif.royalsocietypublishing.org/


0.005 0.05 0.5

102

103

104

cellular death rate m (h–1)

e-
fi

xa
tio

n
tim

e 
(h

)

(c)

(a)

logistic

replicator

0 50 100 150 200
0

0.2

0.4

0.6

time (h)

fr
ac

tio
n

of
pr

od
uc

er
s 

u

(b)

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

fraction of producers u

re
la

tiv
e

po
pu

la
tio

n
si

ze
 s

/K

Figure 1. (a) Phase space of the ODE system (3.1) describing the diffusing
public goods game. The grey arrows show the flow lines of the system, the
open circles show the three unstable stationary states and the filled circle
shows the only stable steady state where the population is dominated by
non-producing type 2 cells. The red line shows the invariant manifold
(3.6), and the light blue curve (with arrow pointing forward in time)
shows one solution of the deterministic system as it approaches and even-
tually follows the stable manifold. (b) The frequency of producers u(t)
obtained from the logistic system and the standard replicator equation
(the line is just a guide to the eye). (c) The 1-fixation time measured as
the time it takes to reach the state u ¼ 0.001. In all panels, the values
are a ¼ 1.0, b ¼ 1.0, k ¼ 0.1, K ¼ 1 and m ¼ 0.1 (a,b), where
we chose to observe time in units of hours (h). The initial conditions
are (u0, s0) ¼ (0.75, 0.01K ).
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a ¼ b ¼ 1, k ¼ 0.1, m ¼ 0.1 and K ¼ 1. The result is displayed

in figure 1c and shows that the 1-fixation time scales as m21.

This implies that for small m the time it takes the system to

reach the steady state can be exceedingly long. It is worth

noting that the 1-fixation time for the replicator equation
can be obtained in the limit of m! �f(u), performed on the

logistic system, implying a never-growing population, in

which the death rate equals the average birth rate.

3.2. Time scales of in vivo and in vitro cellular
expansions

Previous studies of ecological interactions in growing tumour

cell populations have observed various forms of frequency-

dependent effects. These effects have then been linked to

the persistence of distinct cancer cell lines that provide

growth enhancing public goods to the tumour, most notably

in experimental work by Marusyk et al. [27]. There, it could

be shown that a mixture of certain clones could not explain

tumour outgrowth in vivo by simply using superposition of

individual clonal birth and death rates. Rather, synergistic

tumour-driving effects can emerge, pointing to more intri-

cate, potentially frequency-dependent growth effects, based

on direct or indirect clonal interactions [18]. For the purpose

of illustration, we extracted individual clonal proliferation (ai)

and death rates (mi) from Marusyk et al. [27], in order to pre-

dict how these rates shape the dynamics. Out of 16 clonal cell

lines, each distinctively expressing a different gene, we chose

four clones to calculate baseline cellular birth and death rates.

