
ScienceDirect

Available online at www.sciencedirect.com

Procedia Engineering 199 (2017) 1056–1061

1877-7058 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
10.1016/j.proeng.2017.09.291

10.1016/j.proeng.2017.09.291

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.

1877-7058

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

X International Conference on Structural Dynamics, EURODYN 2017

Approximate Bayesian Computation by Subset Simulation for model
selection in dynamical systems

Majid K. Vakilzadeha,∗, James L. Beckb, Thomas Abrahamssona

aDepartment of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden
bDivision of Engineering and Applied Science, California Institute of Technology, CA, USA

Abstract

Approximate Bayesian Computation (ABC) methods are originally conceived to expand the horizon of Bayesian
inference methods to the range of models for which only forward simulation is available. However, there are well-
known limitations of the ABC approach to the Bayesian model selection problem, mainly due to lack of a sufficient
summary statistics that work across models. In this paper, we show that formulating the standard ABC posterior
distribution as the exact posterior PDF for a hierarchical state-space model class allows us to independently estimate
the evidence for each alternative candidate model. We also show that the model evidence is a simple by-product
of the ABC-SubSim algorithm. The validity of the proposed approach to ABC model selection is illustrated using
simulated data from a three-story shear building with Masing hysteresis.
c© 2017 The Authors. Published by Elsevier Ltd.
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1. Introduction

Due to exclusive foundation of Bayesian statistics on the probability logic axioms, it provides a rigorous
framework for model updating and model selection. In this approach, a key idea is to construct a stochastic
model class M consisting of the following fundamental probability distributions [1]: a set of parameterized
input-output probability models p(y|θ, u, M) for predicting the system behavior of interest y for given input
u and a prior probability density function (PDF) p(θ|M) over the parameter space Θ ∈ RNp of M that
reflects the relative degree of plausibility of each input-output model in the set. When data D consisting of
the measured system input û and output ẑ are available, the prior PDF p(θ|M) can be updated through
Bayes’ Theorem to obtain the posterior PDF for the uncertain model parameters θ as:

p(θ|D, M) ∝ p(ẑ|θ, û, M)p(θ|M) (1)
where p(ẑ|θ, û, M) denotes the likelihood function of θ which gives the probability of getting the data based
on the input-output probability model p(y|θ, u, M).
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where p(ẑ|θ, û, M) denotes the likelihood function of θ which gives the probability of getting the data based
on the input-output probability model p(y|θ, u, M).

∗ Corresponding author. Tel.: +46-031-772-1510;
E-mail address: khorsand@chalmers.se

1877-7058 c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.

2 M.K. Vakilzadeh, J.L. Beck, T. Abrahamsson / Procedia Engineering 00 (2017) 000–000

There are some model classes, e.g., hidden Markov models, for which the likelihood function is difficult
or even impossible to compute, but one might still be interested to perform Bayesian parameter inference
or model selection. ABC methods were originally conceived to circumvent the need for computation of the
likelihood by simulating samples from the corresponding input-output probability model p(y|θ, u, M).

The basic idea behind ABC is to avoid evaluation of the likelihood function in the posterior PDF
p(θ|D, M) ∝ p(ẑ|θ, û, M) p(θ|M) over the parameter space θ by using an augmented posterior PDF:

p(θ, y|D, M) ∝ P (ẑ|y, θ) p(y|θ, û, M) p(θ|M) (2)

