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Abstract
Conventional vehicles burning fossil fuels are emitting CO2 emissions contributing to cli-
mate change. Therefore, electric vehicles are becoming more and more an area of interest
due to the need of lowering the CO2 emissions from transportation. This development
goes hand in hand with the rising awareness of greenhouse gas (GHG) emissions. The
Swedish government has set a goal to have a fossil independent vehicle fleet by 2030, and
since analysis made by the IEA indicates that the number of electric vehicles (EVs) are
growing in the country and globally, EVs will probably play a big role going there. More-
over, almost all major car producers have EV models and are investing in further research.

In this thesis we have analyzed driving and charging data for 15 EVs, all of them were
Volkswagen e-golf vehicles situated in Gothenburg, Sweden. The data sets have been
collected during the two time periods 1st of October to 22nd of January, and 11th of
Febrauray to 30th of May by the division of physical resource at Chalmers university of
technology. Our analysis focuses on driving and charging behaviour, including calcula-
tions of the energy consumption from both driving and charging the EVs. In order to
analyze the behaviours of the test drivers using the EVs, we have looked into how the
EVs have been driven through following parameters: number of trips; distance; as well as
how, where and how much they have been charged.

The results show clearly that the different EV test drivers, included in this study, have
different driving behaviours, which, for example, resulted in a broad range of energy con-
sumptions when driving. We also saw that there were variations in energy consumption
over periods of time, indicating that the drivers were able to handle seasonal variations
differently. It could be concluded that the charging load curves for the EVs showed strong
tendencies towards charging in the afternoon, directly at upon home coming. Further-
more, we also saw that all of EVs 1-5 and six of EVs 6-15 were charged simultaneously
during the maximum day of energy demand. In addition to this it can be concluded that
the analysis of possible shifting of charging showed a big potential for cost savings of
about 30 to 50 % during both test periods.

Keywords: data, Gothenburg, driving behavior, VW e-golf, smart grids, V2G, shifting of
charging, load curve.
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1
Introduction

The Paris agreement, which is the outcome of the climate conference in Paris (COP21),
states that the increase in global mean temperature should be kept well below 2 ◦C [1]. In
order to achieve a CO2 emissions reduction corresponding to less than 2 ◦C temperature
increase compared to pre-industrial levels [2], an increased amount of fossil free power
production and transportation modes will be needed. Although Sweden is aiming for a
fossil independent vehicle fleet by 2030 the transportation sector in Sweden represented
45.3 % of the national total emissions in 2011. Therefore meeting this goal will require
political incentives facilitating for alternative fuels and drive trains. An analysis done by
the international energy agency (IEA) suggests that electric vehicles (EVs) are increasing
steadily, both in a Swedish and global perspective. Sweden is part of the electric vehicle
initiative (EVI), which is a multi-government policy forum that includes countries with
the fastest growing number of EVs. For instance, the number of newly registered battery
electric vehicles (BEVs) in Sweden have increased from 1240 in 2014 to 2960 in 2015 [3], [4].

As a consequence of a substantial increase of EVs, extra pressure can be expected to be
put on the electricity system, where energy peaks probably will be more significant in the
afternoons than they have been before. Therefore additional knowledge regarding charg-
ing and driving behaviour will be of great importance for electricity operators maintaining
grid stability, for politicians to facilitate the implementation of adequate subsidies and
incentives, as well as for consumers affected by potential price fluctuations [5]. Analyz-
ing driving patterns of EVs also helps find out more about potential customers, needed
battery size etc., which are essential information for up-scaling of EVs in the market.
Furthermore, the data could also provide information regarding flexibility in the power
system through the concept of vehicle to grid (V2G), where the EVs can act as providers
of electricity when not being charged [6]. Charging and driving patterns can be provided
by mapping and measuring when, where and how much a number of the EVs are being
driven and charged.