The four clones, derived from the breast cancer cell line

MDA-MB-468, were LoxL3 (lysyl oxidase type 3 [37], linked

to breast cancer invasion and metastasis), IL11 (interleukin

11, a member of the IL 6 family that plays a multifaceted

role in leukemia and breast cancer [38]), and CCL5 (C-C

motif ligand 5, a chemokine with emerging roles in immu-

notherapy [39]). The baseline cellular birth and death rates

of these clones were calculated in the following way, based

on in vivo growth experiments, originally performed in a

mouse xenograft model (tumours formed by orthotopic

trans-plantation into the mammary fat pads of immunodefi-

cient Foxn1nu (nu) mice [27]). For all four clones, it was

established that tumours grew exponentially; from longitudi-

nal measurements and associated cellularity calculations, the

net cellular doubling rates were calculated (see Ext. Data

fig. 3 and SI in [27], where exponential growth rates are

given, which we transformed into doubling rates). For the

four above mentioned clones, proliferation assays were also

performed (Ext. Data fig. 1 in [27]). These BrdU staining

experiments measure the fraction of cells in S-phase of the

cell cycle, x. S-phase duration TS is highly conserved in mam-

mary cells [40], known to be approximately 8 h long, x serves

as a direct estimate for the per cent of S-phase in relation to

the whole cell cycle T, and thus the doubling rate, which

we set to a ¼ 1/T. Using the relation

x ¼ TS

T
, ð3:9Þ

we calculated the monoclonal birth rates using

a ¼ x

TS
: ð3:10Þ

Thus, given the net doubling rate r ¼ a 2 m, it is possible to

estimate the death rate

m ¼ x

TS
� r, ð3:11Þ

with TS fixed to 8 h. Data for r and x are given in appendix B. As

for both r and x, several independent measurements were per-

formed, and we calculated distributions ofa andm for the three
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Figure 2. (a) Birth and death rate distributions, calculated from previous
experiments, where engineered breast cancer cell lines, characterized over-
expressing certain cytokines, were observed to grow in in vivo xenograft
mouse model tumours [27]. Although net tumour growth was high, death
and birth rates were similar in all clones considered. In comparison, we
also show in vitro cell line rates, estimated by Juarez et al. [41]. We further
used the fact that the IL11 cells are growth factor producers. (b) Using
median birth and death rates from the distributions in (a), we measured
the 1-fixation time numerically determined using equations (3.13) (defined
as the time to reach an 1-neighbourhood equilibrium value of u, with 1 ¼

0.001, u0 ¼ 0.5) and compared it to the 1-fixation time of the standard
replicator equation (3.8). Note that we used equations (3.13) for this numeri-
cal procedure. For IL11, we used a1 ¼ 0.684 d21 and m1 ¼ 0.596 d21. For
LoxL3, we used a1 ¼ 0.617 d21 and m1 ¼ 0.515 d21. For CCL5, we used
a1 ¼ 1.214 d21 and m1 ¼ 1.031 d21. b ¼ 1, with u0 ¼ 0.5 and s0 ¼

0.01/K. Note here that the peak in 1-fixation time marks the shift from
u ! 1 to u! 0 as the cost increases; this transition can only occur
when producers and non-producers have similar birth and death rates.
(c) Comparison of 1-fixation times determined numerically using (3.13) to
the analytical approximation (3.19), parameters the same as in (b). Time
was measured in units of days (d).
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cell lines described above. We contrasted these distributions to

in vitro distributions of cellular birth and death rates, adapted

from [41] (fig. 3 therein), which are, notably, very similar to

other in vitro values, e.g. reported for the PC-9 non-small cell

lung cancer cell line [42] (figure 2a). In the in vivo tumour

growth experiments, exponential growth was observed

within the time frame of 50–80 days, at growth rates up to

two population doublings per day (net growth rate) [27]. How-

ever, in most tumours the net growth rate was more moderate,
and the actual cellular birth and death rates were at least of

similar order in magnitude (a/m � 1). This stands in contrast

with the birth–death rate ratios observed in cell cultures,

where birth rates often exceed death rates by an order of

magnitude (a/m � 10) [41–44].

As a notable difference to the previous section, here we

assume both a1 = a2 and m1 = m2. Thus, instead of (2.3),

we now deal with the more general payoff structure

C1 C2

C1

C2

a1ð1þ bÞ � k a1 � k

a2ð1þ bÞ a2

� � ð3:12Þ

and obtain the following ODEs for frequency of producer

cells and total size of the system:

du
dt
¼ ((a1 � a2)(1þ bu)� k)u(1� u) 1� s

K

� �

and
ds
dt
¼ ((a1 � a2)(1þ bu)� k)su 1� s

K

� �
þ a2(1þ bu)s 1� s

K

� �
� s(um1 þ (1� u)m2)

9>>>>>>>>>>=
>>>>>>>>>>;
ð3:13Þ

and we seek to estimate the time it takes to reach a small 1

neighbourhood of the equilibrium ju(t) 2 u*j � 1, shown in

figure 2b. The combination of IL11 with one other cell line

was chosen because it has been established that IL11 is a

growth factor producer clone, which, at least in a first approxi-

mation, renders a linear fitness benefit [27]. We here make the

additional assumption that IL11 cells carry a cost associated

with growth factor production, and explore the extinction pro-

cess of IL11 cells as they compete with either CCL5 or LoxL3

cells (figure 2).

We can calculate an estimate of the ‘time to fixation’ in the

following way. Suppose the fraction of growth factor produ-

cers, u, is at a stable equilibrium, and that there are only two

possible stable equilibria, u* ¼ 0 and u* ¼ 1. Then, the

stationary solutions for the population size, s*(u*), will be

s�0 ¼ s�(u� ¼ 0) ¼ K 1� m2

a2

� �
ð3:14Þ

and

s�1 ¼ s�(u� ¼ 1) ¼ K 1� m1

a1(1þ b)� k

� �
: ð3:15Þ

We now assume that the total population size remains at the

stationary value, although it in fact changes (slightly) with u.