over the joint space of the model parameters θ and the model output y that is simulated using the distribution
p(y|θ, û, M). The interesting point of this formulation is the degree of freedom brought by the choice of
function P (ẑ|y, θ). The original ABC algorithm defines P (ẑ|y, θ) = δẑ(y), where δẑ(y) is equal to 1 when
ẑ = y and equal to 0 otherwise, to retrieve the target posterior distribution when y exactly matches ẑ.
However, the probability of generating exactly ẑ = y is zero for continuous stochastic variables. Pitchard et
al. [2] broadened the realm of the applications for which ABC algorithm can be used by replacing the point
mass at the observed output data ẑ with an indicator function IS(ε)(y), where IS(ε)(y) gives 1 over the set
S(ε) = {y : ρ(η(ẑ) − η(y)) ≤ ε} and 0 elsewhere, for some chosen metric ρ and low-dimensional summary
statistic η. The ABC algorithm based on this formulation thus gives samples from the true posterior
distribution when the tolerance parameter ε is sufficiently small and the summary statistics η(.) are sufficient.
These conditions pose some difficulties for computer implementation of this algorithm which renders it
far from a routine use for parameter inference and model selection. Firstly, a sufficiently small tolerance
parameter ε means that only predicted model outputs y lying in a small local neighborhood centered on
the observed data vector ẑ are accepted. This leads to the problem of rare-event simulation. To circumvent
this problem, Chiachio et al. [3] developed a new algorithm, called ABC-SubSim, by incorporating the
Subset Simulation algorithm [4] for rare-event simulation into the ABC algorithm. Secondly, the lack of a
reasonable vector of summary statistics that works across models hinders the use of an ABC algorithm for
model selection [5].

In this study, we show that formulating a dynamical system as a general hierarchical state-space model
enables us to solve the inherent difficulty of the ABC technique to model selection. Using this formulation,
one can independently estimate the model evidence for each model class. We also show that the model
evidence can be estimated as a simple by-product of the recently proposed multi-level MCMC algorithm,
called ABC-SubSim. The effectiveness of the ABC-SubSim algorithm for Bayesian model class selection
with simulated data is illustrated using a three-story shear building with Masing hysteresis [6].

2. Formulation

In this section, we review the formulation of a Bayesian hierarchical model class for dynamical systems
and then we address the Bayesian model updating and model selection approach for this class of models.

2.1. Formulation of hierarchical stochastic model class

In this section, we present the formulation for a hierarchical stochastic state-space model class M to
predict the uncertain input-output behavior of a system. We start with the general case of a discrete-time
finite-dimensional stochastic state-space model of a real dynamic system:

∀n ∈ Z+, xn = fn(xn−1, un−1, θs) + wn

yn = gn(xn, un, θs) + vn

(State evolution)
(Output)

(3)

where un ∈ RNI , xn ∈ RNs and yn ∈ RNo denote the (external) input, dynamic state and output vector
at time tn, and θs ∈ RNp is a vector of uncertain-valued model parameters. In (3), the uncertain state and
output prediction errors wn and vn are introduced to account for the model being always an approximation
of the real system behavior. The prior distributions, N (wn|0, Qn(θw)) and N (vn|0, Rn(θv)), ∀n ∈ Z+, are
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finite-dimensional stochastic state-space model of a real dynamic system:

∀n ∈ Z+, xn = fn(xn−1, un−1, θs) + wn

yn = gn(xn, un, θs) + vn

(State evolution)
(Output)

(3)

where un ∈ RNI , xn ∈ RNs and yn ∈ RNo denote the (external) input, dynamic state and output vector
at time tn, and θs ∈ RNp is a vector of uncertain-valued model parameters. In (3), the uncertain state and
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chosen for the wn and vn based on the Principle of Maximum (Information) Entropy [7], where {wn}N
n=1 and

{vn}N
n=1 are sequences of independent stochastic variables. We add the uncertain parameters that specify

these priors to the model parameters θs and use θ = [θT
s θT

w θT
v ]T to denote the uncertain parameter vector

for the stochastic state-space model. Then, we choose a prior p(θ|M) for all of the model class parameters.
The defined stochastic state-space model defines a “hidden” Markov chain for the state time history

{x}N
n=1 (which will also be denoted by the vector x1:N = [xT

1 , . . . , xT
N ]T ∈ RNNs) by implying a state

transition PDF:

∀n ∈ Z+, p(xn|xn−1, un−1, θ, M) = N (xn|fn(xn−1, un−1, θ), Qn(θ)) (4)

along with a state-to-output PDF:

