
Introducing micro:bit in Swedish primary
schools
An empirical design research on developing teaching material
for training computational thinking in Swedish primary schools

Master’s thesis in Interaction Design

Niklas Carlborg, Marcus Tyrén

Department of Applied IT
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2016:175

Introducing micro:bit in Swedish primary schools

An empirical design research on developing teaching material for
training computational thinking in Swedish primary schools

NIKLAS CARLBORG, MARCUS TYRÉN

Department of Applied IT
Interaction Design and Technologies

Chalmers University of Technology
Gothenburg, Sweden 2017

Introducing micro:bit in Swedish primary schools
An empirical design research on developing teaching material for training computa-
tional thinking in Swedish primary schools
NIKLAS CARLBORG, MARCUS TYRÉN

© NIKLAS CARLBORG, MARCUS TYRÉN, 2017.

Supervisor: Eva Eriksson, Interaction Design and Technologies
Examiner: Staffan Björk, Interaction Design and Technologies

Master’s Thesis 2016:175
Department of Applied IT
Interaction Design and Technologies
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Backside of BBC micro:bit hardware.

iv

Introducing micro:bit in Swedish primary schools
An empirical design research on developing teaching material for training computa-
tional thinking in Swedish primary schools
NIKLAS CARLBORG, MARCUS TYRÉN
Department of Applied IT
Chalmers University of Technology

Abstract
During the 21st century there has been an increasing interest in the field of com-
putational thinking, a popular way of teaching students about programming. In a
society with an ever faster technical development it becomes more relevant to ed-
ucate future generations about the technology that surrounds us. Many different
platforms can be used for this purpose, e.g Scratch, Raspberry Pi or Arduino. In
the UK the platform micro:bit has been used in schools since 2016. Other coun-
tries are now also incorporating programming in their curriculum, and Sweden is
set to incorporate this by the 1st of July 2018. This thesis examines what may
be important to consider when designing teaching materials with the micro:bit for
training Swedish primary school students’ computational thinking skills. This was
done through an iterative design process, by conducting 21 workshops with the goal
to support Swedish primary school teachers with micro:bit teaching materials. The
result of this thesis consists of 9 individual parts, presented in 4 groups, mapped
along an axis of abstraction. A model was created in an attempt to communicate
observed relationships between students learning potential, their risk of feeling over-
whelmed and the amount of choices they were provided with. A set of guidelines
as well as a teaching approach was provided to give more concrete answers to the
research question. Practical workshop examples were also provided in an attempt
to aid teachers in the transition to the new curriculum.

Keywords: micro:bit, teaching material, programming, primary school, computa-
tional thinking.

v

Acknowledgements
We would like to thank Carl Heath and Peter Ljungstrand at RISE Interactive
for giving us the opportunity for this thesis and also for their help and support
during the work. We would also like to thank our supervisor, Eva Eriksson, for her
guidance and perseverance and also everyone that participated in our workshops,
both students and teachers.

vii

Contents

Glossary xv

1 Introduction 1
1.1 Purpose . 2

1.1.1 Research Question . 2
1.1.1.1 Contribution . 2

1.1.2 Design Goal . 2
1.1.2.1 Deliverables . 2

1.2 Stakeholders . 2
1.2.1 Students (user) . 2
1.2.2 Teachers (user) . 3
1.2.3 RISE Interactive (business client) 3
1.2.4 Interaction Design Faculty (academic client) 3
1.2.5 Thesis Authors . 3

1.3 Delimitations . 4

2 Background 5
2.1 Changes in Swedish Education Strategies 5
2.2 Programming in UK Education . 6
2.3 About Micro:bit . 7

2.3.1 Editor . 8
2.4 Related Work . 9

2.4.1 Development Platforms . 9
2.4.1.1 Scratch . 10
2.4.1.2 Arduino . 10
2.4.1.3 Makey Makey . 10
2.4.1.4 Raspberry Pi . 10
2.4.1.5 Quirkbot . 10

2.4.2 Learning Platforms . 11
2.4.2.1 Hour of Code . 11
2.4.2.2 Computing at School (CAS) 11

2.4.3 Maker Movements . 11
2.4.3.1 Fab Lab . 11
2.4.3.2 Techshop . 12
2.4.3.3 Makerskola . 12
2.4.3.4 Digitalverkstan . 12

ix

Contents

3 Theory 15
3.1 Teacher’s Role in Digital Fabrication 15
3.2 Constructionism . 16
3.3 Hattie and Donoghue Model of Learning 16
3.4 Self-Determination Theory . 17

3.4.1 SDT in Relation to Education 18
3.5 Computational Thinking . 19

3.5.1 MIT Model . 20
3.5.2 Barefoot Model . 21

4 Methodology 23
4.1 Research . 23

4.1.1 Qualitative Literature Review 23
4.1.2 Recruiting Tools . 23
4.1.3 Empathy Map . 24
4.1.4 Stakeholder Mapping . 24
4.1.5 Fly on the Wall Observation 25
4.1.6 Semi-Structured Interview . 25
4.1.7 Exit Tickets . 25
4.1.8 Personas . 25
4.1.9 Journey Map . 26
4.1.10 Affinity Clustering . 26

4.2 Iteration . 26
4.2.1 Brainstorming . 27
4.2.2 Design Principles . 27
4.2.3 Integrate Feedback and Iterate 27
4.2.4 Abstraction Laddering . 27
4.2.5 Rapid Prototyping . 28

5 Process 29
5.1 Planning and Pre-study . 31

5.1.1 Planning . 31
5.1.2 Literature Study . 33
5.1.3 Makerdays . 34

5.2 First Sessions with Digitalverkstan 34
5.2.1 Workshop at Kullavik . 35
5.2.2 Workshop at Lindholmen . 36

5.3 Workshops with Student Interns . 37
5.4 Workshops in Stockholm . 38

5.4.1 Preparation . 38
5.4.2 Breddenskolan . 40
5.4.3 Sollentuna Musikklasser . 41
5.4.4 Runbackaskolan . 42
5.4.5 Grimstaskolan . 43

5.5 BETT Show in London . 43
5.6 Persona Creation . 44
5.7 Journey Map . 45

x

Contents

5.8 Second Sessions with Digitalverkstan 46
5.8.1 Lindholmen Workshop . 46
5.8.2 Interview with Facilitator . 47

5.9 Workshops at Västergårdsskolan . 48
5.9.1 Preparation . 48
5.9.2 First Workshop . 49
5.9.3 Second Workshop . 52
5.9.4 Third Workshop . 54
5.9.5 Fourth Workshop . 55

5.10 Insight analysis . 56
5.10.1 Affinity Clustering . 57
5.10.2 Scope of Autonomy Model . 58
5.10.3 Co-Coding . 61
5.10.4 Technical Pitfalls . 61

5.10.4.1 App-Store Passwords 61
5.10.4.2 Internet Connection 61
5.10.4.3 Pairing Mode Bugs 62

5.10.5 Basic Toolbox . 62
5.10.6 Terminology . 62
5.10.7 Analog Workshops . 63
5.10.8 Other Considerations . 63

5.10.8.1 Tinkering . 63
5.10.8.2 Stupid Computers 63
5.10.8.3 Text Based Instructions 63
5.10.8.4 Editor Navigation 64
5.10.8.5 Self Instructing Materials 64
5.10.8.6 End on a Positive Note 64
5.10.8.7 Video Bubble . 64
5.10.8.8 Awareness of Dependencies 64

5.11 Reiteration of Result . 65

6 Result 67
6.1 Examples of Exercises and Workshops 68

6.1.1 micro:bit Exercise Examples 68
6.1.1.1 Animation . 69
6.1.1.2 Name Badge . 69
6.1.1.3 Coin Toss . 70
6.1.1.4 Dice . 71
6.1.1.5 Rock Paper Scissor 72
6.1.1.6 Step Counter . 73
6.1.1.7 Music Player . 73
6.1.1.8 Radio Messages . 75
6.1.1.9 Neopixel Animation 76
6.1.1.10 Level . 78

6.1.2 Analog Workshop Example 78
6.1.2.1 Rules . 78

xi

Contents

6.1.2.2 General Preparations 79
6.1.2.3 First Workshop . 80
6.1.2.4 Second Workshop . 82

6.1.3 micro:bit Workshop Example 84
6.1.3.1 General Preparations 84
6.1.3.2 First Workshop . 85
6.1.3.3 Second Workshop . 87

6.2 Co-coding Teaching Approach . 88
6.3 Guidelines . 89

6.3.1 Basic Toolbox . 89
6.3.1.1 Algorithms . 90
6.3.1.2 Loops . 90
6.3.1.3 Randomness . 90
6.3.1.4 Logic . 90
6.3.1.5 Variables . 91
6.3.1.6 Debugging . 91

6.3.2 Terminology . 91
6.3.3 Technical Pitfalls . 92

6.3.3.1 App-Store Passwords 92
6.3.3.2 Internet Connection 92
6.3.3.3 Pairing Mode Bugs 93

6.3.4 Other Considerations . 93
6.3.4.1 Tinkering . 93
6.3.4.2 Stupid Computers 94
6.3.4.3 Text Based Instructions 94
6.3.4.4 Editor Navigation 94
6.3.4.5 Self Instructing Materials 94
6.3.4.6 End on a Positive Note 94
6.3.4.7 Video Bubble . 95
6.3.4.8 Awareness of Dependencies 95

6.4 Scope of Autonomy Model . 95
6.4.1 Scope of Autonomy . 96
6.4.2 Micro:bit Levels of Autonomy 97

6.4.2.1 Customization . 97
6.4.2.2 Solution Procedure 98
6.4.2.3 Design . 98
6.4.2.4 Block Selection . 99
6.4.2.5 Assignment . 100

7 Discussion 101
7.1 Reflection on Process . 101
7.2 Reflection on Result . 103
7.3 Validity . 104
7.4 Generalization . 105
7.5 Future Work . 105
7.6 Ethical Issues . 106

xii

Contents

8 Conclusion 107

Bibliography 109

xiii

Contents

xiv

Glossary

exercise A task designed to enable someone to gain certain knowledge or develop
certain skills. 88

learner Someone acquiring a skill or knowledge. In some theories learners are dif-
ferentiated from students, in this thesis however, students are also considered
to be learners. 20

microcontroller A small computer on a circuit board that can be programmed. 7
motivation Something energizing and directing behaviours and activities. 17

platform An environment in which a piece of software can be executed. v

STEM Science, technology, engineering, and mathematics. 7, 12
student A person enrolled in a school. 2

teaching material Some content, tool or practice designed for teachers, students
and or self-learners to aid in the acquiring of certain knowledge or skills. v

URL Uniform Resource Locator, also known as a web-address. 9

workshop A set of exercises that follow a predetermined plan for the lesson in
order to reach a set goal. All participants are present on site. 31

xv

Glossary

xvi

1
Introduction

In a society with accelerating technical development, there are obvious difficulties
in designing education that can prepare next generations for an unknown future.
With an ever faster technical development it becomes less relevant to teach specific
skills that might become obsolete in a near future, instead it becomes more impor-
tant to teach skills that enable new generations to swiftly adapt to the changes and
technologies that emerge. The National Research Council address this in their re-
port “Being Fluent with Information Technology” stating that the rapid technology
development calls for a ‘fluency’ approach, rather than the traditional ‘skill-based’
approach (1; 2). There is a central challenge in learning how to work with technology
and design through iterative, reflective and flexible approaches to learning(3).

Sweden is set to introduce programming in schools 1st of july 2018. Principals will
be able to choose when to apply the changes within a one year period, starting
july 1st 2017(4).There has been little research done on how the teacher’s techno-
logical skills and attitudes towards technology will affect such a transition nor on
what school resources will be required. The current research has focused on imped-
iments that arise regarding the shift in mindset that is required from teachers in
a more explorative teaching setting, rather than the more traditional goal oriented
approach(3).

In the UK the transition to including programming in education has already begun.
As part of the Make It Digital initiative in 2015, BBC has together with Microsoft,
Samsung and other partners, developed the micro:bit for use in computer education.
Every year 7 pupil in the UK was given one of these small computers, or microcon-
trollers, that can be programmed and customized. It aims to inspire young people
to get creative in the digital world, developing core skills in STEM subjects and
produce a new generation of inventors and makers.

The Swedish research institute RISE Interactive is also exploring ways to use the
micro:bit as a teaching platform. They are inspired by the UK and want to see
how this platform can be adapted to aid in the Swedish curriculum transition. This
thesis aims to investigate this endeavour in order to support Swedish teachers in the
transition to the new programming curriculum.

1

1. Introduction

1.1 Purpose
This master’s thesis aims to answer an academic research question through the pur-
suit of a design goal. Hence this aspiration has one foot in the academic world and
another foot in the field of applied interaction design. The outcome will therefore
both be an academic contribution as well as a potential product or service deliver-
able.

1.1.1 Research Question
What is important to consider when designing teaching materials with the BBC
micro:bit for training Swedish primary school students computational thinking skills?

1.1.1.1 Contribution

This thesis aims to contribute a set of guidelines to consider when introducing a
new technological platform, such as the BBC micro:bit, for training computational
thinking in Swedish primary schools. These guidelines will be based on non ex-
haustive empirical design research and be limited to the micro:bit platform and the
Swedish school context.

1.1.2 Design Goal
Support Swedish primary school teachers with teaching materials, based on the BBC
micro:bit, that help them meet the programming requirements of the new curriculum
changes.

1.1.2.1 Deliverables

To support Swedish teachers in the transition to a programming curriculum, this
thesis aims to deliver teaching materials that meet the needs of the teachers. Due
to the explorative design approach used in this project, it is hard to define the
outcoming nature of such support at the beginning of the project.

1.2 Stakeholders
Stakeholders are defined as people that either affect or are affected by the system
that is being designed for. The stakeholders that are within the scope of this thesis
are presented below.

1.2.1 Students (user)
The focus of this master’s thesis is on primary school students spanning from 4th to
6th grade in public Swedish schools. As the British micro:bit efforts have been tar-
geted at students of this age, it is assumed that this is an appropriate age. Another

2

1. Introduction

assumption is that these students are sufficiently knowledgeable in the english lan-
guage to be able to work with the micro:bit. They are assumed to be familiar with
consumer technology but unfamiliar with programming tools and digital fabrication.

1.2.2 Teachers (user)
Another focus is the primary school teachers, who teach 4th-6th grades in a variety
of subjects in public Swedish schools. Teachers being on the brink of a big change
in their field of work. They have to acclimatize quickly to meet the new curriculum
changes, support students in their development as new technologies are introduced
while conforming to limited school resources. Teachers may differ significantly in
age and education as well as attitudes towards technology and change.

1.2.3 RISE Interactive (business client)
RISE Interactive (TII) is a Swedish governmentally owned research institute part of
the Swedish ICT and Rise concern, working with industrial research and innovation
globally. Their mission is to courageously do new things in the fields of technol-
ogy, business, and design that allow people to do and think in new ways through
empowering collaborative design. This thesis falls in line with their current project
Makerskola which aims to use technology in creative new ways to contribute to the
development of subject matter specific methodologies. TII provide the research con-
text, the design problem as well as access to a large network of teachers that have
access to an even larger number of students. TII also provide technical, academic
and project related knowledge in weekly supervision sessions.

1.2.4 Interaction Design Faculty (academic client)
The master’s programme of Interaction Design at Chalmers University of technol-
ogy are concerned with teaching the skills of designing the interactions between
people and products with information technology as a central component. More-
over Chalmers purpose is to carry on education and research on an internationally
high level within the fields of engineering, science and mathematics-natural sciences.
Chalmers provide the opportunity for this thesis and provide academic and research
related knowledge in frequent supervision sessions.

1.2.5 Thesis Authors
The thesis work is performed by two students in their last semester of their master’s
study in Interaction Design and Technologies at Chalmers. Their backgrounds are
bachelor’s degrees at Chalmers in Industrial design engineering and Computer Sci-
ences respectively. Their aspirations are to gain insight in the planning, execution
and presentation of a larger scale project where they are allowed to exercises previ-
ously acquired skills as well as gain first hand experience to better prepare them for
a future profession in interaction design.

3

1. Introduction

1.3 Delimitations
Due to the wicked problem nature of the research question and the limited time
frame for the project, a non exhaustive empirical design research approach was
undertaken. The consequential delimitations are presented below to set the scope
for this project.

As there are many factors and stakeholders involved in a nation’s educational system,
this project was only able to regard a limited scope within the frame of a master’s
thesis. The system in which school based teaching and learning exist, involves
many stakeholders that either affect or are are affected by the system. Potential
stakeholders are students, parents, teachers, school managers as well as researchers,
policymakers, companies and other organisations. Due to time constraints the main
focus of this master’s thesis was on the student and teacher stakeholders. The
Swedish government and the National Agency of Education are both major political
stakeholders, in this thesis however, their curriculum changes will be treated as given
limitations for simplification. The governmental curriculum changes affect multiple
school subjects, this thesis will however primarily focus on the programming aspects
relating to mathematical and technical school subjects. The year groups studied in
this project are limited to year 4-6. The societal impact of digitalisation and other
topics relating to humanities and social sciences, are outside of the scope of this
thesis.

Many different technologies and development platforms are available and new ones
are constantly being developed. Choosing what technological platform to invest in
might be a very relevant question to educators, however this is not within the scope
of this thesis. This project will be using the BBC micro:bit, as a given educational
platform as the client stakeholders considered it to be affordable, already well spread
in the UK, and having a lot of potential with its many onboard sensors. Furthermore
there are multiple different editors available for working with the micro:bit. This
thesis chose however to only look at the Microsoft MakeCode micro:bit editor, and
specifically the block editor part of it.

4

2
Background

This chapter presents a more detailed description about the suggested changes in
Swedish schools regarding IT-strategies and programming in the classroom and cur-
riculum. An overview is given to the changes that have been made in the UK as
well as the resources and methods that are used to help teachers in the transition
to a computing curriculum. The selected hardware platform for the project, the mi-
cro:bit, is described with its pro’s and con’s together with related hardware products
that are also suited for classroom use.

2.1 Changes in Swedish Education Strategies
Thursday 9th of March 2017 the Swedish government made changes to the pol-
icy documents that control Swedish primary and secondary school curriculum(4).
The main focus of the changes are to enhance and emphasize the school’s duty in
strengthening the students digital competences. This is planned to be done through-
out the various year groups by different means. Varying from teaching step-wise
instructions in the early year groups to fully encompass programming in later year
groups. These changes are to be adopted by Swedish schools starting July 1st 2017,
and be fully implemented by July 1st 2018. The changes are primarily concerned
with:

Programming

Digital tools Systems thinking Impact

Critical thinking Creativity
Programming will be introduced as a clear
part in multiple subjects throughout primary
school, especially in technical and
mathematical subjects.

That students are strengthened in their critical
thinking skills.

That students will be able to solve problems
and realise ideas into action in a creative
fashion using technology.

That students will work with digital texts,
media and tools.

That students will be able to use and
understand digital systems and services.

That students develop an understanding for
the impact digitalisation has on the individual
and the society.

Figure 2.1: An English translation of the new curriculum changes

Some of these changes were previously proposed by the Swedish National Agency for
Education. They developed drafts of possible changes to policy documents regard-
ing the mission to propose suggestions to the national it-strategies for the school
system(5). These focused on enhancing and clarifying digital competence in the pol-
icy documents. Their definition of digital competences was based on the descriptions
used by the EU and The Digitalisation Commission.

5

2. Background

2.2 Programming in UK Education

In the UK the transition to more programming in school started off in January
2012 when The Royal Society published a highly-rated article(6) that put computer
science back in the light again with recommendations to reintroduce CS in schools.
Up until then they had been teaching information and communication technology
(ICT) but with an increasingly declining reputation over the last couple of years.
ICT in contrast to CS focused more on the usage and software rather than the
creative and underlying principles of computing. It was not long before the depart-
ment of education declared the ICT curriculum to be rewritten and in its stead
officially reintroduce CS teaching in schools again. With this change several issues
were brought to surface. For instance how will the primary schools handle the fast
pace of these changes, and how will they make sure that there are enough teachers
with the right knowledge?

Primary school teachers are the ones that face the most change as their curriculum is
the first to be remade while secondary teachers have some more time to prepare for
curriculum changes. This is particularly difficult since most primary school teachers
are generalists, they teach a whole class in most subjects having broad knowledge
rather than being specialists within a certain subject. As there is a massive shortage
in teachers with experience and knowledge within the computing area, the delivery
of computing in class is a big challenge and might be hampered severely if teachers
is not educated fast enough(7). As there is no or very limited resources as well as
time being an issue to educate teachers in CS, new methods have to be developed
to help teachers in an efficient manner.

Computing At School (CAS) Network of Computer Science Teaching Excellence
was started in an attempt to address these issues by building a network that aims
to become self-sustained within a three year period. CAS is providing teachers
with a system to share resources and host discussion groups through a website.
Teachers are allowed to both upload their own and give feedback on others ideas
and resources regarding CS in education, this way many teachers feel that they can
make a contribution and help their own peers. Additionally CAS Network maintains
a number of so called Master CS teachers that are used to deliver professional
development to teachers at site. This way a faster paced development of CS skills
among teachers is achieved, by teachers teaching teachers the knowledge expands,
and will eventually reach a sufficient number of CS educated teachers in the UK.

This is an overview of Network of Teaching Excellence in CS and depicts the roles
and areas of involved actors to explain the whole system in addition to the parts
explained in previous paragraph.

6

2. Background

2.3 About Micro:bit

Figure 2.2: The micro:bit hardware held for scale

As a part of BBC’s 2015 Make it Digital Initiative the micro:bit was developed. It
aims to inspire young people to get creative in the digital world, developing core
skills in STEM subjects and produce a new generation of inventors and makers.
The micro:bit is a small computer, or microcontroller, that can be programmed
and customized in order to bring ideas to life(8). Displaying your name, or making
it blink can be coded in seconds even if the user is totally new to programming.
micro:bit can also be connected to other devices or sensors and can complement
other hardware like Arduino and Raspberry Pi, it works as a great springboard to
more complex learning(8). Key features include:

7

2. Background

• 5x5 LED matrix display
• Two programmable buttons
• Accelerometer that can detect movement
• A built-in compass to sense direction
• The ability to sense temperature and light levels.
• Bluetooth Smart Technology to interact with other micro:bits and mobile

devices.
• Five Input and Output (I/O) rings to connect the micro:bit to devices or

sensors using e.g crocodile clips.

For ensuring that the micro:bit becomes successful, it has been mentioned to be
important that all partners involved work closely with both teachers, educators and
schools to provide resources and information supporting the curriculum.

2.3.1 Editor

Figure 2.3: One of the editors in which programs can be created for the micro:bit

There are multiple ways of programming the micro:bit, the scope of this thesis has
however been limited to only focus on the Microsoft MakeCode micro:bit editor.

The Microsoft MakeCode micro:bit editor is a free to use online JavaScript/Blocks
editor for programming the micro:bit. This means that it runs in the web browser
and hence is cross platform compatible, both on different web browsers but also
across different operating systems, such as OSX, Windows, iOS and Android. This
also implies that an internet connection is required for using the editor. Technically

8

2. Background

the Microsoft MakeCode editor for micro:bit can be used offline as the application
gets cached locally but only if an online compilation has been made first. So either
way an internet connection is required at some point.

The term block editor refers to the puzzle like interaction where the user builds
their programs by snapping different function blocks together to create a programs
behaviour.

The editor allows the user to code both with blocks as well as JavaScript code. It
provides the possibility to switch back and forth between these on the fly to translate
from one to the other.

The user interface of the editor as seen from left to right consists of a simulator,
a section of available blocks and an area where the user is to drag blocks and
build their programs. At the top, controls are available for saving and loading
projects, switching back and forth between block or JavaScript mode, and some more
advanced settings. At the bottom the download button is located for downloading
the created program.

