
FPGA-Based Demonstrator for
Real-Time Evaluation of a
Fiber-Optic Communication System

Master of Science Thesis in Embedded Electronic System Design

FREDRIK ÅKERLUND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
GOTHENBURG UNIVERSITY
Gothenburg, Sweden 2017

Thesis for the Degree of Master of Science

FPGA-Based Demonstrator for Real-Time
Evaluation of a Fiber-Optic Communication

System

Fredrik Åkerlund

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author warrants
that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

FPGA-Based Demonstrator for Real-Time Evaluation of a Fiber-Optic Communi-
cation System.

Fredrik Åkerlund

© Fredrik Åkerlund, 2017

Supervisor: Per Larsson-Edefors, Department of Computer Science and Engineering
Examiner: Lena Petersson, Department of Computer Science and Engineering

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Cover: The VC709 development board.

Department of Computer Science and Engineering
Göteborg, Sweden 2017

iv

Abstract
When the speed of serial transmission of data increases, it is important that the bit-
error rate does not increase correspondingly. One way to maintain a low bit error
rate is to use forward-error correcting codes for finding and correcting erroneous
bits. This Master’s Thesis describes the development of an FPGA system that acts
as the physical layer in a fiber-optic communication system with bit-error correcting
circuits using Bose–Chaudhuri–Hocquenghem codes. The FPGA transceiver system
will allow for further research on, e.g., what level of error correction is suitable for
physical coding sublayers.

Nine transceiver systems were developed in this thesis, with different error-finding
and correcting Bose–Chaudhuri–Hocquenghem circuits. This report describes how
the support logic needed was designed and how the hardware peripherals of the
FPGA were enabled. The status of a running system is monitored in real-time
from a program running on a PC, e.g., the current measured bit-error rate and the
attenuation of the fiber-optic channel. The real-time program was used with the
systems in a simple experiment to show how the error correction worked when the
fiber-optic signal was attenuated.

Keywords: FPGA, ASIC, forward error correction, BCH, bit error rate.

v

Acknowledgements
Thanks to my supervisor Prof. Per Larsson-Edefors for suggesting the project,
the writing assistance and organizing group meetings every other week. Thanks to
Christoffer Fougstedt for being involved with both the BCH part and co-supervising,
and my examiner Assoc. Prof. Lena Peterson for helping with writing once again.
Thanks to Lars Lundberg, Tamas Lengyel and Magnus Karlsson from MC2 for the
interest in helping us with their expertise about fiber optics.

Fredrik Åkerlund, Göteborg, June 2017

vii

Acronyms

ASIC Application Specific Integrated Circuit
BCH Bose-Hocquenghem-Chaudhuri
BER Bit-Error Rate
CLB Configurable Logic Block
DFE Decision-Feedback Equalizer
DFF D-type Flip-Flop
DSP Digital Signal Processing
FEC Forward Error Correction
FPGA Field Programmable Gate Array
FSM Finite-State Machine
I/O Input/Output
I2C Inter-Integrated Circuit
I2C Inter-Integrated Circuit
IP Intellectual Property
LFSR Linear-Feedback Shift Register
LUT Look-Up Table
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
OOK On-Off Keying
PCIe Peripheral Component Interconnect Express
PCS Physical Coding Sublayer
PLL Phase-Locked Loop
PMA Physical Medium Attachment
QPLL Quad Phase-Locked Loop
ROM Read-Only Memory
RTL Register Transfer Level
RX Receive
SATA Serial Advanced Technology Attachment
SFP Small Form-Factor Pluggable
SMA Sub Miniature version A
SRAM Static Random Access Memory
TCL Tool Command Language
TX Transmission
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
V CO Voltage-Controlled Oscillator
V CSEL Vertical-Cavity Surface-Emitting Laser
V HDL VHSIC Hardware Description Language

ix

V HSIC Very High Speed Integrated Circuit

x

Contents

Abstract v

Acknowledgements vii

List of Figures xv

1 Introduction 1
1.1 Aim . 1
1.2 Approach . 2

1.2.1 Tools . 2
1.2.2 Thesis Outline . 3

2 Technical Background 5
2.1 Field-Programmable Gate Array (FPGA) 5

2.1.1 Look-Up Tables (LUTs) . 8
2.2 Physical Layer . 9

2.2.1 Physical Coding Sublayer (PCS) 9
2.2.2 Physical Medium Attachment Sublayer (PMA) 10

2.3 Differential Signaling . 10
2.4 Phase-Locked Loop (PLL) . 11
2.5 SerDes . 11
2.6 Encoding Schemes . 13

2.6.1 8b/10b . 13
2.6.2 64b/66b . 13

2.7 Forward Error Correction . 14

3 The Xilinx VC709 Development Board 15
3.1 The Virtex XC7VX690T-2FFG1761C 16
3.2 GTH Transceivers . 16
3.3 Xilinx IP IBERT Design . 16
3.4 Silicon Labs Si5324 . 17
3.5 Xilinx IP Transceiver Example . 18
3.6 Fiber Optical Transceivers . 20

4 VHDL Implementation of the System 21
4.1 Data Generator . 21
4.2 Integration of BCH Circuits . 22

xi

Contents

4.2.1 The Encoder and Decoder . 22
4.2.2 Word Expander . 22
4.2.3 Word Compressor . 23

4.3 TX and RX Synchronization . 24
4.4 TX Buffer . 25
4.5 Bit Error Rate Tester (BERT) . 26
4.6 BER Calculator . 26

4.6.1 The BER Circuit . 26
4.7 Gearbox Module . 28
4.8 Reset Circuitry . 28
4.9 Transceiver Module . 29

4.9.1 TX System . 29
4.9.2 RX System . 30
4.9.3 Transceiver Top Module . 31

4.10 PC Communication . 31
4.10.1 UART . 31
4.10.2 The Real-Time Monitoring Software Using Qt 32

4.11 I2C Communication . 33
4.12 Top Module . 34

4.12.1 Main Process . 35
4.13 Automatic Generation of Systems . 38
4.14 Testbenches . 39

4.14.1 Transceiver Module . 39
4.14.2 Word Expander . 39
4.14.3 Word Compressor . 40

5 Results 41
5.1 Synthesis . 41
5.2 Implementation . 42
5.3 Experiment Equipment . 42
5.4 Results of the Experiment . 46
5.5 Real-Time Monitoring . 46
5.6 ASIC Power and Area . 47

6 Discussion 49
6.1 VHDL Implementation . 49

6.1.1 Word Expander and Compressor 49
6.1.2 The Data Generator and Scrambler 49
6.1.3 The TX Compressor Buffer 50
6.1.4 Top Module . 50

6.2 The VC709 Board . 50
6.2.1 Serial Communications . 50
6.2.2 The Si5324 . 50

6.3 Project Development in Vivado . 51
6.3.1 Xilinx’s Example Design . 51

7 Conclusion 53

xii

Contents

7.1 Goal Fulfillment . 53
7.2 Further Development . 54
7.3 Other Development . 54

A Python Scripts I

xiii

Contents

xiv

List of Figures

2.1 A configurable logic block used in FPGAs. 5
2.2 Illustration of a conceptional gate array. 6
2.3 An interconnection matrix with CLBs. 7
2.4 The OSI reference model. 9
2.5 Sublayers of the physical layer [12]. 10
2.6 Differential signaling. 10
2.7 Phase-locked loop. 11
2.8 Generic block diagram of a SerDes transceiver. 12

3.1 Xilinx VC709 board. 15
3.2 Resulting IBERT eye scan plot in Vivado. 17
3.3 The SMA connectors of the VC709 board. 18
3.4 Structure of the transceiver wrapper and example design. 18
3.5 Avago AFBR-709SMZ SFP+ transceiver. 20

4.1 Block representation of the modified BCH top components. 22
4.2 Block representation of the Word Expander component. 23
4.3 Block representation of the Word Compressor. 23
4.4 Block representation of the TX and RX Synchronization. 24
4.5 Waveform simulation of the synchronization. 25
4.6 Waveform simulation with focus on the Word Compressor. 25
4.7 Block representation of the TX Buffer. 26
4.8 Waveform simulation of the complete BERT process. 27
4.9 Block representation of the BERT component. 27
4.10 Block representation of the BER Calculator and the BER circuit. . . 27
4.11 Block representation of the Gearbox Module. 28
4.12 Block diagram of the transmission chain. 29
4.13 Block diagram of the receiving chain. 30
4.14 Block diagram of the Transceiver Module. 31
4.15 Block representation of the UART module. 32
4.16 The real-time program for the VC709. 32
4.17 Block representation of the I2C circuit. 33
4.18 Description of I2C connections to the FPGA. 34
4.19 Block diagram of the Top Module. 34
4.20 The FSM process for UART and I2C. 35

5.1 One Transceiver Module zoomed in and colored. 43

xv

List of Figures

5.2 FPGA partitioning of the system with four BCH(1023,993,3) circuits. 44
5.3 Attenuator and power-meter units from MC2. 44
5.4 Plotted results for two BCH circuits with block-size n = 255. 45
5.5 Plotted results for two BCH circuits with block-size n = 511. 45
5.6 The Qt program presenting the real-time data from the FPGA. . . . 47

xvi

1
Introduction

The optical fiber is the preferred type of medium between physical layers in the
backbone of today’s Internet and is continuously expanded to end users by Internet
suppliers. As the speed of serial communication links increases, so do the errors due
to factors that were not necessary to consider at lower speeds, e.g., noise, signal at-
tenuation or jitter. To keep the transmitted data intact at the receiving end, various
components for ensuring the signal integrity are used, e.g., differential signaling and
encoding schemes, emphasis of signals, different types of filters to compensate for
any signal degradation [1, 2, 3]. Bit-errors can still occur even if all the components
mentioned above are used. If forward error correction (FEC) is used in the physical
coding sublayer (PCS) the bit-error rate (BER) can be reduced further. FEC works
by adding parity bits to both locate incorrect received bits and correct them [4].

Some Xilinx field programmable gate array (FPGA) development kits, e.g., the
VC709 [5] that is available at Chalmers, have small form-factor pluggable (SFP)
connectors for fiber optical (or Ethernet) transceivers so they can be used for pro-
totyping the physical layer in communications systems. FPGAs like the 7-series
mounted on the VC709 board can thus be connected to data streams from and to
optical transceivers and be configured with custom systems, e.g., systems with FEC
codes or digital signal processing (DSP) components.

As of today, there have been no open literature publications (to the best of my
knowledge) about a system that demonstrates how a fiber optical communication
system can be attached to an FPGA which implements various configurations of
FECs, or in other words, how the PCS with FEC can be implemented in an FPGA.
In this thesis project, we aim to make use of the four SFP connectors on a VC709
board which can provide a total transfer rate of 40 Gbit/s, where each of them is
connected to a transceiver system implemented in a hardware description language
(HDL). Since FPGAs can be reconfigured, any subsystem that is implemented in
it can be modified, e.g., the FEC component in the transceiver system. Thus, the
final system will allow for different FEC configurations to be evaluated in an FPGA
by, e.g., attenuating the signal in the fiber optical channel.

1.1 Aim
The overarching goal of this thesis is to develop and evaluate an HDL implementation
of an FPGA system, both logic and peripherals, that acts as physical layer in a fiber-
optical communication system. The FPGA system will allow for further research
investigations on, e.g., how FEC can be added to the physical layer to improve the

1

1. Introduction

resilience of the communication system. The used VHDL code for the FEC circuits
are generated by a MATLAB script provided by the assistant supervisor Christoffer
Fougstedt.

With an implemented system, it should be possible to connect the FPGA to
a vertical cavity surface emitting laser (VCSEL) that has been manufactured at
MC2, Department of Microtechnology and Nanoscience at Chalmers. The equip-
ment available at MC2 should be able to attenuate the signal in order to yield the
BER to SNR ratio, i.e., the relation between the bit errors and the signal-to-noise
ratio. As this required knowledge is outside of our department, this is a long-term
aim.

In addition to functional properties demonstrated in the FPGA experiments, a
digital ASIC design of the FEC logic portion of the system will also provide accurate
power and performance numbers, although not from a manufactured die but from
cell netlists.

1.2 Approach
The VC709 [5] board has four SFP modules connected to embedded high-speed
circuitry, i.e., SerDes (Serializer/Deserializer), embedded in the FPGA at the very
edges of the die. There are ten more SerDes ports with traces routed to a breakout
board called an FPGAMezzanine Card (FMC). Initially we were lacking information
on the parallel interfaces and therefore the first milestone aims for enabling the four
SerDes transceivers that are connected to the SFPs, e.g., by developing a loop-back
over a fiber channel (FC). Xilinx HDL development platform Vivado provides IP
cores and example designs for the 7-series transceivers which other projects can
customize and be built upon and therefore is the best start.

When we have a functional loop-back system we will add FEC components to
the system which will require more circuitry as the input and output word-widths
of the FECs will vary. Additional logic for calculating the BER as well as sending
the data is needed, too.

To monitor signals in real-time, e.g., the power of the received signal and the
BER over some duration of time, either a script for a virtual terminal or a GUI on a
host PC will be programmed to receive and present data from a UART component
in the FPGA.

All data generated are synthetic so we do not have to consider any aspects per-
taining to privacy concerns in this project.

