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The enhancement of optical forces has enabled a variety of technological applications that rely on the optical
control of small objects anddevices.Unfortunately, optical forces are still too small for the convenient actuation
of integrated switches and waveguide couplers. Here we show how the optical gradient force can be enhanced
by an order of magnitude by making use of gauge materials inside two evanescently coupled waveguides. To
this end, the gauge materials inside the cores should emulate imaginary vector potentials for photons pointing
perpendicularly to the waveguide plane. Depending on the relative orientation of the vector potentials in
neighboringwaveguides, i.e., pointing away fromor towards each other, the conventional attractive force due to
an evenmode profilemay be enhanced, suppressed, ormay even become repulsive. This and other new features
indicate that the implementationof complex-valuedvector potentialswithnon-Hermitianwaveguide coresmay
further enhance our control over mode profiles and the associated optical forces.
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The exchange of momentum between electromagnetic
waves and matter is a fascinating effect with a long
scientific history [1]. For a long time, optical forces were
considered to be too minute for “terrestrial affairs” [2].
Indeed, it took more than thirty years before the radiation
pressure, theoretically predicted by Maxwell, was detected
by Lebedew [3] and Nichols and Hull [4] in high-precision
torsion experiments. Now, one century later, the manipu-
lation and actuation of objects through the use of optical
forces has become a thriving scientific and technological
research field [5–12]. When sufficiently enhanced, optical
forces can, e.g., be used to manipulate microscopic objects
[13–18], to cool down atomic gasses and cavities [19,20],
to sort molecules and cells [21–23], to probe mechanical
quantum states [6], and to optically control motors, optical
filters, and integrated switches [24–28].
The aforementioned applications have resulted from

continuous research efforts to enhance optical forces through
the engineering of light modes. This has been done using
appropriately structured light sources [7,17,19], the individ-
ual or collective response of resonators [29–32], or struc-
tured interfaces and waveguides to confine modes [5,33–37].
A waveguide geometry is particularly well suited for the
enhancement of optical forces [15,26,32,38–41]. Indeed,
the optical gradient force depends on the amplitude and on
the lateral decay length of the electric field, both of which
can be enhanced in a waveguide setup [42]. Scientists have
taken advantage of large gradient forces between wave-
guides to implement integrated switches and actuators
[26,35,36,38]. In these devices, gradient forces with a
magnitude of the order of several pN μm−1mW−1 have
been obtained [26,35,36]. Still, further enhancement is

required for optical forces to be used in a convenient
way in integrated optics.
In this Letter, we propose a new mechanism for the

enhancement of optical forces that relies on the modifica-
tion of the confined mode profile inside waveguides that
implement complex-valued artificial effective gauges. In
the past few years, researchers have successfully transposed
the effects of a vector potential on charged particles [43–45]
to charge-neutral particles and photons [46–55]. Similarly
to the case of charged particles, an effective vector potential
~A shifts the pseudomomentum of photons to k − ~A. This
shift was recently used to introduce a waveguide design
[56] with new dispersion properties of light propagating
parallel to the direction of the vector potential in a gauge
material, and has been experimentally demonstrated last
year [57,58]. Here, we demonstrate that the application of a
complex-valued vector potential to a waveguide core,
perpendicular to the propagation direction of guided
modes, may enhance the optical force by an order of
magnitude, both through an optimization of the mode
profile and the appearance of gauge-dependent terms in
the Lorentz force. Such an imaginary vector potential is
generated by specific non-Hermitian materials such as
coupled loss-gain resonators, as discussed in Ref. [59].
In the Supplemental Material [60] and Refs. [61,62]
therein, we discuss how to implement these imaginary
gauges in a waveguide geometry (see Fig. S4).
To obtain some physical intuition into the significance

and implementation of complex-valued vector potentials,
we first revisit the well-known case of real vector poten-
tials. In the presence of a real vector potential ~A, a photon
accumulates a nontrivial phase Φ ¼ R