This assumption can be thought of as a zeroth-order approxi-

mation in 1 2 s/K, and it implies that near the stable

manifold, the frequency u obeys the ODE

du
dt
¼ ((a1 � a2)(1þ bu)� k)u(1� u) 1�

s�0,1

K

� �
, ð3:16Þ

which we can solve by inserting the approximations (3.14)

and (3.15) into the ODE (3.16) and get the two solutions

(for two different possible endpoints)

v0(t) ¼ 1

1þ (1=u0 � 1) e�m2(a1�a2�k)t=a2
ð3:17Þ

and

v1(t) ¼ 1

1þ (1=u0 � 1) e�m1(a1�a2�k)t=a1(1þb)�k
: ð3:18Þ
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Figure 3. (a) Comparing the influence of the death rate of producers m1 with the influence of the death rate of non-producers m2. (b) Variation of the extinction
time of growth factor producers under different death rates m1 and m2, u0 ¼ 0.8. In all panels, k ¼ 0.2, b ¼ 1, a1,2 ¼ 1.0 d21, s0 ¼ 0.01K and K ¼ 1. The
times here were calculated by numerical integration of equations (3.13). An observation that cannot be explained with our analytical approximations is that the
extinction times of the logistic growth dynamics tend to be closer to the (short) extinction times of the replicator dynamics for smaller death rate m1 (m2 fixed).
However, the utility of our approximations is supported by the observation that overall variability in 1-fixation times is driven by m2, the death rate of the dominant
cell type. Time was measured in units of days (d).
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We now seek solutions of jv0,1(t) 2 u*0,1j � 1 for t (with the

equilibrium points u*0 ¼ 0, u*1 ¼ 1), and find the following

relations that approximate the 1-fixation times:

tu!0 �
a2

m2(a1 � a2 � k)
log

u0(1� 1)

1(1� u0)

� �����
����

and tu!1 �
a1(1þ b)� k

m1(a1 � a2 � k)
log

(1� u0)(1� 1)

1 u0

� �����
����,

9>>>=
>>>;
ð3:19Þ

where u0 is the initial frequency. Note that here, we deviate

from the notion of (average) fixation times in the strict

stochastic sense [45], and replace the term by a threshold-

based analytical approximation. Especially in a population

that has reached the stable manifold, even a small fraction

of remaining producer cells could still mean that there are

as many cells as needed to warrant a mean field rather

than a fully stochastic description.

For the u! 0, s! K(1 2 m2/a2) case, we can now compare

our analytical approximations with the 1-fixation times of the

full numerical solution in figure 2c, as a function of k. Depend-

ing on the differences in clonal birth and death rates, the

approximation exhibits qualitative differences. Equation (3.19)

consistently overestimates the 1-fixation time if the death rate

of the producer cells is lower than that of non-producers (IL11

with CCL5, a1 2 m1 , a2 2 m2), but it underestimates the

1-fixation time if the net growth rate of the producer cells is

higher than that of non-producers as long as the cost of

growth factor production does not exceed a certain threshold

(IL11 with LoxL3, a1 2 m1 � a2 2 m2). Hence, not only the

cost of growth factor production factor influences the time to

extinction of producer cells, but also the monoclonal net

growth rate influences both the time to extinction of producers

and the impact of an assumed cost associated with growth

factor production. The approximations (3.19) are of ‘zero-

order’ in changes in s. Yet, they are still able to reflect the

basic fact that 1-fixation time can be heavily influenced by

the cellular death rate of the abundant cell type. According to
our rough approximation, the extinction time of producer

cells (3.19) is both proportional to the ratio of birth to death

rate of the non-producers, as well as inversely proportional to

the birth rate difference. Surprisingly, in this approximation

tu!0 does not depend on the absorption or production rate of

the growth factor, captured by b. Large differences in baseline

birth rates extend growth factor producer extinction times. For

larger values of a2/m2, the extinction time is less sensitive to

changes in the cost of growth factor production.

