
Chalmers Publication Library

Implementation of a Harmonic Balance Solver into a Compressible CFD Code

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Lindblad, D. (2017) "Implementation of a Harmonic Balance Solver into a Compressible
CFD Code".

Downloaded from: http://publications.lib.chalmers.se/publication/252653

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/252653

Technical report 2017:05

Implementation of a Harmonic Balance Solver into a

Compressible CFD Code

by

D A N IEL LIN D B LA D

Department of Applied Mechanics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2017

Implementation of a Harmonic Balance Solver into a Compressible

CFD Code

D A N I E L L I N D B L A D

© D A N I E L L I N D B L A D , 2017

Technical report 2017:05

ISSN 1652-8565

Division of Fluid Dynamics

Department of Applied Mechanics

CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Göteborg

Sverige

Telephone +46 (0)31 772 1000

Implementation of a Harmonic Balance Solver into a
Compressible CFD Code

Introduction to High Performance Computing 2016

Author:
Daniel Lindblad
daniel.lindblad@chalmers.se

October 19, 2017

1 Introduction/Abstract

In this project the Harmonic Balance technique for solving time periodic problems in fluid
dynamics has been implemented into the parallel Navier-Stokes solver G3D::Flow. Perfor-
mance issues with regards to the original implementation are identified using two profiling
tools, Cachegrind [1.] and Allinea-Map 6.11 [2.]. These findings are used to derive a nu-
merical algorithm that benefits from both improved cache locality and loop performance
by utlizing blocked matrix multiplication and vectorization. The scaling properties of the
Harmonic Balance technique are also demonstrated by deriving an approximate performance
model and comparing it to numerical results obtained at the Triolith and Hebbe computer
clusters at Linköping and Chalmers Univeristy.

2 Harmonic Balance Method

2.1 Governing Equations

The Harmonic Balance technique is applicable to problems in which the solution to the
governing equations is periodic in time. For some situations in fluid dynamics this holds
true, in which case the flow can be described by the compressible Navier-Stokes equations

∂Q
∂t

+
∂Fj
∂xj

= 0 (1)

The state vector Q = (ρ, ρu, ρv, ρw, ρe0)
T contains the conserved variables (density, momen-

tum and total energy) and Fj is the total flux vector. The Harmonic Balance equations are
derived based on the assumption that the conserved variables in Q are periodic in time with
a known period T . This assumption implies that the solution can be expressed as a Fourier
series in time, with spatially varying coefficients

Q(t, xj) =

∞∑
n=−∞

Q̂n(xj)e
iωnt (2)

Here, ωn = 2πn/T is the angular frequency of the nth harmonic. The Fourier series can be
truncated if we assume that the flow can be accurately described by a limited number of
harmonics

Q(t) ≈
Nh∑

n=−Nh

Q̂neiωnt (3)

The aim of the Harmonic Balance technique is to recast the problem of finding the evolution
of Q(t) by using time stepping techniques to finding the amplitude of the harmonic am-
plitudes Q̂n. However, instead of directly formulating governing equations for the 2Nh + 1
unknown harmonic amplitudes the solution is sought at Nt = 2Nh+1 time instances equally
distributed over a period. These time instances, or time levels, represent frozen snapshots
of the transient solution at times tl = lT/Nt and are grouped together in a new state vector

1

Q∗ =



ρ0
ρ1
...

ρNt−1
ρu0

...
ρuNt−1

...
ρe0,0

...
ρe0,Nt−1



(4)

We will now derive a governing equation for Q∗ and show how the harmonic amplitudes can
be computed from the new state vector. First, the Fourier series assumption in Eq. (3) is
substituted into the time derivative of the Navier-Stokes equations

∂Q
∂t
≈

Nh∑
n=−Nh

iωnQ̂neiωnt (5)

The harmonic amplitudes are furthermore computed with a discrete Fourier transorm over
all time levels

Q̂n =
1

Nt

Nt−1∑
l=0

Ql e−iωntl (6)

Here, Ql = Q(tl) represents the solution at time level l. If Eq. (6) is inserted into Eq. (5)
and the resulting expression is evaluated at time level m, the following relation is obtained
after some algebra

∂Qm
∂t
≈

Nt−1∑
l=0

 i

Nt

Nh∑
n=−Nh

ωne
iωn(tm−tl)

Ql (7)

In this equation we have obtained a high-order finite difference approximation of the time
derivative at time level m by means of the solution at all other time levels. This can also be
expressed in terms of a matrix multiplication according to

∂

∂t
Q∗ ≈ DQ∗ (8)

The matrix D is referred to as the time spectral derivative matrix. It takes on the following
form

D =


[dm,l] 0

[dm,l]
. . .