1.1 Purpose and objectives
The main objectives of this thesis are to analyze and process charging and driving data
of 15 EVs in order to identify charging and driving behaviour, as well as energy use.
In more detail we look into how the cars are charged and driven which will include the
parameters: number of conducted trips and charging events; distance driven; SoC% level
before and after charging; as well as when and where the EVs are being charged dur-
ing the day. Furthermore, we also cover how much energy that is consumed, both when
driving and charging the EVs. The EVs are all Volkswagen e-golf cars, with an original
battery capacity of 24.2 kWh, which are situated at different locations in the Gothenburg
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1. Introduction

region, Sweden. The locations in which charging can take place are separated into three
categories: home charging; the test drivers workplace; or somewhere else where there is
a possibility to charge. GPS systems were installed in the EVs to provide position data,
whereas other data has been provided either through the home charging stations, battery
or both.

Charging and driving behaviour, as well as energy consumption can be used for calculation
of potential economical and environmental benefits. Furthermore, the behaviours are
useful when modelling the effects of scaling up the number of EVs in the Swedish power
system, as well as for examining if the EVs can be used as flexibility providers in a V2G
system. In that respect, the analysis of charging duration, when and where charging
occurs, as well as energy consumption are of great importance.

1.2 Background

1.2.1 What is an EV?
An electric vehicle is a car which has one or more electric motors, fuelled by electrical
energy stored in batteries or other energy storage devices. The idea of an EV is actu-
ally not a new one. The first electric cars have been already produced in the 1880s, but
mainly due to the low gasoline price, cars with internal combustion engine became the
major technology. Cars with an internal combustion engine are three times less efficient
than electric cars [12]. During the energy crisis in the 1970s and 1980s, EVs had a small
period of success, but they could not enter the mass market.

Therefore, it happens that one can say the market for EVs has mainly developed over
the last decade and is therefore a relatively new (mass) market, trying to provide a more
sustainable and clean technology for transportation. To promote the purchase of a new
Battery Electric (BEV), or Plug-in Hybrid Electric vehicles (PHEV) a lot of countries,
like the Netherlands and Norway, have introduced special tax schemes. The Norwegian
government combined tax schemes with free parking and permits to use bus lanes to give
incentive to its population to change to electric cars and thereby creating a traffic causing
less noise, air pollution, GHG emissions and congestion [13].

1.2.2 What different types of EV are there on the market?
There are basically four major technologies using electricity as a fuel for driving: BEV,
PHEV, Hybrid Electric (HEV) and Fuel Cell Electric Vehicles (FCEV).

The most common EV type is the Battery Electric Vehicle (BEV). BEVs have no internal
combustion engine, and therefore no direct emissions while driving. The batteries can be
charged at home, or public places that often support fast charging. BEV batteries have
a higher storing capacity compared to PHEV batteries, which is because PHEVs have an
internal combustion and electrical engine.

Plug-in Hybrid Electric Vehicles (PHEVs) can be charged by plug-in, regenerative break-
ing, which converts kinetic energy into electricity (in conventional cars this energy gets
lost), and their internal combustion engine, or be run entirely by electricity. Due to the
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1. Introduction

internal combustion engine as a back-up it is a very good possibility for longer travels.

HEVs basically save energy from regenerative breaking in a battery, but are not possible
to be charged by plug-in to an electric outlet [8].

Fuel Cell Electric Vehicles (FCEVs) are combining stored hydrogen, which can be refueled
within five minutes at the gas station, with oxygen from the air to produce electricity
and run an electricity-only motor. This technology does not have any tailpipe emissions,
whereas production emissions of hydrogen should not be ignored. Emission from hydrogen
produced by natural gas are comparable to Electricity production emissions by natural
gas, but produced by renewable energies like solar it is nearly emission-free [7].
The development of the electric car stock in the European Union (EU) has been stated
by the International Energy Agency (IEA) and can be seen in figure 1.1. PHEVs were not
present in the market before 2010. However are the new registration for BEVs (328,770
in 2015) in the EU higher than for PHEVs (221,810 in 2015). Even though increasing
registration numbers can be noted for every year, the market share of EVs is still just 1
% in the EU [9].