The two cellular death rates m1 and m2 have different

effects on 1-fixation times. We used numerical solutions

of the full system (3.13), in comparison to the replicator

equation (3.8), to analyse variability of 1-fixation times (extinc-

tion of growth factor producer cells) under variable individual

death rates. Thereby, we recover that higher total death rate

speeds up the 1-fixation time across different initial conditions

(figure 3a), and that the death rate of the ‘winner-clone’ plays a

more important role (figure 3b): m2 has a more pronounced

impact on the 1-fixation time of non-producers. This might

be connected to the fact that apoptosis-driven cell turnover of

the nearly dominant cell type (i.e. the non-producer cells) gov-

erns the 1-fixation time. In accordance with this observation,

the stable manifold is itself governed by the apoptotic rate of

the dominant clone; compare to equation (2.8).
4. Summary and conclusion
We here have presented calculations that were concerned with

the stability and time to reach a neighbourhood of equilibrium

points in evolutionary game dynamics between two types of

tumour cells. We focused on the dynamics of a tumour

public good (tumour growth factor), in which we assumed

linear fitness functions of growth factor producers and non-

producers. The fitness function linearly depends on the relative

abundance of growth factor producers, and production comes

at a cost. We did not assume that the evolving population was

at carrying capacity, as reflected in the logistic growth model.
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Thus, in general, population expansion and cellular birth as

well as death rates are of importance for the time the system

takes to equilibrate. The standard replicator equation typically

rules out explicit death effects, and thus may not accommodate

the impact of these death rates on the time to reach a population

equilibrium.

The use of replicator equations and birth–death processes

assume constant population size [7] or a population which is

growing uniformly, for example, at an exponential rate [13].

These assumptions have led to a plethora of fruitful results in

evolutionary game theory [46], e.g. to the ability to understand

fixation and extinction times in evolutionary 2 � 2-games

[47–50], multiplayer games [51], structured populations [52]

or bi-stable allelic competition [53,54]. Evolutionary games

have also been used to establish rules for equilibrium selection

even in complex group-coordination games [55,56], in chemical

game theory [57], and to map complex tumour dynamics

[23–25,34,58–61]. However, the assumption that the popu-

lation is either at constant size may be limiting, as also

recently discussed by Li et al. [62] in the context of co-growing

and coevolving bacterial species. Instead, the near-equilibrium

population size and the time to reach equilibria are influenced

directly by birth and death rates in the population.

We show that, for small differences between the birth and

death rates, the eco-evolutionary dynamics of the mixture of

two clones may be approximated by standard replicator

dynamics. Analysis of previously established growth factor-

dependent tumour dynamics of in vivo tumour growth

showed that this parameter regime might indeed be biologi-

cally relevant (figure 2), even when the tumour population

has not reached its carrying capacity. However, prominent

examples of in vitro cell line expansions demonstrate that

large differences between cellular death and birth rates

might impact the dynamics in a different way [42–44], and

in this case the replicator equation is a poor approximation

of the eco-evolutionary dynamics. We used a logistic

growth model that includes cell death. This system describes

both co-growth, as well as coevolution of two tumour cell

types. The choice of logistic growth is by no means unique,

but a simple, first-order form of non-uniform growth.

We report two major findings. First, a first-order approxi-

mation in death rates allows estimation of the stable manifold,

and reveals linear dependence on the apoptotic rate of the

more abundant cell type. Second, this knowledge can be used

to inform a zero-order approximation (in constant system

size) of the time to get arbitrarily close to equilibrium (1-fixation

time), which reveals that indeed the cellular turnover of the

dominant cell type near equilibrium governs the 1-fixation

time as the system slowly moves along the stable manifold.

This framework allowed us to examine the degree of the result-

ing variability in 1-fixation times based on previously measured

in vivo tumour cell proliferation and death rates in the context of

competition between producers and non-producers of a growth

factor public good.