0 [dm,l]

 (9)

2

Here, [dm,l] is an Nt×Nt matrix whose elements are given by the expression inside the large
parenthesis of Eq. (7). The number of diagonal blocks in D corresponds to the number of
variables in Q, which in our case is NV ar = 5. Thus the size of D is (NV ar ·Nt)× (NV ar ·Nt).
A governing equation for Q∗ can now be formulated by replacing the time derivative by the
matrix multiplication in Eq. (8)

DQ∗ +
∂F∗j
∂xj

= 0 (10)

This represents a coupled set of mathematically steady state equations for the solution at
each time level. The new flux vector F∗j furthermore contains the flux for each variable and
time level. Equation (10) is discretized in space using the finite volume method and a pseudo
time derivative is introduced to drive the resulting system of equations towards steady state
using local time stepping

Vi
∂Q∗i
∂τ

+ ViDQ∗i +R∗i = 0 (11)

In this equation index i represents a specific cell in the computational mesh. The flow
residual R∗i furthermore contains the discretized flux for each variable and time level in cell
i

R∗i =



Rρ0
Rρ1
...

RρNt−1
Rρu0

...
RρuNt−1

...
Rρe00

...
Rρe0Nt−1


i

(12)

It should be noted that the residual flux for each variable and time level can be computed
from the solution at that time level, for exampleRρl = Rρ(Ql), except when special boundary
conditions are used in the simulation.

2.2 Integration into G3D::Flow

The Harmonic Balance method was implemented into Chalmers’ in-house CFD solver G3D::Flow.
The code uses distributed datatypes in the PETSc library together with domain decompo-
sition to run on multiple processes. In the original solver a three stage Runge-Kutta cycle
is used to update the solution in time

3

Qa
i = Qni −

∆t

Vi
Rni

Qb
i =

1

2
(Qa

i +Qni)− ∆t

2Vi
Ra
i

Qn+1
i =

1

2
(Qa

i +Qni)− ∆t

2Vi
Rb
i (13)

Superscript a and b denotes intermediate solutions in the Runge-Kutta cycle and n refers
to the time step. In the Harmonic Balance solver the solution is instead updated in pseudo
time τ with a time step that is adjusted individually for each cell. A converged solution
is obtained when the solution does not change from time step to time step, i.e. when the
flow residual and time spectral derivative balances in Eq. (11). The Runge Kutta cycle may
therefore be formulated as follows

Q∗,ai = Q∗,ni −
(

∆τi
Vi
R∗,ni + ∆τiDQ∗,ni

)
Q∗,bi =

1

2
(Q∗,ai +Q∗,ni)− 1

2

(
∆τi
Vi
R∗,ai + ∆τiDQ∗,ai

)
Q∗,n+1
i =

1

2
(Q∗,ai +Q∗,ni)− 1

2

(
∆τi
Vi
R∗,bi + ∆τiDQ∗,bi

)
︸ ︷︷ ︸

R̃i

(14)

The same type of domain decomposition that is used for the original solver is kept for the
Harmonic Balance implementation. This implies that each process stores all time levels of
the solution in the cells that it handles. There is thus no attempt to parallelize the code
further with respect to the time levels, altough it is potentially possible. The flow field and
residual are stored in two arrays of length Nt, where each entry contains one instance of the
same classes that are used to store flow fields and residuals in the original solver. Each of
these objects does in turn contain NV ar arrays of type PetscScalar (similar to double) which
stores either the flow field variables or residual for all cells (NCellsLocal) that the process
owns. The data format is summarized below for the flow field variables

4

Q∗ =



Q0 :


PetscScalar ρ[NCellsLocal]
PetscScalar ρu[NCellsLocal]
PetscScalar ρv[NCellsLocal]
PetscScalar ρw[NCellsLocal]
PetscScalar ρe0[NCellsLocal]



Q1 :


PetscScalar ρ[NCellsLocal]
PetscScalar ρu[NCellsLocal]
PetscScalar ρv[NCellsLocal]
PetscScalar ρw[NCellsLocal]
PetscScalar ρe0[NCellsLocal]


...

QNt−1 :


PetscScalar ρ[NCellsLocal]
PetscScalar ρu[NCellsLocal]
PetscScalar ρv[NCellsLocal]
PetscScalar ρw[NCellsLocal]
PetscScalar ρe0[NCellsLocal]





(15)

Note that this storage format is slightly different from how the new state vector was presented
in Eq. (4). This is however merely a cosmetic difference, since in reality theQ∗ andQl objects
in Eq. (15) are merely placeholders for the vectors that store the actual data (ρ[] ...). In terms
of memory layout the code does therefore only see Nt ·NV ar arrays in which the conserved
variables and corresponding residuals are stored for each cell. A different way to see this
is that the code stores the flow field in terms of a matrix of size (Nt · NV ar) × NCellsLocal

which has row-major order data storage. This insight will later be used to derive an efficient
algorithm for computing DQ∗ but first the skeleton of the Harmonic Balance Runge-Kutta
implementation is presented below in pseudo code

/* Runge Kutta Stage 1 */

// Update Ghost Cells

MPI_Scatter ();

// Update Flow Field Residual for all time levels

for(int it=0; it<Nt; it++){

// Backup Flow Field

Cons0[it] = Cons[it];