1.2.1 Tools
Vivado [6] is the provided software for HDL development for Xilinx 7-series FPGAs.
Vivado synthesizes the HDL, and generates bit-files that are used for the configura-
tion of FPGAs and can also do simulations. Questasim is another software for HDL
development which we also use for simulations. The test-benches need reference
data to verify the correct functionality of components and therefore writing scripts
is the best way to generate such data and this is preferably done with Python. The
VHDL code for FEC circuits can be generated with a provided MATLAB script.

2

1. Introduction

1.2.2 Thesis Outline
A reader of this thesis is assumed to have most of the knowledge needed to under-
stand the report, but the Technical Background (Chapter 2) will very briefly explain
some of the technologies used, which can connect to the subsequent chapter about
the Xilinx VC709 board (Chapter 3). Hopefully these chapters will help readers
with no previous experience in this field understand the content better.

The chapter about how the resulting system’s VHDL components are designed
(Chapter 4) is explaining in detail how a system works, and is intended as the
project’s documentation for anyone who might do further development, too.

The Results chapter (Chapter 5) shows the output from Vivado after synthesis
and implementation, and the results from the experiment which is followed by a
discussion (Chapter 6). The thesis then ends with a conclusion (Chapter 7) about
the thesis’ results.

3

1. Introduction

4

2
Technical Background

This chapter explains the theory and technologies used in this report. A brief section
about FPGAs is included for the unfamiliar reader. One way to describe FPGAs
is as “a type of circuit which can implement the logic of almost any other circuit”,
which is not entirely correct but a good first explanation. The first section shows
the fundamental components of an FPGA which can be configured to implement
different digital circuits. In this thesis, an FPGA is used as a physical layer in a
network system, a layer which is put into its context in the subsequent section.

Differential signaling and phase-locked loops are also covered, as both are fre-
quently mentioned in relevant data sheets [5, 7, 1, 8] and are used with SerDes
circuits [2], the high-speed electronics which is a fundamental component of fiber-
optic transmissions. The chapter will end with some theory about encoding data
for the purpose of enabling a high-speed connection, and using BCH for finding and
correcting erroneous received bits.

2.1 Field-Programmable Gate Array (FPGA)
FPGAs consist of configurable logic blocks (CLBs) that are connected through an
array of programmable interconnections (see Fig. 2.3). The logic described in HDL
such as VHDL or Verilog can later be synthesized with software that also implements
the design and generates a bit-file which describes how the CLBs and interconnec-
tions are to be configured (to implement the desired logical functions). For example,
whole microprocessors can be described in HDL and implemented in FPGAs, which
in turn then can run traditional software written in, e.g., C/C++ or assembler
language on a PicoBlaze softcore [9].

LUT

FA
a

carry out

clk

LUTb
c

a
b
c

d

carry in

clk

DFF

Figure 2.1: A configurable logic block used in FPGAs.

5

2. Technical Background

The interconnections and look-up tables (LUTs) are configured by 1-bit memory
cells, mostly SRAM based, which make certain connections to CLBs and make
the LUTs hold certain values. The look-up tables can implement all combinatorial
logical functions, i.e., OR, AND, XOR, NOT and their complements as well as any
custom behavior. Fig. 2.1 shows an example of a CLB. CLBs can contain full adders
(FAs) for accelerating addition and subtraction and some FPGAs contain special
DSP blocks for the more complex mathematical operations, e.g., multiplication and
division. There are also MUXes for routing the signals and a d-type flip flop (DFF)
for saving one bit.

In Fig. 2.2 a conceptional gate array is illustrated, and shows that there can
also be blocks for clock handling through the array as well as a couple of phase-
locked loops (PLLs) for frequency synthesis and configurable input and output blocks
(IOBs). Some blocks are dedicated for RAM which can be useful for complex func-
tionality, e.g., DSP systems.

CLB CLB CLBCLB RAM RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSP

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB

DSP

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

CLB CLB CLBCLB RAMDSP RAMDSPCLB

IOB

IOB

IO
B

IO
B

PLL/DLL

CLK

CLK

CLK

CLK

CLK

CLKCLK

CLK

CLK

CLK

CLK

PLL/DLL

PLL/DLLPLL/DLL

Figure 2.2: Illustration of a conceptional gate array.

The interconnection between blocks can be done as illustrated in Fig. 2.3 where
several transistors can either short connections together or keep them open. The

6

2. Technical Background

gates of the transistors in Fig. 2.3 are connected to squares that are representing
SRAM blocks which configures the routeing.

Figure 2.3: An interconnection matrix with CLBs.

Because of the enormous amount of wires, i.e., interconnections, FPGAs often
work at low frequencies because of the large capacitance. The most power consuming
part of an FPGA are all the interconnections. Table 2.1 shows that the power
consumption is dominated by the interconnections [10] in a Xilinx XC4003A FPGA.

Table 2.1: Power breakdown for a XC4003A FPGA from Xilinx [10].

CLB Power IO Power Clock Power Interconnect Power
Percentage 5 9 21 65

7

2. Technical Background

2.1.1 Look-Up Tables (LUTs)
An LUT essentially has the same functionality as a ROM. A four-input, one out-
put LUT, can generate any four-input Boolean function (AND/OR/XOR/NOT).
Assume the logic expression

(I0 ∧ I1) ∨ (I2 ∧ I3)

is wanted in a FPGA. A LUT can then configured to the truth table of the
expression as in Table 2.2. For implementing the logical expression, the address
input of the ROM are instead used as the equivalent to a logic gate’s input ports,
and the resulting logic value for the expression is saved at the corresponding address.

Either I0 and I1 needs to be true (“1” and “1”) or, I2 and I3 for the expression
to evaluate to true, i.e., a high output or logically one. Thus, this LUT is just as a
ROM with sixteen 1-bit registers.

Table 2.2: A truth table of a LUT with four inputs.

I3 I2 I1 I0 Output
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Tools like Xilinx Vivado takes care of all configurations of LUTs when running the
implementation which translates the HDL into the physical design, i.e., the bit-file
which contains values for configuring a LUT’s SRAM transistors.

8

2. Technical Background

2.2 Physical Layer
The open systems interconnection (OSI) reference model shown in Fig. 2.4, was de-
veloped by the International Standards Organization (ISO) and defines seven layers
in networks communications systems. Fig. 2.4 puts the Physical layer in context,
it is the lowest in the hierarchy and is concerned with the physical transmission of
data [11] over various transmission mediums such as cabling, fiber optics or wireless.
The Application layer is presented to users and the layers in between takes care of,
e.g., routing data packages over the Internet. Examples of protocols for each layer
are shown above the arrows in Fig. 2.4 which connects two nodes in a network.

Application

Presentation

Session

Network Process to Application

Data Representation and Encryption

Interhost Communication

Transport
End-to-End Connections and Reliablity

Network

Data link

Physical

Logical Addressing - IP

Physical Addressing - MAC/LLC

Signaling and Binary Transmission

HTTP, FTP, IRC, SSH, DNS

SSL, FTP, IMAP, SSH

APIs, SOCKETS

TCP, UDP, ECN, SCTP, DCCP

IP, ICMP, IGMP

Ethernet, SLIP, PPP, FDDI

CAT, FIBER, WIRELESS

Application

Presentation

Session

Network Process to Application

Data Representation and Encryption

Interhost Communication

Transport
End-to-End Connections and Reliablity

Network

Data link

Physical

Logical Addressing - IP

Physical Addressing - MAC/LLC

Signaling and Binary Transmission

Figure 2.4: The OSI reference model.

The physical layer includes mechanical, electrical and timing interfaces in its
design to make the transferring of bits as accurate as possible. The physical layer is
complex and can be described by other sub-layers as shown in Fig. 2.5. The Xilinx
VC709 board (Chapter 3) can implement the PCS and PMA sublayer.

2.2.1 Physical Coding Sublayer (PCS)
The physical coding sublayer lies below the data link layer (layer two) in the OSI
reference model and above the physical medium attachment (PMA) physical sub-
layer [12]. The PCS performs several functions such as the encoding/decoding (Sec-
tion 2.6) and scrambling/descrambling of data blocks (Section 2.6.2). The encoding
of data is performed together with scramblers to ensure enough transitions between
logical ones and zeroes so that the receiver can perform clock recovery (Section 2.5)
from a serial link which provides no clock reference. The PCS can insert and remove
markers for alignment of data and identify blocks of received data streams (Sec-
tion 2.6.1) for encoding schemes such as 8b10b. The PCS can also have forward

9

2. Technical Background

Physical Coding Sublayer

Physical Medium Attachment

Physical Medium Dependent

Medium

Figure 2.5: Sublayers of the physical layer [12].

error correction codes (FECs) which is an aim of this thesis, using BCH circuits
(Section 2.7).

2.2.2 Physical Medium Attachment Sublayer (PMA)
The physical medium attachment sublayer connects the PCS to an electrical inter-
face such as an optical transceiver (Section 3.6). Electrical transceivers for fiber
optical channels can contain laser drivers for VSCEL lasers. Receivers are essen-
tially photo-detectors connected to circuits for amplification and quantization, of-
ten sharing any controlling circuit with the transmitter. For high-speed links, the
PMA serializes and de-serializes data and performs clock recovery from received
data streams. The PMA is in other words responsible for taking inputs of parallel
data and sending it out at high speed (and vice versa), and the data conversions
can be implemented in a SerDes circuit which is further described in Section 2.5.

2.3 Differential Signaling
Long wires or traces on a printed circuit board (PCB) for high-speed digital signals
can be problematic as, e.g., the capacitive load increases and affects the speed,
interference from other signals can be picked up and signals are reflected back due
to impedance mismatching [3]. Serial transmission of data allows for higher speeds
than parallel as these mentioned factors get isolated between only two points, which
makes impedance matching easier, any time skew between received (parallel) signals
are removed and noise get canceled out better. Today this signaling is used in many
common technologies, e.g., PCIe, SATA and USB.

V

V

Common-Mode
Voltage

low

highV+

V-

0 01Output Swing VOD

Figure 2.6: Differential signaling.

10

2. Technical Background

Differential signaling uses two signals where one signal is the complement of the
other, as shown in Fig. 2.6. The signals drive the receiving logic, i.e., a differen-
tial amplifier, which determines logic values as the difference between the signals.
TIA/EIA-644 or Low-Voltage Differential Signaling (LVDS) is a standard capable
of data rates up to 3 Gb/s [13] and is centered at 1.25 V with an output swing of
0.3 V [3]. For even faster circuits Current-Mode Logic (CML) can be used.

2.4 Phase-Locked Loop (PLL)
A phased locked loop (see Fig. 2.7) can generate an output signal (fout), e.g., a
clock signal (“clock recovery”), that has a frequency which is close to the incoming
(fref) signal’s frequency. PLLs can also synthesize other frequencies, i.e., generating
multiples or divisions of the input signal’s frequency. A PLL used as a frequency
multiplier is one of the most common applications [3].

The phase detector (which can be digital) drive transistors with a voltage gen-
erated by the difference between the edges of the input signals. A filter removes
any unwanted frequencies of the voltage signal before it is passed to the voltage-
controlled oscillator (VCO). The VCO acts as an integrator and will increase its
output frequency if the phase lags and decrease it as the lag decreases.

Lock

Detection

Loop

Filter
VCOref

1
n

f Phase

Detector
outf

pll_lock

Figure 2.7: Phase-locked loop.

A signal indicating that the PLL has locked onto the incoming signal’s frequency
is needed for some applications, e.g., systems which recovers the reference signal’s
frequency (which might be subject to noise) and use it as a clock source and, thus,
must be certain the PLL is outputting a stable signal.

2.5 SerDes
SerDes (Serializer/Deserializer) circuits are used for parallel-to-serial and serial-to-
parallel conversion. In Fig. 2.8 a generic block diagram of a SerDes transceiver circuit
is shown. Both the TX and RX electrical interfaces [3] are amplifiers for differential
signals (Section 2.3). The serializing and de-serializing circuits are often referred to
as "parallel in serial out" (PISO) and "serial in parallel out" (SIPO) [1] respectively,

11

2. Technical Background

and are using the technique of having different parts of the circuit clocked by different
phases (of one clock) to implement their shift-register functionality at a high speed.

To achieve high speeds, the clock signals come from PLLs (Section 2.4) that
have multiplied a reference clock (up to several gigahertz), illustrated by the “Clock
Manager” and “Oscillator” (OSC) in Fig. 2.8. Because a clock signal is so fast, the
requirements on its frequency precision is measured in parts per million (PPM), as
a small deviation will lead to several Hertz in difference.

Serializer Line
Encoder

Transmit
FIFO

Clock
Manager

Deserializer Line
Decoder

RX Elastic
Buffer

Clock Correction and
Channel BondingOSC

T
X

In
te

rf
ac

e

R
X

Interface

Figure 2.8: Generic block diagram of a SerDes transceiver.

High-speed SerDes use several phases (of one clock) to clock different parts of
the circuitry to achieve a Gbit/s transmission speed. For example, imagine a 1 GHz
clock signal split into four phases which drives four different flip-flops connected to
the same output port. Since all four flip-flops connects to the output, but use it at
different time, the effective bit-rate will be 4 Gbit/s. The opposite can be done, too,
for de-serializing data and have flip-flops (clocked by different phases of one clock)
to read bits, e.g., a 10 Gbit/s data stream can then be turned into 64-bit words
outputted with a frequency of 156.25 MHz, as GTH components do (Section 3.2).