For creating a simple program the user begins with finding the desired blocks in the
middle column folders and drags them onto the block building area on the right.
Blocks snapped into the “on start” block will only run once, and blocks snapped
into the “forever” block will repeat indefinitely. The functionality of the program
can then be evaluated with the simulator on the left. To download the program the
user clicks the download button on the bottom left, and transfers the obtained file
to the micro:bit flash drive via a usb cable.

By the time this thesis was written the URL to the editor was:
https://makecode.microbit.org/.

2.4 Related Work
In this chapter three subcategories of related work will be briefly described. De-
velopment platforms entail mostly hardware that are related to the micro:bit and
how they are used in an educational context. Learning platforms is about different
forms of teaching materials on how to learn programming as well as other ways of
educating teachers in CS. Lastly a short introduction to maker movements will be
presented and how its community is growing and providing schools an alternative
way of looking at education with digital materials.

2.4.1 Development Platforms
In this chapter a brief look of existing development platforms, mainly different kinds
of hardware products, will be presented. The perspective is from the point of impact
in an educational sense and the different uses and environments it is applicable in.

9

2. Background

2.4.1.1 Scratch

Scratch is a free programming language that was developed by MIT Media Lab,
and has been around since 2013(Scratch 2). Its main purpose is to be accessible for
students and teachers and be an easy-to-use tool in introducing computer science
through programming, indirectly provide a stepping stone to a world of more ad-
vanced programming. As the creation of programs is relatively easy and skills learnt
can be used later when learning Java or Python, it works great as an introductory
language. Main users are kids around the ages of 9-16 but can be used successfully
in classes of both younger and older students(9).

2.4.1.2 Arduino

Arduino is an easy-to-use electronics platform that is used worldwide by makers,
students, hobbyists and professionals. Arduino provides open-source on both hard-
ware and software, the boards can read inputs as light sensors and turn it into
outputs e.g activating a motor. Arduino was first designed to be an easy tool for
quick prototyping aimed at students with little to no background in either program-
ming or electronics, but as it started to reach a wider community the Arduino board
changed in order to adapt to new needs and challenges(10).

2.4.1.3 Makey Makey

Makey Makey is an electronic invention tool that lets users connect mundane objects
to control computer programs. Makey Makey uses closed loop electrical signals to
detect keyboard strokes or mouse click signals by having alligator clips connect
between objects and the circuit board. This allows the Makey Makey to work with
any computer program or web page, as the inputs are the same(11).

2.4.1.4 Raspberry Pi

The Raspberry Pi is a credit-card sized, single board computer that you can plug
into your TV and keyboard. Developed by the Raspberry Pi Foundation to promote
teaching computer science at a basic level in schools and developing countries. It
is very much like a desktop computer in pocket size and very capable for electron-
ics projects, browsing the web, spreadsheet or playing games and high-definition
video(12). A teacher training course, the Picademy, was also started by the Rasp-
berry Pi Foundation aiming to help teachers prepare for the coming additions of
computing in the curriculum using the Raspberry Pi, in addition a continuation of
the course, professional development, is given free for teachers(13).

2.4.1.5 Quirkbot

Quirkbot is a microcontroller aimed for kids to program and play with. It is a toy
that is compatible with Strawbees, another open construction toy, and readily avail-
able materials like drinking straws, LEDs and servo motors to create a vast variety of
homemade toys. Quirkbot also provides guidance for teachers with their education
guide that is filled with both inspirational projects as well as lesson plans(14).

10

2. Background

2.4.2 Learning Platforms
A brief look into how teacher material and education can be made accessible. Hour
of Code representing the web based program to promote the fun of CS and no
prerequisite knowledge of programming is required. CAS is a project in the UK
whose aim is to provide a highly accessible network for teacher development in the
field of CS, managing master teacher classes, shared online resources and discussion
groups.

2.4.2.1 Hour of Code

Hour of Code started of as an hours introduction to CS, with the purpose to play
down programming and show that anyone is capable of learning the fundamentals
of coding. Today Hour of Code is a worldwide grassroots movement with plenty of
guides and activities for all to take part of. Anyone can arrange an Hour of Code
with the help of a how-to guide in their school, voluntary or at work. No previous
experience is needed as the program has a well defined self-instructed activity for all
ages and levels of experience. Most importantly Hour of Code is about having fun
and being creative with CS, reaching a wide spectrum of participants with all ages
and backgrounds. Teachers also get confidence in successfully teaching a subject
they are not educated in, and often spur on further interest in learning CS more
deeply(15).

2.4.2.2 Computing at School (CAS)

Computing at School (CAS) is a project funded by the Department of Education in
the UK which goal is to help teachers, both primary and secondary, share ideas and
resources as well as learn more about how to practice CS in the classroom. CAS
consist of a community that has its members run regional hubs around the country
where they meet to talk and learn from professionals about teaching CS. The main
goal is to equip all involved in computing education with strategic guidance focusing
on CS and the computing curriculum, setting a high standard for the level of CS
education delivered by those involved(16).

2.4.3 Maker Movements
Maker movement stems from the DIY tradition and foster a learning through-doing
setting that focuses on being explorative and curious with technology, mixing both
physical and software technologies. Makerspaces is where like-minded ‘makers’ come
together in a social environment to have fun and build, as well as share, their projects
with others using technology, science, digital art etc.

2.4.3.1 Fab Lab

From MIT’s Center for Bits and Atoms(CBA) comes an educational component,
Fab Lab, that is an extension to its research into digital fabrication and computa-
tion. Fab Lab works as a prototyping platform for both innovation and invention
with digital materials. A local place to come and play, create, learn and invent

11

2. Background

with others in a so called ‘makerspace’(17). All labs share a common set of tools
and processes and form a global network of inventors, spanning over 30 countries
around the world. Fab Labs only uses off-the-shelf tools and open source software
in order to be available for everyone. Across the countries schools have increased
their interest in Fab Labs by using their makerspaces for projects in STEM edu-
cation. The labs give a very authentic context to operate in, allowing students to
design things of pure personal interest and not being tied down by any curriculum.
Students can work freely and make use of a proper explorative design process, imag-
ine; design; prototype; reflect; and iterate as they find solutions to their challenges
and bring ideas to life. Fab Labs being closely aligned with MIT’s CBA, where
research into next generation fabrication tools and software are pushing the digital
and analog boundaries, make the Fab Labs a cutting edge workshop for research
and development.

2.4.3.2 Techshop

TechShop is a community that provides its members access to instruction, profes-
sional equipment and software, and a creative space to work in. It works as a DIY
workshop and fabrication studio, a local space where entrepreneurs, artists, makers
and students learn and work alongside each other. People of all skill levels join in to
build on their own projects. Currently TechShop is only available on nine different
locations in the United States(18).

2.4.3.3 Makerskola

Makerskola, or Makerspace in schools, is a project supported by Sweden’s innovation
agency Vinnova. With creative use of emerging technologies their goal is to make
a contribution in the development of new subject matter specific methodology. By
letting young people explore the boundary between analog and digital resources
providing a test in both theoretical and practical work. Over time the project
has the intention to improve schools’ educational activities in general and provide
input for curriculum development, but also provide opportunities to develop and
spread the best practices in the field of maker culture between teachers, schools
and local education authorities. Many research institutes, businesses and about
30 local education authorities are involved in the project. In order to evaluate
methods, equipment and logistics, several testbeds have been established. This gives
possibilities for teachers, together with students, to explore the idea of makerspaces
in schools; introduction of programming; and creative work with Internet of Things.
Once a year a conference is organised, Maker Days, to inspire and share knowledge to
which stakeholders outside the partnership are welcome to participate. This shows
the projects aim to also be about emphasizing human resource development(19).

2.4.3.4 Digitalverkstan

Digitalverkstan is an investment from Dataföreningen to try and stimulate and de-
velop children’s digital knowledge, both in school and leisure. Dataföreningen is a
non-profit and unreliant association that work toward a positive development of the

12

2. Background

possibilities technology provide in today’s society. Digitalverkstan consists of several
different programs with different activities that creates opportunities for children’s
up to fifteen years old to create digitally and practice programming. They provide
a service to schools to host workshops of different kinds on various locations around
the Gothenburg area. To give them an opportunity to be shown the many possibil-
ities of programming and digital creation based on platforms like Scratch, Arduino,
Makey-makey and micro:bit. To facilitate the workshops they hire students that
seek a developing and inspiring job on the side(20).

13

2. Background

14

3
Theory

In the following section descriptions of theories that are relevant to the project will
be presented. The theories selected were weighed and picked with relevance to the
field and own approach in addition to the limited time for the whole project in mind.

3.1 Teacher’s Role in Digital Fabrication
As digital fabrication technologies makes increasing impact on supporting STEM
subjects in primary and secondary school, the teacher’s role to handle these new
learning processes of both technology and design has been largely overlooked. There
are many challenges that is presented to teachers by introducing digital fabrication
in technology in an educational environment, Smith et al(3) have identified four
impediments that have to be solved in order to create a healthy environment for
teachers and teaching when it comes to integrating technology to support education
with the teacher’s role in focus. To begin with the schools today are more or less
goal-oriented, this is due to classes following a strict curriculum and need to satisfy
certain objectives. In order to introduce digital fabrication technologies to support
education successfully there has to be a change regarding the curriculum that gives
the teacher a different kind of role. Design processes is more of an open ended and
explorative way of learning, the learners should be allowed more freedom during
class and teacher’s role should change towards a facilitator(3). There needs to be a
way for teachers to practice purposeful education and still be able to support the
explorative process that is digital fabrication.

In today’s goal-oriented school environment a lot of the teacher’s focus is on com-
pletion of tasks, the process of getting to a finalization is not as important. When
designing with digital materials a big part of the learning process and understanding
is through sketching a solution, reflecting and iterating to reach a possible solution.
A change in the mindset of looking at design materials and fabrication materials as
reflection tools rather than just outcomes of a design process can be a contributing
factor to be able to integrate digital fabrication in the classroom. Closely tied is
the need for a design language, a common ground of understanding between teach-
ers and students to express ideas and qualities regarding design(3). Teachers must
develop this way of reflective understanding, as it is a fundamental part of digital
fabrication and design. Another thing to bear in mind is that this will probably
rewrite the map of the regular classroom teaching ways. Teachers will not always
be in full control of steering a class with precision each time, but rather has to

15

3. Theory

get accustomed to having less authority and less control due to not mastering all
the techniques that are taught. This is a scary situation for any teacher , as the
current classroom situation differ greatly from the self-motivated environments as
makerspaces are, which need a teacher in a facilitator role(3).

3.2 Constructionism
Seymour Papert(21) built constructionism on the idea of constructivism, that knowl-
edge is a structure built in the mind of the learner rather than something prepack-
aged ready to be absorbed from the teacher. Constructionism however also adds the
notion that the learner constructs this knowledge while consciously creating some
public entity, whether it is a sand castle or a theory of the universe. Papert stresses
the irony in trying to come up with a definition for constructionism, as the whole
idea about it, is that the knowledge about it is created by you as you engage in an
effort to create it.
Papert claims that comparing constructionism to instructionism is trying to compare
something that is different on a much deeper level than merely the way in which
knowledge is acquired, but rather on the level of what the nature of knowledge
really is. Further he illustrates the successful implementation of constructionism in
stories about children who are exposed to an environment in which their desire to
create something beautiful leads them to wanting to learn the math knowledge, for
instance, required to implement these ideas(21).

3.3 Hattie and Donoghue Model of Learning

Hattie and Donoghue propose a model of learning(22) that suggests learning has
three inputs and outputs: skill, will and thrill. It mentions the importance of defining
the success criteria to the learner and that there are three phases of learning: surface,

16

3. Theory

deep and transfer. Surface and deep are also each divided into an acquiring and a
consolidation phase. The model suggests that some learning strategies are more
effective than others but that this is dependent on the learning phase. Further on
it is argued that learning strategies should be embedded into subject content rather
than be taught separately out of context. Transfer is shown to be highly effective
for learning, especially in looking at similarities and differences between different
contexts and situations. It is suggested that transfer requires the previous phases
to be passed in a linear fashion. However, the authors also point out that this is an
assumption and that more research needs to look at how the order of phases impact
learning.

3.4 Self-Determination Theory
Self-Determination Theory is a macro theory of human motivation that first and fore-
most states that motivation has more dimensions than simply the strength amount
of motivation. According to SDT the type or quality of the motivation is even more
important than the strength, for being able to predict psychological effects relating
to well-being, performance and creativity.

In SDT motivation, contrasted to amotivation, is described as energizing and direct-
ing behaviours and activities. These motivations are divided into the two distinct
groups of autonomous motivation and controlled motivation. Autonomous motiva-
tion consists both of intrinsic motivation and extrinsic motivations where people
have identified with the value of a certain activity or even integrated it into their
sense of self. According to Ryan and Deci(23) intrinsic motivation is where one is
moved to act for the inherent satisfaction of doing the activity, not driven by any
outcome separate from the activity itself. Whereas extrinsic motivation is described
as an activity instrumental to reach an outcome separate from the activity at hand.
Controlled motivation on the other hand is described as extrinsic motivation that
either is external motivation regulation or introjected regulation. Here external
regulations are either rewards or punishments whereas introjected regulations are
approval motive, avoidance of shame, contingent self-esteem or ego-involvements.

Central to SDT are the notions from Basic Psychological Needs Theory that psycho-
logical well-being and performance are predictable on three basic needs: autonomy,
competence, and relatedness. To the extent of which these three needs are satis-
fied or thwarted by the context an individual’s differences are changed in two ways,
according to SDT. These two individual differences are: causality orientations and
aspirations. Causality orientations are derived from Causality Orientations The-
ory and relates to three ways of orienting oneself in relation to regulating one’s
behaviours. These orientations are: autonomy, which is acting out of interest; con-
trolled, which is focused on rewards, approval and gains; and impersonal or amoti-
vated, which is an anxious relation to competence. According to SDT all individuals
have degrees of all three orientations. These are suggested to be influenced by an
individual’s surroundings support for the three basic needs (autonomy, competence,
and relatedness) and have been shown to correlate with a person’s psychological

17

3. Theory

and behavioural outcome(24). Aspirations or life goals are, according to SDT, goals
acquired by an individual to compensate for thwarted basic psychological needs
(autonomy, competence, and relatedness) over time. These goals are either intrinsic
aspirations or extrinsic aspirations. Intrinsic aspirations are for instance affiliation,
generativity, and personal development. Extrinsic affiliations include goals such as
fame, wealth and attractiveness. It is suggested that thwarted basic psychological
needs result in the adoption of extrinsic life goals in an effort to try to satisfy these
needs, something that extrinsic goals are unable to satisfy. At the same time the
aspiration for external life goals tend to crowd out basic need satisfaction(24).

Figure 3.1: Figure of self-determination continuum according to Gangé and
Deci(25).

3.4.1 SDT in Relation to Education
It has been shown that there are factors that can catalyze or undermine intrinsic
motivation. Things as tangible rewards, threats, deadlines, directives, competition
pressure and negative performance feedback undermines intrinsic motivation accord-
ing to Cognitive Evaluation Theory. On the other hand choice and opportunities for
self-direction, as well as positive performance feedback has been shown to enhance
intrinsic motivation(23). Behaviours that are not intrinsically interesting to a person
will require extrinsic motivation to be adopted. To make an extrinsic motivation
more self determined is the process of internalization and integration. This is done
when a student truly understands the values of an activity, identifies with it and
incorporates it with their sense of self. This is suggested to be done by foremost
addressing the basic psychological need of relatedness, by having the behaviour val-
ued by significant others to whom they would like to feel connected. Therefore it is
important to provide a safe comforting environment where the students feels that
they can trust the facilitators. To further support internalization and integration
it is argued that the need for competence has to be supported through challenges

18

3. Theory

where the student feel that they have the competence to succeed. To support in-
ternalization and integration to the extent that the regulation becomes autonomous
however, the basic psychological need of autonomy has to be supported by the en-
vironment as well. This is suggested to be supported by the environment in such a
way that makes the student feel free and agentic to explore new ideas and exercise
new skills(23). It is suggested that selecting programmes, the possibility of drop-
ping out of courses, flexible schedules and the possibility to skip classes are a few
ways in which college supports autonomy in ways that high school does not. It is
suggested that this might be the reason to why there are students in college that
match an autonomous motivation profile, whereas high school students all fall into
the category of controlled motivation profiles(26).

3.5 Computational Thinking
During the 21st century there has been an increasing interest in the field of com-
putational thinking (CT). It started with Jeannette Wing’s article in 2006 about
CT and argued for this new competency in schools to enhance children’s analytical
ability in STEM subjects, it was not just for computer scientists anymore. This
caught the attention of the academic community that started to interpret her def-
inition and since then perform their own research on CT. Although the concept of
CT being important in education is not new, as early as the 1960’s there were those
advocating teaching programming to college students. Most notably was Seymour
Papert’s MIT work with the program LOGO in the 80’s, as this was aimed at K-12
education.

There are many different takes on exactly how to define CT, Wing(27) defines it as
“Computational thinking is the thought processes involved in formulating problems
and their solutions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent”. This definition is all about
how to think when posed with a problem, the abstraction and process to arrive at a
solution step by step. Another definition that is more about the importance of being
able to reflect on and see the modern world through the lens of CS is proposed by
the Royal Society(6), “Computational thinking is the process of recognising aspects
of computation in the world that surrounds us, and applying tools and techniques
from Computer Science to understand and reason about both natural and artificial
systems and processes”.

As a result of these different definitions, although highly related to each other, the
following list of elements is widely accepted as containing the basis of CT in curricula
that aim to asses the development and support the learning of it(28):

• Abstractions and pattern generalizations
• Systematic processing of information
• Symbol systems and representations
• Algorithmic notions of flow of control
• Structured problem decomposition

19

3. Theory

• Iterative, recursive and parallel thinking
• Conditional logic
• Efficiency and performance constraints
• Debugging and systematic error detection

It is quite evident that most of the recent work regarding CT has been about devel-
opment tools and definitions, not as much focus have been made on the assessing of
CT and how to do it as large gaps still exist in this part of the field(28).

The key for integrating CT in K-12 is the assessment of it. Without a method for
assessing the learning of CT with students there is little hope of it being incorporated
in the K-12 curriculum(28). Two models on how to do this have been acknowledged,
the MIT model and the Barefoot model, accompanied with their own definition of
CT as well. These models will be portrayed in further detail in coming subchapters.

3.5.1 MIT Model
Recently researchers at MIT have developed a CT framework based upon studies
they made. Also by studying learners using and engaging in programming through
Scratch, a definition of what CT is was split into three categories: computational
concepts; computational practices; and computational perspectives(29). Computa-
tional concepts entails being able to grasp seven specific concepts that are common
in many programming languages(30):

• sequence: identifying a series of steps for a task
• loops: running the same sequence multiple times
• parallelism: making things happen at the same time
• events: one thing causing another thing to happen
• conditionals: making decisions based on conditions
• operators: support for mathematical and logical expressions
• data: storing, retrieving, and updating value

It soon became clear that the concepts as a framework for CT was not enough,
something to support the process of construction was needed. By studying how
the learners adopted different strategies when developing their projects four distinct
practices was identified. Experimenting and iterating being one, test and debug
being another. Making use of existing projects or ideas and build on them was also
practiced frequently and being able to see the connection of the smallest part to the
whole project. The third category, perspectives, is all about the learner reaching a
new level of awareness of the technology that surrounds them. Being able to express
themselves and seeing computation as a medium for creation, by recognizing the
power of creating with and for others and lastly be confident and ask questions
about the world. In order to asses the level of CT development with the learners,
as knowing the definition of a computational concept is not useful if one cannot put
it to use in practice, there is three strategies that can assist(29). Artifact-based

20

3. Theory

interviews let learners engage in conversations about their projects and practices,
using examples to guide the conversation forward. Another way is to provide a set
of design scenarios for the learners that they engage in, giving them four different
angles to relate to, critiquing; extending; debugging; and remixing. Documentation
is about learners developing a sense of reflection on their own creations and ideas.

3.5.2 Barefoot Model
The Barefoot project was established in 2014 and aimed to support primary school
teachers in England to get ready for the addition of CS elements in the new cur-
riculum. Barefoot developed their own set of definitions of CT and how to apply
it in a school environment. According to Barefoot(31) CT is quite simple to ex-
plain, CT is about looking at a problem in a way that lets a computer help solving
it. Divided into two processes and the first being to think about steps needed to
solve a problem, second letting technical skills in programming put the computer to
work in solving the problem that is stated. Their interpretation of CT is composed
of six different concepts, Logic; Algorithms; Decomposition; Patterns; Abstraction;
Evaluation, continuing with five approaches, Tinkering; Creating; Debugging; Per-
severing; Collaborating, and this is similar to other models of how to think about
CT.

21

3. Theory

22

4
Methodology

This chapter briefly describes methods used in the project. They are divided into
the research part and iteration part. Research entails methods such as qualitative
literature review and interviews that lay the groundwork for the project. Addi-
tionally, methods used during the design process are called the iteration methods,
included are methods for ideation, prototyping and evaluation.

4.1 Research

Methods concerned with collecting both qualitative and quantitative data to diverge
the design process and open new doors are here described as research methods.

4.1.1 Qualitative Literature Review

A literature review is a vital part of the research process and needs to be done
carefully. The topic of having an abundance of literature to choose from, decisions
must be made on what approach to use and what to include, as it is nearly impossible
to cover it all. Literature gathered can be represented in any form of the following
sources: research articles, article reviews, books, websites, government documents
and journals.

4.1.2 Recruiting Tools

Recruiting Tools is a method that has the designers reflect upon the way participants
are being recruited to the project. It aims to ensure that a diverse set of participants
are being recruited. The team ought to be aware of covering different ages, genders
but on a more abstract level also differences in motivation, needs and wishes, within
the group of users. Recruiting tools as a method has the designers set up a strategy
for the recruiting process as a deliverable. This ought to cover strategies for reaching
diversity in participants as well as legal strategies for recruiting minors under age
and strategies for managing confidentiality of the participants.

23

4. Methodology

4.1.3 Empathy Map

The method Empathy map is developed by Stanford(32) and aims to help under-
stand users needs and derive insight from them. It is suggested to be performed by
the researcher on a single user or a group of users. It requires about half an hour,
pens and paper. Start by dividing a paper or whiteboard into four equal quadrants
representing what the user: says, does, thinks and feels. The “Say”-quadrant is to
be populated with user quotes and words that appear valuable and suggest deeper
meaning. The “Do”-quadrant is to be populated with user actions and behaviours
that have been observed. The “Think”-quadrant is to be populated with interpreted
user thoughts and beliefs. The “feel”-quadrant” is to be populated with interpreted
user feelings and emotions. As the last two traits are not directly observable it is
suggested to infer them by paying close attention to body language, tone and choice
of words.
The next step is to look at these traits and specifically look for contradicting ones,
to identify human needs. That is, according to this method, physical or emotional
human necessities or desires. Needs are verbs not nouns. Write these needs down
on the side of the empathy map.
Next insights are to be derived. These are, according to the method, remarkable
realization that help the design task at hand. Insights come from looking closely at
two contradicting attributes within a quadrant or cross quadrants. Alternatively by
keep asking “why” when finding strange behaviour(32).

4.1.4 Stakeholder Mapping
Stakeholder mapping is a method concerned with understanding the network of
people affected by or affecting a particular system. Mapping these connections out
aims at gaining a better understanding for the bigger picture of the system and
see previously obscured opportunities. The method requires a diverse team and a

24

4. Methodology

subject area to focus on. The team is then to generate a broad list of stakeholders,
draw each one of them out as a symbol on a map, draw speech bubbles from each
one of them with a short text summarizing their mindset and give them labels or
titles. The next step is to draw connections as arrows between stakeholders and give
these arrows a label describing their relationship. Finally circle related groupings
and label them.