∀n ∈ Z+, p(yn|xn, un, θ, M) = N (yn|gn(xn, un, θ), Rn(θ)) (5)

These, in turn, imply the following two probability models:

p(x1:N |u0:N , θ, M) =
N∏

n=1
p(xn|xn−1, un−1, θ, M) (6)

p(y1:N |x1:N , u0:N , θ, M) =
N∏

n=1
p(yn|xn, un, θ, M) (7)

The stochastic input-output model (or forward model) for given parameter vector θ is then:

p(y1:N |u0:N , θ, M) =
∫

p(y1:N |x1:N , u0:N , θ, M)p(x1:N |u0:N , θ, M)dx1:N (8)

This high-dimensional integral usually cannot be done analytically. We will therefore structure the stochastic
input-output model using a Bayesian hierarchical model to avoid the integration in (8).

This can be done by extending the stochastic model class M to a new one M(ε) that also predicts the
measured system output zn at time tn:

zn = yn + en = gn(xn, un, θ) + vn + en (9)

where en denotes the uncertain measurement error at time tn. Here, we allow for dependence between the
set of stochastic variables {en}N

n=1 by specifying a joint PDF for e1:n for any n ∈ Z+. A simple choice for
the probability model for the measurement error e1:n is a uniform PDF which gives the following predictive
PDF for the observed system output (sensor output) z1:n conditioned on the actual system output y1:n:

p(z1:n|y1:n, M(ε)) = p(e1:n|M(ε))
∣∣∣∣
e1:n=z1:n−y1:n

=
{

Vn(ε)−1 if ‖z1:n − y1:n‖≤ ε
0 otherwise (10)

where Vn(ε) =
∫
RNon Iε(e1:n) de1:n is the volume of region S(ε), and Iε(e1:n) is the indicator function for

the set S(ε) = {e1:n ∈ RNon : ‖e1:n‖≤ ε} for some vector norm on RNon. Now, the specification of the
hierarchical prior PDF based on (6) and (7):

p(y1:N , x1:N , θ|u0:N , M(ε)) = p(y1:N |x1:N , u0:N , θ, M(ε))p(x1:N |u0:N , θ, M(ε)) p(θ|M(ε)) (11)

completes the definition of the stochastic model class M(ε) that is the PDFs in (10) and (11).

2.2. Bayesian model updating

If measured system input and system output data, DN = {û0:N , ẑ1:N }, are available from the dynamic
system, then the predictive PDF in (10) with n = N gives the likelihood function:

p(ẑ1:N |y1:N , M(ε)) =
ID(ε)(y1:N )

VN (ε) (12)

4 M.K. Vakilzadeh, J.L. Beck, T. Abrahamsson / Procedia Engineering 00 (2017) 000–000

with the indicator function defined over the set D(ε) = {y1:N ∈ RNNo : ‖y1:N − ẑ1:N ‖< ε}, where ‖.‖ is
some vector norm on RNNo . The posterior PDF for stochastic model class M(ε) is then given by Bayes’
Theorem:

p(y1:N , x1:N , θ|DN , M(ε)) = E(ε)−1 ID(ε)(y1:N )
VN (ε) p(y1:N , x1:N , θ|û0:N , M(ε)) (13)

where the evidence for M(ε) is then defined as:

E(ε) = p(ẑ1:N |û0:N , M(ε)) =
∫

p(ẑ1:N |y1:N , ε) p(y1:N , x1:N , θ|û0:N , M(ε)) dy1:N dx1:N dθ (14)

The theory for the hierarchical model and its updating presented so far in Section 2 is general and valid for
any ε > 0 deemed appropriate. For the application of ABC, we suppose that M(0) ≡ M(ε → 0) is actually
the stochastic model class of interest. For ε sufficiently small, the set D(ε) of outputs y1:N will converge to
the observed output vector ẑ1:N and the posterior PDF in (13) for stochastic model class M(ε) will converge
to the desired posterior distribution of the model parameters p(θ|DN , M(0)) after marginalization.