Table 1.1: Worldwide electric car stock (BEV and PHEV cars) in thousands by the IEA

2015 2014 2013 2012 2011 2010
BEV & PHEV cars
worldwide 1,256,900 706,77 383,09 179,230 60,650 12,480

International Energy Agency (IEA) stated that in 2015 a total electrical vehicle stock of
14,530 vehicles existed in Sweden, whereof 4,770 where BEV and 9,760 PHEV: In contrast
to this 210,330 BEVs and 193,770 PHEVs were registered in the United States, which sums
up to an Electric vehicle stock of 404,090 vehicles. PHEVs which have been introduced
in 2011 to the market are now the best seller in Sweden; but in the US BEVs are still
leading regarding new registrations [9]. The market share of electric cars, including BEVs
and PHEVs, has been 2.4 % in Sweden and 0.7 % in the US [9].

One of the main barriers for buying an EV is the lack of charging infrastructure. Therefore
the EU introduced an aggressive support program in 2015 to improve the infrastructure
of charging points and thereby built up a system which enables long distance traveling
by EVs. In 2015 there have been 161,802 slow charging points and 27,707 fast charging
points publicly accessible [9] in the EU.

Sweden applies tax breaks that resulted in higher purchase incentives for PHEVs (Mock
and Yang, 2014) [9]. The global electric car share in 2015 was above 700,000 for BEVs
and above 500,000 for PHEVs [9].
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1. Introduction

Table 1.2: Non-exhaustive electric vehicles with battery type, driving range (under normal non-
optimized driving conditions), and maximum optimized driving range [19]. Abbreviations used:
Li-manganese (LMO), Nickel-manganese-cobalt (NMC), Li-aluminum (NCA)

Model Battery Driving Range
Mitsubishi iMiEV 16kWh; Li-ion 85km (128km)
SmartFortwo ED 16.5kWh; Li-ion 90km (136km)
BMW i3 22kWh (18.8kWh usable), LMO/NMC 135km (130-160km)
Nissan Leaf 30kWh; Li-manganese 160km (250km)
Tesla S 85 90kWh, Li-ion 360km (424km)

BEV batteries have a higher storage capacity than PHEV batteries, which results in a
higher possible driving range, while never producing tailpipe emissions. Most BEVs can
go 95 to 130 km with one battery charge, which fits the weekday driving distance of 69
% of US citizens [7].

The daily driving distance in the Nordic country ranges between 32 km in Sweden up to
42.8 km in Finland, which can as well be fully met with the battery charge of a common
EV model [15]. But it is important to consider that there can be many days per month
which have a daily driving range above the battery charge limit of a common EV model.

1.2.3 What are the different charging types?
There are two different charging types: home and public charging. Then there is also
several different charging technologies that can allow charging at different power levels
and thereby charge at different speeds both at home and in public places. The different
charging technologies are divided into four categories (level 1, level 2, level 3 and level 4).
Furthermore it can be said that faster charging can be used for the beginning of the bat-
tery charging process (1-80 % SoC) but not towards the end (> 80 % SoC). Above 80 %
SoC [10] it therefore makes little sense to charge due to a insufficient time-charging-ratio.
Some public charging stations even cut you off at this percentage [10].

There are big differences between type 1 and type 2 (level 1: up to 1.9 kW, level 2: 7.2 to
19.2 kW [23] using AC electricity) charging, which is proposed by the EU Commission to
be the standard, compared to the fast DC charging (up to 120 kW) by Tesla Motors [24].
Using Teslas technology, a 85 kWh battery could be charged in half an hour compared to
12-24 hours by type 1, based on a research article by the University of Uppsala. But the
authors, Knutsen and Willén, point out that regular use of fast charging points can have
a negative effect on the battery life performance.