Because there is no reference clock provided to a receiver for synchronizing data
correctly, the clock period must be determined in another way. Clock correction is
one technology which can be implemented by using unique symbols in the data-
stream that is found nowhere else like with the 8b/10b encoding scheme (Sec-
tion 2.6.1). Often the idle streams are just clock correction sequences.

A PLL (Section 2.4) can be used to recover a clock signal which matches the
highest frequency of the incoming stream of serial data. In some high-speed systems
clock recovery is not needed, e.g., on chip-to-chip systems, as the components are
close enough to each other to use the same oscillator source.

The PMA (Section 2.2.2) circuitry, i.e., the TX and RX interfaces attached to
the SerDes can also include pre and de-emphasis logic to maintain signal integrity,
in some cases also combined with an equalizer on the receiving side, either active or
passive [2]. Encoding schemes such as 8b/10b or 64b/66b (Section 2.6.2) or others
are being used too, for keeping a good DC balance together with scrambling of the
data, and is sometimes hardware implemented as Fig. 2.8 illustrates (Encoder and
Decoder). The PLLs recovered frequency might not always match the incoming data

12

2. Technical Background

stream’s which is compensated for in a clock correcting component which also can
bond several channels together and correct any skew between them [2].

2.6 Encoding Schemes
Encoding schemes are used for achieving a DC-balance on a transmission line by
using symbols with equal amounts of zeros and ones, sending headers or a Scrambler
which rearranges data in a certain pattern. A Descrambler can in turn arrange the
data back to the way it was, even if it would appear to be random.

2.6.1 8b/10b
The 8b/10b encoding scheme was developed by IBM [2]. With a look-up table, every
byte is translated to a 10-bit word or symbol. The symbols have either four ones and
six zeroes (or vice versa) to maintain a good DC balance on the line and ease the
clock recovery of a PLL. Some of the 10-bit words are control words which are used,
e.g., as commas for alignment of data or to perform clock recovery. By adding two
bits the overhead becomes 25 % which means that for a 8 Gbit/s (efficient bit-rate)
serial link a 10 Gbit/s line is needed.

2.6.2 64b/66b
High-speed applications use encoding schemes such as 64b/66b for the less overhead
(compared to 8b/10b) which were developed for 10 Gb/s Ethernet [2]. The two bits
of overhead are used for control and are always sent first and only two pairs counts
as valid headers. They are used for synchronization and specifying what type of
words that follows them, either data (“01”) follows or control (“10”) words follows.

Synchronization can be done by observing either “01” or “10” in the data stream
several times in a row and always 66 bits away from each other. When enough valid
headers have been observed, a system can decide that it has a valid synchronization.
If an invalid header is observed, the received data should be shifted one bit at the
time until it becomes possible to observe valid headers continuously, 66 bits apart.

Thus, 64b/66b does not use any look-up values (like 8b/10b) so, to guarantee
enough bit-transitions for DC-balance the systems have a Scrambler and Descram-
bler integrated instead. Scrambling works with a polynomial on the data blocks
which reorders data (to appear random). The headers are not subject to scram-
bling. Therefore, a transition is guaranteed every 66 bits, but the probability to
receive only zeros or ones in a scrambled word is extremely low.

Scrambling the data for 64b/66b encoding is done using the polynomial

X58 +X39 + 1.

The scrambling of bits is done with a linear-feedback shift register (LFSR). So,
the polynomial tells us that the 39th and 58th output of the register generates the
feedback (by an XOR operation) into the first bit of the word.

13

2. Technical Background

2.7 Forward Error Correction
Forward error correction (FEC) is a technique for a transmitter to encode data in
way so that a receiver can detect and correct any erroneous bits. For example, Bose-
Hocquenghem-Chaudhuri (BCH) uses an encoder which adds more bits in a way so
that the decoder can use them to find the erroneous bits. BCH were developed two
times, first in 1959 and then in 1960 by first Hocquenghem followed by Bose and
Chaudhuri. A BCH(n,k,t) code describes n as the length of a message, k as the
length of the codeword and t as the number of bits which can be found erroneous
and corrected.

Let d denote the number of positions that two code-words belonging to one code
differ, then the following must hold for a valid BCH code.

n = 2m − 1

n− k ≤ mt

dmin ≥ 2t+ 1

From a hardware design perspective all the math [4] is not as interesting as what
valid combinations of (n,k,t) exists. A few example of combinations for (n,k,t) are
shown in Table 2.3 along with the overhead.

Table 2.3: FEC overhead for different valid BCH codes.

n k t Overhead
63 57 1 9.52%
127 120 1 5.51%
255 247 1 3.13%
511 502 1 1.76%
1023 1013 1 0.0098%
63 51 2 19.05%
127 113 2 11.02%
255 239 2 6.27%
511 493 2 3.52%
1023 1003 2 0.0196%
63 45 3 28.57%
127 106 3 16.54%
255 231 3 9.41%
511 484 3 5.28%
1023 993 3 0.039%

The smaller messages gets a large overhead, and the efficient bit-rate (bit/s) will
be lower than for the larger messages. To correct more bits, more parity bits are
needed which will further increase the overhead, too.

14

3
The Xilinx VC709 Development

Board

This chapter is about the used development board which photo is shown in Fig. 3.1,
unpacked from the Xilinx Connectivity Kit box [14]. The kit also includes a pair of
low-smoke zero-halogen (LSZH) cables which in the photo are plugged into the four
included optical 10.3125 Gbit/s transceivers. The transceivers are in turn plugged
into the SFP connectors on the left. The lower grey pair of SMA cables connects the
200 MHz system reference clock to the FPGAs 10.3125 Gbit/s GTH transceivers for
reference. On the backside of the SMA connectors is an IC with a programmable
PLL called the Si5324 from Silicon Labs that can be used as an alternative to the
SMA input. To program the Si5324 by I2C the FPGA ports for SCL and SDA must
be routed through an I2C MUX which is also programmed by I2C. The MUX has
one of its pairs of I/Os connected yet another I2C MUX which can be programmed
to connect to either of the four SFPs. Naturally, the 7-series Virtex XC7VX690T
is under the cooling fan, and has two RAM DIMMs closely placed next to it. The
silkscreen above the leftmost DIMM says FMC which is the acronym for FPGA
Mezzanine Card, which refers to the connector above with a high pin count (HPC).
With an FMC HPC connector, it is possible to attach ten more 10.3125 Gbit/s
transceivers. On the top left corner there are two USB connectors connected to an
USB-Serial bridge IC and a JTAG port for programming.

Figure 3.1: Xilinx VC709 board.

The rest of the chapter now focuses on some of the mentioned components in the
above text. There will also be a brief text about Xilinx’s example design that can
be generated after an IP core has been configured with the wizard in Vivado.

15

3. The Xilinx VC709 Development Board

3.1 The Virtex XC7VX690T-2FFG1761C
Mounted onto the VC709 is a XC7VX690T FPGA. From the data sheet there are
some specifications of interest as follows [7].

• 42.5 mm x 42.5 mm in size.
• Contains 108300 Slices, where each contains four LUTs and eight flip-flops.

Some of the slices can use their LUTs as distributed RAM or SRLs (Shift
Logical Left).

10 888 Kb as max distributed RAM. Each block RAM is 36 Kb.
• Contains 3600 DSP slices, where each contains one pre-adder, one 25 x 18

multiplier, one adder and one accumulator.
• Clock management tiles (CMT), 20 components where each one mixed mode

clode manager (MMCM) and one PLL.
• Gigabit transceivers (GT), 80 GTHs each capable of 10.315 Gbit/s.
• RAM Blocks, maximum 52 920 Kb.
• 850 I/O, supports voltages from 1.2 V to 1.8 V.

3.2 GTH Transceivers
The various 7-series FPGA models have transceivers of different speed classes. The
C7VX690T have 80 gigabit transceivers (GT) of class H, hence the acronym GTH,
where the H means a speed-class of 10.325 Gbit/s. Ten of the GTH transceivers
are wired to the FMC HPC connector and four are wired to the four SFP/SFP+
connectors. The ASIC part of the FPGA that constitutes a GTH transceiver are
referred to as a GTHE2_CHANNEL by Xilinx and is placed on different banks,
i.e., segments, of the FPGA die but always at the edge. Apparently it is only
the transceivers of the SFP modules that can utilize the external PLL from the
Silicon Labs, the Si5324 jitter attenuator [5]. The SFP modules can also use another
external reference that can be provided with the inputs from the on board SMA
connectors. The ten transceivers connected to the FMC header have to share the
same clock reference.

3.3 Xilinx IP IBERT Design
Xilinx provides an integrated bit-error rate test (IBERT) as an IP-core which can be
generated and used through Vivado. The dynamic reconfiguration ports (DRP) al-
lows a designer to access the configuration and status registers of, e.g., a transceiver’s
GTHE2_CHANNEL or clock signal components as a PLL or a mixed-mode clock
manager. The IBERT design uses the DRPs to change different settings while run-
ning a test. With dynamic settings in tests the hardware can be confirmed working
without problems. Different settings are changed with the DRP ports, for example,

• Bit-counter and Error-counter for BER.
• TX/RX PRBS Pattern - (7, 15, 23, 31)-bit.
• TX Pre-Cursor - 0.0 dB to 6.02 dB.
• TX Pre-Cursor - 0.0 dB to 12.96 dB.

16

3. The Xilinx VC709 Development Board

• TX Diff Swing - 269 mV to 1119 mV.
• DFE Enable/Disable.
• Error Injection.
• TX/RX Reset.
• TX/RX PLL Status.
• Loopback Modes: None, Near-End PCS, Near-End PMA, Far-End PCS, Far-

End PMA.
Vivado can also establish a serial link to the FPGA when it is running the IBERT

and provide plots with data from the receiver. Fig. 3.2 shows an example of a
resulting plot from one iteration during a sweep of different parameters.

Figure 3.2: Resulting IBERT eye scan plot in Vivado.

After the IP component has been generated in Vivado, a pair of SMA cables must
be bridged as showed in Fig. 3.3 where the 200 MHz clock signal from the FPGA is
routed right back to the SMA input. Then it is only to upload the bitfile and use
the the interface in Vivado for testing.

3.4 Silicon Labs Si5324

The Si5324 jitter attenuator contains a PLL which has three inputs for reference
clock signals. One reference clock input is from a closely placed crystal with a
frequency of 114.285 MHz. The other two differential pairs are inputs either from
the FPGA or one SMA pair. The registers of the Si5324 can be read and written
to with an I2C interface, i.e., using an HDL implementation. The register values
needed for a specific output frequency can be generated with help of the software
called DSPLLsim from Silicon Labs. The GTH transceivers (connected to the SF-
P/SFP+ modules) are using the reference clock provided from the Si5324 to drive
their reference clock inputs in order to perform clock recovery from the serial data
input stream.

17

3. The Xilinx VC709 Development Board

Figure 3.3: The SMA connectors of the VC709 board.

3.5 Xilinx IP Transceiver Example
Xilinx provides an example design that can be customized and used as a start to
build own designs upon. After the IP component has been generated, the example
design can be generated from it which provides wrappers as seen in Fig. 3.4.

Core Top

GT
Wrapper

Multi GT Wrapper

Transceiver

Configuration

TX
Reset
FSM

RX
Reset
FSM

Buffer
Bypass
Logic

PMA Modules

Init Module

Clock
Module

GT
Common

Core Support Level

Common
Reset

Frame
Check

Frame
Generator

Block Sync &
Descrambler

Scrambler

RX Data File

TX Data File

Example
Design Core Top

Ports

Parameters

Figure 3.4: Structure of the transceiver wrapper and example design.

• For 64b/66b encoding scheme, the scrambler and descrambler are provided.
The block sync will assure the received data are aligned correctly.

• The frame generator generates a data stream for transmission that is definable
by a user, e.g., by changing the input file’s content.

18

3. The Xilinx VC709 Development Board

• The frame checker examines the data stream transmission and accumulates
found errors and asserts the sum to an output. The data file is an exact copy
of the one that the frame generator is using.

• The clock module generates clocking signals, i.e., it takes a reference input
clock, e.g., from the Si5324 and passes it to the special IBUFDS for the GTE2
channel.

• The GT common module instantiates the GTHE2_COMMON primitive which
is shared to multiple transceiver cores. The quad PLL (QPLL) used for all for
channels has its settings defined here, e.g., divider, selection of reference clock
and QPLL lock detection.

• The common reset module provides circuitry for resets that is used for a core
reset. It signals the FSMs and can be provided a user reset, e.g., from a push
button.

• FSMs modules for resetting the transmitter and receiver. It takes care of the
sequential reset of hardware as described in [1]. The reset includes verification
of a stable clock from the PLL and MMCM, i.e., phase alignment, PLL lock
and synchronization for enabling a stable clock.

• PMA Modules: Not used in this project.
• GT Wrapper contains the actual IP core for the transceiver hardware. It holds

the defined settings for cores and enables access to the DRP ports.

The Frame Generator Iterates over TX data. The TX data has 16 different
words to send, each read from a file with its respective encoding header for 64b/66b
hard coded into the same line. Therefore it also signals the GTH.