// Update Flow Residual for all variables at time level it

// Res = (dt/V)*R

Res[it]->update ();

}

// Add Time Spectral Derivative to Flow Field Residual

ExplicitSpectralDerivative ();

5

// Update Solution for RK Stage 1

for(int it=0; it<Nt; it++){

// Res[it] includes D*Q

Cons[it] = Cons0[it] - Res[it];

}

/* Runge Kutta Stage 2 */

// Update Ghost Cells

MPI_Scatter ();

// Update Flow Field Residual for all time levels

for(int it=0; it<Nt; it++){

// Backup Flow Field

Cons0[it] = 0.5*(Cons[it] + Cons0[it]);

// Update Flow Residual for all variables at time level it

// Res = (dt/V)*R

Res[it]->update ();

}

// Add Time Spectral Derivative to Flow Field Residual

ExplicitSpectralDerivative ();

// Update Solution for RK Stage 2

for(int it=0; it<Nt; it++){

// Res[it] includes D*Q

Cons[it] = Cons0[it] - 0.5* Res[it];

}

/* Runge Kutta Stage 3 */

// Update Ghost Cells

MPI_Scatter ();

// Update Flow Field Residual for all time levels

for(int it=0; it<Nt; it++){

// Update Flow Residual for all variables at time level it

// Res = (dt/V)*R

Res[it]->update ();

6

}

// Add Time Spectral Derivative to Flow Field Residual

ExplicitSpectralDerivative ();

// Update Solution for RK Stage 3

for(int it=0; it<Nt; it++){

// Res[it] includes D*Q

Cons[it] = Cons0[it] - 0.5* Res[it];

}

The variables ”Res”, ”Cons” and ”Cons0” respectively contain the total residual (R̃∗), flow
field (Q∗) and a backup of the flow field necessary for the Runke Kutta cycle. They all have
the storage format presented in Eq. (15), i.e. Cons[it] = Qit.

Each Runge Kutta stage begins by scattering ghost cell values between all process so that
the cell values at the boundaries of each sub-domain are updated. After this the code
goes through each time level and adds the flow residual ((∆τi/Vi)R∗i) to ”Res” by calling
the G3D::Flow flux routines (Res[it]->update();). Finally the spectral derivative matrix
(∆τiDQ∗i) is added to ”Res” inside the routine called ”ExplicitSpectralDerivative()”. The
initial implementation of this routine is presented in the next section.

2.3 Original Time Spectral Derivative

The first implementation of the time spectral derivative was done in a straightforward man-
ner to allow easy debugging and verification of the code. Note that for each cell the matrix
multiplication presented in Eq. (8) can be split up in NV ar smaller matrix multiplications
due to the block structure of D. This is done in a straightforward way according to

void ExplicitSpectralDerivative ()

{

// Loop over all cells owned by process

for(int ic=0; ic<NCellsLocal; ic++){

// Loop through all variables (blocks of D)

for(int ivar =0; ivar <NVar; ivar ++){

// Loop through all residuals

for(int m=0; m<Nt; m++){

// Loop through all time levels

for(int l=0; l<Nt; l++){

Res[m]->Var[ivar][ic] += dtime[ic]*d[m,l]* ...

Cons[l]->Var[ivar][ic];

}

7

}

}

}

return;

}

In this presudo code, ”Res[m]->Var[ivar]” points to the first element of the residual array for
variable ”ivar” at time level ”m”, see Eq. (15). Also note that the code stores the local time
step for a given cell using the array ”dtime”.

2.4 Approximate Performance Model for Harmonic Balance

The execution time of one Runge Kutta cycle was estimated based on the number of opera-
tions that are necessary to update the ghost cells, flow residual and time spectral derivative.
The addition and assignment operations that are used to update ”Cons” and ”Cons0” are
also taken into consideration.

If we assume that the computational domain contains NCells cells that are split between
NProc processors the number of local cells become NCellsLocal = NCells/NProc. G3D::Flow
operate on hexahedral, block-structured meshes in which each block contains Ni · Nj · Nk

cells. For simplicity we assume that the computational domain is made up of one block with
equal number of cells in each block direction (Ni = Nj = Nk). In addition, we assume that
the domain decomposition is performed by splitting the block along one edge, so that each
sub domain consist of NiNjNk/NProc cells. In this case we see that the number of ghost cells

that each process must perform MPI communication over becomes proportional to 2N
2/3
Cells,

one cell layer above and one below. For a more general domain topology this relation only
becomes an estimate but can still give an indication on the size of the MPI communication.
For each cell where MPI communication is performed, Nt ·NV ar variables must be communi-
cated, implying that the total complexity of updating the ghots cells becomes proportional

to 2N
2/3
CellsNV arNt.

Updating the flow residual in finite volume methods implies calculating the flux over all
faces in the computational mesh and add the net contribution to the cells connected to that
face. For a hexahedral mesh the number of faces each process must take care of becomes
3NCells/NProc. The flow residual must be updated for all variables and time levels, giving a
total complexity proportional to 3NCellsNV arNt/NProc.