One point which is essential to keep in mind, is that every EV has an upper level for the
supported rate of energy transfer. This upper level is defined with 3.6 / 7.2 kW for the
Volkswagen e-golf, which has been used as a test vehicle in this study. Other cars, like the
Tesla Model S have a higher supported rate, at 10 / 20 kW [10]. Therefore it is important
to keep in mind that level 3 and level 4 charging stations can be just use by a minority
of the EVs on the market right now.
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Level 1 and level 2 charging

PHEVs on the market right now are not able to use fast charging. A Tesla can add
approximately double as many ”miles of charge” within 30 minutes than an e-golf by
Volkswagen, which has been used in this study. Fast chargers are not that common yet.
Level 2 chargers, which use 220 V, have already built up a good infrastructure network
in Europe. The same can be said for level 1 chargers, which use 110 V, in North America
[10]. Charging stations which can be installed at home follow the level 1 and level 2
standard.

It is possible to charge the battery of an EV in 4-8 hours by using 240 V (Level 2). A
PHEV battery can be charged with an output of 120V (Level 1) in 8-12 hours, which
is perfect for overnight charging. Level 2 is common in the EU, whereas Level 1 only
exists in the US. The difference in charging time is based on the different battery sizes.
The most common electric car types including information on battery and driving range
information is presented in table 1.2.

Level 3 and level 4 charging

To provide faster charging of the EV battery level 3 (DC fast charger) and level 4 (Tesla
Supercharger) chargers have been introduced. In contrast to level 1 and level 2, which
provide AC electricity, level 3 chargers provide DC electricity. This becomes possible due
to by-passing the on-board charging of the EV [10]. Fast charging is defined by a rate
of energy transfer >40 kW. There are several different fast charging technologies, two of
them will be introduced in the following.

SAE Combo charging standard, also known as CCS (abbreviation for Combined Charging
system). CCS is mainly used by German and US car producers. This standards has a
max power output of 62.5 kW.

CHAdeMO (abbreviation for "CHArge de MOve"), which is also called DC fast charger,
has a max power output of 50 kW. It was most common until European and American
car producers teamed up for promoting the CCS standard. This standard has also been
adopted by the EU as main standard due to car lobbying. In addition to that has Teslas
supercharger a max power output of 120kW and is the fastest possibility on the market
as of today to charge an EV.

1.2.4 Why is charging behaviour interesting?
Charging behaviour is of interest for several reasons like over night charging, special night
tariffs etc, as home charging is most common in the EV community. About 98 % of the
Americans prefer over night charging (including work charging at work days) [16]. There
is a strong preference for home charging, for example in the Netherlands [18].
Some Energy providers have special EV electricity bills, called dynamic pricing or "time
of use" (TOU) electricity rate to use charging on low demand times to prevent stress on
the system due to over-demand (morning and evening). Portland General Electric is one
of the electricity operators who provide such a tariff to their customers [17].
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Some EVs have fast charging capability, which is available for level 3 and level 4 charg-
ers. Some public chargers are for free, installed by governmental agencies. By mapping
and registering the charging impact on the electricity system it could be seen, if future
problems might be able to prevent by the introduction of EVs on a high scale.

1.3 Previous studies
International outcomes of previously conducted studies regarding driving and charging
behaviour of electric vehicles will be presented in the following section.
All previous studies presented in this section used EVs out in the field, to obtain real world
data. Nevertheless all testing periods were different regarding time span and included test
cars.
For obtaining the data different methods have been used in previous studies, whereas it
can be stated that the basic idea behind it is similar.
The biggest field study included in the literature research consists of 125 million miles of
driving by 8300 cars in 22 US regions over three years, conducted by the Idaho National
Laboratory [16]. The study calls itself the "largest plug-in electric vehicle infrastructure
demonstration in the world". The obtained data included charging data from PHEVs.
Whereas the smallest study found was done by the University of Utrecht gathered data
from 965,414 charging transactions of Dutch EVs during January 2013 and April 2014
[18]. The study was performed on a national level and included data from 67% of the
EVs registered in the Netherlands in 2014. In 2014 46,111 EVs have been on the streets,
which results in XX EVs participating in the study [22]. For doing so measurements and
interviews with 16 Dutch EV drivers have been used to collect subjective and objective
measurements.