The External Gearbox Sequence Counter A gearbox is a component that
helps with encoding of data, e.g., 64b/66b. There is a counter implemented in FPGA
logic which pauses both the frame generator and scrambler logic. This counter is
connected to its respective GTH2_CHANNEL ports to make the Gearbox pause as
according to the transceiver data sheet [1]. Because every sent data block of 64 bits
has 2 bits overhead after it has passed through the Gearbox, every 32th clock period
will have delivered 64 bits overhead to the transmitter or serializer. Since 64 bits is
a whole word the system must stop the input of more data for one clock period to
compensate for the extra bits sent.

The Scrambler and Descrambler The scrambler and descrambler in Fig. 3.4
are implemented as linear-feedback shift registers and must be synchronized with
each other for them to work. This means that if any data input is unintentionally
wrong on the RX side and discarded, the two components will not be synchronized
anymore and both have to be reset.

The RX Block Synchronizer The RX block sync in Fig. 3.4 will hold a signal
asserted for some time until enough headers have been counted, e.g., 64 as in one
case, to make sure that the blocks are arriving in a correct order. In the case when
misaligned blocks are arriving to RX, the input buffer will be shifted by one bit each
time an incorrect header has been found, i.e., “00” or “11”. When enough headers

19

3. The Xilinx VC709 Development Board

have been observed in a row this will be signaled to the other components to indicate
the received data are valid.

The Frame Checker The Frame Checker compares received data with its refer-
ence file.

3.6 Fiber Optical Transceivers
With the Connectivity Kit comes four transceivers from Avago for 10.3125 Gbit/s
data transferring. If 66b/64b encoding is used a total overhead of

2
64 = 0.03125%

is added. When 10 Gbit of data has been transmitted, a total of

0.03125 · 109 = 312.56

bits of overhead has been sent. The data and overhead sums up to 10.3125 · 109 bits
which means the Avago devices are capable of 10 Gbit/s transmitting and receiving.

Figure 3.5: Avago AFBR-709SMZ SFP+ transceiver.

Two EEPROM registers with address A20 and A2h on the I2C bus contains values
for settings that are already programmed correctly for 10.3125 Gbit/s data transfer-
ring. There are registers that contain the real-time data for the transceiver’s VCC ,
temperature, TX current and TX and RX power.

20

4
VHDL Implementation of the

System

This chapter describes the VHDL components that were developed for this thesis.
The system was designed to continuously output data saved in a ROM and not
implement any logic for any other state of the system, i.e., pausing the transmission
or any other kind of command that can be received from a higher layer. With the
Xilinx IP IBERT Design (Section 3.3) the hardware could first be verified to be
working. Attention was then given to the Transceiver Wizard which is integrated
into Vivado. After the Wizard had generated an IP component containing the
GTH transceivers it was possible (but not straightforward) to get an example design
generated, too. The design does, however, not start up by itself as it is missing a
reference clock input. The development of the system therefore started with the I2C
component so that the Si5324’s registers could be written to so it would generate a
clock signal with a frequency of 156.25 MHz. Also, the MUX that routes the signals
to the Si5324 is configured with an I2C data stream so the first code was a finite-
state machine (FSM) that initialized the reference clock (Si5324) after configuring
the MUX.

This chapter describes the circuits that together form a transceiver system, shown
in Fig. 4.12 and Fig. 4.13. The circuits are described in the order from the TX
side to the RX side. The project’s top module comes last, which integrates the
Transceiver Module with the example design, i.e., the GTH wrapper, and the FSM
which controls the setup of the Si5324, an UART for communicating with a PC and
the I2C circuit which connects to the SFP modules.

4.1 Data Generator

The Data Generator has a ROM which contains the data which are sent over the
fiber optic channel. The standard package contains 16 different words copied from
the Xilinx Example Design as default, but can easily be changed to something else
and more words. The first word in the ROM is a start-word followed by just random
data. The start-word is used by the bit-error rate tester (BERT) for synchronization
(Section 4.5), before it starts analyzing received data for erroneous bits.

21

4. VHDL Implementation of the System

4.2 Integration of BCH Circuits
The GTH of the FPGA expects either 32 or 64 bits of data depending on its configu-
ration which can be determined in the Xilinx Transceiver Wizard. FEC components
use other widths than the GTH, e.g., an encoder can have an input of k = 113 bits
and an output of n = 127 bits. To connect the outputs of an encoder and the input
of a decoder to the GTH, some logic for “expanding” words to larger widths and
“compressing” them to shorter is needed.

4.2.1 The Encoder and Decoder
The BCH circuits were generated with a MATLAB script provided by the assistant
supervisor Christoffer Fougstedt. Changes were made on the circuits’ top modules
so errors can be injected in the Encoder and the Decoder’s correction can be turned
off, for acquiring bit-error rates without correction.

in_data

reset

out_data

enable

clk

error_inject

k

n

(a) Encoder.

in_data

reset

out_data

enable

clk

on_off

n

k

(b) Decoder.

Figure 4.1: Block representation of the modified BCH top components.

4.2.2 Word Expander
The Word Expander saves its input data in a register. Where in the register the data
are placed depends on how many bits are already saved. When there are enough
bits for the output, there are most often more bits than the output width. The
remaining bits are then shifted logical right in the register and the next input word
is placed after the shifted bits, so the bits will be outputted in the correct order.
The challenge is then to write, read and shift, all in one clock cycle.

The resulting circuit must be synthesizable so any dynamic addressing of an
VHDL std_logic_vector is not allowed, so instead all different cases must be covered,
i.e., hard coded with a case statement. There is one case per every possible number
of remaining bits, e.g., if the input is of the width k = 113, there are 113 possible
remaining bits (0 to 112) and thus 113 cases to cover. To write the VHDL files, a
Python script was written to generate any Word Expander of any input and output
bits. Another Python script generated the correct outputs (all possible) for some
provided input data which can be used with the behavioral simulations of the test-
bench.

22

4. VHDL Implementation of the System

clk

reset

out_rdy

buf_out

enable

in_rdy

data_in

Figure 4.2: Block representation of the Word Expander component.

4.2.3 Word Compressor
When a word is “compressed” there will always be remaining bits. The remainder
can maximum be the output size minus one. Since there is also the case when there
are zero bits left, the total amount of possible remaining bits becomes equal to the
number of output bits. The Word Compressor implements a state machine (called
the input FSM) which alters between two states called FILL and MOVE.

When data is available, the FILL state uses VHDL case statements for placing
input data after any remaining bits in the input register (like the Word Expander)
and then changes to theMOVE state. TheMOVE state copies as many whole words
possible over to the output register and right-shifts the input register accordingly
so, the remaining bits are then placed first in the register. Because the two needed
operations, i.e., writing to a register and shifting it, are separated into two states,
the Word Compressor will not produce a continuous output if the input size is less
than twice the output size. This means for a 64-bit output the input must be ≥ 128
bits. The benefit of using two states is the area efficiency (compared to previous
implementations), and thus that the large input versions are synthesizable.

Another FSM (called the output FSM) copies words from the output register
to the output ports and can lock the MOVE state with a flag, i.e., so it cannot
change to FILL. Thus, no data can be received until the flag is low again, i.e.,
when all words are outputted. The input FSM starts the output FSM with another
flag. When the MOVE state is locked, it is however allowed to overwrite the lower
word of the output register to have the output FSM to provide a continuous output
(assuming there has been another input and the input register is filled). The output
FSM uses case statements for moving words from the output register to the output
ports, which only makes a few possible cases.

full

reset

out_rdy

buf_out

enable

in_rdy

data_in

clk

Figure 4.3: Block representation of the Word Compressor.

When the full signal is high the Word Compressor will not read data_in even

23

4. VHDL Implementation of the System

if in_rdy is high because the FSM is in the MOVE state. The full signal will be
set low again when the current state is changed to FILL. The Word Compressor is
designed to be in a pipeline with other preceding components, and the full signal
can be used to disable them until the output buffer is emptied so the input buffer
can be copied over.

The Word Compressors are generated by a Python script which takes the sizes
of the input and output vectors as arguments and writes the corresponding VHDL
to a file or returns it as a string. The test-bench for the Compressors can use the
same data as the Expanders (by switching output data to input data).

4.3 TX and RX Synchronization

The receiver, i.e., the FPGA itself in a loop-back system, uses a PLL as a reference
clock for its RX region. The PLL takes some amount of time to lock to the incoming
frequency. The TX Synchronizer (see Fig.4.4a) has a ROM of 128 random words
which on start-up will be sent over the fiber-optic channel. The ideal signal for the
PLL would be “101010...” but this sequence contains only valid 64b/66b headers
(Section 2.6.2). If a Block Synchronizer (Section 3.5) receives data with only valid
64b/66b headers the odds are high it will synchronize and align words incorrectly.
Therefore, the data is random but generated with a condition that allowed only
three equal bits in a row for many transitions (to achieve a “high frequency”).

data_outreset

tx_synq_rdy

tx_mux_selectenable

out_rdy

clk

(a) TX Synchronizer.

rx_data_in

reset

rx_synq_rdy

block_lock

clk

(b) RX Synchronizer.

Figure 4.4: Block representation of the TX and RX Synchronization.

The TX Synchronizer sends out its ROM content 128 times, i.e., (128 · 128
words), and then sends the sync-word x“aaaaaaaa” eight times before it stops and
sets the tx_mux_select high. The tx_mux_select sets the source of TXDATA to
the Scrambler’s output instead of the Synchronizer’s data_out. At the preceding
clock cycle tx_synq_rdy was set high, which enables the pipeline. The pipeline has
a delay of one clock cycle and thus needs an earlier release.

Fig. 4.5 shows how the RX Synchronizer (see Fig.4.4b) waits for the eight sync-
words and then sets rx_synq_rdy high which enables the RX Descrambler.

The RX Synchronizer is not operational until the block_lock signal from the Block
Synchronizer (Section 3.5) is high.

24

4. VHDL Implementation of the System

Figure 4.5: Waveform simulation of the synchronization.

4.4 TX Buffer
The Word Compressor is not having a constant output (out_rdy high) from its
start-up which causes one clock period with out_rdy set to low. A simulation is
shown in Fig. 4.6, with the waveforms of the Word Compressor and its preceding
components.

If the Word Compressor would connect directly to the GTH, the first outputted
word would be read twice by the GTH twice since it does not care about the out_rdy
signal. Therefore, the TX Buffer saves up a number of words and then starts out-
putting them, allowing for the pipelined TX circuits to fill up first.

Figure 4.6: Waveform simulation with focus on the Word Compressor.

The TX Buffer will also keep encoded data (sliced to 64 bits) ready for when
the TX_synq_rdy signal (Section 4.3) changes to high so that the GTH’s TXDATA

25

4. VHDL Implementation of the System

port instantly get new (encoded) data (instead of synchronization data).
The TX Buffer’s congestion signal can be used to stop preceding components in

a pipeline.

data_in

reset

buf_out

out_rdy

enable

clk

TX_sync_rdy

in_rdy

congestion

Figure 4.7: Block representation of the TX Buffer.

4.5 Bit Error Rate Tester (BERT)
The bit-error rate tester (BERT) saves and analyses all errors found by the BER
Calculator. The BERT counts the errors of a predefined number of words, the default
(interval) is set to 100 M words. After an interval, the BER_out port is updated
with the number of erroneous bits found and run_rdy is high for one clock period.
The BERT waits for the decoded 64-bit start-word x“fb” before it starts summing
up the found erroneous bits, and keeps the halt_out signal high (see Fig. 4.8). The
halt_out signal is connected to the BER Calculator to have it align the RX data
correctly with the reference ROM, and is set low after the start-word.

After the BERT has finished one interval it will set the halt_out signal high and
start again once the decoded start-word appears.

4.6 BER Calculator
The BER Calculator (shown in Fig. 4.10a) is essentially the control logic for the
BER circuit (shown in Fig. 4.10b) and is idle until the halt_in goes low. When it
is not idle, the rx_data_in is forwarded to the BER circuit (Section 4.6.1) with the
ROM reference data.

4.6.1 The BER Circuit
The identification of how many bits that differ between two registers can be done
with a rather simple algorithm. A logical XOR operation on the two registers yields
a new register where every bit which is set to one indicates a bit difference. The
difference in this context is a bit-error, as XOR is done on the received data and the
reference data.

After the XOR operation of e.g., two 64-bit words, follows a 1-bit addition of
all pair of bits, i.e., 32 additions resulting in 32 2-bit values. Next follows sixteen

26

4. VHDL Implementation of the System

Figure 4.8: Waveform simulation of the complete BERT process.

rx_data_in

reset

halt_out

run_rdy

block_sync_in

clk

rx_in_rdy

BER_out

Figure 4.9: Block representation of the BERT component.

rx_data_in

reset

out_rdy

halt_in

clk

rx_in_rdy

errors_out

(a) The BER calculator.

ref_in

reset

out_rdyclk

in_rdy

errors

data_in

(b) The BER circuit.

Figure 4.10: Block representation of the BER Calculator and the BER circuit.

additions of the 2-bit values, resulting in sixteen 3-bit values, and so on until there
are two 6-bit registers left to be added together.