4.1.5 Fly on the Wall Observation
In an attempt to assess to which degree both teachers and students handle new
technology and how fast they are “up and running” with it, a form of Fly-on-the-
wall observation will be used. It is interesting to see how determined they are, in
what form roadblocks pop up for the users and letting them handle it themselves.
By taking the passive role as an observer, and not interfering with any hints, notes
can be taken as to how users begin familiarizing with new technology, how they
go about fetching more knowledge and how they solve problems they step upon.
This can give designers helpful hints as to where the biggest issues lie when getting
accustomed to a new (although similar) technology.

4.1.6 Semi-Structured Interview
Semi-structured interview is a method with perfect balance between open-ended and
highly structured interviews, no set of questions have to be followed up but instead
allows for the interview to diverge(33). This is a very useful format for conducting
qualitative research and works equally good in the early stages of the research phase
as well as the latter phase stages. Some important things to have in mind when
conducting semi-structured interviews is the use of open-ended questions, nothing
that allows for a “yes” or “no” answer. No leading questions and the interviewers
ample use of probes to gather data at a depth are other examples of practicing
semi-structured interviews(33).

4.1.7 Exit Tickets
Exit ticket is a method used to gather feedback on students understanding at the
end of a workshop. At the end of a workshop the teacher prompt the students with
answering a few easy questions regarding key material from the workshop, usually
written down on post-it notes and handed to the teacher. This gives great value of
information for the time invested by the teacher and can also work as a useful basis
to guide upcoming teaching decisions, and also allows students to synthesize and
integrate the information gained for their own benefit(34).

4.1.8 Personas
When it comes to creating a design that must satisfy a diverse audience of users,
Cooper says “The best way to successfully accommodate a variety of users is to
design for specific types of individuals with specific needs”(35). A user persona is
the representation of the needs and behaviour of a set of made up users, often created

25

4. Methodology

from data derived from field studies, interviews or observations. Personas can thus
be powerful when distinguishing users and to highlight their needs and behaviour,
which often interfere with one another, therefore identifying the right individuals
to design for and making sure the most important users needs are met without
compromising the needs of secondary users is crucial for a successful product. This
seems very much applicable in the context of this thesis as there certainly is a
plethora of different needs with the students in classes, and therefore it is vital
to extract the essence of those needs and design for the wide variety focusing on
the important needs. The usage of personas have been greatly increased in the
user experience community, since it can act as a multipurpose design tool and aid
designers in problem solving.

4.1.9 Journey Map

Journey mapping is a tool based on the premises that humans are more able to relate
to narrative rather than pure data. Hence personas are used to describe different
user groups and the journey map acts as a narrative for these personas to travel
through. This can be used to communicate an existing user experience, as well as
describe an envisioned future optimal experience. It can aid in weighing the impact
every elements of an experience, e.g interactions, decisions or emotions. It is also a
good way to display your understanding of different situations(36). Journey maps
are commonly illustrated as different personas trajectories through emotional states
and expectations, as well as their touch points with the organisation. A journey
map spans over a certain time section, it can be the user’s entire experience with an
organisation from first contact to end, or simply a single section in time. A journey
map is used to identify points in time where users interact with the organisation, so
called touch points.

4.1.10 Affinity Clustering

As described by the the LUMA Handbook of Human-Centered Design Methods(36)
affinity clustering is “a graphic technique for sorting items according to similarity”.
Starting out with a set of data the team is supposed to write individual items on
post-it notes. Next the team should read each item out loud and attach it to a wall
or table where it’s relation to other objects can be discussed. Notes argued to be
related are supposed to be grouped with proximity. Finally the groups are to be
labeled according to content, as this allows for new abstracted patterns to naturally
emerge out of the data set. For this method it is also advised to have a diverse team.

4.2 Iteration

Methods for iteration describes methods that are used both to ideate, make proto-
types and evaluate the results.

26

4. Methodology

4.2.1 Brainstorming

After the research phase the design team needs to begin ideating over possible design
solutions. The potentially most used activity is some form of brainstorming, where
the participants get together and spit out ideas in a frequent, no filter and fast
paced way. In order to have a fruitful brainstorming session a certain mindset must
be instilled in the participants, along with some rules to follow. There must be
no boundaries on idea solutions, the mind must be allowed to roam freely. There
should not be any emphasis or thought of seeing the ideas of feasible solutions, that
is not what brainstorming is about. If a brainstorming session is successful the team
should have a lot of ideas to put a spin on afterwards, and with further work have
them contribute to a feasible design solution. Also some preparations regarding
what the team learned from the previous phase, the research phase, is necessary.
This can be done by finding themes in the groundwork that has been done already
through interviews and field studies.

4.2.2 Design Principles

Insights gathered and design themes identified can be put to good use for the re-
mainder of the project, by turning them into design principles. By having design
principles the design team always has something to fall back onto, and can feel con-
fident that as long as the designs produced stay true to the principles, the designs
will be relevant. It is important to try and keep the principles short and memorable,
e.g “Talk like people talk” or “Keep women at the center of business”.

4.2.3 Integrate Feedback and Iterate

What was learned about the users in the observation phase can be further investi-
gated in the iteration phase by showing them the prototype and finding out what
they think. By integrating their feedback into the design work and developing an-
other prototype is a great way of refining the idea into something that is a finished
product. Integrating feedback and iterating is closely tied to rapid prototyping and
it is therefore important to start building on the next prototype as soon as the de-
signer is settled on what should change, drawing from reflections on the feedback
received. It is mainly a method for refining the idea and is bound to be used several
times over as the results will increase the chances of the right solution being close.

4.2.4 Abstraction Laddering

A useful method when trying to identify the levels of abstraction in a problem is
abstraction laddering. This method helps designers concretize how to solve abstract
problems, and turn concrete problems more abstract by asking why and is a great
tool for comparing solutions and evaluate them.

27

4. Methodology

4.2.5 Rapid Prototyping
Rapid prototyping is an excellent tool to quickly learn through making and turning
ideas tangible as you get feedback from targeted users. This method is only meant to
roughly explore an idea, not be perfect, so you do enough work to test the idea and
make room for improvements next iteration after gathering feedback. This method
both builds on previous knowledge gathered in other methods but also allows for
tinkering with lessons learned from recent prototype testing.

28

5

Process

This chapter describes the measures undertaken during the design process, prac-
ticing various methods and continuously reflecting on previous results to feed into
subsequent activities, in an attempt to eventually find an answer to our proposed
research question. In planning we describe how the thesis plan unfolded and the
decisions made for choice of methodological framework and time frame, additionally
our thoughts on the literature and theories we indulged in. All our activities are
documented in detail, the origin of each workshop, purpose, planning,result, data
gathering and possible insights are also presented. For the first half of the thesis we
had a different approach to workshops than later on in the process, due to the need
of data gathering and getting to know the users. We discuss some methods we used
to extract insights from the data gathering and move on to plan a set of workshops
where we followed the same class over a couple of weeks. During the insight analysis
we describe methods used to finally condense all our data into something tangible
and how this was reiterated after getting feedback.

29

5. Process

Digitalverkstan Kullavik

Got to know the context and
students through a modified
version of the previous workshop.

Makerdays
First encounter with micro:bit
workshops, for teachers.

Digitalverkstan Lindholmen
More guided presentation
than last time. Tried imitation
exercises.

Students intern workshop
Tried to guide students more
with a co-coding session
at the beginning.

BETT show London
Video based workshop for 100
teachers. Different tracks
available for the more advanced.

Created personas & journeymap
Aggregated data from Sollentuna
workshops to allow personas
to emerge and created a journeymap

Digitalverkstan Lindholmen
Student workshop based on
journeymap and persona
insights.

Breddenskolan
First student workshop
with only iPads.

Sollentuna musikklasser
Two iPad workshops with
a lot of troubleshooting.
One computer workshop.

Grimstaskolan
First student workshop
without previous
knowledge in scratch.

Activities Insights

Interviewed other facilitator
Get a second opinion from
another workshop facilitator
on things to consider.

Can be helpful to start without technology
Maintain a theme with smooth transistions

Attention easily lost with live imitation
Be aware of tricky words
Teach concepts in context
Social aspect can be lost with videos

Positive with freedom to customize
Hard to find the right blocks
Language can be a barrier, as there were complex words

Explain that computers are stupid
Free exploration fun but gets frustrating
Helpful to see examples

Imitation is easy
Coming up with own ideas is hard
Hard for teacher to help all individually

Self instructing material useful for big groups
Be prepared for unreliable internet connection.

Prevent technical problems to avoid frustration
Ending a session with a hard exercise can be demotivating
Big span in student skills

Bluetooth bug resolved through reflashing
Need for adapting exercises to students skill

App-store passwords required
Internet connection frustrating
Pairing mode bug
Text based instructions ineffective

Mismatch in difficulty and knowledge led to frustration

Refined exercises examples
Trends are obsevered in class
Too much freedom lead to frustration
Hard to convey concept of variables

Found useful exercises examples

3x

Runbackaskolan
Shorter student workshops
with computers.

6x

30

5. Process

First workshop at Västergårdsskolan
Tried analog workshop to introduce
sequencing and repetition.

Second workshop at Västergårdsskolan
Continued with analog workshop and
introduced logic and variables.

Third workshop at Västergårdsskolan
Initially tinkered with the editor. Focused
on learning micro:bit through imitation.

Fourth workshop at Västergårdsskolan
Continued with micro:bit through co-
coding with more focus on individual
problem solving.

Analysed previous insights
Summarised previous insights with
affinity clustering method and tried to
derive more abstract patterns.

Teacher better execute the code
Students like to present unique solutions

Be aware of dependencies subject to change
Spontaneus play can lead to learning
Tinkering can be useful

Low energy among the students in the end

Co-coding

Scope of Autonomy

Technical Pitfalls

Basic Toolbox

Terminology

Analog Workshop
Example

Exercise Examples micro:bit Workshop
Example

Figure 5.1: A model showing performed activities and the flow of insights through-
out the project

5.1 Planning and Pre-study
In this section we describe how the planning of the thesis unfolded and how we chose
methodological framework and time frame, furthermore our thoughts on the litera-
ture and theories that we indulged in. Additionally we mention our first workshop,
where we got to know the nature of facilitating a workshop and handle an audience.

5.1.1 Planning
Having determined our first version of the research question we needed to gather
fundamental knowledge, both theoretical and practical, that concern micro:bit and
using technology to aid education. In addition we investigated different options for
a methodological approach as well, previous experience with the human centered
process and the prospect of the thesis being of an iterative nature, HCD felt like
a solid choice. Although small adjustments to fit our idea and plan was made.
We divided the design process into three separate phases, research, iterative and
demonstration.

The research phase was all about acquiring the right information and understanding
of the work that was to be carried out. That entailed reading about earlier work
in the field and learning about theories connected to teaching. Since both teachers
and students were the focus, information gathering about how they perceive the
introduction of programming in school was of high priority. Additionally we also
familiarized us with the platform, micro:bit, during this phase. After the research
was done we continued to our iterative phase which consisted of three sub-phases,

31

5. Process

ideation; intervention; and evaluation. These sub- phases were one prototype cycle,
and the aim was to refine the design every time a full cycle was completed. In the
beginning we aimed for only a couple iterations, but we ended up exceeding that.
We had a good frame for iterating and gathering data so we used it with ease almost
every time we had a workshop planned.

Ideation phase is where previous knowledge came to use when designing for the
objective at hand. During this part we created plans for upcoming workshops and
activities. This was made through a script that we used, consistently together with
all workshops that we did. We also used insights from evaluated data to create new
content. At a later ideation stage we created personas from data gathered and used
them in a journey map in an attempt to extract even more insights. These methods
were not included in the plan from the beginning.

In the intervention phase the implementation of the design work for the current
objectives was carried out. Implementation mainly comprised of field tests, namely
workshops in school environment on several occasions. While field testing the pro-
totype feedback from the testers and the process was collected for later evaluation.
During the workshops most of our data gathering took place, almost exclusively
through exit tickets that were to be evaluated at the next stage. Evaluation was
carried out at the end of each prototyping cycle to assess in what extent the im-
plementation was done as design implied. Also evaluating feedback and other input
from testing the implementation in a live setting, if that was the case. This is also
when we evaluated the data gathered, and tried to extract insights we could use to
prepare for the next cycle.

In our final evaluation phase, when there would not be any more iterations, we began
evaluating all our data with affinity clustering in an attempt to reach a theoretical
result, which was something not included in the plan from the start but emerged as
a necessary method to evaluate the data. This itself was done over a few iterations
and led us in the end to a model of autonomy. We also found insights and valuable
information for teachers that did not fit into the model, and we made them into
a bundle of considerations when working with micro:bit. Last phase of the master
thesis planning was about demonstrating the results. This step highlighted what
important elements to consider when designing digital teaching material regarding
the micro:bit suited for a primary school classroom in Sweden, as an answer to
the research question. The suggestions produced were based on work done in both
research- and the iterative prototype phases. This phase also entailed the finalization
of the project report and presentation.

32

5. Process

Figure 5.2: Planning diagram with weeks and acitvities

5.1.2 Literature Study

There were several aspects of learning and teaching that we needed to gain knowl-
edge in. Since we had no previous knowledge in the underlying theories that regard
teaching and learning we needed to do some groundwork. We began by creating a
research document where we put down topics that could be of interest and theories
connected to them. We asked ourselves if it could benefit us in pursuit of answering
the research question, so we also did some culling of the topic ideas. The topics
we finally came up with were digital literacy, teaching pedagogies, maker culture,
digital fabrication, and micro:bit. Since the thesis is based on the introduction of
digitalization in Swedish primary school education and preparing the younger gen-
erations for the future by making them digitally literate, we felt that digital literacy
(or computational fluency) was of high interest. On top of that we needed to learn
how they already are teaching programming in an effective way to younger stu-
dents, what approach one should have and where to put focus. This led us into the
field of computational thinking and teaching pedagogies. Theories about computa-
tional thinking gave us guidance on how to approach teaching of programming for
beginners and sorting out the different programming concepts. Regarding teach-
ing pedagogies, there is an extensive amount of research in that area. During the
thesis we came across several interesting phenomena during workshops but had to
limit ourselves to the above mentioned theories, since allowing for another school of
thought would have rendered too much extra time investment. We chose to explore
theories on self determination in education and constructionism as they felt closer
to maker culture and digital fabrication, which is something that we associated to
introduction of programming and working with micro:bit. As there is a plethora of
theories touching teaching and learning, we had great use of a meta synthesis of over
400 learning strategies(22). Studies that showed that the classroom was changing
with the digitalization, teachers might have a different role to play and the maker
culture phenomena(3), got our attention as well.

33

5. Process

5.1.3 Makerdays

RISE Interactive, our business client, arranged a conference called Makerdays which
we were encouraged to help out with so we could learn more about facilitating work-
shops and get to know teachers first hand. Makerdays is a meetingplace for teaching
and exploring in the borderlands of making, digitalization and creativity. Makerdays
is aimed at those involved in Swedish schools, science centers and other pedagogical
activities. The event lasted for two days and hosted about 300 teachers in total,
of which a third had chosen to try the micro:bit. This resulted in 5 workshops, of
approximately one hour each. These days were used as an open ended early ex-
ploration phase to learn more about hosting workshops and to better get to know
teachers.

Prior to the conference we had a few days where we tried to come up with interesting
exercises, projects and challenges that could be done with the micro:bit. Even
though we did not know it at the time, these would become the exercises that we
would use later on throughout the project.

During the workshops we assisted our colleague, who was the head facilitator of the
micro:bit workshops. The workshops began with a presentation of the micro:bit and
its features, we also showed a couple of projects that we had prepared to give the
audience ideas of what is possible to do. We ended the presentation by coding a
name badge on the micro:bit, a simple program where the micro:bit scrolls a string
of text on the display, then we let the teachers have the rest of the time testing it
out themselves. A set of challenges were provided to trigger their imagination.

5.2 First Sessions with Digitalverkstan

Through previous collaboration outside of the thesis work we got in contact with
Digitalverkstan, together we were able to arrange two workshops and introduce
micro:bit to primary school students. Both workshops took place during the same
week but at two different locations, Kullavik in Kungsbacka and at Lindholmen. The
plan were to get our first hands-on experience in facilitating a micro:bit workshop
with our users.

34

5. Process

5.2.1 Workshop at Kullavik

Digitalverkstan Kullavik
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Explorative workshop with students of Digitalverkstan
25th October 2016, 18:00-20:00
Kullaviks Montessoriskola, Kullavik
Group of around 30 children, 2 facilitators, 1 teacher and a few parents helping out
8-10 years old
- Get hands on experience of the role of the workshop facilitator
- Explore the actual context and meet the real users
- Gain understanding for the current level of computational knowledge of the users
Execute planned workshop with presentation, discuss and note down observations after

Refined exercise examples
Trends are obsevered in class
Too much freedom lead to frustration
Hard to convey concept of variables

Figure 5.3: Script snippet of the workshop

Our first workshop with Digitalverkstan was done in Kullavik just south of Gothen-
burg, with about thirty students between eight and twelve years old. We went there
to get hands-on experience in being a workshop facilitator and explore the actual
context as well as meet the users. We had made a plan which was loosely based on
previous workshops during Makerdays, since we had no previous experience to relate
to we used it as our base. Therefore we began with a lengthy and detailed intro-
duction via a presentation, showing the ins and outs of the micro:bit. We ended the
presentation by showing how to code and upload a simple program, a name badge.
When done micro:bits were handed out and they were given some time to program
their own name badge onto a micro:bit. After a while we also showed the students
how to use inputs on the micro:bit, e.g buttons, and asked them to use that in their
name badge program. From there it was more or less a free exploring workshop,
although we provided a list of programs they could try and complete, and we went
around and provided help for those who had questions or were stuck. Beforehand
we had done research on computational thinking and therefore wanted to gain an
understanding on what level the students were at. We had a plan to use a rubric
to gather that data, but there were simply no time. We had underestimated how
much time helping students would consume, and at one point during the workshop
we decided to prioritize the students and help them learn the micro:bit.

In hindsight we realize we might had progressed too fast, the students were not
ready and got stuck and confused. As a possible result of that we observed when a
pair of students managed to complete a cool game, this time rock-paper-scissor, the
other students looked to them and eagerly wanted to do the same. Soon everyone
were trying to code their own so they could play against each other. This also led
to many students tended to focus on the result rather than the process of learning,
they basically wanted us to make the game for them so they could play with their
friends. This kind of behaviour has both positive and negative impacts, the good
part being that they get motivated and suddenly have a purpose to learn how to
code a micro:bit. On the other hand they often get impatient and try to skip a
few steps in the learning process to reach the end result faster, which is not always
desired from a teacher perspective.

35

5. Process

5.2.2 Workshop at Lindholmen

Digitalverkstan Lindholmen
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Explorative workshop with students of Digitalverkstan
27th October 2016, 17:30-19:30
Lindholmen, Gothenburg
Group of around 30 children, 2 facilitators, 1 teacher and a few parents helping out
8-10 years old
- Get hands on experience of the role of the workshop facilitator
- Explore the actual context and meet the real users
- Gain understanding for the current level of computational knowledge of the users
Execute planned workshop with presentation, discuss and note down observations after

Imitation is easy
Coming up with own ideas is hard
Hard for teacher to help all individually

Figure 5.4: Script snippet of the workshop

Coming into the second workshop we had adjusted the workshop with recent find-
ings in mind. The conditions were similar to the last workshop, with primary school
students around eleven years old and new to micro:bit, only the location was dif-
ferent. This time we wanted to emphasize a few concepts related to programming,
e.g variables, in order to give them more tools when programming by themselves
later. Therefore the introduction part was extended. First we went through by
demonstrating the name badge and explained the blocks used in more detail as well
as how to upload code to the micro:bit. We continued by adding buttons to the
name badge, talking about input blocks and how they can be used. To include ran-
domness and variables in the introduction, example programs of coin flip, counters
and dice were shown and described. Extra care was put into explaining variables,
as the concept is abstract, and we used the common box analogy for that single
purpose. One popular way to think about a variable is to imagine a variable is like
a box that can hold values, with the box label being the name of the variable.

When we were done with the introduction we let them play with their own micro:bit,
although this time they had seen how to modify and manipulate blocks and code.
First they were asked to make their own name badge and add some feature from
the examples give, e.g a button press. All examples that we programmed during
the introduction were also provided as inspiration on a slide, if they were stuck
they could copy the code. On top on readymade examples being shown, a set of
challenges were given as in the last workshop. These had no slides showing the code
but all the blocks and knowledge they needed to solve had been shown in the earlier
examples, they just needed to figure out how to combine them. This method had
us distinguish two kinds of students in our workshops. Some students were able to
follow during the introduction and later complete the exercises, but were bewildered
once they tried to solve one of the challenges. Others had no problem combining
blocks from the different programs to solve a challenge. There was an apparent
risk of students just copying the programs mindlessly without paying attention to
learning, and we addressed this in our evaluation of the workshop. To increase the
amount of students that understand what they are coding we thought of scrambling
the blocks needed, still giving them the right blocks but unassembled.

36

5. Process

5.3 Workshops with Student Interns

Workshops with student interns
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Tried workshop ideas on intern students, followed by interviews to look for improvements
17-18th November 2016, 9:00-17:00
RISE Interactive, Lindholmen, Gothenburg
2 students, 2 facilitators
9th graders
- Try out new workshop ideas based on newly read paper by Hattie & Donoghue
- Try to develop new workshop ideas and improvements together with the students
Perform planned workshop, followed by semi structured interviews

Explain that computers are stupid
Free exploration fun but gets frustrating
Helpful to see examples

Figure 5.5: Script snippet of the workshop

An opportunity arose at our client, RISE Interactive, where they were to have two
interns in their office for a week. Although these students were 9th graders and a
bit older than our target group, which is 4-6th graders, we felt that this still was
something that could help our research progress as they had no previous experience
in programming. We used this occasion to test out some ideas we had regarding
our micro:bit workshops in general and application of new theory we had acquired
about learning strategies(22). First an activity plan and a script was created for
the workshop, containing our own goals as well as details on the activities it should
hold. The workshop began with an introduction to micro:bit and us showing how the
editor works, we also presented a success criteria for them to work towards during
these two-day workshops. The success criteria were the following:

• They come up with their own idea for something they want to make
• They pursue the knowledge needed to implement their idea, in a gritty

independent fashion, where they take responsibility for their own learning
• They use the knowledge to create their ideas
• Their creations help them to generate new ideas

Next a co-coding session was planned, where we solved problems and coded together
with the interns to ease them into programming with the micro:bit. We coded
programs that we had used before with beginners, e.g name badge and dice, to
teach the basic logic in programming. Dice is another simple program you can do
with the micro:bit to resemble a six sided dice, it includes using variable, input and
sequence blocks. Co-coding was a positive experience for both parts, the interns
got their questions answered and were able to follow the steps needed to solve the
problem with less pressure on them, and we got to test their skills in a relaxed
fashion. When we had finished the basic knowledge teaching we let them work on
their own, with their own project. They did this for the rest of the day and continued
for a few hours the next day, then we gathered feedback from them through a semi-
structured interview. As a result we realized that we had given them too much
freedom after the introduction and co-coding. They felt they did not have enough

37

5. Process

to come up with an idea on their own, this lead to a suggestion of a middle step
between co-coding and working by themselves. By creating problems with already
set blocks, although scrambled, we might bridge the gap from being comfortably
supervised to having to solve problems all on your own. They also admitted that
it is easy to learn by looking at examples, but the step from imitation to a blank
canvas is too steep and therefore a middle step or a gradually increasing freedom of
work is the key. As they both were new to programming they also felt that anything
that works, no matter how trivial, is a good way to start in order to build confidence
so you may dare to try and fail later on.