1.3.1 Electric vehicles as part of a Renewable Energy System
An analysis performed by the US Department of Energy’s (DOE) Smart Grid Investment
Grant (SGIG) program looked at the possibility of EVs to be used as a potential source
to smoothen power peaks in a renewable energy system (RES), which has huge shares
of fluctuating and hardly predictable technologies like wind and PV power, in the near
future. Furthermore the introduction of EVs on a high scale can be seen to provide de-
mand side flexibility, as a part of an distributed energy system, which is required for the
implementation of a smart grid.The study showed that with a 25 % per year growth in
usage at public charging stations, utility investments could have a seven-year payback,
which would be a financially attractive business case for some utilities [14].

PEVs are likely to play an important role in energy and environmental sustainability, such
as by helping to reduce greenhouse gas emissions and dependence on foreign oil. Some
of those benefits may be enhanced through demand response (for example, shifting PEV
charging from on-peak hours to off-peak hours). A lot of studies (e.g.: [[14],[16],[17]])
have been conducted in the US on the topic of EVs. These came to the conclusion that
most home charging has been done overnight during off-peak periods. One of the main
results from this is that the customers experience high bill savings due to special off-peak
electricity contracts [17]. Therefore about 76 % of charging in the US is performed during
off-peak [14].
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To achieve such financial savings for the consumers and taking stress from the energy
system by shifting the charging cycles of the EVs from the peak to off-peak times, it is
proposed by Spoelstra, from the Univerity of Utrecht, [18] to educate EV drivers, ideally
already before the purchase of the electric car, to built a behaviour, which is in line with
these findings.

1.3.2 The Nordic region
Looking at the Scandinavian countries the "State Grid Electric Power Institute" found
out, in cooperation with the Technical University of Denmark, that the daily driving dis-
tance ranges from 32 km in Sweden to 46.8 km in Finland. A majority of the EVs in
Scandinavia have a driving distances are below 40 km per day. In particular 64 % of the
vehicles in Denmark and Finland, as well as 73 % of Norway and Sweden. These distances
can be supported by all EVs available on the market. Tesla cars and future batteries have
higher ranges. During the weekends are 75 % of all driving distances less than 40 km in
Denmark, Norway and Sweden, with 66 % in Finland [15].

To ease out the peaks and prevent fluctuations in the Nordic region charging should be
mostly done during off-peaks, which would include home charging overnight and public
charging and semi public charging at work places between 10:00 and 15:00 with solar
power [15].

1.3.3 Range anxiety
The researchers Knutsen and Willén from the University of Uppsala hav been focusing
on how to decrease range anxiety of today´s EV drivers, which has been defined by Chris
Moore from ”The Washington Post” [11] as ”the state of fear drivers experience from
knowing that their battery could run out of charge and strand them far from a recharging
station”.

Knutsen and Willén came to the conclusion that more charging stations and faster charg-
ing are essential in the early adoption phase in the present infrastructure of the fleet
state of EVs, rather than increasing the battery size or decreasing the minimum state of
charge (least amount of power left in the battery). By investing in an increased coverage
of charging stations, the easiest solution to implement has been favored, as changes in
battery size and fast charging stations are still quite expensive changes.

These conclusions, made by Knutsen and Willén, have been drawn from today´s perspec-
tive. By continuous development of batteries a finely woven EV charging infrastructure
might become less necessary and a bad investment.

1.3.4 Charging behaviour
We need to distinguish between home charging, public charging (car parks, shopping
malls) and semi-public charging (work place). With most people preferring home charg-
ing according to University of Utrecht [18].
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1. Introduction

The study conducted by the Idaho National Laboratory is based on data, which has been
acquired during a three year period and includes almost 125 million miles of driving and
6 million charging events. This is one of the biggest data collections on EVs in the US,
conducted until now. The purpose was to find out information about the demand for
charging stations and the charging behaviour of EV drivers..
Nearly all charging events, investigated in this study show that, 98 %, have been per-
formed at home and work during the week. Most people, or at least 77 %, did most of
their away-from-home changing at three or fewer locations, and much of the away-from-
home charging can be identified as workplace charging (semi-public charging during the
days) [16].