Remark. Vakilzadeh et al. [8] showed that for the hierarchical stochastic model class M(ε), the exact
posterior PDF (13) using a uniformly-distributed uncertain measurement error in the output space is iden-
tical to the ABC posterior PDF given for no measurement error. Thus, ABC-SubSim that was originally
developed by Chiachio et al. [3] to draw samples from an ABC posterior PDF can be used to solve the exact
Bayesian problem for the hierarchical stochastic model class M(ε).

2.3. Bayesian model class assessment

Consider a set M ≡ {M1(εM1), M2(εM2), . . . , ML(εML
)} of L Bayesian hierarchical model classes for

representing a system. In Bayesian model selection, models in M are ranked based on their probabilities
conditioned on the data DN that is given by Bayes’ Theorem:

P (Mj(εMj
)|DN ) =

p(ẑ1:N |û0:N , Mj(εMj
))P (Mj(εMj

)|M)
∑L

l=1 p(ẑ1:N |û0:N , Mj(εMj
))P (Mj(εMj

)|M)
(15)

where P (Mj(εMj
)|M) denotes the prior probability of Mj(εMj

) that indicates the modeler’s belief about
the initial relative plausibility of Mj(εMj

) within the set M . The factor p(ẑ1:N |û0:N , Mj(εMj
)), which

is the evidence (or marginal likelihood) for Mj(εMj
), indicates the probability of data DN according to

Mj(εMj
).

For the specific choice of Bayesian hierarchical model class, the evidence can be estimated by (14).
However, its calculation requires the evaluation of a high-dimensional integral which is the computationally
challenging step in Bayesian model selection, especially as ε → 0. ABC-SubSim provides a straightforward
approximation for it via the conditional probabilities involved in the Subset Simulation. Indeed, the last
integral in (14) is the probability P (y1:N ∈ D(εMj

)|Mj) that y1:N belongs to D(εMj
) = {y1:N ∈ RNNo :

‖y1:N − ẑ1:N ‖≤ εMj
}. This probability can be readily estimated as a by-product of ABC-SubSim. Thus,

for a particular tolerance level εMj
and model class Mj(εMj

), the evidence is estimated by:

ÊMj
=

P (y1:N ∈ D(εMj
)|Mj)

VN (εMj
) = 1

VN (εMj
)P i−1

0 Pi (16)

where i would be such that εi ≤ εMj
< εi−1, in which the intermediate “radii” εi’s are automatically chosen

by ABC-SubSim, Pi is the fraction of samples generated in D(εi−1) that lie in D(εMj
), and P0 is the selected

conditional probability at each simulation level of ABC-SubSim.
Wilkinson [9] also showed that a standard ABC posterior gives an exact posterior distribution for a new

model under the assumption that the summary statistics are corrupted with a uniform additive error term.
However, formulating standard ABC based on summary statistics hinders the independent approximation of
evidence for each candidate model. Here, we provided an estimate of the model evidence in (16) as a result
of formulating a dynamic problem in terms of a general hierarchical stochastic state-space model where the
likelihood function p(ẑ1:N |y1:N , M(ε)) is expressed using the entire data ẑ1:N and ABC-SubSim readily
produces an unbiased approximation of the evidence.
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chosen for the wn and vn based on the Principle of Maximum (Information) Entropy [7], where {wn}N
n=1 and

{vn}N
n=1 are sequences of independent stochastic variables. We add the uncertain parameters that specify

these priors to the model parameters θs and use θ = [θT
s θT

w θT
v ]T to denote the uncertain parameter vector

for the stochastic state-space model. Then, we choose a prior p(θ|M) for all of the model class parameters.
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{x}N
n=1 (which will also be denoted by the vector x1:N = [xT

1 , . . . , xT
N ]T ∈ RNNs) by implying a state

transition PDF:

∀n ∈ Z+, p(xn|xn−1, un−1, θ, M) = N (xn|fn(xn−1, un−1, θ), Qn(θ)) (4)
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∀n ∈ Z+, p(yn|xn, un, θ, M) = N (yn|gn(xn, un, θ), Rn(θ)) (5)

These, in turn, imply the following two probability models:

p(x1:N |u0:N , θ, M) =
N∏

n=1
p(xn|xn−1, un−1, θ, M) (6)

p(y1:N |x1:N , u0:N , θ, M) =
N∏

n=1
p(yn|xn, un, θ, M) (7)

The stochastic input-output model (or forward model) for given parameter vector θ is then:

p(y1:N |u0:N , θ, M) =
∫

p(y1:N |x1:N , u0:N , θ, M)p(x1:N |u0:N , θ, M)dx1:N (8)
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zn = yn + en = gn(xn, un, θ) + vn + en (9)
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set of stochastic variables {en}N

n=1 by specifying a joint PDF for e1:n for any n ∈ Z+. A simple choice for
the probability model for the measurement error e1:n is a uniform PDF which gives the following predictive
PDF for the observed system output (sensor output) z1:n conditioned on the actual system output y1:n:

p(z1:n|y1:n, M(ε)) = p(e1:n|M(ε))
∣∣∣∣
e1:n=z1:n−y1:n

=
{

Vn(ε)−1 if ‖z1:n − y1:n‖≤ ε
0 otherwise (10)

where Vn(ε) =
∫
RNon Iε(e1:n) de1:n is the volume of region S(ε), and Iε(e1:n) is the indicator function for
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2.2. Bayesian model updating

If measured system input and system output data, DN = {û0:N , ẑ1:N }, are available from the dynamic
system, then the predictive PDF in (10) with n = N gives the likelihood function:

p(ẑ1:N |y1:N , M(ε)) =
ID(ε)(y1:N )

VN (ε) (12)
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with the indicator function defined over the set D(ε) = {y1:N ∈ RNNo : ‖y1:N − ẑ1:N ‖< ε}, where ‖.‖ is
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any ε > 0 deemed appropriate. For the application of ABC, we suppose that M(0) ≡ M(ε → 0) is actually
the stochastic model class of interest. For ε sufficiently small, the set D(ε) of outputs y1:N will converge to
the observed output vector ẑ1:N and the posterior PDF in (13) for stochastic model class M(ε) will converge
to the desired posterior distribution of the model parameters p(θ|DN , M(0)) after marginalization.
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posterior PDF (13) using a uniformly-distributed uncertain measurement error in the output space is iden-
tical to the ABC posterior PDF given for no measurement error. Thus, ABC-SubSim that was originally
developed by Chiachio et al. [3] to draw samples from an ABC posterior PDF can be used to solve the exact
Bayesian problem for the hierarchical stochastic model class M(ε).
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p(ẑ1:N |û0:N , Mj(εMj
))P (Mj(εMj

)|M)
∑L
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) within the set M . The factor p(ẑ1:N |û0:N , Mj(εMj
)), which

is the evidence (or marginal likelihood) for Mj(εMj
), indicates the probability of data DN according to
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).

For the specific choice of Bayesian hierarchical model class, the evidence can be estimated by (14).
However, its calculation requires the evaluation of a high-dimensional integral which is the computationally
challenging step in Bayesian model selection, especially as ε → 0. ABC-SubSim provides a straightforward
approximation for it via the conditional probabilities involved in the Subset Simulation. Indeed, the last
integral in (14) is the probability P (y1:N ∈ D(εMj