The total number of additions depends on the size of the vectors. VHDL is very

27

4. VHDL Implementation of the System

type-safe and will require a lot of code for the algorithm to be synthesizable. A
Python script was, thus, written to do the repetitive and long lines of code, e.g., the
512-bit version is around 650 lines of code. The 512-bit version can be used to, e.g.,
extract the BER before a 511-bit decoder corrects any errors.

The resulting circuit has the XOR and additions pipelined which causes a delayed
result. The 64-bit version used in this thesis has a delay of eight clock cycles as it is
using one XOR, six additions and one last operation which re-sizes the word-length
to 16 bits.

4.7 Gearbox Module
The Gearbox Module connects to a GTH’s HEADER and TXSEQUENCE ports
which are used for 64b/66b encoding (Section 2.6.2). The output of tx_sequence
repeats a cycle; first it outputs the header “10” for one clock period and the following
15 periods it outputs “01”, but which valid header is sent is not important as the
receiving side is not concerned about them.

Because of the 2-bit overhead per word due to the 64b/66b encoding, 32 sent
words will cause a whole extra 64 bits to have been sent, i.e., a whole word. To
compensate for the extra word, all transmission needs to be stopped for one clock
cycle [1] which is signaled with tx_valid_out. The logical value of valid_out is
simply the result of comparing a counter with the integer 32, and is used to pause
the TX system (Section 4.9.1). The counter’s current value is copied over to the
tx_sequence port as well, as the GTH needs an external counter [1] to count the
number of words which have been passed to it.

tx_valid_out

reset

tx_header

tx_sequence

clk

Figure 4.11: Block representation of the Gearbox Module.

4.8 Reset Circuitry
It is important that all flip-flops and state-machines are reset and that all circuits
start up at the same time after a reset signal (active low) is set high. Because the
complete system pipelines data through the different circuits, a small deviation on
one circuit’s reset signal can cause the whole system to malfunction.

In most cases a global reset works fine [15], but as systems (of circuits) expand
and take up more logic of an FPGA the reset signal can become timing-critical.
The "Reset Circuitry" is a solution to have all circuits provided with their own reset
signal, but one which originates from the same source.

The source reset is split and carried through a pipeline of flip-flops which will
cut the fan-out of a global reset and have the source reset to arrive at all circuits

28

4. VHDL Implementation of the System

synchronously. The flip-flops were implemented in a VHDL process which was inte-
grated into the Transceiver Module (Section 4.9), but could just as well have been
moved into its own component, i.e., in another VHDL file.

4.9 Transceiver Module
The Transceiver Module is a top module with one TX and one RX system. All
previously described components are included in either or both two systems.

4.9.1 TX System
Fig. 4.12 shows how the circuits are connected to make up the transmitting part of
the system. The Gearbox Module (Section 4.7) disables the system after 32 words
have been sent because 64 bits of overhead has then been passed to the GTH.

&

n

d

d

d

d

GTH

TX

Syncronizer

k

d

congestion

in
_

rd
y

out_rdy

Gearbox

Module

tx_valid_out

full & out_rdy

e
n

a
b

le

e
n

a
b

le

Scrambler

tx_sync_rdy

m
u

x
_

s
e

le
c
t

e
n

a
b

le

T
X

H
E

A
D

E
R

T
X

S
E

Q
U

E
N

E

TXDATA

tx
_

v
a

lid
_

o
u

t

Figure 4.12: Block diagram of the transmission chain.

The TX Synchronizer (Section 4.3) will output its ROM data with the purpose
of locking the RX PLL (Section 2.4), and then adjusts the MUX so that the data
from the Scrambler (Section 3.5) is passed to the GTH (Section 3.2) instead. The
TX Synchronizer’s tx_synq_rdy signal is set high one clock cycle before mux_select

29

4. VHDL Implementation of the System

because of the Scrambler’s delay of one clock cycle, and the TX Buffer (Section 4.4)
will be full at that time.

As the TX Buffer starts outputting data, the congestion signal will be set low so
the preceding circuits will be enabled again and will not be halted again until the
Gearbox Module disabled them.

4.9.2 RX System
The Block Synchronizer (Section 3.5) holds the system in reset until the received data
are aligned to correct words by checking for valid 64/66b headers (Section 2.6.2).
When 64 valid headers have been received in a row, the RX Synchronizer (Sec-
tion 4.3) starts comparing the input data to the known sync-words. If all sync-words
have been identified the synced signal is set high which will route the RXVALID
signal to the Descrambler (Section 3.5), effectively enabling the RX system.

Descrambler

d

RXVALID

RXHEADER

RXHEADERVALID

RXDATA

RXGEARBOXSLIP

Word

Expander

Decoder

Word

Compressor
BERT

BER

Calculator

Block

Syncronizer

d

n

k

d

RX

Syncronizer

blocksync

synced

&
data_valid

in_rdy

z
-2

in_rdy halt

errors

RXVALID

&

blocksync

reset

re
s
e
t

in
_
rd
y BERT_rdy

BERT_errors

o
u
t_
rd
y

Figure 4.13: Block diagram of the receiving chain.

A Decoder has a delay of two clock periods. In order to signal the Word Com-
pressor that decoded data is ready, the out_rdy signal from the Word Expander is
delayed two clock cycles and routed to the Word Compressor’s in_rdy port.

30

4. VHDL Implementation of the System

The BERT circuit (Section 4.5) starts by comparing the data to the start-word
x"fb". When the start-word is identified the halt signal will be set low and the BER
Calculator (Section 4.6) will start comparing the received data with the reference
data. The BERT counts how many words that have been checked for errors, and
will restart when the default of 100 M words have been counted which takes ≈ 0.5 s.

4.9.3 Transceiver Top Module
In Fig. 4.14 we see the block diagram of the Transceiver Top Module which contains
a TX and a RX system.

RXDATA

RXGEARBOXSLIP

TXVALID

reset

TXSEQrx_clk

tx_clk

TXHEADER

BERT_rdy

BERT_out

RXVALID

RXHEADER

RXHEADERVALID

BERT_interval

BERT_state

encoder_error_injection

decoder_on_off

Figure 4.14: Block diagram of the Transceiver Module.

4.10 PC Communication
The PC communication is used for transferring the status of a system, e.g., the cur-
rent bit-error rate or the power of a signal measured by one of the Avago transceivers
(Section 3.6). The VC709 board has a USB connector which is used to connect the
FPGA to a PC. Additional logic is needed for serializing the data, i.e., a UART and
a program which presents the data on the PC.

4.10.1 UART
The FPGA is connected to a CP2103 USB-to-UART bridge, with the FPGA on the
UART side. The CP2103 can use Baud rates of 300 Baud to 1 MBaud [16]. The
generic variable for the UART’s Baud rate is set to 921 600 Baud. The UART circuit
is shown in Fig. 4.15.

The circuit will start serializing the data passed to its TX_byte port when
TX_start is set high. While the circuit is serializing data the TX_busy port is

31

4. VHDL Implementation of the System

RX_byte

reset

TX

RX

TX_start

TX_busy

clk

TX_byte

RX_complete

Figure 4.15: Block representation of the UART module.

high. When a byte has been received it will be copied to the RX_byte port and
RX_complete will be high for one clock period.

4.10.2 The Real-Time Monitoring Software Using Qt
The Qt program is made in C++ and is using the qcustomplot library for plotting
the real-time graphs. Two graphs are shown in Fig. 4.16. All other real-time data
from the SFPs are plotted under the "SFP" and "Temperature" tabs. The register
values of the SFPs are printed under the "SFP Registers" tab. The "Serial Port"
tab contains the settings for connecting to the VC709 over USB. In the bottom,
the status of the serial port is shown. The "Terminal" tab lets a developer print
anything that could be useful, e.g., debug messages.

Figure 4.16: The real-time program for the VC709.

The leftmost graph in Fig. 4.16 plots the BER and its average value. The received

32

4. VHDL Implementation of the System

BER is an integer so the floating-point conversion (to an average value) is done by
the PC, and the number of corrected words is known.

The middle graph plots the RX signal power. The rightmost column shows data
separated under four titles. The SFP’s power data is used to calculate the channel’s
attenuation (in dB). The state of the BERT is shown to indicate that the system is
running, as well as if the error correction is on or off.

Furthest down ("Continuous BER Count") are some tools for measuring the BER
in real-time. When the attenuation of the channel is changed, the reset button can
be used to start a new measurement. The average BER is shown and has no limit
for the number of samples it can save. A timer shows how long time that has passed
since a reset. A check-box (pause) will stop updating the presented values but any
received data will still be saved, which makes it easier to see the less significant
decimals.

4.11 I2C Communication

The I2C circuit can initialize the Si5324’s registers with values that are saved in a
ROM. It can also read the registers of all four SFP modules, or just some registers
by using the index_start and index_stop ports. Because some of the registers are
constant they only need to be read once. Selecting exactly which registers should
be read is done when the real-time data is extracted.

The circuit’s FSM can be started to read if idle_state is high by setting the
start_read port high. The FSM will signal a complete read by setting the port
read_done high with the resulting (one byte) data outputted on the read_data
port. With the dev_sel (device select) port a user decides to do either a read of the
SFPs (’0’), or a write to the Si5324 (’1’). With the sfp_sel (SFP select) port, either
one (of two) EEPROM addresses is used in a read operation.

clk

reset

sda

scl

mux_reset

start_read

read_done

read_data

index_start

index_stop

sfp_sel

dev_sel
idle_state

Figure 4.17: Block representation of the I2C circuit.

The FPGA has two dedicated ports, i.e., SCL and SDA, for the I2C clock signal
and data signal. Fig. 4.18 shows how an SFP module is accessed through two
different MUXes. The SFPs all have the same address so the MUX is necessary.
The MUX closest to the FPGA can connect to the Si5324 or the other MUX.

33

4. VHDL Implementation of the System

FPGA
I2C

MUX

I2C

MUX

SFP

Modules

Si5324

Figure 4.18: Description of I2C connections to the FPGA.

The reset pin of each I2C-MUX is connected to one FPGA port which is routed
to the I2C-circuit’s mux_reset. Which port a MUX connects to is decided with one
of its register values, which can be accessed through I2C.

4.12 Top Module
The Transceiver Wizard in Vivado can generate a wrapper for the GTH (Section 3.5)
containing the IP declaration and the FSMs for resetting the TX and RX hardware,
e.g., the PLL. The wrapper also contains declaration of the clock components and
the GTH2_COMMON circuit which initializes the QPLL shared among the four
GTHs that are connected to the SFP modules on the VC709 board.

The Top Module (see Fig. 4.19) is using the GTH wrapper from the example
design (Section 3.5). The Transceiver Modules are first held in reset by the FSM
in Main Process while the Si5324 is being configured. After the configuration is
complete, the reset signal is instead routed to the TX FSM’s (from the wrapper)
reset output. The TX FSM will assert its reset signal when the reference clock is
stable, i.e., the QPLL inside the FPGA GTH, not the Si5324 (which is the reference
for the QPLL).

The RX FSM waits for the RX PLL to lock to the incoming data stream’s fre-
quency before its reset is asserted. The TX Synchronizer should send out its training
bit-pattern long enough so the RX FSM is ready before actual data arrive since the
RX side is provided the same reset as the TX side, and not the RX FSM’s reset
signal.

Transceiver

Modules

UART I2C

SFP

Si5324

GTH

Wrapper

Qt

Application

LED

FPGA

Figure 4.19: Block diagram of the Top Module.

The Top Module’s process Main Process also forwards bytes from the I2C to the
UART and sends headers before the data so the receiving PC can decide what data
it is. Therefore, the UART is working at full speed (921 600 Baud) and the I2C clock
(SCL) is 100 kHz, guaranteeing that the UART is not busy when I2C has fetched

34

4. VHDL Implementation of the System

one byte of data. The Main Process has one state which is a delay for 20 ms (a host
computer would receive new data approximately 50 times per second) so, the exact
time depends on how many clock cycles it takes to fetch and send the data in the
other states. The registers of the SFPs are only sent once, at start-up, because they
are constants. Only the real-time data on the SFPs are later read and sent together
with the BER and the GTH’s status. A subsection now follows which is explains
the Main Process’s FSM.

4.12.1 Main Process

The Main Process in the Top Module controls the serial communications, i.e., con-
trols the I2C circuit and the UART. It starts with resetting the Si5324 per its
datasheet and then writes values saved in the I2C component’s ROM to the EEP-
ROM of the Si5324. The process is clocked by drpclk_in_i which is the FPGA’s
main clock of 200 MHz and starts in the SI5324_RESET_1 state.

Two registers, CURR_SERIAL_STATE and NEXT_SERIAL_STATE, are used
for changing states where the latter is used for deciding on which state to return to
after leaving a state that can be reached from more than one state, i.e., the ones in
the middle of Fig. 4.20. Therefore, the colors of the arrows in Fig. 4.20 aims to show
how the current state changes, i.e., a red arrow which leads out from a state, was
reached from a previous state with a red arrow, too. All states will be explained
further below.