The operations used to update ”Cons” and ”Cons0” require one set of operations per cell,
variable and time level and must therefore be proportional to NCellsNV arNt/NProc as well.
Note that we have grouped all operations including addition and assignment in the pseudo
code above into one term in the performance model for simplicity.

The complexity of updating the time spectral derivative can finally be seen to be proportional
to NCellsNV arN

2
t /NProc. This gives that the time per iteration can be expressed as follows

8

f(NCells, NV ar, Nt, NProc) = 3
NCellsNV arNt

NProc
3CFlux +

NCellsNV arNt

NProc
CCopy

+ 3
NCellsNV arNt

NProc
NtCSpec + 3N

2/3
CellsNV arNt2CMPI (16)

It should be noted that a 3 was added before the flux, spectral derivative and MPI terms
since each of these operations are done once per Runge Kutta stage. The addition and
assignment operations are however not done for every Runge Kutta stage so the number of
times these operations are done are absorbed into CCopy. To make this expression easier to
interpret, introduce the variable NDof = NCellsNV arNt/NProc to represent the number of
degrees of freedom each process handles. In addition, we define CG3D = 3CFlux + CCopy/3
which represents the average cost of performing the flux and addition/assignment operations
of one Runge Kutta stage. A different way to see it is that one Runge Kutta stage in the
original solver takes CG3DNCellsNV ar/NProc seconds if MPI Communication is neglected.
With these definitions the performance model now reads

f(NCells, NV ar, Nt, NProc) = 3
[
CG3DNDof + CSpecNDofNt + CMPI2N

2/3
CellsNV arNt

]
(17)

3 Profiling with Cachegrind

The first profiling of the code was done with the Cachegrind [1.] tool on a Linux Workstation
equipped with an Intel Core i7-4770K processor. Cachegrind is a part of the Valgrind package
and can be used to get line-by-line information on the number of cache misses as well as the
number of intruction reads (Ir). The tool breaks down memory access information into L1
cache misses, including both instruction (I1) and data (D1) cache misses, and lower level
data cache misses (DL), representing all cache misses in L2 cache and above. In addition
to this, it differentiates between missed read (mr) and missed write (mr) operations, giving
four possible cache data misses: D1mr, DLmr, D1mw, DLmw. According to the Cachegrind
manual, the most important sources of bad performance are large amount of instruction
reads (Ir) and lower level cache misses (DLmr and DLmw). To run the G3D::Flow solver
with Cachegrind, both PETSc and the G3D::Flow source code were compiled with the ”-g”
flag in addition to the normal compiler flags used.

3.1 Test Case

A small test case was designed to enable efficient profiling of the code on the workstation
computer. The computational domain consist of one block with 100 ·100 ·10 = 100, 000 cells
and a harmonic wave was specified at all boundaries to force the solution inside the domain
into a harmonic oscillation. Three harmonics were retained in the Fourier series expansion,
giving a Harmonic Balance simulation with Nt = 7 time levels. For all simulations per-
formed the number of processes were furthermore set to NProc = 2, giving a total of 50, 000
cells per process. Earlier experience with G3D::Flow has shown that this is a lower bound
on the number of cells per processor needed to retain acceptable MPI overhead, altough
MPI communication is not the prime focus of the Cachegrind profiling. The computational
domain and contours of the x component of velocity are shown in Figure 1.

9

(a) Computational Domain. (b) Axial Velocity (u).

Figure 1: Test Case for Cachegrind Profiling.

3.2 Results for Original Time Spectral Derivative

As presented in section 2.2 the main change to the code was to repeat the routines of the
original G3D::Flow solver Nt times and add the time spectral derivative calculation. This
is reflected in the performance model (Eq. (17)), which says that the cost of the Harmonic
Balance solver is Nt times the original solver plus the cost of calculating the time spectral
derivative. The first objective of the profiling is therefore to find out wheter the new routine
”ExplicitSpectralDerivative()” adds any considerable computational cost relative to the rest
of the calculation. If not, the focus will be shifted towards the original G3D::Flow routines.
A breakdown of the total number of instruction reads and cache misses taking place inside
the ”ExplicitSpectralDerivative()” routine as percentages of the total number of instruction
reads and cache misses are presented in Table 1.

Ir D1mr D1mw DLmr DLmw
19.8% 5% 0% 14% 0%

Table 1: Instruction reads and cache misses for original time spectral derivative implemen-
taiton.