)|Mj) that y1:N belongs to D(εMj
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=
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where i would be such that εi ≤ εMj
< εi−1, in which the intermediate “radii” εi’s are automatically chosen

by ABC-SubSim, Pi is the fraction of samples generated in D(εi−1) that lie in D(εMj
), and P0 is the selected

conditional probability at each simulation level of ABC-SubSim.
Wilkinson [9] also showed that a standard ABC posterior gives an exact posterior distribution for a new

model under the assumption that the summary statistics are corrupted with a uniform additive error term.
However, formulating standard ABC based on summary statistics hinders the independent approximation of
evidence for each candidate model. Here, we provided an estimate of the model evidence in (16) as a result
of formulating a dynamic problem in terms of a general hierarchical stochastic state-space model where the
likelihood function p(ẑ1:N |y1:N , M(ε)) is expressed using the entire data ẑ1:N and ABC-SubSim readily
produces an unbiased approximation of the evidence.
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3. Illustrative Example: Three-story Masing shear-building under seismic excitation

This example, which is taken from Muto and Beck [6], considers a three-story shear building with the
following equation of motion:

Mz̈(t) + Cż(t) + fh = −M1u(t) (17)
where z(t) ∈ R3 is the horizontal displacement vector relative to the ground; M , C ∈ R3×3 are the mass
and damping matrices; u(t) is the horizontal ground acceleration; and 1 = [1 1 1]T . The restoring force for
the ith story is given by fh,i = ri − ri+1 where the inter-story shear force-deflection relation ri is given
by the Masing hysteretic model [10]. An interested reader is referred to [10] for a detailed description of
the Masing hysteretic model. ri for each story can be characterized by three parameters: small-amplitude
inter-story stiffnesses ki, ultimate strength ru,i, and elastic-to-plastic transition parameter αi.

In this example, the structure has a known story mass of 1.25 × 105 kg. The viscous damping matrix
C is modeled using Rayleigh damping C = cM M + cKK. The actual values for the model parameters
for the hysteresis model and the viscous damping matrix are presented in Table 1. The prior distribution
over the nine-dimensional parameter space of the hysteresis model is selected to be the product of nine
lognormal PDFs with logarithmic mean value of log(2.5 × 108), log(2.5 × 106), and log(4) for ki , ru,i, and
αi, i = 1, 2, 3, respectively, and a logarithmic standard deviation of 0.5 for all of them. The prior PDFs for
the parameters of the damping matrix are defined as independent uniform PDFs over the interval [0, 1.5]
for cM and [0, 1.5 × 10−3] for cK . The east-west component of the Sylmar ground-motion record from the
County Hospital Parking Lot during 1994 Northridge earthquake in California is used here as the excitation.
The synthetic response data for system identification is the inter-story drift time histories from the oracle
model, for which the parameters are set to their actual values, and the standard deviation of the uncertain
output error is set to 0.03 cm. For ABC-SubSim, the number of samples in each level is fixed to Nt = 2000,
the adaptation probability to Pa = 0.1, and the conditional probability to P0 = 0.1.

Four model classes are studied for system identification. For model classes M1 and M2, the elastic-to-
plastic transition parameters are constrained to be equal for all three stories whereas they are allowed to
vary for model classes M3 and M4. The model classes M1 and M3 contain no viscous damping, but model
classes M2 and M4 do.

Table 1 shows the MAP (maximum a posteriori) values and the standard deviations of the uncertain
parameters obtained for all model classes. Table 2 shows the final tolerance levels εMj

for different model
classes. This table also presents the posterior probability of model classes P (Mj(εMj

)|DN , M), j = 1, 2, 3, 4
calculated by evaluation of evidence (15) at the final tolerance levels εMj

and equal prior probabilities
P (Mj |M) = 1/4 for the models. It is not surprising that the posterior probability for the model classes
favors model class M2 since it contains the model used to generate the synthetic data and has two parameters
less than model class M4, which also contains the data-generating model. As shown by the information-
theoretic expression for the log evidence in [6], the posterior probability of a model class is controlled by a
trade-off between the posterior average data fit (the posterior mean of the log-likelihood) and the amount of
information extracted from data (the relative entropy of the posterior with respect to the prior). M2 and
M4 give essentially the same average data fit but M2 extracts less information abouts its parameters.