5.4 Workshops in Stockholm

For our research we needed to gather relatively large amounts of data on the needs of
students and teachers regarding programming in school, and especially the micro:bit.
We got in contact with a set of four schools in Sollentuna, north of Stockholm, that
were interested in participating in our study that also included teacher workshops.
Teacher workshops had been overlooked since Makerdays and we felt we needed
more data in that area, so these workshops served as a great, and much needed,
opportunity for us. The plan was to visit one school each day from monday until
thursday during one week and host a total of twelve workshops, to twelve different
classes spanning from 4th to 6th graders. Our workshops varied in both length,
content and approach since classes were different ages, some had previous knowledge
in programming and some not, the workshops duration varied from 45 minutes up
to almost two hours. Half of the schools used iPads in their teaching so we had to
adjust our material to that as well. As data gathering methods we used exit tickets
after each workshop with the students and also did a short video reflection with our
own thoughts. With the teachers we used an empathy map to gather their thoughts
and ideas.

5.4.1 Preparation
In order to prepare for the workshops in Stockholm we began constructing a plan for
our visit. We built a timeline where all the classes and workshops were presented so
we easily could get an overview, see figure 5.6. On this timeline we placed different
constraints, such as time schedules, age groups and platform to work on (iPad or
PC). Then we began thinking of the content to provide, which eventually led us to a
model of using different workshop modules as entities to move around to tailor each
workshop with. It was not certain in the beginning if we wanted to do each workshop
different and compare those results or make them similar and look at differences.
We placed these modules, in the form of different colored post-its (one for each
module), on a large paper to arrange the workshops. The modules we decided
on were Introduction; Co-Coding; Exploration; and Evaluation. Introduction was
comprised of us going over the basics with the micro:bit, showing students how to
connect and upload code and showing simple examples like the name badge. This
part was extended with classes that used iPads, as connecting with bluetooth is less

38

5. Process

trivial and demands more guidance than using usb. We even prepared and printed
instructions on how to pair the micro:bit via bluetooth.

Figure 5.6: Preparation timeline for all workshops

Next we let the students code the micro:bit together with us while co-coding, we
began by letting the students make their own name badge program and make sure
all knew how to upload code to the micro:bit by themselves. After that we stepped
up the difficulty level a little bit to be able to show off more features of the micro:bit.
We had a set of readymade programs with rising difficulty that we followed, which
were programs that we had used in previous workshops, depending on time available
and students knowledge the amount of examples we presented varied from class to
class. Exploration was about the students being able to program the micro:bit on
their own, most often following some kind of instructions that we provided up front
or just coming up with their own idea. Instructions were in the form of challenges,
most often scrambled blocks that students put together to make a complete program.
All the challenges we provided were built on knowledge we had shown through the

39

5. Process

co-coding, e.g how variables or input works.

Lastly we needed some way to gather data, which resulted in the Evaluation module
at the end of each workshop. We chose to use exit tickets with the students as they
do not take much time to answer and is also easy to evaluate. For teachers we felt
we could get more value out of an empathy map, as they could sit in groups and
discuss as a larger part of the workshop.

5.4.2 Breddenskolan

Breddenskolan
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

First workshop in Sollentuna, and first time using iPads.
12th December 2016, 12:50-14:50
Breddenskolan, Sollentuna
Group of around 20 students, 2 facilitators and 1 observing teacher
4th and 5th graders
- Get to know more about the users and the context
- See if printed instructions about blutooth pairing helps students
Perform planned workshop, end with two exit tickets per student

App-store passwords required
Internet connection frustrating
Pairing mode bug
Text based instructions ineffective

Figure 5.7: Script snippet of the workshop

The first class we visited on our trip to Stockholm was 4-5th graders at Bredden-
skolan with around twenty students. We knew they used iPads as their platform so
we had adjusted our material beforehand, although we forgot about the fact that
they needed to download the micro:bit app from appstore in order to pair their
micro:bits. This led to some time wasting as they needed individual passwords for
each iPad passed around from the teacher as the students normally is not trusted
with those passwords. We had them sit in pairs, two students per iPad and mi-
cro:bit, before we began our introduction. We used step wise instructions on how to
pair the micro:bit with the iPad, having the students follow and confirm that they
were following each step. This was a very slow and tedious way of showing how to
the bluetooth pairing work, partly because we needed everyone to be on the same
step at the same time and we experienced some technical issues which had several
students waiting for everyone to catch up.

We decided afterwards that we should show a complete walk-through of the pairing
process up front next time. The printed instructions on the pairing process was
barely used by the students, perhaps the design contained to much text for it to
be accessible, and they rather asked for our help if they got stuck. Other than a
few mishaps and unstable internet connection the atmosphere was very positive and
they seemed to have fun during the workshop.

40

5. Process

5.4.3 Sollentuna Musikklasser

Sollentuna Musikklasser
Description:
Times:
Location:
Participants:
Age:
Aims:
Methods:

Insights:

Series of 2 iPad workshops with students and 1 workshop for teachers
13th December 2016, 9:40-11:00, 11:45-13:15, 14:20-16:30
Sollentuna Musikklasser, Sollentuna
Around 30 students, 2 facilitators and 1 observing teacher. Teacher workshops had around 15 participants.
4th and 5th grade students
- Get to know more about the users and the context
Perform planned workshop, finish with exit tickets for students and empathy maps for teachers

Bluetooth bug resolved through reflashing
Need for adapting exercises to students skill

Figure 5.8: Script snippet of the workshop

Next school we visited was Sollentuna musikklasser and three workshops in total
were planned with 5-6th graders, including one with only teachers present. These
classes also used iPads as their platform except for the teachers. From the day
before we decided to cut the slides describing the pairing and delayed handing out
micro:bits until we had done the pairing walk-through thoroughly, ensuring their
full attention. We also shortened the co-coding part since we knew the students had
some experience in programming with Scratch but also because it was too long to
begin with. When co-coding a bigger emphasis was put on having a dialogue with
the class instead of performing a semi presentation. This got the students more
involved and created a relaxed atmosphere in the classroom where you were allowed
to try and test.

Shortening the co-coding part meant that the students had more time during the
exploration phase, doing exercises and challenges in pairs. As a result the gap
in progress between the students widened, and while a majority still were busy
completing the challenges we had provided and asking for help, many had run out
of exercises to do. Even though these students that finished all of the exercises were
in minority, we realized that we need to account for this in the future.

At the end of the day we had a workshop with only teachers participating. Some
changes were made to the content in the presentation to better suit their interests,
e.g sections about the teacher’s role in micro:bit workshops and correlations to the
curriculum. There were about fifteen teachers present, each with their own com-
puter. We proceeded as usual and ended with explorative phase and an extended
evaluation phase. The workshop itself did not generate any exciting insights and
was rather a means to get the data from the evaluation, through an empathy map.
The participants were divided into three groups of five and were given a large sheet
of paper with an empathy map and around twenty minutes to complete it. Their
task was to discuss questions on what they think about the whole programming in
school topic in general, and their role as a facilitator and the one to educate within
this subject in the near future. Their interest in this topic was mixed and we felt
that we might not have gotten through to them fully.

41

5. Process

5.4.4 Runbackaskolan

Runbackaskolan
Description:
Times:
Location:
Participants:
Age:
Aims:
Methods:

Insights:

Shorter student workshops with computers.
14th December 2016, 8:10-8:50, 9:00-9:40, 10:00-10:40, 10:50-11:30, 12:30-13:10, 13:20-14:00
Runbackaskolan, Sollentuna
Around 15 students and 2 facilitators
4th, 5th and 6th grade classes
- Get to know more about the users and the context
Perform planned workshop, finish with exit tickets

Positive with freedom to customize
Hard to find the right blocks
Language can be a barrier, as there were complex words

Figure 5.9: Script snippet of the workshop

At Runbackaskolan we had different conditions, only 40 minutes were designated
for each workshop. There were six workshops total, two for each grade (4-6th),
and we did two workshops back to back before a longer break. That gave us some
time to make adjustments to the content if we wanted to. Thankfully they all used
chromebooks as their platform, which saved us some time when it came to show
how to upload code. First up were the 5th graders. As planned out beforehand
we had introduction and showed them how to connect the micro:bit, made a simple
name badge and uploaded the code. We then had an extensive co-coding session
where we coded a few programs together with the class, they followed and imitated
on their own computer. At the end they were given ten minutes to explore freely,
although we provided scrambled rock-paper-scissor code that most of them tended
to try out during that time. We planned it this way since we wanted to give them a
proper introduction on the micro:bit while also follow their learning closely, through
co-coding, as the timeframe for each workshop was shorter than usual.

After the first two workshops we felt that we might have underestimated their ca-
pabilities in picking up knowledge and learn the micro:bit. Because of this some
changes were made to the set of workshops, we wanted them to have more time to
work freely and explore and made room for this by cutting out some of the co-coding
parts we felt were superfluous. For the next two workshops with the 6th graders,
we gave them more time to program freely at the end allowing for more students
completing the rock-paper-scissor game. This led to a fun and positive atmosphere
ending the workshop with many students expressing that they wanted to extend
the workshop and continue coding. We also realized that with students that have
experience from block programming, e.g Scratch, we could maintain a fairly high
tempo in our co-coding and they would be able to keep and continue to code by
themselves in the end. The last two classes had the youngest students. Since the
last workshops went so great, with slightly higher tempo and shortened co-coding,
we figured that we rather keep it and see if students will receive it differently. It
resulted in us having to provide more help during their free exploration, but overall
a very positive experience nevertheless.

42

5. Process

5.4.5 Grimstaskolan

Grimstaskolan
Description:
Times:
Location:
Participants:
Age:
Aims:
Methods:

Insights:

First student workshop without previous knowledge in scratch.
15th December 2016, 9:00-11:00
Grimstaskolan, Sollentuna
Around 30 students and 2 facilitators, 1 observing teacher, 1 observer
Mixed
- Get to know more about the users and the context
Perform planned workshop, finish with exit tickets

Mismatch in difficulty and knowledge led to frustration

Figure 5.10: Script snippet of the workshop

As our last school we visited Grimstakolan and their 7th graders. Even though
they were completely new to programming, no previous experience with Scratch or
similar platforms, we proceeded with the same workshop plan. The introduction and
co-coding phases went relatively well, and since we had up to two hours available
for this workshop we could add content to the co-coding to make it richer. When
we let them code for themselves we discovered that the plan was not well suited for
complete beginners, even if they were older than previous classes. They just did
not have much of a clue of what to do next. We realized that we should have done
better groundwork, perhaps giving them a purpose of programming and putting it
in a relevant context for them. Instead they were stuck with ideas far above their
competence, since they had no clue what is possible, or were starved with ideas
beyond the examples we provided for the same reason. The workshops went on for
about two hours, without any break, and in the end when we tried to wrap up and
show solutions of some of the problems together with an explanation, we could see
that the energy was really low. We did finish explaining the code and tried to get
answers or a discussion going but got very little response.

5.5 BETT Show in London

BETT Show London
Description:
Times:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Video based workshop for 100 teachers. Different tracks avalible for the more advanced.
24th January 2017, 14:30-16:00
Grange Tower Bridge Hotel, London
Around 100 teachers
n/a
- Get to know more about the teachers
- Try self instructing material
Perform planned workshop, note down observations and experiences afterwards

Self instructing material useful for big groups
Be prepared for unreliable internet connection.

Figure 5.11: Script snippet of the workshop

During our visit to the BETT fair in London we were able to hold an introductory
workshop with teachers. Since the amount of participants was around 100, and

43

5. Process

we were only five facilitators, we had to make some adjustments to make it work.
First of all we thought that in order to facilitate a functioning workshop for such
a large group we would need to have some sort of self-instructing material, since
we will be unable to provide sufficient help otherwise. Not all teachers present
practice in the 4-6th grade classes so we had to accommodate for their interest as
well. This led to us creating material for three workshop tracks, block programming
(lower grades), text based programming (grades above 6th class), and a workshop
for experimenting for the curious and already initiated participants. We used video
material from Makermovies.se (37), made by our colleagues, and accompanied the
videos with add ons to the exercises and challenges. These tracks were available
through a tinyurl that we distributed during the workshop and routed the users to
a presentation, once they were there they chose which track to follow. There were
no restrictions in which platform to use, and we saw many experimenting with their
smartphones, iPads and computers. All in all it was a very positive atmosphere and
experience, although the internet connection on the premises was poor, which led
to some frustration. Since we had only prepared one kind of workshop material, we
realized that it would have been necessary with a back up plan for those unable to
take part of the video slides.

5.6 Persona Creation
We wanted to map students behaviour in certain situations and therefore decided to
create a journey map. We wanted to build our journey map based on different per-
sonas to cover more than just the average students needs.We used all our exit tickets
from the previous workshops in Stockholm as our data, and began sorting them us-
ing the affinity clustering method. When we were done four different personas had
emerged.

First we had a persona called Lisa. She acts as her friends are and does what
is expected of her from the teacher without any real objections. She also works
hard when given clear directives. One of her fears is falling behind her friends
and not understanding what they know, she also lacks a natural way of doing self
reflection. We also identified a more free thinking version of Lisa, which is Nina. She
is more aware of her skills and does not get embarrassed for her shortcomings. She
is more independent and has more grit than Lisa, likes to stay positive and prefers
to experiment and try new things before asking for help. As one of the extremes
we found David. He already has knowledge in the subject and is very keen to show
it. As he constantly needs new challenges there is a need to allow assignments to
be tweaked and built upon to not loose David’s interest and spark. As he likes to
show his skills, the teacher can ask for his help to aid fellow students with their
assignments. On the other extreme we have Olle. A student that does not care for
the subject, perhaps because there is no interest to begin with but most often the
reason is lost confidence. Olle rather does nothing at all than feel stupid for not
being able to solve a problem, he may have tried but the threshold was too high
so he gave up. We also identified technical issues leading to frustration with the
students. This made them lose interest, impatient and unfocused. This could be

44

5. Process

induced by the internet connection being slow, bluetooth pairing or uploading of
code taking too much time, or simply being lost and not knowing what the problem
is.

5.7 Journey Map
A decision to create a journey map was an attempt to condense and summarize
insights gathered throughout the research phase, and in turn create representations
of students current experience. The ambition being that it would help inspire the
creation of envisioned optimal experiences at a later stage.

Figure 5.12: Journey map with personas on the left

We used the four personas we had created and made up a scenario they could be
applied to. The scenario consisted of ten different events that took place during a
first workshop with micro:bit. We placed the one persona on each row, and made
one column for every event. Then we proceeded to interpret the person’s attitudes

45

5. Process

towards each event, and started to populate the matrix with blue post its. When
we felt satisfied with the result we began scanning the matrix for insights, which
would be identified as the students needs for a special situation.

In the event of a first exercise with micro:bit we found several needs for our personas.
Olle needs a slow and easy start, to be able to gain confidence and believing that
this might be possible and fun for him to engage in. Lisa as well as Olle needs
clear guidance to get going and not lose interest, simple and short exercises so she
can feel that she is making progress fast. On the other end David might feel the
introductory part to be too trivial and may risk losing interest unless he is stimulated
with exercise add ons or challenges. When posed with a first problem to solve, Nina
needs time and space to explore possibilities for a trial and error approach. She
does not wish to be presented with the answer when asking for help, but rather
something to spur her on and trigger her thinking process. David more than the
others seeks confirmation, he wants to be able to show off his proficiency. Therefore
it should be a way for each student to put their own personal touch on the exercises
they are doing in order to stand out. Even if Lisa needs someone to imitate to learn
better, there is also a need for her to stand out and make it her own solution to a
problem. This stems from her wish to fit in the group, she wants to be on par with
her friends in their progress.

5.8 Second Sessions with Digitalverkstan

We continued our cooperation with Digitalverkstan and they gave us another oppor-
tunity to host a workshop with a group of students that were new to micro:bit. We
took this opportunity to test new ideas we had gotten through recent user research,
mainly the personas and journey mapping. A few days after the workshop we also
held a semi-structured interview with one of the other workshop facilitators to gain
further knowledge that might have eluded us thus far.

5.8.1 Lindholmen Workshop

Digitalverkstan Lindholmen
Description:
Times:
Location:
Participants:
Age:
Aims:
Methods:

Insights:

Student workshop based on journeymap and persona insights.
9th February 2017, 16:00-19:00
Lindholmen, Gothenburg
23 students
7-13 years old
- To iterate design ideas based on new insights from personas and journey maps
Perform planned workshop, note down observations and experiences afterwards

Attention easily lost with live imitation
Be aware of tricky words
Teach concepts in context
Social aspect can be lost with videos

Figure 5.13: Script snippet of the workshop

46

5. Process

After all previous user research that had been done there were some new ideas we
wanted to test, with extra focus on insights from personas and journey mapping.
We got in touch with Digitalverkstan, which we had done workshops for earlier,
and asked for an opportunity. We were granted to host a two hour long workshop
with around thirty students with no earlier micro:bit experience, although they were
familiar with programming, just as we had wished our new test group to be. Ages
in the group ranged between seven and thirteen, but we still prepared material for
our target group age as it would not make much of a difference for beginners.

We began with a detailed presentation to introduce micro:bit and programming. The
presentation included a segment with a video that was there to inspire them, and a
slide regarding debugging. We tried to give them a purpose as to why programming
is important as well as show the cool things you can do with a little code, and
also prepare them for errors and struggling as a part of the process and something
everyone faces in an attempt to give them more grit. Unfortunately none of those
really got any foothold with the students. We suspect that the video was a little out
of context and poorly presented by us, they might have had a hard time imagine
what is possible before they even got their hands on a micro:bit in the first place.
Debugging is probably better suited as a subject for later workshops, or as it surfaces
during class, as it is also hard to grasp out of context.

We continued with co-coding. We chose not to hand out any micro:bits beforehand
to ensure we had their full attention when showing how to upload code and program
a simple name badge. We thought that the “how to” when uploading the code would
stick since everyone was listening and were not distracted with their micro:bit, but
we still needed to help many students with that after the co-coding. This led us to
believe that a mix of showing and doing is the best fit to make such information
stick. Extra attention was paid to explaining how the blocks work and how they
fit together, as this was something we had learned from before that could pose a
problem.

We had prepared self-instructing material, similar to what we used in London, and
thus we were satisfied with just showing the students how to upload and make a
simple program during the co-coding. They got hold of the exercises through a
tinyurl just as we had done previously, but there were no choice this time, and
only block exercises were presented. As before the slides contained videos from
Makermovies.se with tutorials, instead of challenges to accompany the videos we
chose to give them the necessary blocks to complete the exercise. We did this as
a backup plan if there were to be any issues with the internet connection, but also
since the students participating were beginners so we saw no need for challenges at
this stage.

5.8.2 Interview with Facilitator
After our last workshop with Digitalverkstan we got in touch with one of the other
facilitators. Anton had facilitated numerous workshops in programming for primary

47

5. Process

school students, mainly Scratch but also micro:bit, and thus acquired experience
that were of interest to the thesis as a second perspective. And as a designer he was
also able to provide insights to patterns and potential solutions. We invited him
to a semi-structured interview to investigate if we could extract new insights that
would be of importance for our work. This session yielded some new ideas whilst
confirming some we already had. According to Anton it seems to be important
to create exercises that are appealing to entry level students but that can also be
interesting for more advanced students. This also applies outside of the one-time
introduction workshop, and is something we had pondered before. He told us that he
usually starts with a “defining” exercise, were he could assess how much guidance
the students would need and then adjusts the workshop according to that. We
suspect that this method would also be a good way for probing the class progress
during lectures as well.

If he was able to hold workshops with the same class for a couple of successive sessions
he proposed beginning with a purely computer free workshop. It would consist of
the students writing down instructions for some simple task, this will teach them the
nature of ordering instructions and being detailed since the computer cannot think
for itself. This made us investigate how one would begin teaching about micro:bit
and programming for beginners without having to involve physical computers.

5.9 Workshops at Västergårdsskolan
We hereby describe the preparations and executions of four linked workshops at
Västergårdsskolan on Öckerö. As previous workshops had been one time opportu-
nities only, we were here interested in studying the progression of a class without
any prior programming knowledge over a series of workshops. As the whole series
was regarded as one experiment, there was an overall preparation, however there
was still room for local iterations of evaluation and design between each individual
workshop.

5.9.1 Preparation
Previous workshops had exclusively been focused on studying single first time work-
shops. Next we were interested in studying a series of multiple workshops, for being
able to see the students progression across multiple sessions. The previous interview
with another workshop facilitator inspired us to explore the possibilities of creating
workshop exercises following a more coherent theme. Previously we had put little
to no effort into creating coherence between different sections of workshops. Feed-
back from this second workshop facilitator indicated that incoherence might lead
to confusion among the students and that one of his primary aims when designing
workshops is trying to design for a good flow through different sections of the work-
shops. We wanted to test this idea of linking exercises and workshops together into
a more coherent theme for this upcoming series of workshops.

A second ambition with designing these workshops was to not use any new tricky

48

5. Process

words without being able to thoroughly link them to existing knowledge and explain
them in easy terms already familiar to the students. The creation of personas
had shown us that there was a rather large span in students initial knowledge and
expectation to working with programming. It had also been seen that students who
had never worked with anything similar to the programming platform Scratch, had
a much harder time diving straight into working with micro:bit. We therefore had
the idea to provide the whole class with an initial experience that would level the
field in ensuring that everyone had access to the same baseline level of knowledge
required for building further knowledge. This unifying experience was envisioned
to introduce the students to basic programming concepts without mentioning new
tricky words. This experience was envisioned to act as a future aid for the teachers
to help reference new concepts back to this common experience. We therefore tried
to design it in such a way that it would make future learning of basic programming
concepts easier.

The programming concepts chosen to be introduced through this game were inspired
by the CAS Barefoot website(31) and based on observations from previous work-
shops. Sketches of this unifying experience turned into the design of a game in the
physical space. Mentioning this to our client supervisor, he recommended looking
into physical programming games already created by kodboken.se(38), Botrace(39)
and the Swedish tv-show Programmera Mera(40). These helped inspire the creation
of further cardboard prototypes of our physical game.

5.9.2 First Workshop

Workshop 1
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Analog first workshop in a series of four. Familiarising with sequencing and loops.
23th february 2017, 9:40-11:00
Västergårdsskolan, Öckerö
17 students, 2 facilitators, 1 observing teacher
4th graders
- See if an analog workshop works as an introduction to programming for complete beginners.
- See if a physical game is a good way to introduce sequencing and other concepts.
- See if a physical game can work as a common experience to relate future more detailed workshops back to.
- See how fluent the transitions between different sections and workshops are, is there a common theme?
Exit tickets from students and observations from the facilitators captured on video after the session.

Teacher better execute the code
Students like to present unique solutions

Figure 5.14: Script snippet of the workshop

Having more than a single workshop at our disposal with this class gave us the
courage to try running a first fully analog introduction workshop without even in-
troducing the micro:bit nor computers. This was thought to help students familiarise
with basic programming concepts through the facilitation of a game in the physical
realm. The game was inspired by kodboken.se(38), Botrace(39) and the Swedish
tv-show Programmera Mera(40). We prepared it by printing and laminating num-
ber tiles, creating instruction boards out of cardboard and instruction notes out of
post-its as shown in figure 5.15.

49

5. Process

Figure 5.15: Students placing the blue instruction blocks in a sequence on the
board

As students were divided into groups of four and we asked each team to present their
solutions, it soon became apparent that the groups were eager to be first to present.
In some cases teams changed their solution just to be different from the ones that
had already presented, even though both solutions were correct. And the teams who
got to present last, whose solution mostly had already been shown, showed much
less interest in presenting. This made us think that the students might get a thrill
out of being able to present unique solutions to exercises rather than just presenting
the same ones as everybody else.

Figure 5.16: Students testing on their feet testing their programs

50

5. Process

When students presented their solutions they initially had one student read the
sequence of instructions and another student from the same team execute them on
the playfield, as a remote controlled robot. This however turned out to not work as
expected, as the person reading the instructions read them wrong in favor for the
team. Therefore we found it better having the facilitators take over the role of being
the executor of the students instructions.