It is clear from this table that the time spectral derivative calculation both consumes a lot
of instructions and causes a relatively large amount of L1 and LL cache read misses. It
was found by closer inspection that the majority of all instruction reads and misses took
place in the innermost loop, where the residual is updated. These numbers are also expected
to grow if the number of time levels are increased. To see this, we assume negligible MPI
communication and express the ratio of time spent in the time spectral derivative loop to
the total time of execution using Eq. (17)

tSpec
tTot

=
Nt

CG3D/CSpec +Nt
(18)

If we assume that the execution time is proportional to the number of instruction reads the
above relation becomes equal to Ir in Table 1. This shows that the percentage of instruction
reads necessary to compute DQ∗ will dominate more and more the larger Nt becomes. It

10

is also clear that increasing the ratio CG3D/CSpec helps alleviating this effect, i.e. reducing
the cost of the time spectral derivative calculation (CSpec). To achieve this a new block
structured matrix multiplication was implemented to compute DQ∗. It turned out to both
improve cache locality and reduce number of instruction fetches, as will be described next.

3.3 Blocked Time Spectral Derivative

We start by analyzing the original implementation of ”ExplicitSpectralDerivative()” and try
to identify its shortcomings. The implementation performs a matrix-matrix multiplication
between the matrix D and a matrix containing Q∗i structured into NCellsLocal columns.
Each column is furthermore scaled with ∆τi and added to a matrix containing the total flow
residual R̃∗i orgainzed into NCellsLocal columns. If we for brevity assume that the time step
is constant the operation can be summarized as follows

[R̃∗1 R̃∗2 . . . R̃∗NCells
] + = ∆τD[Q∗1 Q∗2 . . . Q∗NCells

] (19)

The matrix multiplication is done by four nested loops in ”ExplicitSpectralDerivative()”. In
Figure 2 the order of the loops are schematically depicted by numbered arrows, where 1 and
4 denote the outermost and innermost loop respectively. For simplicity the number of time
levels are kept to Nt = 3.



R̃ρ0 [−−−−]

R̃ρ1 [−−−−]

R̃ρ2 [−−−−]

R̃ρu0 [−−−−]

R̃ρu1 [−−−−]

R̃ρu2 [−−−−]︸ ︷︷ ︸
NCellsLocal

...


+ =



d0,0 d0,1 d0,2
d1,0 d1,1 d1,2
d2,0 d2,1 d2,2


d0,0 d0,1 d0,2
d1,0 d1,1 d1,2
d2,0 d2,1 d2,2


︸ ︷︷ ︸

Nt

. . .





ρ0 [−−−−]
ρ1 [−−−−]
ρ2 [−−−−]
ρu0 [−−−−]
ρu1 [−−−−]
ρu2 [−−−−]︸ ︷︷ ︸

NCellsLocal

...



1. 1.

2. 2.3. 3.

3. 3.

4.

4.
4.

4.

Figure 2: Flow Chart for Time Spectral Derivative Calculation.

The first thing that should be noted from the flowchart is that loop 1 goes through all cells
in the mesh. This does in turn mean that loops 2− 4 always will access data from different
arrays in memory. When the value in cell i is brought from main memory the cacheline
will most likely also contain values for cell i + 1, i + 2, The problem with the current
implementation is that the value in cell i+ 1 is not used until ∼ NV ar ·N2

t loop steps later.
At this point it may have been replaced in the cache, which then would generate a costly
cache miss. This could explain the rather high percentage of L2 cache read misses reported
in Table 1. This cache locality issue holds for both the matrix containing the residual and
flow field values. It is however not a problem for the time spectral derivative matrix D
itself. This is because all NV ar blocks inside it are equal, and it thus sufficies to store one
of them of size N2

t . It is therefore reasonable to believe that the time spectral derivative
matrix will not be replaced in the cache at any point of the computation. The cache locality
can be improved by implementing a block structured matrix multiplication instead. In

11

this approach the outermost loop instead takes steps of size NCellsBlock >> 1 and a new
innermost loop is added that loops serially through all cells in the block. Operations that
access objects through pointers (a->b) and dereference data in arrays (a[i]) also consume
instruction reads. Minimizing the use of these operations inside the innermost loops is
therefore believed to be a key to improve performance. Local pointers that point directly to
the data arrays were therefore allocated in ”ExplicitSpectralDerivative()” and used instead
of the placeholders ”Res” and ”Cons” to access data. The block structured implementation
is presented in pseudo code below

void ExplicitSpectralDerivative ()

{

PetscScalar *Residual;

PetscSCalar *Variable;

// Loop over all cell blocks of size NCellsBlock

for(int icb=0; icb <NCellsLocal; icb = icb + NCellsBlock){

// Loop through all variables (blocks of D)

for(int ivar =0; ivar <NVar; ivar ++){

// Loop through all residuals

for(int m=0; m<Nt; m++){

// Set local pointer

Residual = Res[m]->Var[ivar];

// Loop through all time levels

for(int l=0; l<Nt; l++){

// Set local pointer

Variable = Cons[l]->Var[ivar];

// Loop through all cells in current cell block

for(int ic=icb; ic<min(NCellsLocal , icb+NCellsBlock); ic++){

Residual[ic] += dtime[ic]*d[m,l]* Variable[ic];

}

}

}

}

}

return;

}

The new loop order can be seen to loop serially through both the ”Residual”, ”dtime” and
”Variable” arrays in the innermost loop to improve cache locality. The blocked loop also
reduces the amount of pointer and array access operations needed when used in combination
with the local variables ”Residual” and ”Variable”. It can for example be seen that the
number of times the operation ”Cons[l]->Var[ivar]” is done has been reduced by a factor
”NCellsBlock” compared to the old code. It must however be recognized that the compiler
sometimes seem to realize that a memory location is reused inside a loop and then only

12

computes it once. I.e an operation of type a->b[i]->d appears to be pre-computed before a
loop if the loop index is different from i. Another good feature is that the innermost loop
now is suitable for vectorization. We will however get back to this later when the code is
profiled with Allinea Map. A flowchart of how the new implementation performs the matrix
multiplication is presented in Figure 3.