The approximate posterior probabilities P (Mj(εMj
)|DN , M) presented in Table 2 are in agreement with

those reported by Muto and Beck [6]. Figures 1 (Left and Right), respectively show the probability that
y1:N falls in the data-approximating region D(ε) and the posterior probability P (Mj(ε)|DN , M) for different
model classes versus the tolerance level ε.

4. Concluding remarks

In the current state of the art, ABC methods can only be used for model class selection in a very limited
range of models for which a set of sufficient summary statistics can be found so that it also guarantees
sufficiency across the set of models under study. In this paper, a new ABC model selection procedure has
been presented which broadens the realm of ABC-based model comparison to be able to assess dynamic
models. The presented numerical example showed the effectiveness of the proposed method for ABC model
selection.
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Table 1 The MAP values and the standard deviations (in parentheses) of the uncertain model parameters.

Model class M1 M2 M3 M4 Oracle model

k1 (108 N/m) 2.586 (0.026) 2.497 (0.018) 2.545 (0.029) 2.490 (0.015) 2.500
k2 (108 N/m) 2.455 (0.044) 2.499 (0.025) 2.539 (0.042) 2.509 (0.034) 2.500
k3 (108 N/m) 2.566 (0.054) 2.490 (0.023) 2.545 (0.061) 2.504 (0.025) 2.500
ru,1 (106 N) 1.737 (0.004) 1.749 (0.003) 1.746 (0.006) 1.751 (0.003) 1.750
ru,2 (106 N) 1.779 (0.064) 1.750 (0.037) 1.924 (0.152) 1.757 (0.054) 1.750
ru,3 (106 N) 2.056 (1.014) 2.140 (0.772) 2.358 (0.934) 2.154 (1.083) 1.750
α1 3.430 (0.090) 3.981 (0.075) 3.447 (0.145) 4.041 (0.094) 4
α2 = α1 = α1 2.626 (0.300) 3.863 (0.411) 4
α3 = α1 = α1 2.552 (2.607) 3.332 (2.047) 4
cM (s−1) — 0.259 (0.071) — 0.283 (0.069) 0.293
cK(10−4s) — 2.295 (1.322) — 2.116 (0.909) 2.640
σv(10−4m) 5.293 (0.063) 3.197 (0.064) 5.163 (0.084) 3.176 (0.048) 3.000

Table 2 Posterior probability of different model classes together with final tolerance level.

Model class M1 M2 M3 M4

Tolerance level (εMj
) 6.80×10−4 4.25×10−4 7.10×10−4 4.25×10−4

P (Mj(εMj
)|DN , M) 0 0.982 0 0.018
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Fig. 1 Left)The probability of entering the data-approximating region D(ε) against tolerance level ε; Right) The posterior
probability of different model classes Mj against tolerance level ε.
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3. Illustrative Example: Three-story Masing shear-building under seismic excitation

This example, which is taken from Muto and Beck [6], considers a three-story shear building with the
following equation of motion:

Mz̈(t) + Cż(t) + fh = −M1u(t) (17)
where z(t) ∈ R3 is the horizontal displacement vector relative to the ground; M , C ∈ R3×3 are the mass
and damping matrices; u(t) is the horizontal ground acceleration; and 1 = [1 1 1]T . The restoring force for
the ith story is given by fh,i = ri − ri+1 where the inter-story shear force-deflection relation ri is given
by the Masing hysteretic model [10]. An interested reader is referred to [10] for a detailed description of
the Masing hysteretic model. ri for each story can be characterized by three parameters: small-amplitude
inter-story stiffnesses ki, ultimate strength ru,i, and elastic-to-plastic transition parameter αi.