~A · dl along its
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trajectory [49,63]. The implementation of this phase, by
making use of coupled resonators and waveguides, has
enabled the experimental demonstration of effective
magnetic fields, robust transport of light, and optical
isolators [53,63,64]. In the case of an imaginary vector
potential, a photon accumulates an imaginary phase along
a trajectory [59]. Therefore, imaginary vector potentials
reduce or increase the photon’s amplitude depending
on the direction in which they travel. As a result, the
implementation of imaginary vector potentials requires
the use of non-Hermitian systems such as loss-gain
waveguides or resonators [59,61,62,65] (Fig. S4 in the
Supplemental Material [60]).
To enhance the optical force between a pair of slab

waveguides with cores of thickness a and refractive index
ncore larger than the vacuum cladding regions, we apply an
imaginary gauge potential perpendicular to the waveguides.
As shown in Fig. 1, we only consider symmetric orientations
of the imaginary gauges; i.e., the gauge in the rightmost
waveguide ( ~A ¼ i ~A 1x) is the mirror image of the leftmost
waveguide. Following the methodology developed in
Ref. [56], our description of effective gauge potentials
inside the waveguides relies on minimal substitution in
the Maxwell equations, replacing partial derivatives ∇ by
covariant derivatives ∇ − i ~A. As a result of minimal sub-
stitution, effective gauges may modify the dispersion and/or
the mode profile of guided waves based on their contribu-
tions to the wave equation in the core region.

The electric fields of transverse-electric guided
modes in a single-slab gauge waveguide, i.e.,
E ¼ ϕðxÞ exp½iðβz − ωtÞ�1y, consist of a remarkable
mode profile ϕðxÞ propagating along the z direction with
wave vector β and oscillating at frequency ω. Inside the
core, the electric field is a solution to the following wave
equation, which has been derived from the Maxwell
equations through minimal substitution:

∂2ϕðxÞ
∂x2 þ2 ~A

∂ϕðxÞ
∂x −

�
β2− ~A2−

�
ωn
c

�
2
�
ϕðxÞ¼0: ð1Þ

In general, the solutions to this wave equation are damped
harmonic functions, where the damping is directly propor-
tional to the strength of the gauge field ~A. Because of the
continuity of electric and magnetic fields at the edges of the
waveguide, only the underdamped mode profiles can lead
to nontrivial guided modes. Defining a normalization
constant Ccore, we can write the transverse electric field
of a mode inside the core as

ϕðxÞ ¼ Ccoree−Ax cos ðkxþ φÞ: ð2Þ

As shown in Fig. 1(a), the oscillating mode profile is no
longer symmetric, but is now enclosed by an exponential
envelope that depends on the gauge field ~A inside the core.
Outside of the core, the electromagnetic fields decay
exponentially to ensure confinement. The corresponding

(a) (b)

(c) (d)

FIG. 1. Comparison of the mode profiles and dispersion relations of single-slab waveguides (a)–(b) and two coupled slab waveguides
(c)–(d), where the core refractive index is higher than that of the cladding and an imaginary gauge vector potential is applied in the
direction of the arrows. (a) The mode profile is exponentially damped inside the core of a waveguide with an imaginary vector potential
perpendicular to the propagation direction. (b) The dispersion relation is unchanged with respect to a conventional slab waveguide and
contains even (blue) and odd (red) modes with TE (full line) and TM (dashed line) polarizations. (c) Coupled waveguides with
imaginary gauges. Gauges that point away from (towards) each other lead to attractive (repulsive) forces. (d) The dispersion relation of
two coupled waveguides corresponds to hybridized modes of a single-slab waveguide (black), and does not depend on the magnitude of
the gauge potential.
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magnetic fields are easily found through the application
of Faraday’s law in the presence of a vector potential
(applying minimal substitution).
The case of a single-slab waveguide with an imaginary