SI5324_RESET_2

SI5324_RESET_1

SI5324_WRITE

SI5324_FINISH

SEND_HEADER_2

SEND_HEADER_1

WAIT_UART_BUSY

WAIT_UART_NOT_BUSY

I2C_RX_TO_UART_TX

READ_ALL_A0h

READ_ALL_A2h_1

READ_ALL_A2h_2

READ_SFPs_1

READ_SFPs_2

SEND_BER_1

SEND_BER_2

SEND_BER_3

SEND_STATUS_1

SEND_STATUS_2

WAITING

Figure 4.20: The FSM process for UART and I2C.

35

4. VHDL Implementation of the System

SI5324_RESET_1 It is specified in the Si5324 datasheet [17] that the minimum
time the reset-pin should be set low is 1µs, which is done by this state.

SI5324_RESET_2 A counter is used to wait 10 ms before changing state, as
the Si5324 datasheet [17] specifies that a waiting of 10 ms is necessary for the Si5324
to be “access ready” after a reset.

SI5324_WRITE In this state the I2C component’s I2C_device_sel port is set
high which means the I2C FSM will write its ROM with register values to the Si5324.
The I2C component will do so if I2C_start is set high.

SI5324_FINISH This state sets the I2C_start port low again and waits for the
I2C circuit to finish the configuration of the Si5324. Because of the start-up delay
of the I2C circuit, both the I2C_idle_state output must be high and a counter
must be high enough before the current state will change (to avoid malfunction).
The I2C_idle_state signal will not be high when this state is first reached, so the
counter makes sure the I2C circuit gets enough clock cycles to set the I2C_idle_state
port low. Before a read from the registers of the SFPs, a header is sent over the
UART which indicates that the following serial data are from the A0h registers of
the SFPs. This state sets the register serial_header to 0xA1 which is used by the
SEND_HEADER_1 state.

SEND_HEADER_1 and SEND_HEADER_2 Sending headers before any
data helps the application running on the receiving side to decide on what the
data are. Any preceding state to SEND_HEADER_1 sets the serial_header reg-
ister which is passed on to the TX_byte register, the register which is used as the
input to the UART circuit. The SEND_HEADER_1 state starts the UART by
setting the TX_start port high, and the SEND_HEADER_2 sets it low again,
and changes the current state to the WAIT_FOR_UART_BUSY state. The reg-
ister NEXT_SERIAL_STATE is used in the WAIT_FOR_UART_NOT_BUSY
for changing to the correct next state.

READ_ALL_A0h This state sets up the I2C circuit’s ports for reading the reg-
isters (of interest) at address A0h of the SFP modules. Because some of the registers
does not contain any valuable information, the I2C component’s index ports are set
to zero and 95, which makes up a total of 96 bytes to read per SFP. The register
RX_byte_counter is set to (96 · 4) which is used by the I2C_RX_TO_UART_TX
state.

READ_ALL_A2h_1 This state has a delay so it is certain that the I2C and
UART are ready with their operations started by the preceding state. After the de-
lay, the process of sending out a header is repeated which signals that the subsequent
serial data are from the SFPs (address 0xA2) registers.

36

4. VHDL Implementation of the System

READ_ALL_A2h_2 This state has the same functionality as the
READ_ALL_A0h state, but here the index is set from 0 to 117.
The RX_byte_counter register is set to (118 · 4).

I2C_RX_TO_UART_TX This state decreases the value of register
RX_byte_counter every time the I2C circuit signals out that a read is done. Every
time a read is done the read byte is forwarded to the UART circuit which is signaled
to start at the same time.

When the byte counter reaches zero the current state changes to the
WAIT_FOR_UART_BUSY state which will eventually change to the state saved
in the NEXT_STATE register.

WAIT_FOR_UART_BUSY This state waits for the UART to signal that it is
busy, and then changes the current state to the WAIT_FOR_UART_NOT_BUSY
state. This state is needed because it takes one clock cycle for the UART to signal
it is busy so the UART states are used to synchronize the state transitions with the
UART’s operation.

WAIT_FOR_UART_NOT_BUSY When the UART is not busy anymore,
the current state changes to the state saved in the NEXT_SERIAL_STATE register.

READ_SFPs_1 This state starts the repetition of sending a header for signaling
that the following data are real-time values from the SFPs, i.e., voltage, power and
current.

READ_SFPs_2 This state is reached after the header has been sent. The I2C
circuit’s index is set from 96 to 105, i.e., the registers that contain the real-time
data. Ten bytes will be read from every SFP, and therefore the RX_byte_counter
register is set to 40.

SEND_BER_1 This state repeats the sending of a header. It will send out the
current BER value from the BERT circuit. If more than one Transceiver Module is
used in the system, here it is possible to choose which output should be sent with
the DIP switches.

SEND_BER_2 The output of the BERT is a 32-bit value so four bytes will
now be sent. This state uses the register BER_counter to decide which byte of
the BERT output to send. When the last byte has been forwarded to the UART
the NEXT_SERIAL_STATE register will be set to SEND_STATUS_1, else it will
return to itself after the current state has shifted to SEND_BER_3 and then the
two UART states.

SEND_BER_3 This state sets TX_start to low and changes the current state
to the WAIT_FOR_UART_BUSY state.

37

4. VHDL Implementation of the System

SEND_STATUS_1 and SEND_STATUS_2 In this state the TX_byte reg-
ister (passed to the UART) is filled with different information about the system, e.g.,
GTH information and whether the Decoder circuit is on or off. The succeeding state
will just set the TX_start signal back to low and the next state will be WAITING.

WAITING This state will change the current state when its counter has reached
4000000 which takes 20 ms since the system clock is 200 MHz. Not including the
time it takes to pass through the other states, this will yield a period time of the
state machine of approximately 50 Hz. While in this state, another timer is used to
toggle an LED for indicating to a user that the process is running.

4.13 Automatic Generation of Systems
Vivado projects with different BCH circuits can be automatically generated with a
Python script. First, the different VHDL files for the BCH circuits should be placed
in a folder, which will be searched through by the Python script. A folder which
contains the VHDL files must be named, e.g.,

t1_k247_n255
t2_k493_n511
t3_k993_n1023

so the script can extract the values (n,k,t) as integers (Section 2.7). The inte-
gers are passed to functions which generates circuits and writes them to the files
described below. The scripts that are used in the automatic process are further
described in Appendix A. There is a Vivado reference project which is copied to the
new location. The project is lacking all the files that are generated which are copied
over to their respective location.

transceiver_module.vhd The top module for the transceiver system.

word_expander_64IN_to_kOUT.vhd The k is an integer. This is the TX
Expander which expands a 64-bit word from the Data Generator to a k-bit word for
the Encoder circuit.

word_expander_64IN_to_nOUT.vhd The n is an integer. This is the RX
Expander which expands a 64-bit word from the GTH to an n-bit word for the
Decoder circuit.

word_compressor_nIN_to_64OUT.vhd The n is an integer. This is the
TX Compressor which takes the Encoder’s output and compresses it down to 64
bits which is forwarded to the GTH.

word_compressor_kIN_to_64OUT.vhd The k is an integer. This is the RX
Compressor which takes the Decoder’s output and compresses it down to 64 bits
which is forwarded to the BER and BERT circuit.

38

4. VHDL Implementation of the System

enc_reg.vhd The Encoder’s top module has no error injection as default when it
is generated with MATLAB. The project generator rewrites the .vhd file and adds
a 2-bit port for (0 to 3) possible errors.

bch_peterson.vhd The MATLAB script does not generate a top module. The
project generator will call another script for this and also adds a port and logic in
it for turning the error correction on and off. This makes it possible to acquire a
BER both with and without error correction.

gtwizard_0_exdes.vhd This file is based on the Xilinx example project and is
the top module of the Vivado project. The project-generating script calls another
script for this file which changes all the component declarations in a consistent
manner.

transceiver_module_tb1.vhd The test bench for the system. Another Vivado
project is copied over to another folder along with all the new files to form a new
configuration of the copied project.

4.14 Testbenches
All circuits were simulated individually to some extent for verifying their function-
ality. This section shortly describes the testbenches for the three larger and more
complex circuits.

4.14.1 Transceiver Module
This testbench connects a Transceiver Module’s RX system to its TX system. A
component called GTH_SIM connects the two through registers, causing a delay of
a few clock cycles. The intention of the GTH_SIM component was to inject invalid
headers to observe the behavior on the RX side but was never utilized.

The testbench has a prepared waveform file which names the waveforms and
colors them differently. All the waveforms are presented in chronological order from
the TX Data generator to the RX BERT. Per default, a successful simulation should
have the BERT’s errors output set to zero always. Making changes to the Data
Generator’s ROM or the reference data can be used as a method to verify the
BERT’s functionality.

4.14.2 Word Expander
To verify the Expanders, all the possible outputs should be checked. All possible
outputs are many and are therefore generated with a Python script. The input data
for the simulations was set to be a copy of the Data Generator’s ROM which is 16
rows of 64-bit words, which will give several different outputs of an Expander. If
an erroneous output is found this will be seen in the waveforms but the simulation
will continue the running loop, thus it is possible to see if all subsequent outputs

39

4. VHDL Implementation of the System

are wrong after a single error. The simulation ends with a message about whether
the simulation was correct or not.

4.14.3 Word Compressor
The input data for the Compressor is the data that the Expanders should output,
which means that the correct output should then be the 64-bit words (the input to
an Expander). This test bench is therefore like the Expanders.

40

5
Results

This chapter will first cover the synthesis and implementations of the different sys-
tems which were done in Vivado. The systems are using different BCH circuits and
therefore, different Word Expanders and Word Compressors. Before presenting the
results of the experiment that was conducted with the systems, the material used
in the experiment will be presented.

5.1 Synthesis
A total of nine systems were developed and each uses a different BCH(n,k,t) cir-
cuit. The systems BCH versions are presented in Table 5.1. All the systems were
synthesized and implemented, but with only one Transceiver Module during the de-
velopment because of the long time it took to complete them, e.g., 1 h for System 9.
This means that the experiment (Section 5.4) was performed with one Transceiver
Module (Section 4.9.3) implemented in the FPGA, but only one was needed anyway
as one fiber-optic channel was connected in the experiment. The other three mod-
ules which can be connected to the other GTH channels were therefore commented
out before starting the implementation to reduce the development time.

Table 5.1: The different implemented systems BCH variables.

Name n k t Overhead (%) Efficient data rate
System 1 255 247 1 3.137 9.686 Gbit/s
System 2 511 502 1 1.761 9.823 Gbit/s
System 3 1023 1013 1 0.977 9.902 Gbit/s
System 4 255 239 2 6.274 9.372 Gbit/s
System 5 511 493 2 3.522 9.648 Gbit/s
System 6 1023 1003 2 1.955 9.804 Gbit/s
System 7 255 231 3 9.411 9.059 Gbit/s
System 8 511 484 3 5.284 9.471 Gbit/s
System 9 1023 993 3 2.933 9.707 Gbit/s

All projects were synthesized, implemented and tested on the FPGA success-
fully. Instead of presenting the synthesis results of all nine different systems in
this section, we will only look at the largest project which uses four modules with
a BCH(1023,993,3) circuit. Table 5.2 shows the synthesis summary. Because the
largest system, i.e., the one that uses the most area, passes its synthesis so can all
the others, too. The synthesis time for this system was approximately 20 minutes.

41

5. Results

Table 5.2: Synthesis summary of four modules using BCH(1023,993,3).

Resource Utilization Available Utilization %
LUT 192511 433200 44.44
LUTRAM 4 174200 0.00
FF 73416 866400 8.47

Since the whole system only utilizes 44.44 % of the lookup tables (LUTs) there
is a possibility even larger BCH circuits, i.e., for t ≥ 4, can be implemented, too.
Table 5.3 shows some of the hierarchy breakdown of the components and their
respective utilization. Recall that the support component is the wrapper from the
example design which contains the FSMs for resetting the GTH hardware and PLLs.

Table 5.3: Synthesis hierarchy of four modules using BCH(1023,993,3).

Name Slice LUTs Slice Registers F7 Muxes F8 Muxes
Available 433200 866400 21660 10830
tm0 48198 17981 530 192
tm1 47535 17978 530 192
tm2 47494 17962 530 192
tm3 47494 17962 530 192
I2C 278 164 3 0
UART 24 15 0 0
support 1072 1037 0 0

5.2 Implementation
The implementation of all nine systems was successful, including the bit-file gen-
eration. Fig. 5.2 shows the four implemented Transceiver Modules (Section 4.9.3)
using BCH(1023,993,3) circuits in different colors (tmX), the I2C and UART circuit.
Fig. 5.1 shows one of them (tm0) zoomed in, with the circuits in different colors.
Visible on bottom the right, colored in orange, are the GTHs. The implementation
time for this system was approximately 40 minutes, using an Intel i7-4710HQ and
16 GB of RAM.

5.3 Experiment Equipment

One way to demonstrate the complete real-time system is to use an OLA-54 (Optical
Level Attenuator [18]), shown in Fig. 5.3a, which was borrowed from the MC2
department (thanks to Lars Lundberg) and inserted in the fiber loop (see Fig. 5.3a).

By adjusting the attenuation wheel of the OLA-54 unit, it becomes possible to
directly control the optical signal and regulate the RX Power presented in Fig. 5.6.
The unit is passive, i.e., operates without drawing any power.

42

5. Results

Figure 5.1: One Transceiver Module zoomed in and colored.