In this example, the structure has a known story mass of 1.25 × 105 kg. The viscous damping matrix
C is modeled using Rayleigh damping C = cM M + cKK. The actual values for the model parameters
for the hysteresis model and the viscous damping matrix are presented in Table 1. The prior distribution
over the nine-dimensional parameter space of the hysteresis model is selected to be the product of nine
lognormal PDFs with logarithmic mean value of log(2.5 × 108), log(2.5 × 106), and log(4) for ki , ru,i, and
αi, i = 1, 2, 3, respectively, and a logarithmic standard deviation of 0.5 for all of them. The prior PDFs for
the parameters of the damping matrix are defined as independent uniform PDFs over the interval [0, 1.5]
for cM and [0, 1.5 × 10−3] for cK . The east-west component of the Sylmar ground-motion record from the
County Hospital Parking Lot during 1994 Northridge earthquake in California is used here as the excitation.
The synthetic response data for system identification is the inter-story drift time histories from the oracle
model, for which the parameters are set to their actual values, and the standard deviation of the uncertain
output error is set to 0.03 cm. For ABC-SubSim, the number of samples in each level is fixed to Nt = 2000,
the adaptation probability to Pa = 0.1, and the conditional probability to P0 = 0.1.

Four model classes are studied for system identification. For model classes M1 and M2, the elastic-to-
plastic transition parameters are constrained to be equal for all three stories whereas they are allowed to
vary for model classes M3 and M4. The model classes M1 and M3 contain no viscous damping, but model
classes M2 and M4 do.

Table 1 shows the MAP (maximum a posteriori) values and the standard deviations of the uncertain
parameters obtained for all model classes. Table 2 shows the final tolerance levels εMj

for different model
classes. This table also presents the posterior probability of model classes P (Mj(εMj

)|DN , M), j = 1, 2, 3, 4
calculated by evaluation of evidence (15) at the final tolerance levels εMj

and equal prior probabilities
P (Mj |M) = 1/4 for the models. It is not surprising that the posterior probability for the model classes
favors model class M2 since it contains the model used to generate the synthetic data and has two parameters
less than model class M4, which also contains the data-generating model. As shown by the information-
theoretic expression for the log evidence in [6], the posterior probability of a model class is controlled by a
trade-off between the posterior average data fit (the posterior mean of the log-likelihood) and the amount of
information extracted from data (the relative entropy of the posterior with respect to the prior). M2 and
M4 give essentially the same average data fit but M2 extracts less information abouts its parameters.

The approximate posterior probabilities P (Mj(εMj
)|DN , M) presented in Table 2 are in agreement with

those reported by Muto and Beck [6]. Figures 1 (Left and Right), respectively show the probability that
y1:N falls in the data-approximating region D(ε) and the posterior probability P (Mj(ε)|DN , M) for different
model classes versus the tolerance level ε.

4. Concluding remarks

In the current state of the art, ABC methods can only be used for model class selection in a very limited
range of models for which a set of sufficient summary statistics can be found so that it also guarantees
sufficiency across the set of models under study. In this paper, a new ABC model selection procedure has
been presented which broadens the realm of ABC-based model comparison to be able to assess dynamic
models. The presented numerical example showed the effectiveness of the proposed method for ABC model
selection.
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Table 1 The MAP values and the standard deviations (in parentheses) of the uncertain model parameters.

Model class M1 M2 M3 M4 Oracle model

k1 (108 N/m) 2.586 (0.026) 2.497 (0.018) 2.545 (0.029) 2.490 (0.015) 2.500
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ru,1 (106 N) 1.737 (0.004) 1.749 (0.003) 1.746 (0.006) 1.751 (0.003) 1.750
ru,2 (106 N) 1.779 (0.064) 1.750 (0.037) 1.924 (0.152) 1.757 (0.054) 1.750
ru,3 (106 N) 2.056 (1.014) 2.140 (0.772) 2.358 (0.934) 2.154 (1.083) 1.750
α1 3.430 (0.090) 3.981 (0.075) 3.447 (0.145) 4.041 (0.094) 4
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Table 2 Posterior probability of different model classes together with final tolerance level.
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P (Mj(εMj
)|DN , M) 0 0.982 0 0.018
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Fig. 1 Left)The probability of entering the data-approximating region D(ε) against tolerance level ε; Right) The posterior
probability of different model classes Mj against tolerance level ε.
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