Various aspects of cancer cell population structure, such as

cellular differentiation, localization or spatial heterogeneity,

point to dynamic nonlinear size changes over time, especially

during treatment [63–66], and treatment can shift the evol-

utionary game [67]. Furthermore, selection mechanisms that

go beyond relative fitness differences play a role in our under-

standing of other biological and clinically relevant systems,

such as the hematopoietic system [68,69]. Hence, future model-

ling efforts that seek to apply evolutionary game theory to
explain complex cancer growth patterns need to precisely dis-

entangle complex interaction patterns between cells from the

overall growth kinetics of a tumour. Detailed understanding

of tumour growth kinetics is especially important in co-growing

populations, as we here show that the convergence towards an

equilibrium—which sets the time scale for potential treatment

and relapse effects—sensitively depends on the microscopic

cellular growth rates. The often performed, and mathemat-

ically convenient rescaling of time that leads to replicator

equations might eliminate effects that are crucial for under-

standing transitions between equilibria and describing

relevant time scales of tumour evolution.
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Appendix A. Fixed points and stability
To investigate the stability of the fixed points of (2.3), we

denote the right-hand sides by

F(u, s) ¼ (f1(u)� f2(u))u(1� u) 1� s
K

� �
and G(u, s) ¼ (f1(u)� f2(u))su 1� s

K

� �
þ f2(u)s 1� s

K

� �
� ms

9>>>>>=
>>>>>;

ðA 1Þ

and calculate the Jacobian at the fixed point (u*, s*)

J(u�, s�) ¼ Fu(u�, s�) Fs(u�, s�)
Gu(u�, s�) Gs(u�, s�)

� �
, ðA 2Þ

where subscript denotes partial derivative with respect to u
and s.
A.1. Boundary fixed points
For the boundary fixed points we find the following:

At (u*, s*) ¼ (0, 0), we find that

J(0, 0) ¼ f2(0)� m 0
0 f1(0)� f2(0)

� �
ðA 3Þ

with eigenvalues l1 ¼ f1(0) 2 f2(0) and l2 ¼ f2(0) 2 m . 0.

The last inequality holds because we assumed a positive

net growth rate for both cell types for all u [ [0, 1]. This

fixed point is therefore unconditionally unstable.

At (u*, s*) ¼ (0, 1), we find that

J(0, 1) ¼ f1(1)� m 0
0 f2(1)� f1(1)

� �
ðA 4Þ

with eigenvalues l1 ¼ f1(1) 2 f2(1) and l2 ¼ f1(1) 2 m . 0.

Again, the inequality holds because we assumed a positive
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net growth rate for both cell types for all u [ [0, 1]. This fixed

point is therefore unconditionally unstable.

At (u*, s*) ¼ (1, K(1 2 m/f1(1)), we find that

J 1,K 1�m

f1
ð1Þ

� �� �
¼

m� f1ð1Þ �Kmðm�f1ð1ÞÞð f1ð1Þ�f2ð1Þþf 01ð1ÞÞ
f1ð1Þ2

0 m
f1ð1Þ ð f2ð1Þ � f1ð1ÞÞ

!

with eigenvalues l1 ¼ (m/f1(1))( f2(1) 2 f1(1)) and l2 ¼ m 2

f1(1) , 0. This implies that the fixed point is stable iff

f2(1) , f1(1).

At (u*, s*) ¼ (0, K(1 2 m/f2(0)), we find that

J 0,K 1� m

f2ð0Þ

� �� �
¼

m� f2ð0Þ � Kmðm�f2ð0ÞÞð f2ð0Þ�f1ð0Þ�f 02ð0ÞÞ
f2ð0Þ2

0 m
f2ð0Þ ð f1ð0Þ � f2ð0ÞÞ

!

with eigenvalues l1 ¼ (m/f2(0))( f1(0) 2 f2(0)) and l2 ¼ m 2

f2(0) , 0. This implies that the fixed point is stable iff

f1(0) , f2(0).
170342
A.2. Internal fixed points
Internal fixed points exist at points where f1(u*) ¼ f2(u*) for

0 , u* , 1. The corresponding s-coordinate is given by sol-

ving ds/dt ¼ 0 in terms of u to get s* ¼ K(1 2 m/f1(u*)).

The Jacobian at such a point is given by

J(u�,s�)

¼ s�u�(f 01(u�)� f 02(u�)) 1� s�
K

� �
f1(u�)� 2f1(u�)s�

K �m

(f 01(u�)� f 02(u�))u� s�u�
K � s�

K�u�
� �

0

 !
:

ðA 5Þ

To say something about the stability of such a point we

need to investigate the signs of the eigenvalues of J. We do

this by looking at the sign of each matrix entry. For now,

we assume nothing about the sign of f10(u*) 2 f 02(u*) and

instead focus on the other factors in each matrix entry.