Figure 5.17: One student executing the code by giving commands

As we relied on our memory for remembering the layout of the playfields, the zig-zag
playfield was remembered wrong and we accidentally gave the students an impossible
problem to solve. Here we saw that they gave up after 10 minutes of struggling,
but were relieved when we told them that we had messed up and that it indeed was
impossible to solve. The initial idea was to only run the first workshop without any
technology. After running the workshop however, we realized that the two topics we
had introduced, sequencing and looping, were not enough for creating any interesting
micro:bit exercises. Most interesting exercises that we wanted to introduce, like the
step counter for instance, consist of a combination of basic programming concepts
like sequencing, looping, variables, logic and so forth. We therefore decided to
extend the analog game to cover the second workshop as well. Hence allowing the
students to familiarize with all the concepts we considered to be relevant, before
these concept were introduced in any micro:bit exercises.

The exit tickets asked the question “what is programming?” something that 80% of
the students could answer satisfactory by the end of the workshop. For being able
to say anything about how the workshop affected this knowledge however, we would
have had to ask this prior to the workshop as well, something that we unfortunately
did not do.

51

5. Process

5.9.3 Second Workshop

Workshop 2
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Continue familiarising with the new concepts of randomness, logic and variables through the analog game.
27th february 2017, 9:00-10:00
Västergårdsskolan, Öckerö
17 students, 2 facilitators, 1 observing teacher
4th graders
- See if we can find an appropriate difficulty level for students new to programming
- See if we can get the programming concepts of if-statements and variables across through an analog game
Exit tickets from students and observations from the facilitators captured on video after the session.

Figure 5.18: Script snippet of the workshop

The second workshop, in the series of four, was decided to be a fully analog work-
shop as well, to continue with familiarizing the students to the basic programming
concepts. Previously they had been introduced to sequencing, loops as well as some
level of debugging through the trial and error problem solving approach. Next we
wanted to introduce game elements that could help them understand the program-
ming concepts of randomness, logic and variables. This was prepared through having
playfields that split into two different directions with different colored goals. Which
goal they were supposed to go to was dependent on the outcome from drawing a
colored ball from a bag at random. Each group was also provided with a selection
card to create different instruction lists depending on what color the ball was. These
two elements were expected to make it easier to later understand the programming
concepts of randomness and logic selection with if-statements. For variables we in-
troduced a high score counter card, as well as two instruction notes that allowed
each team to add the number of the tile, their player was currently standing on, to
their high score. The game was to complete the game as previously, but gain as
many points as possible at the same time.

Figure 5.19: Split playfield for the logic exercises

This time we made sure to prepare and test all playfields in advance. The last

52

5. Process

playfield was simply a straight line to make it easier for them to focus on the new
concepts of variables, or high score counters as we called them at the time. Not
mentioning the word variables was a conscious attempt to not scare them with new
words, but rather build on to something that they might already be familiar with.
This went well, and in the end we even allowed them to make use of the loop blocks
introduced in the previous workshop. We were aware that they with these blocks
would be able to “hack” the game and eventually get ridiculously large high scores,
but only if they had understood the concepts of them. We were therefore very happy
to see that they indeed did do this and managed to get infinitely large high scores
by looping something over infinity. The students were happy as they thought they
had cheated the game, we were happy that they had understood the concepts, and
since they had now used a loop repeated infinitely, we had a convenient leverage to
teach the fundamental programming concept of a forever loop.

Figure 5.20: Straight playfield for high-score exercises, blue selection card and red
counter card seen on the floor

53

5. Process

5.9.4 Third Workshop

Workshop 3
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

First micro:bit workshop with this group, initial tinkering followed by guided co-coding for teaching the basics.
2nd march 2017, 9:40-10:40
Västergårdsskolan, Öckerö
17 students, 2 facilitators, 1 observing teacher
4th graders
- See if “initial tinkering” with the editor is good or confusing.
- See if we can find an appropriate difficulty level for students new to programming
- See if we can get a fluent transitions from analog workshops to microbit workshops
Exit tickets from students and observations from the facilitators captured on video after the session.

Be aware of dependencies subject to change
Spontaneus play can lead to learning
Tinkering can be useful

Figure 5.21: Script snippet of the workshop

This was the first workshop session where we introduced this particular group of
students to programming with the micro:bit. As we previously had seen that classes
who had no prior programming experience had a much harder time getting into
working with the micro:bit than those who had worked with Scratch for instance, we
wanted to see if our analog game had prepared this group for a smoother transition to
working with the micro:bit, than those who had no prior knowledge. Our subjective
observations suggest that the class who had gone through the analog workshops
had less trouble working with the micro:bit than those who did not have any prior
programming encounters.

This initial workshop was intended to be focused on imitation and familiarisation
rather than problem solving. After the students had a short introduction to the
micro:bit editor we allowed them to have 10 minutes where they were allowed to
freely tinker around with the editor. After 5 minutes we asked each group of two
to switch who sat at the computer, to ensure that both students got to spend time
tinkering. Our hopes were that they here would have time to get outlet for any
curiosity and familiarise with this new element. The time was limited in an attempt
to prevent frustration to arise, as there were no instructions. The students showed
interest in clicking around in the new interface and tried things out without any
apparent hesitation. We did this before handing out the actual micro:bit hardware
in an attempt to allow the students to focus on the editor without the distraction
that often arises when we start to hand out the micro:bits and cables.

Next we handed out the micro:bits and cables. We showed on the projector how to
create a simple name badge program and how to transfer it to the micro:bit.

Next we showed them how to make a step counter and related the notion of variables
back to the analog workshop game where they used high score counters. It felt useful
to have this reference when talking about variables and they seemed to understand.
They were however merely imitating, so it was not really possible to test their
understanding at this point. An interesting thing that happened was that after the
students had created their step counters, they started running around playing a self

54

5. Process

invented game of who could shake their micro:bit the most to get the highest number
of shakes shown on their display. At first we thought that we might had to interrupt
this game as it did not seem to be very productive. However we allowed them to have
some fun, and to our surprise some of the students went back to their computers
modifying their micro:bit programs to add not one but thousands of numbers with
each shake. This “hack” made them superior in the game the students had invented,
and some called it cheating.

The analog games made for the previous workshops had been designed with an
intentional color coding in mind, to match the colors of corresponding parts of the
micro:bit editor. Variables were bordeaux, the logic cards were blue and so on. The
same day as this third workshop however, the colors of the editor had been changed.
This made us think about the dependencies that created teaching material can have
to software that unexpectedly can change due to updates.

5.9.5 Fourth Workshop

Workshop 4
Description:
Time:
Location:
Participants:
Age:
Aims:

Methods:

Insights:

Second micro:bit workshop with this group, more focus on problem solving and trying to create a simple game.
13th march 2017, 9:00-10:00
Västergårdsskolan, Öckerö
17 students, 2 facilitators, 1 observing teacher
4th graders
- See if the analog workshops were helpful in teaching programming concepts
- See if the theme is maintained in transitioning from analog to microbit
Exit tickets from students and observations from the facilitators captured on video after the session.

Low energy in the end

Figure 5.22: Script snippet of the workshop

The fourth and concluding workshop with the students at Västergårdsskolan was
a continuation of the previous micro:bit workshop where the students had been
introduced to the block editor and where the basic programming concepts had been
linked to the prior experiences of the analog game workshops. Now as the students
had been introduced to the basic programming concepts within the framework of
the block editor, we wanted to see if they were able to solve problems on their own
with less guidance. We tried teaching them the problem solving approach of first
defining the desired program behaviour, before starting to think about the actual
implementation.

To illustrate this way of working we co-coded the dice program together with the
students. The co-coding was here also used as a probing tool for us to see how much
the students remembered from the programming concepts that had been taught in
the previous workshop. Our subjective experience was that the students showed
a lower level of knowledge than previous workshop had made us believe that they
had. Next the students were asked to describe the behaviour of a rock paper scissors
game. From agreeing on a behaviour the students were asked to create such a game.
It soon became apparent however, that the free level of problem solving involved

55

5. Process

in this exercise was rather overwhelming compared to the previous workshop where
they simply were asked to imitate what was done on the big screen by the facilitators.
The ambition to teach problem solving through separating desired behaviour from
implementation, was also not considered to be very successful, but rather confusing
for the students.

From the previous workshop we had seen that the students enjoyed playing the self
invented game of shaking the micro:bit to gain a high score. That inspired this
workshop to be focused on creating the rock paper scissor game. It turned out
however that the students still preferred to go back to their own game from last
workshop, and that they did not show as much enthusiasm about this game that we
had imposed onto them. It should also be mentioned that there was a gap in time
of approximately one week between the last two workshops.

5.10 Insight analysis

The last step in our process was to summarize and analyze insights from all the
previous activities in an attempt to look for patterns and more abstracted insight.
This was done through the affinity clustering method and resulted in one main
insight that we came to call the scope of autonomy model. This was accompanied
by a set of other considerations that we found useful for anyone to ponder who would
be interested in conducting micro:bit workshops of their own.

We were initially appealed by the idea of trying to deliver one big unified result
encompassing all of the insights that we had obtained throughout the project. In
some sense that was what we ended up doing with the scope of autonomy model, but
there were still many minor insights encountered along the way that did not directly
make it into this model. Still we considered many of these insights to be valuable to
teachers who would want to conduct their own micro:bit workshops at some point.
Hence we discussed different formats for including these in the result. We thought
of delivering the more practical tips, as a troubleshooting appendix, but eventually
settled for simply bundling all insights into a collection of considerations for anyone
who would want to work with the micro:bit. This bundle therefore consist of some
considerations that were aggregated from multiple insights from along the project
timeline, whereas others were single insights that we simply found useful to share.
We chose to communicate these topics as considerations rather than guidelines or
suggestions, as they had been identified through subjective qualitative means, and
lack any formal proof of being generally applicable.

Besides the scope of autonomy model there were five further topics for consideration
that were aggregations of multiple insights from throughout the project’s timeline.
These topics were: analog workshops, basic toolbox, terminology, technical pitfalls
and co-coding.

56

5. Process

5.10.1 Affinity Clustering

As our process was iterative, each iteration consisted of the scripting and executing
of a workshop intervention. These interventions were also followed up by smaller
local evaluations, to catch any observations or new insights that could feed into
the following iteration cycles. By the end of the project these local evaluation
insights and observations were finally summarized and aggregated using the affinity
clustering method. This was a long and tedious process where we had to rearrange
and juggle the post-it notes many times until we felt that redundant duplicates had
been merged and a satisfying structure had appeared. The process of rearranging the
post-it notes could at times make us feel as if we had hit dead ends, and the feeling
of being stuck could get rather frustrating. At these times we tried to mix things up,
by scrambling the post-it notes and trying to map our data to theoretical models
that we previously had found in our literature study. For instance we tried to map
our data to the skill, will and thrill mentioned by Hattie and Donoghue(22). Their
model also mentions surface and deep learning as two different phases of learning,
something that we also could discern in our data.

Figure 5.23: At the beginning of the clustering

We had the impression that some of the insights were more substantial than others.
Some were more on the practical side about simple troubleshooting. We therefore
excluded these rather trivial insights from our affinity clustering initially, with the
intention to add them as a troubleshooting appendix later. After feedback with
our client supervisor however, he suggested that we still should include these trivial
insights but rather look for abstract patterns within them.

57

5. Process

Figure 5.24: Set of more practical insights

An initial ambition was to find parameters that could affect workshops, and de-
pending on these input parameters give teachers output suggestions on how to plan
and run their workshops. This was dropped however as it did not map very well to
the outcome of our affinity clustering. What did attract our attention through this
method however was the fact that many various observations seemed to relate to
the amount of freedom the student was given in their exercises. This later evolved
into a model about the students scope of autonomy and regarded as this project’s
main contribution. Still there were other groups of aggregated and single insights
that will be presented as considerations for working with micro:bit.

5.10.2 Scope of Autonomy Model
From the affinity clustering of all the insights and observations from the individual
workshop interventions, we started to see an emerging pattern relating to issues with
balancing the level of freedom given to students. As some observations were that
students did enjoy being able to explore and do things in their own way but at the
same time we saw some issues when students were given too much freedom as this
could lead to confusion and a feeling of being overwhelmed.

We were inspired by the idea of design spaces, and imagined a space where moving
to a new point was equivalent to making a design decision. And we saw ourselves
as facilitators as holding the students hand, guiding them through some of these
decisions towards the goal. But at other times allowing them to be free enough to
make decisions for themselves, as we saw making active decisions as an important
part of the learning process. Viewing learning in this way also made it interesting
to think about the many situations where there are more than one correct way
to complete an exercise. In these cases we as facilitators have given the students

58

5. Process

enough freedom to choose any out of the sometimes infinite possible designs that
could satisfy the exercise.

We realised that we as facilitators never really had reflected on the amount of free-
dom we had given students through various exercises. Sometimes we gave them no
freedom, like when telling the students exactly what to do and to simply ask them
to imitate. Other times we had given them full freedom, by asking them to come
up with their own ideas for a program they would like to build. We realised that we
wanted to make an active decision in the creation of an exercise, about how much
freedom was given to the student within that exercise. Consequently the design
decisions that would not be available to the student would have to be made by the
teacher.

The freedom that is given to a student in their design decisions, we came to call the
amount of autonomy that they were given. As we saw these levels of autonomy as
increasingly larger areas to explore within the design space, we chose to call them
scopes of autonomy. We chose to visualise these scopes as circular zones that would
get increasingly larger with more autonomy, representing that the student’s auton-
omy then covers more decisions. This representation was also chosen to indicate
that each new level of autonomy also includes the previous levels. The area outside
of the students scope of autonomy was chosen to represent the choices to be made
by the teacher.

In parallel with this we tried to brainstorm and identify the different levels of auton-
omy present in working with the micro:bit, starting with the least amount, which is
no autonomy at all. This means that the students were not given any choices. This
was discussed to be true for traditional lectures as well as pure imitation exercises.
From our experience this was not desirable, and we found it more effective to teach
programming through exercises that at least allowed for some level of autonomy,
even for the very beginners.

The first real level of autonomy that we identified in relation to micro:bit exercises,
was in allowing students to make smaller customisations to a predefined design. In
the case of a simple “hello world” program, this could mean allowing the student
to customise the text string to something else than “hello world”. Hence a customi-
sation is not something that alters the behaviour of a design, but rather allows the
student to locally modify specific point of interest that has been preselected by the
person designing the exercise.

The next level of autonomy that we identified was the one relating to the solution
procedure of an exercise. This level of autonomy relates to what subparts of a solu-
tion to tackle in what order. When this level of autonomy lies within the student’s
scope, the student is free to chose the order in which to create the solution. When
the solution procedure does not lie within the scope of the students autonomy, they
are asked to follow a stepwise procedure instructed by the teacher. In the case of
creating an animation, this could relate to the difference in starting with drawing the

59

5. Process

desired animation and then figuring out the best timing between frames, or doing
it the other way around.

The third level that we identified, was concerned with the design that a student
makes to complete an exercise. This is a rather interesting level of autonomy, as
setting the students scope of autonomy to encompass this level means that the
teacher no longer knows what the final design will look like, as it is up to the student.
From the analogy of design spaces, this means the teacher no longer knows what
destination to direct the student towards, but instead the teacher has to guide the
student to find his or her own destination that satisfies the assignment. In contrast
to a scope of autonomy that only encompasses the level of customisation, a scope
that encompasses the level of design allows for completely new design solutions to
an exercise, and not only the modification of predetermined placeholders.

The fourth level of autonomy that we identified was related to block selection. Blocks
are the building pieces that are used to create a design. When this level is not en-
compassed by the students scope of autonomy in an exercise, it means that the
teacher has predetermined what blocks the student should use to create their de-
sign. This level of autonomy has two parts. The first of which relates to the type
of blocks and the second one relates to the quantity of blocks. For instance the
teacher can give an exercise where the students are asked to create an animation on
the micro:bit using any number of blocks of the “loops” and “show LED” variety.
Another exercise could be to make a step counter using only four blocks in total.
These two examples illustrate that an exercise can be created in ways where the stu-
dents scope of autonomy only encompasses one of these two block selection levels.
Likewise none of them can be encompassed, which means that the teacher decides
exactly what blocks ought be used. And lastly when both of them are encompassed
by the student’s scope of autonomy, it means that the student is free to create a
design out of any block type or quantity, as long as it satisfies the assignment.

Lastly we identified an autonomy level relating to the very assignment itself. This
relates to decisions about the topic and aims of an exercise. In the case where this
level is not encompassed by the students scope of autonomy, the teacher defines
what the student ought to do in order to complete the exercise. When this level is
encompassed by the students scope of autonomy however, it is up to the student
to make the decisions about what the exercise is going to be about. Initially we
only associated examples of these kind of exercises with higher educational projects,
similar to the one you are reading right now. We realised however that some of our
earliest workshop exercises, where we tried to encourage students creativity by telling
them to “create whatever they wanted”, also could fit into this level of autonomy.
As having to create your own assignment basically is the same as having to come
up with an original project idea. For being able to handle this level of autonomy
however, our experience is that the students needs to have reached a rather high
level of experience and be comfortable with making all these kinds of decisions, or
they might run the risk of feeling overwhelmed.

60

5. Process

5.10.3 Co-Coding
Co-coding relates to the activity of having the teacher stand in front of the class,
screen sharing his or her computer screen on a projector and solve programming
exercises in a dialogue with the class. This was found to be a useful hybrid between
pure presentations and having students solve exercises on their own. As presenta-
tions were considered to be good for introducing new knowledge, but that it was
undesirable to put the students in a rather passive seat. On the contrary, individ-
ually working with exercises, was considered to be more active but not ideal for
introducing novel information. Co-coding hence evolved as a middle path between
these two approaches. Our experience was that it was a useful method as it allows
the teacher to probe students current skill level with questions and directly adapt
the level of guidance to that level. This method was partly inspired by Hattie and
Donoghue(22) mentioning of teaching learning strategies in context rather than sep-
arately. Similarly we saw co-coding as a way to teach new concepts, like the need for
variables for instance, within the context of an exercise, rather than as a separate
presentation.

5.10.4 Technical Pitfalls
Technical pitfalls refer to practical issues that have been identified to risk obstruct
or fail the execution of a workshop. As it has been observed that students can enter
states of indifference or dejection if these issues take up too much time, it is suggested
to take measures and attempt to prevent them from arising in the first place. Three
specific issues that have been observed are relating to: app-store passwords, internet
connection and pairing mode bugs.

5.10.4.1 App-Store Passwords

In the context of running a micro:bit workshop with iPads, the students are required
to download the micro:bit app from the app-store. This requires an app-store ac-
count and as some schools prefer to control what apps are being installed on their
iPads, some schools protect their accounts with passwords. It is therefore recom-
mended to obtain these passwords well in advance and work out a good way for
these apps to be downloaded in class, or possibly even downloading the micro:bit
app to each individual device in advance.

5.10.4.2 Internet Connection

Unreliable internet connection was seen as another frequent source of frustration.
As the micro:bit editor is run through the web browser reliable internet connection
is required throughout the workshops. In the cases where internet was slow or the
connection was dropped occasionally, our experience was that a lot of the time went
by helping frustrated students troubleshoot rather than teach them about program-
ming. In the cases where workshops rely on online material, such as instruction
videos, the internet bandwidth plays an even more noticeable role, as video can be
rather bandwidth heavy.

61

5. Process

5.10.4.3 Pairing Mode Bugs

Lastly there were some issues identified regarding the pairing of micro:bits to iPads.
Firstly there is a certain procedure that is required to initially pair a micro:bit to
an iPad. This procedure can be rather tricky at first, as it requires the student to
press three buttons in a certain order and remember a series of six numbers shown
in a rapid sequence. Our experience is that students best understand this by first
being shown a whole pairing procedure and then try it themselves. Having students
imitate this procedure in real time is not recommended, as it can lead to disorder
in the class. Next issue we encountered was presumably a bug relating to sending a
program (flashing) from a mobile device to a paired micro:bit. We found that this
process required the micro:bit to be put into pairing mode again, despite that this
is not mentioned in the documentation. Our experience from talking with teachers
also shows that this is an issue that can hinder entire workshops. Lastly there have
been a few rare occasions where micro:bits were impossible to put into pairing mode.
This bug was resolved by simply having a computer nearby and flash any type of
program from the computer to that micro:bit via usb-cable. This way the micro:bit
gets reset and can be paired with an iPad again.

5.10.5 Basic Toolbox

Basic toolbox relates to a set of fundamental programming concepts that were found
useful for students to have been introduced to, prior to working with programming
exercises. The programming concepts that we found useful for this were: algorithms,
loops, randomness, logic, variables and debugging. These concepts were the ones we
had focused on conveying trough the analog workshops at Västergårdsskolan, which
in turn had been inspired by the CAS Barefoot website(31). Algorithms refer to the
sequencing of instructions to reach a certain desired behavioural outcome. Loops
refer to the fundamental programming concept that allows certain instructions to be
repeated multiple times. Randomness refers to the basic programming function of a
random generator, which is frequently used in many types of programs. Logic refers
to another fundamental programming concept of statements that are verified to be
either true or false, like in if-statements for instance. Variables are a vital part of
programming and the concept of an addressable data entry that can be recalled and
changed at a later time. Debugging refers to the mindset and activity of expecting
errors in your code and be willing to pursue and fix them.

5.10.6 Terminology

Terminology is referring to the words used when teaching programming. As there
are many new words and concepts that might be intimidating for students at first,
we found it useful to initially avoid using words as variables, but rather attempt to
convey these through words and concepts that already are familiar to the student.

62

5. Process

5.10.7 Analog Workshops

From the insights about a common point of departure and the needs for a basic
programming concept toolbox, evolved the idea of a common shared experience
that the whole class could have as a reference for future learning. These so called
analog workshops were seen to provide students, that were lacking prior experience
with Scratch, enough programming knowledge to reduce the hurdle in starting to
work with micro:bit. Analog workshops relate to the idea of not starting out with
introducing students to the technical programming platforms straight away, but
rather take one or a few sessions where the programming concepts are practiced
through other means.

5.10.8 Other Considerations

Furthermore there were also eight single insights from workshop interventions that
were added to the list of considerations for working with the micro:bit. These topics
were related to: tinkering, self instructing materials, stupid computers, end on a
positive note, text based instructions, video bubble, editor navigation and awareness
of dependencies.

5.10.8.1 Tinkering

Tinkering is allowing students to freely familiarise with new content before starting
to work with exercises. This explorative approach without any goals or objectives
was seen as a way for students to get outlet for any curiosity that might arise as they
are introduced to new technology, platforms or concepts. To prevent frustration or
confusion to arise, it is recommended to keep this initial tinkering short in time.

5.10.8.2 Stupid Computers

Stupid computers refers to making it clear to students that computers are simply
following instructions and should not be considered as intelligent per se. In some
cases we have seen students who expect that computers are smart just because
they are computers. Clarifying this initially can potentially prevent some of these
misconceptions.

5.10.8.3 Text Based Instructions

Purely text based instructions might not be the optimal way for conveying exercises.
Giving instructions through other means can potentially be more successful. As we
have seen students ignore printed papers with instructions that have been handed
out. Conversations with students also showed that they found written instructions
incomprehensible, and said that they were glad we as facilitators were there to
answer their questions. Other means of giving instructions could also be through
video.

63

5. Process

5.10.8.4 Editor Navigation

Editor navigation refers to the need to understand how a certain programming editor
works and how to navigate it in order to use it. It is easily overseen and can be
considered trivial by someone familiar with it, nevertheless is it important for a first
time user.

5.10.8.5 Self Instructing Materials

Self instructing materials such as instruction videos, have been seen as potentially
useful in cases where student group sizes exceed the number of students that the
facilitators are able to provide help to.

5.10.8.6 End on a Positive Note

End on a positive note refers to concluding workshop sessions with an exercise that
leaves the students in a positive state of mind, rather than leaving them confused
or frustrated. Struggling with exercises might be important for the development of
grit, but in our experience it is better to place these harder exercises in the middle
of a session and allocate the end for easier ones that allow students to feel successful.
From a facilitator point of view this means planning the timing of the session well,
and never try to cram any exercise in the very last minute, just because you want
to convey something that might not really have gotten across. In our experience
the energy level of the class is usually rather low in the end, and trying to force last
minute teachings in here, seems to possibly make more harm than good.