[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]︸ ︷︷ ︸

NCells

...


+ =



d0,0 d0,1 d0,2
d1,0 d1,1 d1,2
d2,0 d2,1 d2,2


d0,0 d0,1 d0,2
d1,0 d1,1 d1,2
d2,0 d2,1 d2,2


︸ ︷︷ ︸

Nt

. . .





[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]
[−−−−−−]︸ ︷︷ ︸

NCells

...



1. 1.

2. 2.
3. 3.

3. 3.

4.

4.
4.

4.

5. 5.5. 5.

Figure 3: Flow Chart for Blocked Time Spectral Derivative Calculation.

Investigation into the performance of the new implementation, including finding the optimal
value of ”NCellsBlock” is presented in the next section.

3.4 Results for Blocked Time Spectral Derivative

In the previous section it was predicted that the number of cache misses and instruction reads
should decrease with the new implementation. In fact, increasing NCellsBlock should allways
reduce the number of instruction reads by a corresponding factor. From a cache point of
view the size of NCellsBlock was however restricted to ensure that all data handled in loops
2-5 would fit the L2 cache for realistic values of Nt. Inside the first loop, the code updates
the residual for all cells in the current cell block. To do this it uses the corresponding flow
field values in the cell block. The total number of doubles that must be stored are therefore
2NV arNt· NCellsBlock. For the applications intended for G3D::Flow it is thought that Nt

is in the order of 17, implying that we need to store 170· NCellsBlock doubles at most.
In addition to this the time step in all cells must be stored, which becomes NCellsBlock
doubles. The time spectral derivative matrix furthermore requires N2

t = 289 doubles. One
double consumes 8 bytes and the L2 cache of a modern CPU is around 256kB. This implies
that the largest value of NCellsBlock is restricted by

256 · 1024 ≥ 8 · (171 ·NCellsBlock + 289). (20)

This gives NCellsBlock = 190. To enable a few more features to be implemented into the
loop which requires more data (such as damping and variable frequency) we decided to
go for a conservative value of NCellsBlock = 64, which represents a third of the ”optimal”
value derived above. To verify that a large value of NCellsBlock has a positive impact
on performance the value was varied between 8 and 64 and the corresponding Cachegrind

13

output was collected with the same setup that was presented in section 3.1. The results are
summarized in Table 2

NCellsBlock Ir D1mr D1mw DLmr DLmw
- 19.8% 5% 0% 14% 0%

8 10.63% 2% 0% 4.87% 0%
16 8.2% 1.55% 0% 4.14% 0%
32 6.93% 1.5% 0% 3.77% 0%
64 6.29% 1.31% 0% 3.6% 0%

Table 2: Instruction reads and cache misses for blocked time spectral derivative implemen-
tation.

These numbers confirm the theory that a blocked implementation can reduce both the num-
ber of instruction reads and cache data read misses. The theory presented in Eq. (18) was
also verified with NCellsBlock = 64 by investigating the influence of Nt on the performance.
The results are presented in Table 3.

Nt 7 9 11 13

Ir 6.29% 7.91% 9.49% 11.02%
D1mr 1.31% 1.59% 2.57% 3.44%
DLmr 3.6% 3.62% 3.63% 3.69%

Table 3: Instruction reads and cache misses for blocked time spectral derivative implemen-
taiton.

These results verify that the cost of applying the time spectral derivative will become more
dominant as the number of time levels increase. It should be stressed that the new block
structured matrix multiplication did not change the number of operations needed to compute
DQ∗, it only made it more efficient. The performance model is thus still valid although the
value of CSpectral has decreased. We can also see that the number of instruction reads for
Nt = 13 is about 11% which still is a considerable amount. Thus it is reasonable to continue
with more fine grained profiling using Allinea-Map.

4 Profiling with Allinea-Map 6.11

The objective of the Allinea-Map [2.] profiling was to investigate the new implementation
on the hardware that G3D::Flow usually is run on, namely the Hebbe and Triolith clusters.
The Hebbe compute nodes are equipped with two 10 core Intel Xeon E5-2650 v03 Haswell
processors. Triolith have two 8 core Intel Xeon E5-2660 Sandy Bridge processors per node.
Two main questions were asked, namely if the code still scales well when run with 50, 000
cells per process and if there are any more performance improvements that can be done to
the time spectral derivative calculation.