43

5. Results

Figure 5.2: FPGA partitioning of the system with four BCH(1023,993,3) circuits.

(a) OLA-54. (b) Power meter.

Figure 5.3: Attenuator and power-meter units from MC2.

The optical-power meter (an OPM-G-A, also from MC2) shown Fig. 5.3b mea-
sured 0.56 mW from one of the SFP transceivers. The Qt program which is using
the data extracted from the SFP showed a power of 0.5815 mW. Thus, there is a
difference, but it is close enough to say that the data are extracted and interpreted
correctly from the SFPs registers.

44

5. Results

-18 -17 -16 -15 -14 -13 -12

dB

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

A
v
e

ra
g

e
 B

E
R

n255 k231 t3

ON

OFF

-18 -17 -16 -15 -14 -13 -12

dB

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

A
v
e

ra
g

e
 B

E
R

n255 k239 t2

ON

OFF

Figure 5.4: Plotted results for two BCH circuits with block-size n = 255.

-18 -17 -16 -15 -14 -13 -12

dB

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

A
v
e
ra

g
e
 B

E
R

n511 k484 t3

ON

OFF

-18 -17 -16 -15 -14 -13 -12

dB

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

A
v
e
ra

g
e
 B

E
R

n511 k493 t2

ON

OFF

Figure 5.5: Plotted results for two BCH circuits with block-size n = 511.

45

5. Results

5.4 Results of the Experiment
During the development of the systems it was noticed that the system with a
BCH(255,231,3) circuit appeared to lower the BER the most and therefore the ex-
periment started with it first. The BER was averaged for ten different attenuation
levels for each system. The average measuring time was around 1 minute, but with
a high attenuation the average BER reported by the Qt program (see Fig. 5.6) sta-
bilized much faster and could be determined in less than 1 minute. The BER results
for different attenuation of the signal are shown in Fig. 5.4 and Fig. 5.5, with the
BER on the y-axis and the attenuation on the x-axis. The plots are colored blue
and red for the error-correction turned on and off respectively.

The results for two systems with a BCH block-size n = 255 are shown in Fig. 5.4.
The t = 3 system corrects errors much better than the t = 2 system whose improve-
ment is very low, still the former’s performance is lower than expected. Because the
t = 2 circuit was almost not improving the BER at all, the t = 1 system was not
used because we expected it to be even worse.

The resulting measurements for the systems which used a BCH block-size n = 511
are shown in Fig. 5.5. The results are interesting, here the bit-error correction
increases the BER. Because this is the opposite of what is wanted, the other systems
with larger block-sizes were not considered as we expected even worse results with
increasing block sizes.

The attenuation might cause bursts of errors and it would be interesting to see
the words which contain errors by sending them to the Qt program for analysis.
Perhaps there is something to learn about how the errors appear in the vectors
which can explain why the BCH(255,231,3) circuits work best.

5.5 Real-Time Monitoring
One tab of the program is shown in Fig. 5.6, a screen dump from when the real-time
monitoring system was connected to an attenuator, showing how the BER plot grows
(left blue) as the RX Power plot decreases (red middle), for one TX/RX system.
The qcustomplot libraries work good.

The first version of the GUI was using pyQt (Python Qt) and was developed on
a Linux PC. Getting that version to start on any computer can be time consuming
because of pyQt’s dependencies, which is why the final version is made in C++ so it
can be compiled and run easily on all computers. Compiling and running the C++
program on a Windows machine was successful.

The right column’s "Continuous BER Count" section was helpful when conducting
the experiment and was added just before the experiment. The code is structured
and commented, in order to make it easy for other users to modify the GUI.

Because the FPGA sends out the BER continuously, several received values will
be copies. The C++ code was adjusted to save the last registered BER value so that
all subsequent received values can be compared to it, and if the two values differ
the received will be added to the vector which saves the BERs. There is a risk that
there will arrive to equal values from two runs of the BERT circuit so there is also a

46

5. Results

Figure 5.6: The Qt program presenting the real-time data from the FPGA.

counter which solved that problem so two equal values still can be sent. While this
is a brute force solution, it was easier to do rather than adding logic in the FPGA
and re-implement all nine systems.

5.6 ASIC Power and Area
The ASIC simulations of the FEC circuits have been left outside of this work. It
was planned for in case there was time, but getting all systems to work took up all
time and had to be prioritized.

47

5. Results

48

6
Discussion

In this chapter’s sections, some parts of the thesis are discussed. Some observations
made while working with the project are worth pointing out and should be of interest
to anyone continuing with further development.

6.1 VHDL Implementation
All nine systems that were implemented worked on the FPGA, although only four
were used in the experiment. One notable thing about the systems which can
correct three errors was that the error injection to the Encoders did not work, i.e.,
the errors never showed up. The nine systems with four Transceiver Modules are
thus untested. The Python scripts which generated all the projects are real time
savers, and will be very helpful if other systems should be implemented as a new
BCH circuit only should be placed in the folder with all the others. If it is possible
to synthesize and implement Xilinx’s IP components (the GTH wrapper) from a
virtual terminal, a TCL script could be written to do so and be called from Python
and thus automating the procedure even more. In that case, one would only have
to call the script and come back a few hours later to test the results of all systems.

6.1.1 Word Expander and Compressor
TheWord Compressor is the circuit I have spent most time on developing. It resulted
in many versions and simulations. It took a couple of weeks to implement a fully
synthesizable and area efficient version. I made several attempts and finally decided
to use the one that needed an input width that is twice or equal to the output width
(for a continuous output). The con is that it is not possible to use the BCH circuits
with a block size of n = 127 because the GTHs have a 64-bit input.

The area of an Expander can probably be more efficient if the case statements
would be replaced by another solution, perhaps something like the Compressor, i.e.,
separating the writing, reading and shifting of bits into different states.

6.1.2 The Data Generator and Scrambler
Because of the Scrambler, the TX output is essentially random although the De-
scrambler can restore the words, since it is using the same seed. Therefore, the
sixteen words saved in the Data Generator are enough, and could also be argued
to be too many. Because the Scrambler and Descrambler must have the same seed,

49

6. Discussion

the system will stop working if the fiber-optic channel is disturbed too much. When
the GTH’s RX_VALID signal is low, the received word will not be accepted by the
RX System and the Descrambler will no longer de-scramble the subsequent words
correctly. The systems have no reset function for this so the bit-file must be re-
uploaded to restart the FPGA, but it can be avoided by not raising the attenuation
over 19 dB, too.

6.1.3 The TX Compressor Buffer
This circuit is using more area than it needs to and can be optimized. The total area
it is using is however small relative to the other components, thus any optimization
was never attempted since it was easier to leave it working as it was.

6.1.4 Top Module
A Top Module with four Transceiver Modules has not been verified to work due to
lack of time. There are still a lot of unused signals left from the example circuits
that were removed. When Vivado synthesizes the projects, they are optimized away
but they could be removed for easier reading a fewer warnings about unused signals.

6.2 The VC709 Board

6.2.1 Serial Communications
The serial communications between the FPGA works great but is at a low speed
using the on-board USB to serial converter on the VC709. The Silicon Labs CP2103
USB-to-UART bridge device only supports a maximum data-rate of 1 MBaud. The
I2C components managed to work on a serial clock (SCL) of 400 kHz, even if the
data-sheet of the Si5324 does not specify any maximum frequency. The design in
the top module needs the UART to use a higher Baud-rate than the I2C so it is
certain that the UART is done sending data before the next byte from the I2C is
ready, therefore the SCL is 100 kHz.

6.2.2 The Si5324
Configuring the Si5324’s registers can be done by either SPI or I2C, however the only
connection to it on the VC709 board is through its I2C ports. Silicon Labs offers the
software DSPLLsim (for free) to help generate the values for the registers for some
chosen input frequency and desired output frequency. The quality of DSPLLsim is
only mediocre in my opinion, as it will not allow a user to explicitly specify where
the Si5324’s reference clock should be taken from, i.e., the external crystal, or one of
the differential pairs inputs. Only the latter ports can be chosen, so for to generate
register values anyway, we can choose either and just set the input frequency to the
reference crystal’s.

With nothing at all connected to the input ports, the IC should use the crystal as
its default input [17] so the choice of (wrong) input in DSPLLsim does not matter

50

6. Discussion

then, but the generated register values did not work. One probable cause is that
DSPLLsim did not write the Free-Run bit in register (0), which is what makes the
IC use the external crystal. I compared my values with some others that were posted
on the Xilinx Forums to see that my Free-Run bit was not set (by DSPLLsim). A
reply in the same thread replied the register values worked so I decided to copy all
the values from the thread into the I2C component’s ROM. I kept the DSPLLsim
version in the file as a comment. The Si5324 then correctly generated a 156.25 MHz
signal so I did not bother so investigate the difference of register values in detail,
e.g., if the denominator/nominator registers for the PLL division differed.

6.3 Project Development in Vivado
Close to the end of the thesis I discovered that my computer’s setup caused my severe
problems with Vivado. Almost all of my logic and components during its mapping
and syntheses were removed and Vivado claimed this was because they were not
used by anything else. The network file sharing (NFS) is most likely the cause why
Vivado cannot run simulations either. The extreme case was when only LEDs were
declared in a single project file and Vivado removed them because nothing was using
them, but still synthesized something which makes no sense.

A voucher is included in the Connectivity Kit with a license for Vivado 2017 and
the Virtex XC7VX690T FPGA on the VC709 board. I installed Vivado 2017 on my
PC using that license and all the problems I had earlier disappeared.

Lastly about Vivado, all final code has been developed in Vivado 2017 projects,
and projects cannot be downgraded to the 2016 version automatically. It is possible
to open them in read-only mode and then save them as a copy, or something similar.
I did not take any notes when I downgraded a project but it was successful.

6.3.1 Xilinx’s Example Design
Using Vivado’s Transceiver Wizard can be overwhelming to users who are not fa-
miliar to high-speed data links. With many settings of different acronyms, it can be
difficult to be sure on what is really needed, what everything is or why you should
change it. Most needed settings in the end is the selection of encoding scheme, the
reference clock, a 64-bit bus width (maximum) and naturally, the serial speed to be
10.3125 Gbit/s.

It can take you a whole afternoon to try and find the example design for the
Wizard generated IP component, if you do not already know that you must right
click the IP file and click generate in the appeared menu. The design includes
declarations of signals for ChipScope (Xilinx’s debug software) and has one set for
every GTH component which makes it hard to read.

The documentation for the transceiver wizard [8] states that to "use the example
in hardware", one should connect the reset button on the board to the system. It
is enough (and necessary) only with a reference clock, e.g., the Si5324, to start the
system after the .xdc file with constraints have been changed accordingly, too. I
am still lacking an explanation to why it was possible to toggle LEDs using the RX
and TX clocks provided from the GTHE2_CHANNEL when the Si5324 was not

51

6. Discussion

used. The GTH transceivers absolutely need reference clocks and there are options
for them in the Wizard, e.g., to use one PLL for four GHTs (QuadPLL).

One other way to enable the transceiver would be to manually assign all the 267
registers after careful reading of the data sheet and implement the reset components.
There are much documentation from Xilinx that reference to other documents about
small specific parts which is time consuming because of all acronyms and technologies
mentioned.

52

7
Conclusion

This chapter summarizes the results and relates them to the goals that were set
at the start of the project. There is possible further development of the resulting
system which are discussed. Since the systems are portable, except for the circuits
which adjust hardware specific to the VC709, some other development of similar
systems on another FPGA board are mentioned.

7.1 Goal Fulfillment

This project’s initial main goal was fulfilled as we now can use the Xilinx’s VC709
board for fiber-optic communication and observe a system’s status in real-time.

A total of nine systems with different error-correcting circuits (using BCH) were
successfully run on the FPGA, reporting bit-error rates and the system’s status to
the Qt program on a PC.

It was possible to conduct a small experiment just using the OLA-54, but the
results as far as error correction on the fiber-optic channel were not entirely consis-
tent with our expectations. Attenuating a signal as much as in the experiment is
not done anywhere outside a lab, at least to the best of my knowledge. If a signal
would lose so much power, amplifiers would be a better solution rather than BCH
circuits.

The largest 40 Gbit/s system is using 44.11 % of the available LUTs, so there
are unused logic resources left for DSP circuits. Also, none of the FPGA DSP
components, which are specialized just for this purpose, are utilized either. The
FPGA on the VC709 might not be large enough to implement both an FEC system
and a DSP system, which is why another FPGA board is suggested in Section 7.3.

An electrical interface for replacing an Avago transceiver (Section 3.6) has been
acquired, i.e., a SFP module with four SMA cables for the TX and RX differential
pairs. The electrical interface will allow a new experiment to connect the FPGA
to other interfaces, e.g., VCSEL amplifiers. With the electrical interface, it will be
possible to use other lab equipment with the system, and with the help from MC2
this can become reality in the future.

Lastly, the ASIC evaluation of the FEC circuits was never performed due to
shortage of time. The implementation of the systems was prioritized and took
longer time than expected to finish, and exceeded well beyond the time-plan.