gauge leads to two remarkable observations. First, the
application of an imaginary vector potential perpendicular
to the propagation direction does not alter the dispersion
relation. In other words, the waveguide dispersion is equal
to that of a conventional waveguide (see Supplemental
Material [60]). Second, the mode profile in Fig. 1(a) has a
pronounced asymmetry, which depends on the direction
in which the gauge is being applied. In particular, the
amplitude of the field at the left-hand side of the waveguide
is different from that at the right-hand side. This is a highly
interesting feature that will allow for the enhancement or
suppression of optical forces when two gauge waveguides
are brought together. In particular, the asymmetric profile
may generate optical forces that cannot be excited in
waveguides with macroscopic gain.
Let us now consider the effect of imaginary gauges on

the solutions of two coupled waveguides, and in particular
the optical forces between them. The optical force between
two conventional dielectric slab waveguides at a distance
2b with core thickness a has been studied thoroughly in
previous works [38]. In Figs. 1(c)–1(d), we obtain identical
observations for evanescently coupled gauge waveguides:
the modes of the isolated waveguides, characterized by
black curves, hybridize. They split into even modes (blue
dispersion curves) and odd modes (red dispersion curves)
with respect to the symmetry plane at x ¼ 0. Again, the
imaginary vector potential does not influence the dispersion
of the modes. To calculate the optical force acting on these
waveguides, we make use of the Lorentz force and insert
macroscopic fields (see Supplemental Material [60]).
Importantly, the time-averaged total force hFi on a volume
V surrounded by the surface S contains not only the usual
contributions due to the divergence of the Maxwell stress
tensor hTi and the time-derivative of Poynting’s vector
hϵ0n2E ×Bi. In addition to these contributions, we find a
third term that determines the force acting on a waveguide:

hFi ¼
I
S
hTi · dSþ

�Z
V
ϵ0n2

∂
∂t ðE ×BÞdV

�

þ
�
iϵ0

Z
V
f ~Aðn2jEj2 þ c2jBj2Þ

− 2½n2ð ~A · EÞEþ c2ð ~A ·BÞB�gdV
�
:

The additional term explicitly depends on the vector
potential ~A. In case of an imaginary vector potential
~A ¼ i ~A 1x, the last term does not vanish and plays a
major role in the enhancement and sign flip of the force.
Therefore, the vector potential influences the optical force
both in a direct way, through the explicit gauge-dependent

terms, and in an indirect way, through a modification of
the mode profiles. Real vector potentials do not enhance
optical forces, because they do not appear in the Lorentz
force and do not affect the symmetry of the mode profile.
Further details regarding our method are provided in the
Supplemental Material [60].
In Fig. 2, we visualize the dependence of the optical

force on the strength of the imaginary gauge potential in the
case of the fundamental transverse electric mode profile.
The imaginary gauge potential is represented in terms of
the accumulated amplification between both interfaces
of the core Φ ¼ a ~A (horizontal axis), which is defined
in such a way that it is positive (negative) when the gauge
potentials in both slabs point away from (towards) each

(a)

(b)

(c)

FIG. 2. Optical gradient force as a function of the applied
gauge potential Φ ¼ a ~A with gauge fields pointing away from
(towards) each other Φ > 0 (Φ < 0) for different values of the
waveguide thickness a, gap width 2b, and core refractive index
ncore at a wavelength of λ ¼ 1.55 μm. (a) The forces increase
for small waveguide thicknesses a with 2b ¼ 200 nm and
ncore ¼ 2.5. (b) The forces increase for small gap widths 2 · b
with a ¼ 600 nm, ncore ¼ 2.5, and (c) the forces increase for
high refractive indices of the cores ncore with a ¼ 600 and
2b ¼ 200 nm. The obtained values of the optical forces at zero
gauge fields are in agreement with the current state-of-the-art
results.
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other. The different curves in Fig. 2 show how the force
depends on the waveguide thickness a [Fig. 2(a)], the gap
width 2b [Fig. 2(b)], and the refractive index of the core
ncore [Fig. 2(c)]. For gauge potentials pointing away from
each other, the attractive force due to the even mode is
enhanced, while gauge potentials pointing towards each
other counteract the attractive force. When the accumulated
amplification Φ is sufficiently large, it is even possible to
switch the sign of the force, from an attractive to a repulsive
one. This is a novel feature that cannot be achieved by
coupling conventional waveguides [38]: traditionally, mode
profiles that are even (odd) with respect to the symmetry
plane x ¼ 0 cannot experience repulsive (attractive) forces.
In order to consistently compare optical forces that arise