4.1 Test Case

The same basic type of test case was kept for the cluster simulations although the number of
cells were increased to 1, 000, 000. A matrix of different number of processes (NProc) and time

14

levels (Nt) was run on both Hebbe and Triolith to investigate scaling in both dimensions.
The number of processes was adjusted on each respective cluster to fit the architecture. The
test matrices used on Hebbe and Triolith are presented in Table 4.

Hebbe Triolith

Nt 7, 11, 13, 15, 17 7, 11, 13, 15, 17
NProc 10, 20, 40, 60 8, 16, 32, 64

Table 4: Matrices used for investigationg scaling on Hebbe and Triolith.

(a) Efficiency on Hebbe. (b) Efficiency on Triolith.

Figure 4: Efficiency of the G3D::Flow Harmonic Balance Solver for different values of Nt.

4.2 Results for Blocked Time Spectral Derivative

4.2.1 Scaling

For each combination of NProc andNt the code was run for 400 iterations and the time per
iteration was then computed based on an average over the last 200 iterations. This was done
with a script that reads the output file of G3D::Flow where the time/iteration is written out.
In other words, I/O and code setup/allocation is not taken into consideration. It was found
necessary to start averaging late since the time per iteration for unknown reasons was very
high until about 150 iterations had passed on Hebbe. The same behaviour was not observed
on Triolith. For each Nt the computational efficiency normalized by the computational
efficiency for the lowest process count (P0) was calculated according to

η =
tP
t1 · P

/
tP0

t1 · P0
=

tP
tP0

P0

P
(21)

The computational efficiency is a measure of how efficiently the resources are used. If we
would have linear scaling, the speedup we would obtain by going from P0 to P processes
would be

S =
tP0

tP
=

P

P0
. (22)

15

In this case, we are making the most out of the added resources and would also get η = 1
according to Eq. (21). If linear scaling does not exist, we would instead observe that η
decreases as P increases. Note that for Hebbe P0 = 10 and for Triolith P0 = 8. Results
from both Hebbe and Triolith are presented in Figure 4.

First it should be pointed out that the efficiency of the code at the lowest number of processes
is 1 simply because of the normalization. Secondly it is clear from these figures that no linear
scaling is present on either architechture since the efficiency drops as P is increased. On
Hebbe the ratio NCells/NProc ≤ 100, 000 which implies that the old thumb rule of at least
50, 000 cells per process is not valid anymore. This might in part be due to that considerable
work has gone into improving single core performance of G3D::Flow since the old thumb rule
was estimated. It is not believed that the new Harmonic Balance solver is responsible for
imparing the scaling properties. To see this we use Eq. (17) to express the relative time it
takes to perform MPI communication according to

tMPI

tTot
=

2CMPINProc

N
1/3
Cells(CG3D + CSpecNt) + 2CMPI

(23)

Altough it must be recognized that the performance model is rather rough when it comes
to estimating MPI communication it demonstrates that if anything, the Harmonic Balance
solver should improve the scaling properties since it contributes with a term in the denomi-
nator. It is also clear from Figure 4 that the scaling properties did not deteriorate when Nt

was increased.

The scaling in the Nt dimension was also investigated by plotting the average time/iteration
divided by the number of time levels for all four process counts (t/Nt). If we once again refer
to the performance model in Eq. (17) we realize that the flux and MPI routines scale linearly
with Nt whereas the time spectral derivative scales as N2

t . The time/iteration divided by
Nt should thus increase linearly with Nt, the larger the slope the more dominant the time
spectral derivative calculation is. Results for both clusters are presented in Figure 5.

(a) Scaling on Hebbe. (b) Scaling on Triolith.

Figure 5: Scaling in Nt of the G3D::Flow Harmonic Balance Solver for different values of
NProc.

Altough there are some considerable fluctuations for the lowerst number of processors the
graphs confirm the theory presented.

16

4.2.2 Profiling

The last part of the work focused on profiling the code on the Hebbe cluster with Allinea-
Map 6.11. No other profiling tool was available on Hebbe, but from our viewpoint this was
not a problem since Allinea Map turned out to be very user friendly and offer a great variety
of features for investigating performance. First the G3D::Flow source code was compiled
with the -g flag in addition to the normal optimization flags used. After this the profiling
was done by executing the code with the command ”map –profile mpirun ...”. Since no
operating point in the matrix tested earlier stood out it was decided to profile the code with
Nt = 13 and NProc = 20. The simulation was once again run for 400 iterations and the
output file was post processed with the Allinea-Map GUI.

After getting acquainted with the software it was fairly easy to narrow down on the hotspots
in the code and find out exactly how much time different routines took. A good feature of
Allinea-Map is that it according to the provider only adds about 5% wall clock time to
program execution. This should allow MPI hotspots to be detected without the profiler
altering the execution balance significantly. Altough no MPI imbalance was found it was
clear that MPI had started to play an important role for this case with NCellsLocal = 50, 000.
A few other places in the code that were not connected to the Harmonic Balance solver
were also quickly identified to consume more time than expected. These will however not
be reported in this work but will definately be adressed in the near future.