5.10.8.7 Video Bubble

When using instruction videos as teaching material for an entire class, one ought
to be aware of the potentially negative effects this might have on social aspects of
the group. As a whole classroom full of students watching different videos on their
computers will get rather noisy, headphones are recommended. This however also
has the effect of isolating students into their own little video bubble. This might
be positive for some, in terms of concentration, but it also removes many of the
interpersonal social interaction that can be positive in a group.

5.10.8.8 Awareness of Dependencies

When creating teaching materials dependent on software, one needs to be aware
that it can be changed in future software updates. For instance if one creates a set
of instructions on how to navigate an editor that in detail refers to certain buttons,
the names of these buttons may well be changed in future software updates. To
avoid the risk of confusing students, it is therefore suggested to continuously verify
that the teaching material with dependencies is up to date with the current state of
the software.

64

5. Process

5.11 Reiteration of Result
At the time of our oral presentation our result was heavily focused on emphasizing
the model, with the rest of our material, insights and considerations receiving less
attention. The presentation was an opportunity for opponents, audience and exam-
iners to provide feedback and for us to evaluate if there needs to be any changes
done. Questions were raised why we had chose to withheld the other results from
receiving more light, as we could claim more about the result than we currently did.
Another issue was that the result was not properly divided into the right categories,
basically everything except the model were put under an umbrella term we called
"Considerations". This made us restructure our result to provide a more correct way
of presenting our deliverable.

One of our goals was to provide teachers with materials that they could either use
directly for their educational purposes, or tools recommended to use when designing
materials on their own. Then we drew the conclusion that time available for teachers
at different times is a factor when it comes to their ability and will to use the
material. Therefore we split our result along an abstraction axis with three different
levels.

On the topmost level we placed our Scope of Autonomy Model, which is the most
abstract form of our result. We find that the model is aimed at those that can
invest time in understanding the underlying theories behind our model in order to
implement it correctly in their education, as well as when creating own teaching
materials. Next we chose to separate a teaching approach that we practiced, co-
coding, and named guidelines. The guidelines consisted of the basic toolbox, the
use of terminology, technical pitfalls, and a set of minor considerations. This middle
level of abstraction caters teachers with a little less time available but still with
the ambition to create their own set of exercises or complete workshops. All before
mentioned approaches and guidelines stems from our model in both form and use.
Lastly we chose to create a collection of ready-to-go exercises and sets of complete
workshops. This kind of material allows for quick and easy use without much time
investment. Teachers could pick and chose from the exercises and workshops and
then apply it directly in their classroom. All exercises and workshops were created
with the guidelines, approach and model in mind.

65

5. Process

66

6
Result

Analog Workshop Example
An example of how a basic toolbox can be introduced with a
physical game and easy language.

micro:bit Workshop Example
An example of how micro:bit exercises and co-coding can be
used to create a workshop.

Co-coding
Interactive coding lecture where
the teacher can monitor
students skill level and adjust
the pace accordingly.

micro:bit Exercise Examples
A set of exercises that can be
done with the micro:bit
hardware.

Technical Pitfalls
Prevent any technical pitfalls
that can lead to unnecessary
frustration.

Basic Toolbox
A set of basic programming
concepts useful to familiarise
with prior to working with
micro:bit exercises.

Use of Terminology
Be aware of new terminology
and relate new concepts to
previous knowledge.

Other Considerations
Other smaller insights that were
found useful to share.

Ab
st

ra
ct

io
n

Scope of Autonomy
Consciously adapt the level of autonomy in exercises to the
progress of students. At least accomodate for some level of
customization.

Model

Teaching Approach

Examples of Exercises and Workshops

Guidelines

Figure 6.1: An overview of the different result parts of this thesis, mapped along
an axis of abstraction

This thesis aims to answer the research question of what is important to consider
when designing teaching materials with the BBC micro:bit for training Swedish
primary school students computational thinking skills. To answer this question,
the researchers have pursued the design goal of supporting Swedish primary school
teachers with teaching materials, based on the BBC micro:bit, that help them meet
the programming requirements of the new curriculum changes. Hence some out-
comes of this thesis will fall into the theoretical domain, attempting to give a non
exhaustive answer to the research question. Other outcomes however, rather fall
into the practical domain, by providing some examples to how the design goal could
be met.

67

6. Result

The result of this thesis consists of 9 individual parts. These parts are presented in
4 result groups: Model, Teaching Approach, Guidelines and Examples of Exercises
And Workshops. These groups are presented in 3 different levels along an axis
of abstraction. This is to help make the result more accessible to teachers and
enable different readers to find the information that is most relevant to them. If
a teacher has a lot of time to develop their own material for instance, it might be
more interesting for them to look at the more abstract model concerning what is
important to consider when designing teaching materials for the micro:bit. If the
teacher has less time on their hands however, it might be more convenient to look
at the more concrete examples provided further down along the abstraction axis.

In this chapter these parts will be presented starting with the least abstract parts
first, gradually moving up to the more abstract results later. Result groups that
contain more than one part are given their own top level chapters, result groups
that only contain one part however, have been simplified to a single chapter level
for structure simplification. These results are derived from empirical research done
in a Swedish primary school context with the aim to train students computational
thinking skills using the micro:bit.

6.1 Examples of Exercises and Workshops

This chapter contains the least abstract result group, and is intended for teachers
who might not have enough time to create their own material from the more ab-
stract result parts, but rather want something they can put to use straight away.
This result group contains 3 parts: micro:bit Exercise Examples, Analog Workshop
Example and micro:bit Workshop Example.

6.1.1 micro:bit Exercise Examples

This chapter provides a few micro:bit exercise examples that have emerged through-
out the project and been considered useful for the creation of teaching materials
within the scope and context of this thesis. Most of the exercises emerged rather
early and some of them have been refined throughout the project.

68

6. Result

6.1.1.1 Animation

Figure 6.2: The block configuration for one type of animation

This beginner exercise revolves around allowing the students get familiar with the
micro:bit in the easiest way possible. Have the students combine several show leds
blocks and create an animation on their micro:bit.

Possible ways of building further is to be able to show different animations depending
on an input, i.e a button press.

6.1.1.2 Name Badge

Figure 6.3: The block configuration for Name Badge example

The Name Badge exercise is a program that scrolls a text string on the micro:bit’s
led display.

By adding inputs to the mix we can control what is shown on the micro:bit as seen

69

6. Result

in 6.4. There is also the possibility to send the text strings via blue tooth by using
the radio blocks.

Figure 6.4: Name Badge controlled by inputs

6.1.1.3 Coin Toss

Figure 6.5: The block configuration for Coin toss

Coin Toss is a simple true or false program. It is a first introduction to booleans,
which are frequently used in all programming languages and an important ingredient

70

6. Result

in algorithms. When the micro:bit is shook, it will display one of the two led images
as seen in 6.5 for half a second before showing a blank display again.

We noticed that some students fail to understand that the program is completely
random each shake, to help visualize that a pause and clear screen were added. This
make it easier to distinguish if there is two (or more) of the same image in a row.

6.1.1.4 Dice

Figure 6.6: The block configuration for this particular exercise example

A variant of a Dice program. When the micro:bit is shook it will pick a random
number (0-5) and add 1 before displaying it, resembling a six-sided dice.

As with many programs there is more than one solution, but we found this to be in
its most simplistic form. An extra assignment could be to try and create a similar
dice with a different solution.

71

6. Result

6.1.1.5 Rock Paper Scissor

Figure 6.7: Rock Papers Scissors exercise

Rock Paper Scissors is a game that all are familiar with, and this exercise combines
several key programming elements. The program starts when the micro:bit is shook,
a number (0-2) is saved on variable "weapon". The code then proceeds by checking
the number stored on the variable to match it with an image to be shown.

This is a great exercise as the students can test it out with their friends and compete
when they are done. There are several ways to continue building upon this program,
you could for example implement the game to work via radio or add code to keep
track of the score for you.

Just as with the Coin Toss we added pause and clear screen to provide extra feedback
from the program.

72

6. Result

6.1.1.6 Step Counter

Figure 6.8: A simple step counter

Turn the micro:bit into a step counter by increasing the value of a variable "step"
and displaying it every time the micro:bit is shook.

A neat extra exercise is to add a way to store the steps, and being able to display
on demand.

6.1.1.7 Music Player

Figure 6.9: The block configuration using a preset music sample

This exercise lets your micro:bit play a melody once button A is pressed. You could
either use a preset melody as in 6.9 or compose your own as shown in figure 6.10.

The micro:bit can only play a sounds if it has a buzzer connected, or if a pair of
headphones are connected as in figure 6.11 using crocodile clips. If the micro:bit
is still connected to a computer via USB-cable the melody will play through the
computers speakers instead.

73

6. Result

Figure 6.10: The block configuration of a self composed melody

74

6. Result

Figure 6.11: Headphones can be connected in this way for being able to hear the
sounds created in this exercise

6.1.1.8 Radio Messages

Figure 6.12: The block configuration for this particular exercise example

This exercise uses the radio blocks to utilize the built-in bluetooth features of the
micro:bit in order to communicate wireless. This program sends a string "A" or "B",

75

6. Result

depending on which button that was pressed, to another micro:bit that picks it up
and shows that particular string message on its display.

It is important that micro:bits that are to communicate with each other are set to
the same radiogroup, to be sure either add a specific block to set the radio group
manually or flash the same code to all micro:bits that you want to be able to com-
municate with each other and it will solve automatically.

6.1.1.9 Neopixel Animation

Figure 6.13: The block configuration for a typical program using Neopixels

This exercise utilize an extra package of blocks named Neopixel and hence requires
neopixel strips to function. The editor will show how to connect it properly and it
may look something like figure 6.14. The program sets a variable called "neopixels"
to connect the output to pin 0 with 8 leds active. Depending on what button, or
buttons, being pressed it will either show all green leds, all red or a rainbow.

As seen in the code we also added a block which rotates pixels, however it is only
visible when the rainbow is active. Pause is only there to slow down the rotation of
pixels and not of great importance. Also worth mentioning is that the micro:bit can

76

6. Result

only sustain about 10 pixels before the colors start to fade due to lack of power. A
way to go around this is to connect an external power source to the neopixel instead.

Figure 6.14: The Neopixel strip will need to be connected as shown for the code
to work

77

6. Result

6.1.1.10 Level

Figure 6.15: The block configuration for this particular exercise example

This exercise turns the micro:bit into a level by utilizing the a celerometer on the
micro:bit. If the value of the accelerometer goes below 0 or above 0, feedback is
given to user as to how to tilt the micro:bit in order to reach exactly 0 which is a
level state.

6.1.2 Analog Workshop Example
This chapter contains all information necessary to host an analog workshop, rules of
the game, materials needed, challenges and a plan on how to execute the workshop.
This workshop is intended as an introduction to basic programming concepts for
students without previous programming experience.

6.1.2.1 Rules

The rules are as follows:

78

6. Result

• Each group will get a board and a set of cards
• Instructions are put after each other on the board
• The instruction are read from top to bottom, literally interpreted as a

computer would have executed them
• Only use the instructions once
• No need to use all instructions
• The goal is to guide a friend through the challenge and reach last tile via

instructions
• It is not allowed to step outside of the tiles, as this is considered as a

violation

Start Is the ball ?
yes no

Sequence board

Area for

unused

instruction

cards

Repeat card Counter card Selection card Game tiles

Whiteboard penInstruction cards

Increase high score
with tile number

1 step forward Turn left

Turn right2 step forward

3 step forward Turn around

4 step forward

1 step back

Selection goal cards

0
Repeat times

Selection tokens

Bag

High scoreHigh score

Figure 6.16: All material needed for both workshops

6.1.2.2 General Preparations

Create game tiles to create challenges, preferably numbered from zero to ten. A good
way to keep them reusable is to laminate the tiles if possible. Plan which courses
should be used, making own courses is really easy, and design for an appropriate
difficulty level and also allow for the challenges used to be modified to give them
longer playability. It is important to have at least one solution available to give
hints if students get stuck.

Create instructions cards so there is enough for every group participating in the
workshop, as seen in figure 6.16. These need to be planned together with the chal-
lenges used in order to make them solvable yet not trivial. These can be color coded
to match the blocks in the MakeCode editor for the micro:bit. Provide boards or
something similar so there is a surface to place the instructions and cards on. Cards
representing coding blocks for repeat, selection and counter needs to be made as
well. These work as mini boards that can be placed in a sequence on the board as
well as hold instructions themselves.

79

6. Result

6.1.2.3 First Workshop

Learning goals for this workshop:
• Become familiar with sequencing
• To be clear when providing a computer with instructions
• Learn how to recognize patterns in the code to reuse segments of instruc-

tions using a repeat card

Start

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

1 step back

Start

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

0
1
2
3

10

9
8
7

4 5 6
Material Challenge Suggested solution

Figure 6.17: Material needed, layout and possible solution for the first challenge

Workshop plan:
• Divide students in groups 2-5
• Show the instruction board and explain the rules
• Demonstrate how to control a person via instructions

– Make a sequence of any kind
– Reverse the sequence to show that the order matters

• Let students try to solve the first challenge, figure 6.17, and let them
present their result

– When they have presented their results, remove the “1 step for-
ward” instruction from their inventory(figure 6.18), then you
have two choices:

∗ Either solve the new problem together like co-coding
∗ Give the groups additional time to solve separately

80

6. Result

Start

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

Start

1 step back

1 step back
3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

0
1
2
3

10

9
8
7

4 5 6
Material Challenge Suggested solution

Figure 6.18: Modified version of the first challenge

Next, present the second challenge, figure 6.19
• Try to complete it together and realize that it is impossible (intentional)
• Add the repeat card and give an example of how it can be used
• Let the students try to solve the challenge with the repeat card repeat

card

Start Start

1 step back 1 step back

1 step forward 1 step forward

3 step forward

Turn around Turn around

Turn left Turn left

2 step forward 2 step forward

Turn right

4 step forward 4 step forward

Repeat times

Repeat times3

0
1
2
3

9
8
7

4 5 6

Material Challenge Suggested solution

3 step forward

Turn right

Figure 6.19: Material needed, layout and possible solution for the second challenge

Lastly, present a third challenge, figure 6.20
• Continuation on the exercises including the repeat card
• Let the students try to solve the challenge with the repeat card

81

6. Result

Start

1 step back

Start

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

Repeat times

Repeat times

0 1 2
3 4 5

6 7 8
9

3

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

Material Challenge Suggested solution

Figure 6.20: Material needed, layout and possible solution for the third challenge

6.1.2.4 Second Workshop

Learning goals for this workshop:
• Understand the benefit of using the selection card
• Become familiar with the counter card, later identified as a variable
• Debugging, trying different code segments to solve problems

Start Start

1 step back 1 step back

1 step forward

3 step forward 3 step forward

Turn around Turn around

Turn left

2 step forward

Turn right

4 step forward

4 step forward

Material Challenge Suggested solution

0
1
2
3
45 5 6

Is the ball ?
yes no

Is the ball ?
yes no

White

Turn left

1 step forward

Turn right

2 step forward

Figure 6.21: Material needed, layout and possible solution for the first challenge

Workshop plan:
• Divide students in groups 2-5
• Short repetition on the rules and repeat cards
• Introduce a new card, the selection card, and explain how it can be used
• Let students try to solve the first challenge, figure 6.21, and let them

present their result
– Increase the difficulty each time they solve a challenge, choose

from two different extra challenges, see 6.22 and 6.23

82

6. Result

Start Start

1 step back

1 step forward

3 step forward 3 step forward

Turn around Turn around

Turn left

2 step forward

Turn right

4 step forward

4 step forward

Material Challenge Suggested solution

0
1
2
3
45 5 6

7

Is the ball ?
yes no

Is the ball ?
yes no

White

Turn left

1 step forward

Turn right

2 step forward1 step back

Figure 6.22: Material needed, layout and possible solution for an intermediate
challenge

Start Start

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

4 step forward

Material Challenge Suggested solution

0
1 22 3

4
567

3
Is the ball ?

yes no

Is the ball ?
yes no

White

Turn left

1 step forward

1 step back

Repeat times

Repeat times3

Turn right

2 step forward

Turn around
3 step forward

Figure 6.23: Material needed, layout and possible solution for a hard challenge

• Next introduce the counter card and show how it works together with
the add score instructions

• Present the straight challenge, let students try to get as much points as
possible, figure 6.24.

– The counter card can essentially be used on any challenge to
gather most points

• Next add the repeat card into the mix and let the students try and get
more points, figure 6.25.

83

6. Result

Start

Increase high score
with tile number

Increase high score
with tile number

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

Material Challenge Suggested solution

0
1
2
3
4
5
6
7
8
9
10
11

High scoreHigh score

Start

Increase high score
with tile number

Increase high score
with tile number

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forwardTurn right

4 step forward

High scoreHigh score

22

Figure 6.24: Material needed, layout and possible solution for the score challenge

Start

Increase high score
with tile number

Increase high score
with tile number

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forward

Turn right

4 step forward

Material Challenge Suggested solution

0
1
2
3
4
5
6
7
8
9
10
11

Repeat times

High scoreHigh score

Start

1 step back

1 step forward

3 step forward

Turn around

Turn left

2 step forwardTurn right

4 step forward

High scoreHigh score

21978

Repeat times

Increase high score
with tile number

Increase high score
with tile number

999

Figure 6.25: Score challange with an added repeat card

6.1.3 micro:bit Workshop Example
This chapter provides an example of two sequential micro:bit workshops, intended
to be one hour each and for a class of approximately 25 students. The students are
expected to have some prior knowledge of programming, either through the Analog
Workshop example presented in chapter 6.1.2 or through a development platform
comparable to Scratch.

6.1.3.1 General Preparations

In these workshops students are to work in pairs, hence one laptop, micro:bit, USB-
cable and battery pack is required for each student pair. The battery packs are useful

84

6. Result

as they allow students to use the micro:bit standalone from the computers. It can be
useful to prepare the computers’ web-browsers by activating the setting commonly
known as: "Ask where to save each file before downloading". This will allow students
to save the programs straight to the connected micro:bits, as it otherwise often
becomes confusing where the downloaded files are saved on the computers.

It is possible to run the workshops with mobile devices, such as iPads instead of
laptops, however this will take more time and one should, in that case, regard the
technical pitfalls described in chapter 6.3.3.3.

These micro:bit workshops have been designed to be a continuation to the Analog
Workshop Example already mentioned, as some concepts introduced here will be
possible to relate back to exercises done in the Analog Workshop. Hence it is
recommended to have done the Analog Workshop first, but it is not a requirement.

As this workshop makes use of the teaching approach Co-coding described in 6.2, it
is a good idea to familiarize oneself with this approach. One should ensure that the
classroom has a reliable internet connection and that there is a projector available
with adapters compatible with the teachers computer.

6.1.3.2 First Workshop

The focus of this workshop is to introduce the students to the micro:bit editor
and how to perform the procedure of moving programs from the computer to the
micro:bit. It is recommended to run this workshop with computers, as it is easier
and less time consuming than working with hand held devices such as iPads.

Start out by giving a brief introduction to the MakeCode micro:bit editor, showing
it on the projector. Describing the different user interface elements, such as the
folders of code blocks, the area where the code is built and the simulator. More
information about the editor can be found in chapter 2.3.1. It is a good idea to
write down the URL-address on a whiteboard. By the time this thesis was written
the URL was: makecode.microbit.org, this might however change over time. The
students may now visit this URL on their own computers.

Next it is time to hand out one micro:bit, USB cable and battery pack to each
student pair. When all students have gotten their hardware and managed to get
the editor up and running, it is time to get everyone’s attention. Emphasise the
importance of paying close attention to the creation of this first program, as they
will need to know these steps and it will save a lot of time and confusion.

In case there are no computers available for this workshop and it has to be entirely
run with hand held devices such as iPads, ensure that the students direct their
undivided attention to a complete demonstration of how to pair and flash code
to the micro:bit, before even handing out the hardware. More information about
pairing the micro:bit to hand held devices can be found in chapter 6.3.3.3.

85

6. Result

Now co-code a name badge exercise as described in 6.1.1.2 and ask the students to
imitate what is being done on the projector. Demonstrate how it can be tested in
the simulator and press the download button in the editor to save the .hex-file to
the computer. If the browsers have been setup to prompt where to save each file, it
is now possible to connect the micro:bit via USB, and choose to save the .hex-file to
the device called MICROBIT that appears as a thumb drive among the computer
devices.

Figure 6.26: With the browser set to ask where to save each downloaded file, it
becomes easier to save the programs straight to the micro:bit without having to
locate them and manually move them with a file manager

At this point some time will probably be required to walk around and help students
troubleshoot. Students who have gotten help or managed to complete the exercise
without help, can be encouraged to help others.

Next co-code a step counter as described in chapter 6.1.1.6. While co-coding this it
can be a good idea to keep a dialogue with the students about how a step counter
works and that it needs to remember how many steps have been taken. If the
students previously have done the Analog Workshop, this is a good opportunity to
refer back to the exercise with the high score counter. As this situation is quite
similar to that. Here the variable blocks can be introduced as something that works
just like the high score counter from that exercise. After the students have managed
to create their own step counters, they may be encouraged to connect the battery
packs to the micro:bit and try attaching their step counters to their feet and have
some time to walk around with them. This can be allowed to take some time as it
often is appreciated.

In case the time for the workshop is running out at this point it is recommended to
end here with a positive atmosphere, rather than trying to force in another exercise.
But if there is still 15 minutes left, the coin toss exercise can be co-coded as well. The

86

6. Result

blocks for this can be seen in chapter 6.1.1.3. In case the students previously have
done the Analog workshop, this is a good opportunity to refer back to the exercise
where they had to pick a random ball to determine where to go in the game. As
this resembles the situation of programming a random coin toss on the micro:bit.

6.1.3.3 Second Workshop

The focus of this workshop is to allow the students to complete exercises in a more
problem solving manner, compared to the previous workshop where they simply
imitated the teacher. As this is the second workshop and still very early in their
programming education, this workshop should begin with a recapturing of what
was done in the previous workshop. Briefly go through how to upload code to the
micro:bit, editor navigation and putting blocks together. Proceed to co-code a Dice,
as seen in figure 6.6, together with the students. As this is a completely new program
but something they all are familiar with, a six-sided dice, discuss the idea of how
such a program would work and begin building it together. This is also a great
opportunity to get a sense of where they are at with their computational thinking,
be responsive to any signs of confusion and clear them out. Techniques learned
in this exercise will aid them in the next one, where they are encouraged to build
something completely new.

The main exercise of the second workshop is the Rock Paper Scissors(figure 6.7), a
game most people are familiar with. Begin by having an open discussion in class
on how the game works in reality by writing it down in detail, as the computer will
need clear instructions to work as desired. Then try to think as a computer with
the knowledge the students have gotten thus far, bringing up the Dice example for
inspiration and reference. Without showing any blocks or code, let the students try
to program Rock Paper Scissors themselves without any further instructions. After
approximately fifteen minutes provide all the blocks (if needed) that is required
to complete the program, although unconnected and scrambled to give students a
nudge in the right direction as seen in figure 6.27. Be sure to encourage those that
have pursued a different kind of solution as that could be of great interest for other
students.

87

6. Result

Figure 6.27: Blocks needed for the Rock Paper Scissors game, scrambled.

In the last fifteen minutes of the class be sure to co-code the whole Rock Paper
Scissors program together with the students, explaining block choices and the steps
taken to arrive at a working solution. If there were students completing the exercise
with a different solution, let them present their choices and steps taken as well.