According to Banez-Chicharro, who published a study on "Smart Vehicle to Grid Inter-
face Project: Electromobility Management System Architecture and Field Test Results"
in 2009, and Kristoffersen, who focused on "Optimized charging of electric drive vehicles
in a market environment" in 2013, charging occurs more often during the day. Further-
more by using private, as well as public and semi-public charging stations for charging
the stress on the electricity system can be lowered and peak problems reduced.

In a Dutch study, Spoelstra found out that most of the EV drivers, never used a public
charging station, or just once during the time of the research. Just about half of the
drivers, 46 %, only used one charging station (home charging), whereas 41 % used two
to five different charging locations, which might most likely be home charging combined
with work charging, as public charging is not that popular in the Netherlands [18].

Spoelstra performed a study focusing on the EV drivers charging behavior in the Nether-
lands and came to the conclusion that more than 62 % of EV drivers were able to accom-
plish their daily driving needs on one fully charged battery.

1.3.5 Specific energy use
Using average data for energy use by EVs is not a good option, as the specific energy use
can range a lot based on different factors like road categories (e.g. urban or cross-country
travels), climate conditions (e.g. winter and summer, as well as different climate regions,
e.g. Scandinavia compared to South East Asia), or EV driver behaviour (e.g. progressive
breaking). In the following paragraphs, the outcomes of studies which investigated these
differences will be communicated.

A German study, by the Institute for Energy and environment (IFEU), investigated
the electricity consumption of BEVs and PHEVs separately for different road categories.
Hereby, they included the categories urban, extra-urban and motorway [26]. Looking at
the BEVs it can be seen that the energy use for urban and extra-urban is nearly equal (ur-
ban: 20.4 kWh/100km, extra-urban: 20.8 kWh/100km). The highest energy consumption
occurs for BEVs on motorways, which is equal to 24.9 kWh/100km [26]. In comparison to
this, PHEVs have an overall lower energy consumption. The highest energy use appears
in urban areas with 17.8 kWh/100km. The energy use on extra-urban roads is 33% lower,
compared to the urban energy use, with 10.7 kWh/100km. The lowest energy consump-
tion for PHEVs regarding road categories can be found for motorways, with a value at
3.2 kWh/100km [26].
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A Nordic study aims for testing electric vehicles in Nordic conditions to give the con-
sumer a realistic range estimate for EVs.
The range of an EV gets diminished by 27 % when the temperature is -20 °C compared
to +23 °C. By using additionally battery powered cabin heating this range reduction can
increase up to -76 % [25].

The British organisation "Energy saving trust" came to the conclusion that energy use
is depending on drivers behaviour. By being part of the organisation´s EV Eco-driving
training, the participants reduced their electricity consumption on average by 16 % which
resulted in a 20 % higher driving range [27].
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2
Data and method

Charging data from home charging stations and driving data in sets of 15 EVs containing
several parameters for a number of trips have been processed and analyzed in this study.
The collection of data has been conducted by the Division of Physical Resource Theory
at Chalmers University of Technology during two time periods: one from 1st of October
2015 to 22nd of January 2016, including ten of the EVs denoted EV 6-15; and the other
from 11th of February 2016 to 30th of May, where the other five EVs denoted EV 1-5 are
included. Each data set is two dimensional in which rows represents home charging events
or trips whereas the columns represents each parameter, respectively. The trips were reg-
istered from when the EVs were put in motion to when they were stopped. Though, stops
shorter than five minutes were not registered as actual stops so that one continuous trip
could contain stops shorter than five minutes. Home charging data has been collected
from the home charging stations, whereas the trip data was collected through a common
GPS system together with sampling from an on-board-data (OBD) system. The home
charging stations and other equipment gave the parameters presented in table 2.1.

Table 2.1: Specification of from where each parameter is extracted.