Most importantly for this work is the fact that the ”ExplicitSpectralDerivative()” routine
consumed almost 6% of the execution time. An interesting feature that Allinea-Map dis-
covered was that the innermost loop was not vectorized by the compiler. It can be argued
that vectorizing this loop will not give a significant performance gain, but for an educational
purpose (or simply because of the challenge) it was still decided to do it.

4.3 Blocked Time Spectral Derivative with Vectorized Loop

According to a guide on Intel’s home page [3.] there are a few requirements that should be
satisified before a loop can be vectorized by a compiler.

1. First of all the loop should be countable, meaning that there for example should be no
conditional break statements inside the loop.

2. Each loop step should perform the same operation, implying that there are no if
statements inside of the form ”if(i>5) ...”.

3. Generally only the innermost loop of a nest can be vectorized.

4. There should be no function calls (except for a few standard math calls for which
vectorized functions exist).

In our case all these requirements are satisified which implies that there is something else
preventing vectorization. Intel has a list of known issues that prevent vectorization as well
[3.]

1. Non contiguous memory access due to that vectorization may be less efficient in these
cases

2. Data dependency of different sorts

17

The first item is not a problem in out case, but the second one might be. There are several
different types of data dependencies that can prevent vectorization. Once such issue is that
the compiler may not be able to figure out if the memory of two arrays overlap, i.e. that for
example a[i] and b[i+1] point to the same memory location. This will prevent vectorization
since the compiler does not know if it’s safe to update a[i] before b[i+1], which indeed can
happen when several loop steps are executed in parallel. If the user knows that all arrays
does not overlap it can tell the compiler this by adding ”#pragma ivdep;” before the loop.
In addition to adding this pragma we also made sure that only one loop index was used
(ic) and that all arrays inside the loop were of the same type (PetscScalar). Altough this
is the case for the pseudo code presented in this report, in the real program a few more
features have been added inside the loop connected to variable frequency and damping. In
the original version of the program these were stored in the std::vector datatype and indexed
by a different index than the ”Residual” and ”Variable” arrays. Changing from std::vector
to ”PetscScalar” arrays, making use of only one loop index and adding the pragma turned
out to enable vectorization. To verify that indeed the loop had been vectorized the code was
compiled with the flag ”-qopt-report=2 -qopt-report-phase=vec”. This prompts the Intel
compiler to output an optimization report, were indeed it could be seen that the loop had
been vectorized. Profiling with Allinea-Map also confirmed that only ”vector floating point”
operations were executed inside the loop.

4.4 Final Results

Allinea-Map was finally used to profile the different implementations of ”ExplicitSpectralDeriva-
tive()” for a set of Nt and NProc. During every step of the development process the code
was tracked with Git, so it was easy to go back to earlier versions of the implementation,
compile them and measure performance. Three instances of the code were profiled: the
initial implementation, the blocked implementation with NCellsBlock=64 and finally the
blocked version with a vectorized inner loop. Results showing the relative time spent inside
”ExplicitSpectralDerivative()” are shown in Table 5.

Nt = 7 Nt = 7 Nt = 13 Nt = 13
NProc = 20 NProc = 40 NProc = 20 NProc = 40

No Optimization 14% 12.2% 21.1% 19.2%
Blocked 3.8% 3.1% 5.2% 4.9%
Vectorized 2.1% 1.7% 2.8% 2.1%

Table 5: Evolution of performance for time spectral derivative calculation.

5 Conclusions

In this work a Harmonic Balance solver has been implemented into an existing CFD solver.
The aim of the implementation is to efficiently study time periodic problems by solving a set
of steady state equations instead of finding the evolution in time using the already present
time accurate Runge-Kutta solver. The most important outcome of this work is that the
performance of the implementation could be drastically improved by fairly small means.
The three main contributors to better performance were improved cache locality, reduced
number of instruction reads and a vectorized loop.

18

An interesting aspect of this work is that todays tools such as Cachegrind and Allinea-Map
make the job of finding hot spots in the code easy. It only takes a compiler flag and a few
commands before the user can get in-depth information on program execution, including
single core and communication times. Although finding the hot-spots is easy, acting upon
this information is far more difficult. It for example has to be decided if it is reasonable that
a routine consumes a lot of time and if not, what to do about it. In our example the remedy
was rather clear but in other situations a deeper analysis into how the computer works may
be needed in order to come up with an efficient solution. Nevertheless it is in the authors
opinion always a good idea to profile the code, given that it’s both quick and easy. Even
if no remedies can be found at once, learning about the code instead of guessing what is
efficient or not is definately useful knowledge.

19

6 References

1. Cachegrind, Manual:
http://valgrind.org/docs/manual/valgrind manual.pdf

2. Allinea-Map, Manual:
http://content.allinea.com/downloads/userguide-forge.pdf

3. Intel, A Guide to Vectorizing with Intel C++ Compilers:
https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf

20