6.2 Co-coding Teaching Approach

Co-coding relates to the activity of having the teacher stand in front of the class,
screen sharing their computer screen on a projector and solve programming exercises
in a dialogue with the class. This form is a useful hybrid between pure presentations
and having students solve exercises on their own. Presentations were considered to
be good for introducing new knowledge, but it was undesirable to put the students
in a rather passive seat. On the contrary, working individually with exercises, was
considered to be more active but not ideal for introducing novel information. Co-
coding hence evolved as a middle path between these two approaches, as illustrated
in figure 6.28. Our experience was that it was a useful method as it allows the
teacher to probe students current skill level with questions and rate the discussions
in the class and adapt the level of guidance. This method was to some degree
inspired by Hattie and Donoghue(22) mentioning of teaching learning strategies in
context rather than separately. Co-coding can be an effective method to teach new
concepts, like the need for variables for instance, within the context of an exercise,
rather than as a separate presentation. Co-coding should be practiced often as it
provides an including activity for the whole class, prepares students by carefully
giving them new tools to work with and also lets the teacher get an overview of the
general understanding towards the subject in the class.

88

6. Result

Traditional lecture
Teacher talking in front of the class.

Good for introducing new knowledge out of context

Puts students in a passive role
+
-

Student pair work
Students working in pairs, solving exercises

Activates students

Not ideal for introducing novel information
+

Co-coding
Teacher standing in front of the class, sharing his or
her computer screen on a projector to solve
programming exercises in a dialogue with the class.

Partly activates students+
Good for introducing new knowledge in context+
Quicker feedback allows teacher to adapt difficulty level+

-

Figure 6.28: Co-coding as a combination of lectures and student work

6.3 Guidelines
The presented workshop examples are based on insights that have been derived
throughout the project. Some of these major insights are here presented in the form
of guidelines so that Swedish teachers who would want to use them can create their
own micro:bit workshops, rather than use the provided workshop examples. Three
of these guidelines were aggregated from multiple insights from along the project
timeline, whereas eight others were single insights that were found useful to share.
The topics for the three aggregated insights are: basic toolbox, terminology and
technical pitfalls. The single insights are presented as other considerations.

6.3.1 Basic Toolbox

Algorithms
Algorithms refer to the sequencing of
instructions to reach a certain
desired behavioural outcome.

Loops
Loops refer to the fundamental
programming concept that allows
certain instructions to be repeated
multiple times.

Randomness
Randomness refers to the basic
programming function of a random
generator, which is frequently used in
many types of programs.

Variables
Variables refer to the fundamental
programming concept of an
addressable data entry that can be
recalled and changed at a later time.

Debugging
Debugging refers to the mindset and
activity of expecting errors in your
code and be willing to pursue and fix
them.

Logic
Logic refers to the fundamental
programming concepts of
statements that are verified to be
either true or false, like in if-
statements for instance.

Figure 6.29: An overview illustrating the basic toolbox

89

6. Result

Basic toolbox relates to a set of fundamental programming concepts that were found
useful for students to have been introduced to, prior to working with programming
exercises. The programming concepts that were found useful for this were: algo-
rithms, loops, randomness, logic, variables and debugging. It was found beneficial
to introduce and practice these concepts in parallel to each other, rather than to
work with each one of them separately, in series. This due to the perceived difficulty
to create interesting exercises based on only single programming concept. What was
seen as interesting exercises, were combinations of multiple programming concepts.

6.3.1.1 Algorithms

Algorithms refer to the sequencing of instructions to reach a certain desired be-
havioural outcome. It has been seen that students benefit from having been in-
troduced to this concepts prior to start working with programming the micro:bit.
Algorithms are also mentioned in the Swedish government’s policy changes regarding
the documents that control Swedish primary and secondary school curriculum(41).
Introducing students to this can be done through many possible approaches. The
way it was introduced in this project was through having the students control each
other with instruction notes through a game field. This game later came to be called
analog workshops.

6.3.1.2 Loops

Loops refer to the fundamental programming concept that allows certain instruc-
tions to be repeated multiple times. It has been seen that students benefit from
having been introduced to this concepts prior to start working with programming
the micro:bit. Combining loops with other tools from the basic toolbox was seen
as necessary to create stimulating and useful exercises with the micro:bit. It was
found useful to teach loops in the context context rather than simply as an abstract
concept.

6.3.1.3 Randomness

Randomness refers to the basic programming function of a random generator, which
is frequently used in many types of programs. It has been seen that students benefit
from having been introduced to this concepts prior to start working with program-
ming the micro:bit. Having knowledge about how to use the random function when
working with micro:bit proved beneficial when starting to learn programming. Since
many of the beginner projects use elements of randomness as a function in their code,
such as roll a dice or rock-paper-scissors, being familiar with it became important
to complete those programs.

6.3.1.4 Logic

Logic refers to the fundamental programming concepts of logical statements that are
verified to be either true or false by a program. This for instance is a central part of
if-statements. It has been seen that students benefit from having been introduced to
this concept prior to start working with programming the micro:bit. The way logic

90

6. Result

was introduced to students in this project was through having the students control
each other with instructions through a game field. Some of these games required the
students to create alternative instructions depending on the outcome from a random
event. More details about the implementation of logic in this game can be found
under the section analog workshops.

6.3.1.5 Variables

One truly fundamental concept of programming is the one of variables, as without
variables and other data structures there is no way for a computer to store infor-
mation. This information can be of different types: values, names, and might prove
difficult to grasp at first for students. Nevertheless it has been seen that students
benefit from having been introduced to this concept prior to start working with
programming the micro:bit. Many of the beginner projects involve the usage of
variables, therefore it has an obvious place in a basic toolbox for students. The way
variables were introduced to students in this project was through the metaphor of
having a high score counter. As students moved through the game later known as
analog workshops, they got to add the value of the tile they were standing on to
their high score counter. More details about the implementation of variables in this
game can be found under the section analog workshops.

6.3.1.6 Debugging

Debugging refers to the mindset and activity of expecting errors in your code and be
willing to pursue and fix them. Programming without ever encountering any errors,
or bugs, is highly unlikely. Fixing errors can be time consuming but is an essential
skill for programmers to learn. As students have been seen able to enter states of
indifference or dejection when faced with errors, it is considered useful for students
to have been introduced to this approach prior to start working with the micro:bit.
Regarding block programming on the micro:bit it rarely becomes a syntax or coding
error due to the nature of blocks. The errors are more likely logical errors. Solving
these errors is considered to be an important part of deepening the understanding
for programming. There are some steps one can practice when confronted with a
bug. Firstly it is a good idea to try and predict what the program should do, and
step by step execute the code manually out loud to try and see where the error
is. This way the problem often becomes apparent rather quickly. In the analog
workshops game in this project debugging was not designed into the exercises per
se, and it was verified that debugging still was practiced simply by working with the
exercises. The role of the facilitator or teacher simply was to encourage debugging
when the inevitable errors appeared.

6.3.2 Terminology
Terminology is referring to the words used when teaching programming. As there
are many new words and concepts that might be intimidating for students at first,
it is useful to initially avoid using words such as variables, but rather attempt to
convey these through words and concepts that already are familiar to the student.

91

6. Result

For example the concept of a variable can be described as a high score counter in
a game, something that the student might already be familiar with. This does not
say that variables are precisely high score counters, but it is a way of conveying
the intuitive concept without introducing any new potentially scary words. It can
still be encouraged that the students learn the correct terms for concepts, but it
is a matter of easing them into it. From a teacher’s perspective it can be hard to
be aware of when one uses programming terms, therefore it is advised to pay close
attention to the language one uses so that no new words are introduced without
proper introduction first, preferably linked to previous knowledge. Some qualitative
signs have indicated that it might be easier for a student to do something first and
then afterwards learn the proper name for it, rather than first being introduced to
a new word before learning what it is about.

6.3.3 Technical Pitfalls

Technical pitfalls refer to practical issues that have been identified to risk obstruct or
fail the execution of a workshop. As it has been seen that students can enter states
of indifference or dejection if these issues take up too much time, it is suggested to
take measures and attempt to prevent them from arising in the first place. Three
specific issues that have been observed are relating to: app-store passwords, internet
connection and pairing mode bugs.

6.3.3.1 App-Store Passwords

In the context of running a micro:bit workshop with iPads, the students are required
to download the micro:bit app from the app-store. This requires an app-store ac-
count and as some schools prefer to control what apps are being installed on their
iPads, some schools protect their accounts with passwords. It is therefore recom-
mended to obtain these passwords well in advance and work out a good way for
these apps to be downloaded in class, or possibly even downloading the micro:bit
app to each individual device in advance.

6.3.3.2 Internet Connection

Unreliable internet connection was seen as another frequent source of frustration.
As the micro:bit editor is run through the web browser reliable internet connection is
required throughout the workshops. Technically the Microsoft MakeCode editor for
micro:bit can be used offline as the application gets cached locally although an online
compilation has to be made first. In cases where internet is slow or the connection
dropped occasionally, students will get frustrated and precious learning time will be
spent troubleshooting internet connections instead. In those cases where workshops
rely on online material, such as instruction videos, the internet bandwidth plays an
even more noticeable role, as video can be rather bandwidth heavy.

92

6. Result

6.3.3.3 Pairing Mode Bugs

Lastly there were some issues identified regarding the pairing of micro:bits to iPads.
Firstly there is a certain procedure that is required to initially pair a micro:bit to an
iPad. This procedure can be rather tricky at first, as it requires the student to press
three buttons in a certain order and remember a series of six numbers shown in a
rapid sequence. Students grasp the pairing process the fastest by being shown the
full procedure and then try it themselves. Having students imitate this procedure
in real time is not recommended, as it can lead to disorder in the class.

Another issue one might encounter is a bug relating to sending a program (flashing)
from a mobile device to a paired micro:bit. This process requires the micro:bit to be
put into pairing mode again, despite that this is not mentioned in the documentation.
As this bug is not documented it can be hard to solve and can hinder an entire
workshop from progressing. Lastly there have been a few rare occasions where
micro:bits were impossible to put into pairing mode. This bug is resolved by simply
having a computer nearby and flash any type of program from the computer to that
micro:bit via USB-cable. This way the micro:bit gets reset and can be paired with
an iPad again.

6.3.4 Other Considerations

That students will be able to solve problems
and realise ideas into action in a creative
fashion using technology.

That students develop an understanding for
the impact digitalisation has on the individual
and the society.

Tinkering
Allowing students to freely familiarise with new content for a
limited period of time before starting with exercises.

Stupid computers
Clearify that computers are stupid and only do what they are
told.

Text based instructions
Giving instructions through other means can potentially be
more successful.

Editor navigation
An initial walkthrough of the editor might help students navigate
the editor.

Self instructing materials
Self instructing material can be an alternative to providing
individual help to large groups.

End on a positive note
Ending a session struggeling with a hard exercise can be
demotivating, try to leave the session with a good feeling.

Video bubble
Working with videos can decreases the social aspects in a
class, isolating students in their bubbles.

Awareness of dependencies
When creating teaching materials dependent on software, one
needs to be aware of changes in future software updates.

Figure 6.30: An overview of other considerations

Furthermore there were eight single insights from workshop interventions that were
found useful. Since these were not based on aggregated observations however, they
are here presented as slightly less significant considerations. The topics related to
these are: tinkering, self instructing materials, stupid computers, end on a posi-
tive note, text based instructions, video bubble, editor navigation and awareness of
dependencies.

6.3.4.1 Tinkering

Tinkering is allowing students to freely familiarise with new content before starting
to work with exercises. This explorative approach without any goals or objectives

93

6. Result

was seen as a way for students to get outlet for any curiosity that might arise as they
are introduced to new technology, platforms or concepts. To prevent frustration or
confusion to arise, it is recommended to keep this initial tinkering short in time.

6.3.4.2 Stupid Computers

Stupid computers refers to making it clear to students that computers are simply
following instructions and should not be considered as intelligent per se. In some
cases we have seen students who expect that computers are smart just because
they are computers. Clarifying this initially can potentially prevent some of these
misconceptions.

6.3.4.3 Text Based Instructions

Purely text based instructions might not be the optimal way for conveying exer-
cises. Giving instructions through other means can potentially be more successful.
Students mostly ignore printed papers with instructions that have been handed out.
Conversations with students showed that they found written instructions incompre-
hensible, and prefers facilitators to answer their questions. Other means of giving
instructions could also be through video.

6.3.4.4 Editor Navigation

Editor navigation refers to the need to understand how a certain programming editor
works and how to navigate it in order to use it. It is easily overseen and can be
considered trivial by someone familiar with it, nevertheless is it important for a first
time user.

6.3.4.5 Self Instructing Materials

Self instructing materials such as instruction videos, have been seen as potentially
useful in cases where student group sizes exceed the number of students that the
facilitators are able to provide help to. Even if the class size is manageable self-
instructing material allows students to work at their own pace and given that the
students are ready for the exercises it can work as an offload for the teacher, which
can focus their help where most needed.

6.3.4.6 End on a Positive Note

End on a positive note refers to concluding workshop sessions with an exercise that
leaves the students in a positive state of mind, rather than leaving them confused
or frustrated. Struggling with exercises might be important for the development of
grit, the harder exercises should be placed in the middle of a session and allocate the
end for easier ones that allow students to feel successful. From a facilitator point of
view this means planning the timing of the session well, and never try to cram any
exercise in the very last minute, just because you want to convey something that
might not really have gotten across. Energy levels of the class is usually rather low

94

6. Result

in the end, and trying to force last minute teachings in here, seems to possibly make
more harm than good.

6.3.4.7 Video Bubble

When using instruction videos as teaching material for an entire class, one ought to
be aware of the potentially negative effects this might have on social aspects of the
group. A classroom full of students watching different videos on their computers
will get rather noisy, headphones are recommended. This however also has the
effect of isolating students into their own video bubble. This might be positive for
some, in terms of concentration, but it also removes many of the interpersonal social
interaction that can be positive in a group. This way of providing video material is
probably better suited for homework of some sort.

6.3.4.8 Awareness of Dependencies

When creating teaching materials dependent on software, one needs to be aware
that it can be changed in future software updates. For instance if one creates a set
of instructions on how to navigate an editor that in detail refers to certain buttons,
the names of these buttons may well be changed in future software updates. To
avoid the risk of confusing students, it is therefore suggested to continuously verify
that the teaching material with dependencies is up to date with the current state
of the software. This was discovered as teaching materials, that intentionally had
been colour coded to match the micro:bit editor, turned out to no longer match the
colours of the editor at a workshop.

6.4 Scope of Autonomy Model

Here the scope of autonomy notion will firstly be described, accompanied by five
levels of autonomy identified for working with the micro:bit. These two parts make
up the scope of autonomy model. This model has been suggested as a result from the
empirical qualitative research performed throughout this thesis project. The model
attempts to explain observed behaviours and phenomena regarding Swedish primary
school students encounter with programming the micro:bit. The model is intended
to be used as a tool when creating exercises, to help teachers bring awareness to the
amount of choice expected of students within exercises.

95

6. Result

6.4.1 Scope of Autonomy

Choices
made by teacher

Choices
made by teacher

Choices
made by teacher

Student
autonomy

scope

Few choices avalible

Low risk for feeling
overwhelmed

Low potential for
improving independent
problem solving skills

Small scope of
student autonomy

More choices avalible

Medium risk for feeling
overwhelmed

Medium potential for
improving independent
problem solving skills

Medium scope of
student autonomy

Many choices avalible

High risk for feeling
overwhelmed

High potential for
improving independent
problem solving skills

Student
autonomy

scope

Student
autonomy

scope

Big scope of
student autonomy

Figure 6.31: Different scopes of autonomy

This is a model to illustrate and bring awareness to the distribution of autonomy
between students and teachers in relation to single given micro:bit exercise. The
model is based on the premise that completing an exercise involves making a set
of choices. The dark area in the center of the model represents the choices made
available to the student, this is called the students scope of autonomy. The gray
area surrounding it represents the choices made by the teacher. A larger student
scope of autonomy hence implies fewer choices to be made by the teacher.

The model suggests that the larger the scope of autonomy becomes, the higher the
student runs a risk of feeling overwhelmed.

The model also suggests that the larger the scope of autonomy becomes, the higher
the potential is for the student to improve their independent problem solving skills.

Hence there is according to the model a balancing act in the creation of an exercise.
So that it provides the students with enough choices to develop their independent
problem solving skills, yet without exposing them to too many choices so that they
feel overwhelmed.

The model does not make any claims on how to determine what the appropriate
level of autonomy is for any student.

96

6. Result

6.4.2 Micro:bit Levels of Autonomy

Assignment
Block selection

Design
Solution procedure

Customization

Customization
Students are allowed to customize small predefined parts of a fix solution. For
instance choosing the text or image shown on a screen.

Solution procedure
Students are provided with a predefined design they are supposed to create,
but they are free to choose the order in which they want to create it.

Design
Students are given a fix assignment with a predefined set of blocks to use, but
they are free to create any design that satisfies the assignment.

Block selection
Students are given a fix assignment, but they are allowed to freely choose the
type of blocks, and or the number of blocks, to use themselves.

Assignment
Students are allowed to choose their assignment themselves, which in
autonomy is eqivalent to allowing them to pursue their own ideas.

Figure 6.32: Each circle represent a level of autonomy

Five levels of autonomy were identified for working with the micro:bit. These are
presented in a radial fashion to be compatible with the scope of autonomy model.
Any micro:bit exercise is supposed to be mappable as a scope of autonomy disc onto
this model. The more of these levels that are encompassed by an exercise the bigger
scope of autonomy it has.

6.4.2.1 Customization

Assignment
Block selection

Design
Solution procedure

Customization

Choices
made by teacher

Scope for
student autonomy

Figure 6.33: Scope set at Customization level

The first level of autonomy that was identified in relation to micro:bit exercises, was
allowing students to make smaller customization to a predefined design. In the case
of a simple “hello world” program, this could mean allowing the student to customize
the text string to something else than “hello world”. Hence a customization is
not something that alters the behaviour of a design, but rather allows the student

97

6. Result

to locally modify specific point of interest that have been selected by the person
designing the exercise. From figure 6.33 it is possible to see that a majority of the
choices that have to be made regarding the exercise still has to be made by the
teachers when an exercise has this scope of autonomy.

6.4.2.2 Solution Procedure

Assignment
Block selection

Design
Solution procedure

Customization

Choices
made by teacher

Scope for
student autonomy

Figure 6.34: Scope set at Solution procedure level

The next level of autonomy that was identified is the one relating to the solution
procedure of an exercise. This level of autonomy relates to what subparts of a solu-
tion to tackle in what order. When this level of autonomy lies within the student’s
scope, the student is free to choose the order in which to create the solution. When
the solution procedure does not lie within the scope of the students autonomy, the
students are asked to follow a stepwise procedure instructed by the teacher. In
the case of creating an animation, this could relate to the difference in starting with
drawing the desired animation and then figuring out the best timing between frames,
or doing it the other way around. This way there is more freedom for the student
to make choice about the way they solve an exercise but the target design is still
chosen by the teacher, as illustrated by figure 6.34.

6.4.2.3 Design

Assignment
Block selection

Design
Solution procedure

Customization

Choices
made by teacher

Scope for
student autonomy

Figure 6.35: Scope set at Design level

The third level that was identified, is concerned with the design that a student makes
to complete an exercise. This is a rather interesting level of autonomy, as setting the

98

6. Result

students scope of autonomy to encompass this level means that the teacher no longer
knows what the final design will look like, as it is up to the student. In contrast to
a scope of autonomy that only encompasses the level of customisation, a scope that
encompasses the level of design allows for completely new design solutions to an
exercise, and not only the modification of predetermined placeholders. The student
is however still restricted by the teachers choice of blocks to be used with this scope
of autonomy, as illustrated by figure 6.35.

6.4.2.4 Block Selection

Assignment
Block selection

Design
Solution procedure

Customization

Choices
made by teacher

Scope for
student autonomy

Figure 6.36: Scope set at Block selection level

The fourth level of autonomy that was identified is related to block selection. Blocks
are the building pieces that are used to create a design. When this level is not
encompassed by the students scope of autonomy in an exercise, it means that the
teacher has predetermined what blocks the student should use to create his or her
design. This level of autonomy has two parts. The first of which relates to the type of
blocks and the second one relates to the quantity of blocks. For instance the teacher
can give an exercise where the students are asked to create an animation on the
micro:bit using any number of blocks of the “loops” and “show LED” variety. This
way the types of blocks are chosen by the teacher but the student is free to choose
the number of blocks. Another exercise could be to make a step counter using only
four blocks in total. Here the teacher decides the number of blocks but their type are
free to be chosen by the student. These two examples illustrate that an exercise can
be created in ways where the students scope of autonomy only encompasses one of
these two block selection levels. Likewise none of them can be encompassed, which
means that the teacher decides exactly what blocks ought be used. And lastly when
both of them are encompassed by the student’s scope of autonomy, it means that
the student is free to create a design out of any block type or quantity, as long as it
satisfies the assignment. This is illustrated in figure 6.36.

99

6. Result

6.4.2.5 Assignment

Assignment
Block selection

Design
Solution procedure

Customization

Scope for
student autonomy

Figure 6.37: Scope set at Assignment level

Lastly an autonomy level was identified relating to the very assignment itself. This
relates to decisions about the topic and aims of an exercise. In the case where this
level is not encompassed by the students scope of autonomy, the teacher defines
what the student ought to do in order to complete the exercise. When this level
is encompassed by the students scope of autonomy however, students make the
decisions about what the exercise is going to be about. These kind of exercises
might initially only be associated with higher educational projects, it is however
just as true for exercises where the teacher tells students to create whatever they
want. As having to create your own assignment basically is the same as having
to come up with an original project idea. For being able to handle this level of
autonomy however, students are recommended to have reached a rather high level
of experience and be comfortable with making various decisions, or they might run
the risk of feeling overwhelmed. As illustrated by figure 6.37 this level of autonomy
does not require the teacher to make any decisions.

100

7
Discussion

The following chapter will be discussing the process of the project, some reflections
on the result as well as possible future work.

7.1 Reflection on Process
The process was intended to be an iterative design process with a few well defined
iteration cycles. The way it turned out however was that the sharp boundaries
between these well defined iteration cycles got rather blurred. There was still a
smaller ideation phase associated with each intervention, as well as an evaluation
afterwards. This was done through the writing of documents before each activity,
stating why we wanted to do it and what kind of information we were looking for,
followed by a script for the activity. Shortly after each activity these documents
were expanded with a few notes on how it went and what we learnt. These docu-
ments later turned out to be more valuable than expected as the small insights were
summed up and used to an aggregated result. Without these activity documents
we would probably have forgotten many of the small insights along the way, and
been left empty handed in the end. The number of workshops also greatly exceeded
the initial planning. We planned to do 4 workshops and ended up doing 21. Not
all of these had their own unique planning and evaluation however, so it would not
be fair to say that we did 21 iteration cycles. Out of these 21 workshops 10 can
be considered to be small but complete iteration cycles. In the plan we set aside
individual timeslots for prototyping, this however turned out to get merged into the
ideation and execution of activities. So the need for separate prototyping planning
was not really necessary, as the whole process was prototyping.

Furthermore the difference between what was pure user research and what was
pure design iterations, also got somewhat blurred. The initial idea was to only
gather insights about users, before starting to create workshop materials. But it
turned out that we needed to create a workshop in order to observe the users in
it. Hence it became somewhat of a chicken or the egg dilemma, and we ended up
doing a bit of both in parallel. Still the first workshop interventions were more of
introductory nature and mostly focused on gather qualitative data about the users.
Some tweaking of the content and execution of workshops still occurred but the focus
was not on improving the workshop design but rather to observe the behaviour, needs
and progress of the students in their first encounters with the micro:bit, and in some
cases even programming.

101

7. Discussion

The initial research question was: “How can teaching materials for digital literacy
learning, based on micro:bits, be designed in order to accommodate the needs of
teachers and students in the Swedish primary and secondary school?”. This was
however changed after discussion with the faculty examiner, as it was considered
to be more academically useful to answer what to consider, rather than simply
developing one single suggestion on how to design something.