First, we see that

s�u� 1� s�

K

� �
¼ s�u� 1� K

K
1� m

f1ðu�Þ

� �� �

¼ s�u�m
f1ðu�Þ

. 0: ðA 6Þ

Further, we have

u�
s�u�

K
� s�

K
� u�

� �
ðA 7Þ

¼ s�u�2

K
� s�u�

K
� u�2 ðA 8Þ

¼ 1� m

f1ðu�Þ

� �
u�2 � 1� m

f1ðu�Þ

� �
u� � u�2: ðA 9Þ

Here, 0 � (1 2 m/f1(u*)) , 1 since f1(u) . m � 0. This implies

that

1� m

f1(u�)

� �
u�2 � 1� m

f1(u�)

� �
u� � u�2

¼ � m

f1(u�)u�2
� 1� m

f1(u�)

� �
u� < 0, ðA 10Þ
since both terms are negative. Lastly, we see that

f1ðu�Þ �
2f1ðu�Þs�

K
� m ¼ f1ðu�Þ 1� 2Kð1� m=f1ðu�ÞÞ

K

� �
� m

¼ �f1ðu�Þ 1þ 2m

f1ðu�Þ

� �
� m , 0,

ðA 11Þ

since 1 þ 2m/f1(u*) . 0.

This implies that we can write the Jacobian as

J(u�, s�) ¼ ADf B
CDf 0

� �
, ðA 12Þ

where A . 0, B , 0, C , 0 and Df ¼ f10(u*) 2 f 02(u*). The

eigenvalues of the Jacobian are given by

l1,2 ¼
1

2
(ADf +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BCDf þ A2Df2

q
): ðA 13Þ

Now if Df . 0 then ADf . 0, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BCDf þ A2Df2

p
. ADf .

This implies that l1 . 0 and l2 , 0, and hence the fixed

point (u*, s*) is unstable.

If on the other hand Df , 0 then there are three

possibilities, either (i) 4BCDf þ A2Df2 . 0 or (ii) 4BCDf þ
A2Df2 , 0 or (iii) 4BCDf þ A2Df2 ¼ 0. If (i) holds thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4BCDf þ A2Df2
p

< jADf j which implies that l1,2 , 0. If (ii)

is the case then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BCDf þ A2Df2

p
is complex and <(l1,2) ,

0. Lastly, if (iii) is the case then l1,2 ¼ ADf/2 , 0.

This shows that the stability of the stationary point at (u*,

s*) is fully determined by the sign of Df ¼ f10(u*) 2 f02(u*).

If Df . 0 the point is unstable and if Df , 0 then the point

is stable.
Appendix B. Clonal population doubling rates
Here, all rates are given per day; in vivo data taken from

Marusyk et al. [27].

For LoxL3, we used the following population doubling

rates (net growth rates):

0:09
0:083
0:058
0:095
0:103
0:092
0:12
0:122
0:116
0:113
0:112
0:119
0:13
0:113
0:103

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ðB 1Þ

and the following percentage of S-phase during cell cycle x:

0:512
0:424
0:385
0:349
0:21
0:202
0:195
0:198
0:191
0:137

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðB 2Þ
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For IL11, we used the following population doubling

rates (net growth rates):

0:14
0:099
0:055
0:108
0:12
0:103
0:084
0:121
0:154
0:108
0:123
0:132
0:14
0:174
0:029
0:079
0:126
0:072
0:075
0:107
0:121

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðB 3Þ

and the following percentage of S-phase during cell cycle x:

0:192
0:21
0:207
0:224
0:228
0:259
0:309
0:354
0:385

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ðB 4Þ
For CCL5, we used the following population doubling

rates (net growth rates):
0:233
0:216
0:178
0:133
0:144

9>>>>=
>>>>;

ðB 5Þ
and the following percentage of S-phase during cell cycle x:
0:421
0:482
0:444
0:388
0:364
0:282

9>>>>>>=
>>>>>>;

ðB 6Þ
The distributions shown in figure 2 resulted from all pos-

sible pairs of these numbers to calculate a and m, equations

(3.10) and (3.11).

For generation of the in vitro distributions we used

normally distributed rates (truncated by 0), with a mean

death rate of 0.12 d21 (s.d. 0.0672) and a mean birth rate of

1.32 d21 (s.d. 0.048), adapted from Juarez et al. [41].
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