53

7. Conclusion

7.2 Further Development
A good start for further development would be where this thesis ended, i.e., start to
investigate more on why the experiment’s results turned out like they did. Adding
a component for buffering up words with erroneous bits can perhaps help to analyze
the cause. The BCH circuits could cause a higher BER when enabled than disabled.
Thus, the circuits were probably correcting the wrong bits, i.e., already correct
bits, which can happen when more erroneous bits than their correcting capacity are
received. Therefore, it is interesting to analyze the received vectors to see how the
errors appear, e.g., if the errors come in a burst or are more spread out.

Now that an electrical interface has been acquired, I suggest to learn more about
how to access the GTH’s DRP ports. Section 3.3 showed some electrical parameters
that can be changed with the IBERT example design which is using the DRP ports.

The systems that are using four Transceiver Modules are still not verified to work,
which must be completed in order to achieve a 40 Gbit/s system.

All nine (10 Gbit/s) systems work even if Vivado reports timing warnings. There
is a problem with connecting circuits together from two clock regions, i.e., Transceiver
Modules from the RX clock region (156.25 MHz) and the UART from the main clock
(200 MHz) region. I would attempt to multiplex several UARTs to get around the
problem, or learn about elastic buffers, which are used in the GTH’s between their
different clock regions.

7.3 Other Development
The results can become useful for any future FPGA projects, e.g., on the Xilinx
VCU110 [19] development board. The VCU110 has more logic than the VC709 and
28 Gbit/s transceivers. Thus, with some changes to the current systems, one would
acquire more logic for other circuits and be able to transmit data faster.

The VCU110 uses GTY transceivers, so the GTHs must be replaced. The
VCU110 is equipped with reference clocks from Silicon Labs so the FSM of the
I2C can be reused with new register values. I suggest to first make one working
system and then change the project-generating script to have all the other systems
generated.

Xilinx transceivers support channel bonding, i.e., combining several SerDes data
streams into one which could be usable for high-speed ADC ICs which use parallel
SerDes for a high sampling frequency. With a high-speed ADC it could be possible
to sample a signal modulated with pulse amplitude modulation (PAM). The FPGA
could then also implement DSP circuits which connects to the FEC system from
this thesis. The largest 40 Gbit/s system was shown to take up 44.11 % of the total
FPGA area, so I believe there are still area left for DSPs.

54

Bibliography

[1] Xilinx. 7 Series FPGAs GTX/GTH Transceivers. Available at https://www.
xilinx . com / support / documentation / user _ guides / ug476 _ 7Series _
Transceivers.pdf. (Visited on 06/12/2017).

[2] A. Athavale and C. Christensen. “High-speed serial I/O made simple”. In:
Xilinx Inc 4 (2005).

[3] P. Horowitz and W. Hill. The art of electronics. Cambridge University Press
Cambridge, 2015.

[4] A. Brinton Cooper. 6.0 Decoding BCH and RS Codes. Available at https:
//www.ece.jhu.edu/~cooper/ERROR_CONTROL_CODING/06dec.pdf. (Visited
on 06/12/2017).

[5] Xilinx. VC709 Evaluation Board for the Virtex-7 FPGA. Available at https:
//www.xilinx.com/support/documentation/boards_and_kits/vc709/
ug887-vc709-eval-board-v7-fpga.pdf. (Visited on 06/12/2017).

[6] Xilinx. Vivado Design Suite User Guide. Available at https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2014_3/ug893-vivado-
ide.pdf. (Visited on 06/12/2017).

[7] Xilinx. 7 Series FPGAs Data Sheet. Available at https://www.xilinx.com/
support/documentation/data_sheets/ds180_7Series_Overview.pdf.
(Visited on 06/12/2017).

[8] Xilinx. LogiCORE IP 7 Series FPGAs Transceivers Wizard v3.3. Available at
https://www.xilinx.com/support/documentation/ip_documentation/
gtwizard/v3_6/pg168-gtwizard.pdf. (Visited on 06/12/2017).

[9] Xilinx. PicoBlaze 8-bit Embedded Microcontroller User Guide. Available at
https://www.xilinx.com/support/documentation/white_papers/wp272.
pdf. (Visited on 08/23/2017).

[10] E. Kusse and J. Rabaey. “Low-energy embedded FPGA structures”. In: Low
Power Electronics and Design, 1998. Proceedings. 1998 International Sympo-
sium on. IEEE. 1998, pp. 155–160.

[11] A. Tanenbaum et al. “Computer networks, 4-th edition”. In: ed: Prentice Hall
(2003).

[12] WP Ranjula et al. “Implementation techniques for IEEE 802.3 ba 40Gbps
Ethernet Physical Coding Sublayer (PCS)”. In: Electrical Engineering/Elec-
tronics, Computer, Telecommunications and Information Technology (ECTI-
CON), 2015 12th International Conference on. IEEE. 2015, pp. 1–5.

[13] Texas Instruments. LVDS Owner’s Manual. Available at http://www.ti.
com/lit/ml/snla187/snla187.pdf. 2008. (Visited on 06/12/2017).

55

https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.ece.jhu.edu/~cooper/ERROR_CONTROL_CODING/06dec.pdf
https://www.ece.jhu.edu/~cooper/ERROR_CONTROL_CODING/06dec.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug893-vivado-ide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug893-vivado-ide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug893-vivado-ide.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/ip_documentation/gtwizard/v3_6/pg168-gtwizard.pdf
https://www.xilinx.com/support/documentation/ip_documentation/gtwizard/v3_6/pg168-gtwizard.pdf
https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
https://www.xilinx.com/support/documentation/white_papers/wp272.pdf
http://www.ti.com/lit/ml/snla187/snla187.pdf
http://www.ti.com/lit/ml/snla187/snla187.pdf

Bibliography

[14] Xilinx. Virtex-7 XT VC709 Connectivity Kit. Available at https : / / www .
xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/
ug966-v7-xt-connectivity-getting-started.pdf. (Visited on 06/12/2017).

[15] Xilinx. Get Smart About Reset: Think Local, Not Global. Available at https://
www.xilinx.com/support/documentation/ip_documentation/ug129.pdf.
(Visited on 08/23/2017).

[16] Silicon Labs. SINGLE-CHIP USB TO UART BRIDGE. Available at https:
//www.silabs.com/documents/public/data-sheets/CP2103.pdf. (Visited
on 06/12/2017).

[17] Silicon Labs. Any-Frequency Precision Clock Multiplier/ Jitter Attenuator.
Available at https://www.silabs.com/Support%20Documents/TechnicalDocs/
Si5324.pdf. (Visited on 06/12/2017).

[18] JDSU. OLA-54/55 SMART Optical Level Attenuator. Available at http://
jdsu . fiberoptic . com / resources / SMART _ ola55 _ ds _ fop _ tm _ ae . pdf.
(Visited on 06/16/2017).

[19] Xilinx. VCU110 Evaluation Board. Available at https://www.xilinx.com/
support/documentation/boards_and_kits/vcu110/ug1073-vcu110-eval-
bd.pdf. (Visited on 06/12/2017).

56

https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
https://www.silabs.com/documents/public/data-sheets/CP2103.pdf
https://www.silabs.com/documents/public/data-sheets/CP2103.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5324.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5324.pdf
http://jdsu.fiberoptic.com/resources/SMART_ola55_ds_fop_tm_ae.pdf
http://jdsu.fiberoptic.com/resources/SMART_ola55_ds_fop_tm_ae.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu110/ug1073-vcu110-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu110/ug1073-vcu110-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu110/ug1073-vcu110-eval-bd.pdf

A
Python Scripts

The Python scripts are made for generating any Vivado project which implements a
transceiver system for any BCH circuit. It starts off with an old project which were
tested to work but now has several files removed which are dependent on what kind
of BCH it should use, and those files are generated by the project-generating script.
It also makes a simulation project for each Vivado project.

project_generator.py The script which imports all the other scripts and gener-
ates new Vivado projects to separate folders. It starts off with searching a defined di-
rectory which contains all the BCH VHDL files. In that directory the sub-directories
should be named, e.g.,

t1_k247_n255
t2_k493_n511
t3_k993_n1023

so the script can read out the t, k and n. It uses the values to name components
such as the Compressors, Expanders and project names. After the project folder
has been made and the reference project has been copied, the common files

BER_calculator . vhd
BER_circuit_64_bit_input . vhd
compressor_buf fer . vhd
data_generator . vhd
exdes_TX_logic . vhd
FBERT. vhd
gtwizard_0_block_sync_sm_alt . vhd
gtwizard_0_descrambler_alt . vhd
gtwizard_0_scrambler_alt . vhd
i2c_master . vhd
reference_data_package . vhd
RX_synchronizer . vhd
TX_synchronizer . vhd
UART. vhd
VC709_I2C_inits . vhd

are copied over to the folder

/ import_these

while the files for the simulation project are copied over to

I

A. Python Scripts

/ import_these_loopback_f i les

The script then iterates over all FECs it found and sequentially generates the
following:

• Using tm_generator.py
Calls make_tm(k,n)
Returns the Transceiver Module

• Using bch_peterson_generator.py
Calls make_bch(k,n,t)
Returns a top module for the decoder.

• Using expander_generator.py twice
Calls exp_generator(IN_WIDTH, OUT_WIDTH, TX_VERSION)
Return one TX version and one RX version
Recalling the difference between the two:

body += " i f in_rdy = ’1 ’ and enable_in = ’1 ’ then "
. . . body code . . .

i f TX_VERSION:
body += "−− e l s e \n " + tab4 + "−−out_rdy_r <= ’ 0 ’ ; "

e l s e :
body += " e l s e \n " + tab4 + " out_rdy_r <= ’ 0 ’ ; "

• Using compressor_generator_v2.py twice
Calls gen_compressor(IN_WIDTH, OUT_WIDTH)
Returns the compressors for TX/RX

• Using encoder_generator.py
Calls enc_generator(k,n)
Returns the encoder top module which is based upon the file which was

generated with MATLAB. This version adds the error_ injection signal.
• Using exdes_top_generator.py

Calls (K_WIDTH, N_WIDTH, nr_of_transceivers)
Returns the top module. Here "exdes" is probably short for "example

design", and the module is based upon Xilinx top module.
• Using transceiver_module_tb1_generator.py

Calls tb_generator(k,n)
Returns the testbench.

ber_circuit_generator.py This script will generate the circuit that compares
two vectors and outputs the number of bits which differs.

At the top of the script the variable “IN_WIDTH = int(512)” should be changed
to a desired integer and be a power of two. Generates files are named, e.g.,

BER_circuit_64_bit_input . vhd

word_expander_output_data_generator.py Uses a list which has its size
defined by the variables INPUT_WIDTH and
INPUT_ROM_ROWS. The script iterates through a list of desired

II

A. Python Scripts

OUTPUT_WIDTHS. For each OUTPUT_WIDTH all possible combinations of
outputs an expander can generate are written to a file named, e.g.,

word_expander_package_for_D64_N1023 . vhd
which then can be used for simulations with the test-bench.

synch_pattern_randomizer.py This script was used to generate the data
which is sent out by the TX side at start-up. The data is used to tune the RX PLL
and is designed to be close to the ideal sync pattern “10101010...”, but the ideal
pattern contains valid 64b/66b headers and is therefore randomized instead. The
script however will not allow the same bit value appear more than three times in a
row, and will invert those bits in order to get the “best” frequency of the pattern as
possible without sending valid headers. At the end pf the script the vector is printer
out to the terminal.

compressor_tb_generator_v2.py Contains a function
gen_compressor_tb(IN_WIDTH, OUT_WIDTH) which simply generates a test-
bench for Word Compressors.

III

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Aim
	Approach
	Tools
	Thesis Outline

	Technical Background
	Field-Programmable Gate Array (FPGA)
	Look-Up Tables (LUTs)

	Physical Layer
	Physical Coding Sublayer (PCS)
	Physical Medium Attachment Sublayer (PMA)

	Differential Signaling
	Phase-Locked Loop (PLL)
	SerDes
	Encoding Schemes
	8b/10b
	64b/66b

	Forward Error Correction

	The Xilinx VC709 Development Board
	The Virtex XC7VX690T-2FFG1761C
	GTH Transceivers
	Xilinx IP IBERT Design
	Silicon Labs Si5324
	Xilinx IP Transceiver Example
	Fiber Optical Transceivers

	VHDL Implementation of the System
	Data Generator
	Integration of BCH Circuits
	The Encoder and Decoder
	Word Expander
	Word Compressor

	TX and RX Synchronization
	TX Buffer
	Bit Error Rate Tester (BERT)
	BER Calculator
	The BER Circuit

	Gearbox Module
	Reset Circuitry
	Transceiver Module
	TX System
	RX System
	Transceiver Top Module

	PC Communication
	UART
	The Real-Time Monitoring Software Using Qt

	I2C Communication
	Top Module
	Main Process

	Automatic Generation of Systems
	Testbenches
	Transceiver Module
	Word Expander
	Word Compressor

	Results
	Synthesis
	Implementation
	Experiment Equipment
	Results of the Experiment
	Real-Time Monitoring
	ASIC Power and Area

	Discussion
	VHDL Implementation
	Word Expander and Compressor
	The Data Generator and Scrambler
	The TX Compressor Buffer
	Top Module

	The VC709 Board
	Serial Communications
	The Si5324

	Project Development in Vivado
	Xilinx's Example Design

	Conclusion
	Goal Fulfillment
	Further Development
	Other Development

	Python Scripts