The writing of the planning report, and especially the researching of papers, took
much more time than expected from when the first plan was created in the proposal.
Having to write the planning report, with all its theory, this early, was however
considered to be rather useful. As these theories indeed did help us get unstuck
throughout the project and fed into many of the ideas. Regarding getting unstuck
at times of despair, such as the final analysis phase, getting feedback from our
supervisors was very helpful and we are thankful for all the fresh input we got from
them.

At the beginning of the project there was only a suggestion about curriculum changes
from the National Swedish Agency for Education. Hence there was still a bit of
uncertainty at this point, to whether or not these changes would actually be taken
into effect. It was not up until the 9th of March 2017, that this was confirmed by
the Swedish government.

By the end of the research phase we wanted a good way to summarise the collected
user data to look for deeper insights. Spontaneously we wanted to try making a
journeymap and personas, in the hope that this would lead to a better understand
for the users. To some extent it did help us, but looking back, the work put into it
was not in relation to the perceived insight we got out of it. This might very well
be due to our limited knowledge about how to put the method to use, or the fact
that the data fed into it was solely made up of exit tickets.

The interview with an experienced workshop facilitator gave us some new insights
and ideas and was beneficial to much of the following work. As the interview was
undertaken previous to our collaborations with Västergårdsskolan, it provided us
with ideas of including analog elements in the workshops. Looking back at the
benefits from a single workshop it could be argued that we should have made more
interviews in our research phase. Although we had talked to many teachers along
the way, no official interviews took place.

Working with the same class at Västergårdsskolan over a couple of weeks time was
perceived as a good way to work with the progression of students. Although we
regret not doing it sooner since the lack of time available had us end it earlier than
we wished for. In hindsight we might have been better off doing this segment earlier
and over a longer time as we felt we really learned something each session. In contrast
to only performing first-time workshops which easily felt forced and cramped due
to the short time.

102

7. Discussion

Using the affinity clustering method to summarize all the data from the project,
turned out to be a non linear, chaotic, time consuming and at times frustrating
activity. However it turned out to be fruitful and we have no regrets using it. In
parallel with this process we created graphics to model our thoughts and ideas.
These graphics later helped shape the scope of autonomy model and clarify our own
ideas to some extent. Many of the graphics and mind maps created throughout the
project were means for processing information and ways of thinking, rather than
something intended to be used for presentation.

7.2 Reflection on Result
When creating an exercise for working with micro:bit there seems to be some impor-
tance in making a conscious decision regarding its scope of autonomy. So that the
exercise matches the student’s current level as good as possible, and provides them
with an opportunity to improve their independent problem solving skills, without
being too overwhelmed.

Five levels of autonomy were identified for working with the micro:bit. This set
might very well need to be changed or expanded with more levels. It can for instance
be discussed if there are more layers outside of the one called assignment. As a
completely autonomous assignment with the micro:bit still is an exercise limited to
the hardware micro:bit, it is reasonable to say that there could be a level of hardware
and maybe editor outside of the existing levels. This is however outside of the scope
of this thesis.

Our experience is that it is beneficial to always provide some scope of autonomy in
exercises, and never remove it entirely. As it was seen to pacify students when they
did not have any way to affect the outcome of the exercises they were doing. In the
scope of working with micro:bit, always providing some level of autonomy would
translate into always allowing students to perform some level of customization in
any exercise they are involved in. This relates to Papert(21) findings about students
exposed to environments with creative freedom, have a higher tendency to learn the
necessary knowledge in order to realize their ideas.

Different students are on different levels and require different scopes of autonomy in
their exercises. As every student is different, with different skills and abilities to cope
with making decisions, an exercise that works perfectly for one student might be
overwhelming or boring to another student. This is in our opinion a challenge when
working with a whole class. As it is hard to give every student individually adapted
exercises with scopes of autonomy that matches their individual needs, teachers have
to find exercises that can be given to the entire class. This means that a class with a
wide span in individual progress, a single exercise can be perceived as anything from
boring to useful to overwhelming. This can be tackled in various ways. One way is
to try to minimise the skill span in the class, and unify the individual levels. This
was partly what was attempted through the basic toolbox and analog workshops in
this project. A second approach is to expand a single exercise’s scope of autonomy

103

7. Discussion

to be more flexible. In this way one single exercise can be given to an entire class,
but different modifications or tips can be used to increase or decrease the scope of
autonomy for the exercises, to better adapt it to individual students.

In Self Determination Theory(24) autonomy is mentioned both as a basic psycho-
logical need as well as the causality orientation described as “acting out of interest”.
This shows that the word autonomy can be a bit arbitrary, and hence might differ
slightly from the way it is used throughout this thesis. The way it is used in this
thesis is more relating to the amount of choices available to a student in a certain
exercise situation. This positions our use of autonomy more as a term relating to
the way a student’s’ context, the exercises, can be designed to satisfactorily support
both the basic psychological needs of autonomy as well as competence. As it both
relates to providing the student with enough choices to feel autonomous, yet not
provide them with too many choices. As this runs the risk of having them feel that
they lack the competence to succeed, which is how the basic need of competence is
defined according to SDT.

What it means that a student is on a certain level or progress is not really under-
stood at this point and we do not know how to measure it. So far the activity of
adapting exercises scope of autonomy to fit the student’s levels has been relying on
the teacher’s ability to customize exercises on the fly when helping students. Co-
coding sessions were found helpful for trying to estimate how progressed students
were in programming. This method is however limited by the fact that the most
knowledgeable students are most probable to answer any questions the teacher might
raise. This leads to the risk of having a few advanced students answering a teacher’s
co-coding questions, while others sit quietly without understanding. Yet it can be
considered to be helpful that these students then at least get the opportunity to see
how it is supposed to be done.

As for the deliverables we hope that the considerations about a basic toolbox, the
scripted analog workshops, ideas about co-coding methods and other considerations
will be able to inspire or be to some use for teachers who might be struggling with
the new curriculum changes over the next few years.

7.3 Validity

Throughout the activities undertaken we realize that a majority of the participants
had a positive bias towards curriculum changes and digitalization. Therefore there
is no claim that the teachers represent an accurate image of the average mindset
and motivation a teacher might have regarding programming. Even some students
that were part of our research and data gathering led us to believe that they also
were above average in being familiar with programming, although that was not the
case entirely. Although it is easy to imagine that preparations for the digitalization
has already started slowly and students being familiar with programming will soon
become more common.

104

7. Discussion

The type of research practiced has been solely qualitative. There was no way of
testing our theories about our model, thus unable to gather large samples of data in
order to generate statistics on the results. We believe that the nature of a qualitative
research method allows researchers more room for subjectivity when deciding on the
positives and negatives of a test. For the research to really be of significance there
needs to be a thorough quantitative test were the progress can be measured and
conclusions for large sample sizes can be made

7.4 Generalization
Throughout the project we have always related to the basic concepts of programming
in our design process. These concepts permeate through all programming teaching
activity and promote computational thinking and problem solving. Even though our
model was made for micro:bit specifically there are many similarities that makes it
versatile. Most of the platforms used to teach programming for primary school uses
a block type editor, just like micro:bit. Other platforms can be better suited to
teach some of the concepts in a vacuum, which is not the case for micro:bit, but
the workflow still applies as it promotes a progress that aims to keep students at a
balanced level of stimulation when learning. Since the underlying theories on the
behaviour of students and how they learn is supported in the model, we believe the
model can be claimed to have a wider applicability even though quantitative data
to support the long term effects of using such model is non-existent in the thesis.

7.5 Future Work
During our early workshops we encountered the social phenomena of trends among
the participating students. It began when a pair of students programmed a funny
game and started playing, others took notice and wanted to join in. Soon the whole
workshop had turned focus towards this game and everybody wanted to make it.
During this period the students were highly involved, motivated and interacted with
each other to a great degree, even helped one another. This behaviour has been seen
multiple times throughout the project, and though it is positive, it seems hard to
predict. This could be a topic to look closer at, we believe there is potential to
capitalise on if the teacher can seize these moments when trends erupt and adapt
the teaching to these opportunities. We decided to not investigate it further however,
as the timeframe for this project did not allow us to dig into the field of social group
psychology theories necessary for this kind of research.

The scope of autonomy model suggested in this thesis is merely an attempt to
explain behaviours and phenomena that were observed throughout the project. A
next step would be to see if it is possible to design a quantitative study that can
validate or falsify the suggested correlation between the amount of choices presented
in an exercise, and show the students potential to develop problem solving skills
and feelings of being overwhelmed. As there was no time left to test the scope of
autonomy model when it was finished, a next step towards validity would be to

105

7. Discussion

collect quantitative data. The effect of such model need to be measured in a live
setting where conclusions for large sample sizes can be made in order to truly gain
any significance.

7.6 Ethical Issues
Possible ethical issues that may arise is the restricted use of images and video from
workshops, as well as for presentation and reports due to the majority of test sub-
jects is under aged. Images used may not contain faces of the participants or any
other means that can identify them without their consent. Parental consent was
required for kids participating in research activities such as recorded interviews or
video observations. Another thing when working within a teacher’s realm is not to
discourage teachers by telling them “how to do their job” and merely take a low
profile role providing guidance and suggestions and stay a humble observer.

106

8
Conclusion

Through an iterative design process a total of 21 workshop interventions were con-
ducted to collect qualitative data and gain insights about users and their interactions
with micro:bit teaching materials.

The aggregation of insights from throughout the project suggests that it is important
for teachers to consider the amount of free choices that are given to students in
any given exercise, when designing teaching materials for the BBC micro:bit, for
training Swedish primary school students computational thinking skills. A model
was created in an attempt to communicate these observed relationships between
students learning potential, their risk of feeling overwhelmed and the amount of
choices provided in exercises. More work will be needed to validate this model
however.

A set of guidelines as well as a teaching approach was provided to further give more
concrete answers to the research question: What is important to consider when
designing teaching materials with the BBC micro:bit for training Swedish primary
school students computational thinking skills?

Based on the model, the teaching approach and the guidelines, a few concrete imple-
mentation examples were created to meet the stated design goal to: Support Swedish
primary school teachers with teaching materials, based on the BBC micro:bit, that
help them meet the programming requirements of the new curriculum changes.

107

8. Conclusion

108

Bibliography

[1] Paulo Blikstein. Digital fabrication and ‘making’in education: The democrati-
zation of invention. FabLabs: Of machines, makers and inventors, pages 1–21,
2013.

[2] Kate Williams. Literacy and computer literacy: Analyzing the nrc’s “being flu-
ent with information technology”. Journal of Literacy and Technology, 3(1):1–
20, 2003.

[3] Rachel Charlotte Smith, Ole Sejer Iversen, and Rune Veerasawmy. Impedi-
ments to digital fabrication in education: A study of teachers’ role in digital
fabrication. International Journal of Digital Literacy and Digital Competence
(IJDLDC), 7(1):33–49, 2016.

[4] Regeringskansliet. Stärkt digital kompetens i läroplaner och kursplaner
- regeringen.se. http://www.regeringen.se/pressmeddelanden/2017/03/
starkt-digital-kompetens-i-laroplaner-och-kursplaner/, May 2017.
(Accessed on 05/23/2017).

[5] Skolverket. Förslag på en nationell it-strategi för skola och
förskola. http://www.skolverket.se/om-skolverket/publikationer/
visa-enskild-publikation?_xurl_=http%3A%2F%2Fwww5.skolverket.se%
2Fwtpub%2Fws%2Fskolbok%2Fwpubext%2Ftrycksak%2FRecord%3Fk%3D3621/,
2016. [Online; accessed 2-December-2016].

[6] Steve Furber et al. Shut down or restart? the way forward for computing in uk
schools. The Royal Society, London, 2012.

[7] Neil CC Brown, Sue Sentance, Tom Crick, and Simon Humphreys. Restart: The
resurgence of computer science in uk schools. ACM Transactions on Computing
Education (TOCE), 14(2):9, 2014.

[8] on the About the BBC Blog Head of BBC Learning, Sinead Rocks. Bbc
micro:bit, groundbreaking initiative to inspire digital creativity and develop
a new generation of tech pioneers. http://www.bbc.co.uk/mediacentre/
mediapacks/microbit/, 2016. [Online; accessed 2-December-2016].

[9] Scratch - imagine, program, share. https://scratch.mit.edu/about. (Ac-
cessed on 05/28/2017).

[10] Arduino - introduction. https://www.arduino.cc/en/Guide/Introduction.
(Accessed on 05/28/2017).

109

http://www.regeringen.se/pressmeddelanden/2017/03/starkt-digital-kompetens-i-laroplaner-och-kursplaner/
http://www.regeringen.se/pressmeddelanden/2017/03/starkt-digital-kompetens-i-laroplaner-och-kursplaner/
http://www.skolverket.se/om-skolverket/publikationer/visa-enskild-publikation?_xurl_=http%3A%2F%2Fwww5.skolverket.se%2Fwtpub%2Fws%2Fskolbok%2Fwpubext%2Ftrycksak%2FRecord%3Fk%3D3621/
http://www.skolverket.se/om-skolverket/publikationer/visa-enskild-publikation?_xurl_=http%3A%2F%2Fwww5.skolverket.se%2Fwtpub%2Fws%2Fskolbok%2Fwpubext%2Ftrycksak%2FRecord%3Fk%3D3621/
http://www.skolverket.se/om-skolverket/publikationer/visa-enskild-publikation?_xurl_=http%3A%2F%2Fwww5.skolverket.se%2Fwtpub%2Fws%2Fskolbok%2Fwpubext%2Ftrycksak%2FRecord%3Fk%3D3621/
http://www.bbc.co.uk/mediacentre/mediapacks/microbit/
http://www.bbc.co.uk/mediacentre/mediapacks/microbit/
https://scratch.mit.edu/about
https://www.arduino.cc/en/Guide/Introduction

Bibliography

[11] Makey makey. http://makeymakey.com/faq/. (Accessed on 05/28/2017).

[12] Raspberry pi faqs - frequently asked questions. https://www.raspberrypi.
org/help/faqs/#introWhatIs. (Accessed on 05/28/2017).

[13] Picademy - free professional development from raspberry pi. https://www.
raspberrypi.org/picademy/. (Accessed on 05/28/2017).

[14] Guide – quirkbot basics — quirkbot. https://www.quirkbot.com/
guide-quirkbot-basics. (Accessed on 05/28/2017).

[15] Join the largest learning event in history, 5-11 december 2016. https:
//hourofcode.com/se/en. (Accessed on 05/28/2017).

[16] Computing at school. https://www.computingatschool.org.uk/about. (Ac-
cessed on 05/28/2017).

[17] Fab foundation – what is a fab lab? http://www.fabfoundation.org/index.
php/what-is-a-fab-lab/index.html. (Accessed on 05/28/2017).

[18] Techshop is the world’s first open-access workshop – what do you want to make
at techshop? http://www.techshop.ws/. (Accessed on 05/28/2017).

[19] About our project – makerskola. http://makerskola.se/
about-our-project/. (Accessed on 05/28/2017).

[20] Digitalverkstan — vad är digitalverkstan? http://digitalverkstan.com/
about. (Accessed on 05/28/2017).

[21] Seymour Papert and Idit Harel. Situating constructionism. Constructionism,
36:1–11, 1991.

[22] John AC Hattie and Gregory M Donoghue. Learning strategies: a synthesis
and conceptual model. npj Science of Learning, 1:16013, 2016.

[23] Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations:
Classic definitions and new directions. Contemporary educational psychology,
25(1):54–67, 2000.

[24] Edward L Deci and Richard M Ryan. Self-determination theory: A macrothe-
ory of human motivation, development, and health. Canadian psychology/Psy-
chologie canadienne, 49(3):182, 2008.

[25] Marylène Gagné and Edward L Deci. Self-determination theory and work mo-
tivation. Journal of Organizational behavior, 26(4):331–362, 2005.

[26] Frédéric Guay, Catherine F Ratelle, and Julien Chanal. Optimal learning in
optimal contexts: The role of self-determination in education. Canadian Psy-
chology/Psychologie canadienne, 49(3):233, 2008.

[27] Jeannette M Wing. Computational thinking. In VL/HCC, page 3, 2011.

[28] Shuchi Grover and Roy Pea. Computational thinking in k–12 a review of the
state of the field. Educational Researcher, 42(1):38–43, 2013.

110

http://makeymakey.com/faq/
https://www.raspberrypi.org/help/faqs/#introWhatIs
https://www.raspberrypi.org/help/faqs/#introWhatIs
https://www.raspberrypi.org/picademy/
https://www.raspberrypi.org/picademy/
https://www.quirkbot.com/guide-quirkbot-basics
https://www.quirkbot.com/guide-quirkbot-basics
https://hourofcode.com/se/en
https://hourofcode.com/se/en
https://www.computingatschool.org.uk/about
http://www.fabfoundation.org/index.php/what-is-a-fab-lab/index.html
http://www.fabfoundation.org/index.php/what-is-a-fab-lab/index.html
http://www.techshop.ws/
http://makerskola.se/about-our-project/
http://makerskola.se/about-our-project/
http://digitalverkstan.com/about
http://digitalverkstan.com/about

Bibliography

[29] Harvard Edu. Computational thinking with scratch. http://scratched.gse.
harvard.edu/ct/defining.html/, 2016. [Online; accessed 2-December-2016].

[30] Karen Brennan and Mitchel Resnick. New frameworks for studying and as-
sessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada, pages 1–25, 2012.

[31] CAS Barefoot. Computational thinking. http://barefootcas.
org.uk/barefoot-primary-computing-resources/concepts/
computational-thinking//, 2014. [Online; accessed 2-December-2016].

[32] Stanford. Empathy map. https://dschool.stanford.edu/groups/k12/
wiki/3d994/Empathy_Map.html/, 2016. [Online; accessed 29-Novemberr-
2016].

[33] T Zorn. Designing and conducting semi-structured interviews for research.
Waikato Management School, 2008.

[34] Entrance & exit tickets | the sheridan center for teaching
and learning. https://www.brown.edu/about/administration/
sheridan-center/teaching-learning/effective-classroom-practices/
entrance-exit-tickets. (Accessed on 05/28/2017).

[35] A. Cooper, R. Reimann, and D. Cronin. About Face 3: The Essentials of
Interaction Design. Wiley, 2007.

[36] LUMA Institute. Innovating for People: Handbook of Human-Centered Design
Methods. LUMA Institute, 2012.

[37] Maker movies. http://makermovies.se/movies. (Accessed on 05/12/2017).

[38] Kom igång med programmering – kodboken. https://www.kodboken.
se/start/skapa-spel/lekar-och-ovningar/robotkompis. (Accessed on
05/05/2017).

[39] Botrace. http://gyulai.se/botrace/. (Accessed on 05/05/2017).

[40] Programmera mera - ur skola. https://urskola.se/Produkter/
196673-Programmera-mera/Visa-alla. (Accessed on 05/05/2017).

[41] Gustav Fridolin and Mikael Damberg. Vårt löfte till barnen – mer
teknik i skolan. http://aiweb.techfak.uni-bielefeld.de/content/
bworld-robot-control-software/, 2016. [Online; accessed 2-December-
2016].

111

http://scratched.gse.harvard.edu/ct/defining.html/
http://scratched.gse.harvard.edu/ct/defining.html/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking//
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking//
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking//
https://dschool.stanford.edu/groups/k12/wiki/3d994/Empathy_Map.html/
https://dschool.stanford.edu/groups/k12/wiki/3d994/Empathy_Map.html/
https://www.brown.edu/about/administration/sheridan-center/teaching-learning/effective-classroom-practices/entrance-exit-tickets
https://www.brown.edu/about/administration/sheridan-center/teaching-learning/effective-classroom-practices/entrance-exit-tickets
https://www.brown.edu/about/administration/sheridan-center/teaching-learning/effective-classroom-practices/entrance-exit-tickets
http://makermovies.se/movies
https://www.kodboken.se/start/skapa-spel/lekar-och-ovningar/robotkompis
https://www.kodboken.se/start/skapa-spel/lekar-och-ovningar/robotkompis
http://gyulai.se/botrace/
https://urskola.se/Produkter/196673-Programmera-mera/Visa-alla
https://urskola.se/Produkter/196673-Programmera-mera/Visa-alla
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

	Glossary
	Introduction
	Purpose
	Research Question
	Contribution

	Design Goal
	Deliverables

	Stakeholders
	Students (user)
	Teachers (user)
	RISE Interactive (business client)
	Interaction Design Faculty (academic client)
	Thesis Authors

	Delimitations

	Background
	Changes in Swedish Education Strategies
	Programming in UK Education
	About Micro:bit
	Editor

	Related Work
	Development Platforms
	Scratch
	Arduino
	Makey Makey
	Raspberry Pi
	Quirkbot

	Learning Platforms
	Hour of Code
	Computing at School (CAS)

	Maker Movements
	Fab Lab
	Techshop
	Makerskola
	Digitalverkstan

	Theory
	Teacher's Role in Digital Fabrication
	Constructionism
	Hattie and Donoghue Model of Learning
	Self-Determination Theory
	SDT in Relation to Education

	Computational Thinking
	MIT Model
	Barefoot Model

	Methodology
	Research
	Qualitative Literature Review
	Recruiting Tools
	Empathy Map
	Stakeholder Mapping
	Fly on the Wall Observation
	Semi-Structured Interview
	Exit Tickets
	Personas
	Journey Map
	Affinity Clustering

	Iteration
	Brainstorming
	Design Principles
	Integrate Feedback and Iterate
	Abstraction Laddering
	Rapid Prototyping

	Process
	Planning and Pre-study
	Planning
	Literature Study
	Makerdays

	First Sessions with Digitalverkstan
	Workshop at Kullavik
	Workshop at Lindholmen

	Workshops with Student Interns
	Workshops in Stockholm
	Preparation
	Breddenskolan
	Sollentuna Musikklasser
	Runbackaskolan
	Grimstaskolan

	BETT Show in London
	Persona Creation
	Journey Map
	Second Sessions with Digitalverkstan
	Lindholmen Workshop
	Interview with Facilitator

	Workshops at Västergårdsskolan
	Preparation
	First Workshop
	Second Workshop
	Third Workshop
	Fourth Workshop

	Insight analysis
	Affinity Clustering
	Scope of Autonomy Model
	Co-Coding
	Technical Pitfalls
	App-Store Passwords
	Internet Connection
	Pairing Mode Bugs

	Basic Toolbox
	Terminology
	Analog Workshops
	Other Considerations
	Tinkering
	Stupid Computers
	Text Based Instructions
	Editor Navigation
	Self Instructing Materials
	End on a Positive Note
	Video Bubble
	Awareness of Dependencies

	Reiteration of Result

	Result
	Examples of Exercises and Workshops
	micro:bit Exercise Examples
	Animation
	Name Badge
	Coin Toss
	Dice
	Rock Paper Scissor
	Step Counter
	Music Player
	Radio Messages
	Neopixel Animation
	Level

	Analog Workshop Example
	Rules
	General Preparations
	First Workshop
	Second Workshop

	micro:bit Workshop Example
	General Preparations
	First Workshop
	Second Workshop

	Co-coding Teaching Approach
	Guidelines
	Basic Toolbox
	Algorithms
	Loops
	Randomness
	Logic
	Variables
	Debugging

	Terminology
	Technical Pitfalls
	App-Store Passwords
	Internet Connection
	Pairing Mode Bugs

	Other Considerations
	Tinkering
	Stupid Computers
	Text Based Instructions
	Editor Navigation
	Self Instructing Materials
	End on a Positive Note
	Video Bubble
	Awareness of Dependencies

	Scope of Autonomy Model
	Scope of Autonomy
	Micro:bit Levels of Autonomy
	Customization
	Solution Procedure
	Design
	Block Selection
	Assignment

	Discussion
	Reflection on Process
	Reflection on Result
	Validity
	Generalization
	Future Work
	Ethical Issues

	Conclusion
	Bibliography