in waveguide pairs of different thickness and different gap
width, the forces in Fig. 2 have been normalized with
respect to the total power Pin that is coupled into the
waveguides [32]. In a realistic setup, a pair of conventional
waveguides would transport the guided mode to a pair of
gauge waveguides and it is the power launched into the
conventional waveguides that would be an experimentally
available parameter. Therefore, we have normalized the
optical forces between the waveguides in such a way that
they correspond to a total incident power of 1 mW=μm
inside the pair of conventional waveguides. The appropriate
power that is transported by the mode profile of the gauge
waveguides is subsequently calculated by making use
of the overlap principle [66]. For more information on
normalization, we refer to the Supplemental Material [60].
As shown in Fig. 2, variations in the applied gauge

potential may lead to a tenfold enhancement of the optical
force. Imaginary gauges require external energy input. It is
thus important to compare our gauge waveguide imple-
mentation with gain waveguides. In the Supplemental
Material, we show that for a fixed force enhancement
our gauge waveguides are more energy efficient than
traditional gain waveguides in an experimentally interest-
ing parameter range, not only because of gain saturation,
which ultimately limits the enhancement of gain wave-
guides, but also because of the more efficient distribution
of the modal field profile in our setup [60]. Realistic values
for Φ based on current realizations of gain-loss media with
imaginary refractive indices of ni ¼ 2 enhance the force
more than fourfold [67]. Of course, the aforementioned
enhancements are also sensitive to the geometry of the
system: thin waveguides with small gap widths and high
refractive indices lead to stronger force enhancements.
These geometrical dependencies also appear in coupled
waveguides without gauges: small waveguide thicknesses
result in weakly confined modes with high electric fields at
the other waveguide. Note that, in the presence of a gauge,
thin waveguides are more susceptible to force enhance-
ment. For a particular value of the flux Φ ¼ a ~A, the
amplitude of the imaginary vector potential increases
and the gauge-dependent terms inside the optical force

contribute more strongly to its enhancement. At fixed
potentials Φ, forces will decrease or increase the gap width
2b, depending on the sign of the force for the initial gap
width 2b0, until the optical forces are compensated for by
the elastic properties of the waveguides. More interesting
dynamics is expected to occur when gauge potentials
switch sign or change slowly in time.
In conclusion, we have shown that the application of

complex-valued vector potentials perpendicular to the
plane of coupled slab waveguides may enhance the force
by an order of magnitude as compared to conventional
waveguide systems. The mechanism behind this enhance-
ment is twofold. On the one hand, complex-valued gauges
introduce asymmetric mode profiles. Depending on the
orientation of the vector potential, the electric field inside
the gap and the associated optical forces may be enhanced
or suppressed. On the other hand, the vector potential
also explicitly introduces gauge-dependent terms into the
expression of the optical force due to minimal substitution.
The explicit dependence on the vector potential results in
new features, such as switching from attractive to repulsive
forces for even mode profiles. In addition to these new
features, an implementation of complex-valued vector
potentials in waveguides based on non-Hermitian coupled
resonator lattices [59,61,62,65], as proposed in the
Supplemental Material [60], would allow for a mechanism
that is not susceptible to gain saturation. Given the recent
interest in the generation of directional gain, we believe that
complex-valued gauges provide a valuable new mechanism
for the long-sought-after enhancement of optical forces in
integrated switches and actuators.
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