Parameters from home
charging stations

Parameters from GPS
and OBD system

length of time length of time
charging duration latitude coordinate of vehicle at start and end of trip
charging energy (kWh) longitude coordinate of vehicle at start and end of trip
vehicle ID average velocity

vehicle ID
trip distance
pause before and after trip
battery SoC%* level at start and end of trip
outdoor temperature at start and end of trip

* SoC% levels with an accuracy of 0.4 %

The major strengths of the data are that it is extracted from real life charging and driv-
ing, as well as that the EVs are of the same type and situated in the same region. This
allows for a fully comparable analysis of the charging and driving behaviour connected to
respective EV. Though, the fact that only 15 EVs are included possibly makes cumulative
analyzes less reliable. The EVs used by the test drivers were all VW e-golf cars, which
is a BEV with a battery capacity of 24.2 kWh. See figure 2.1 below for an illustration of
the battery system and electric drive of the e-golf.
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2. Data and method

Figure 2.1: Specification of components of the VW e-Golf battery system and electric drive
[21].

In our work we have used the parameters included in table 2.2. To be able to process
data the numerical calculating program MATLAB has been used, where the data sets
and their parameters have been imported and sorted into specific arrays. However, trips
that contained errors were removed in the process of sorting the data. The errors that
we eliminated were: trips with a gain in SoC%; unrealistic outdoor temperature (e.g.
-272 ◦C); and empty data points. This data was removed in order to prevent errors in
the calculations of, for instance energy consumption and daily mean outdoor temperature.

Table 2.2: Parameters that have been used in this thesis.

Parameters
vehicle ID length of time
latitude coordinate of vehicle
at start and end of trip battery SoC% level at start and end of trip

longitude coordinate of vehicle
at start and end of trip trip distance

charging duration outdoor temperature
charging energy (kWh)

We were able to see the charging behaviours through analysis of the following: number of
charging events; charging location; SoC% when starting and ending charging; as well as
hourly charging load curves over a time period of a day (00:00-23:59). Finding charging
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2. Data and method

events in the home charging data was straight forward since each row in the data were
a charging event. However, the SoC% difference in between trips had to be analyzed in
order to find charging events in the trip data: if the SoC% difference was positive we
assumed a charging event.

Regarding the charging locations we connected the coordinates of the EVs with the cor-
responding charging events, whereupon ”home”, ”work” and ”other” were chosen as cate-
gories for charging location. In order to find the "work" charging coordinates we analyzed if
the EVs have been charged repeatedly at one place that could be identified as a workplace.
The coordinates of "home" were given, whereas "other" included charging coordinates of
any other place than the previous two. Finding SoC% levels were not so cumbersome
using charging events, whereas load curves demanded more work. The basic idea to es-
timate load curves over a time period of 24 hours was to find during what time charging
was needed. Starting with start time points of the charging events, given energy of charge
(Echarg) and charging power (Pcharg), the end time points (tcharg,end) were calculated with
equation (2.1). A charging power of 3.4 kW was used for home charging, since it was the
most common charging power at the home charging stations. For all away from home
charging events a charging power of 2.2 kW was assumed.

tcharg,end = tcharg,start + Echarg

Pcharg

(2.1)

A very important side note here is that calibration was needed between the charging
events in home charging and trip data to be able to convert a change in SoC% to kWh for
the charging energy in the trip data, which is due to the fact that there are losses during
the charging process. For further specification of the calibration process see appendix A.1.
With a calibration value for SoC% difference to kWh conversion for the charging events
in the trip data all charging end time points were calculated. Specifically for calculation
of charging end time points for charging events in the trip data, the energy of charge were
now given by equation (2.2) instead of directly from the home charging data, since the
SoC% values had to be converted to kWh. Here the calibrated value 31 kWh was used to
convert from SoC% to kWh, in accordance with the result in the calibration process.

Echarg = Echarg,SoC%−>kW h = ∆SoC% ∗ 31 (2.2)

The next step in the process of generating load curves included to separate the power
needed at every hour over a certain number of days in matrices, in which the rows repre-
sents the hours and columns the days. The matrices were used to plot both the average
load curve over all days, as well as maximum load curves for a specific day where the power
or energy were at their maximums. Observe that a constant charging rate has been as-
sumed in all charging calculations, in table A.1 in section A.1 we confirm this assumption.

Regarding the driving behaviours we analyzed number of trips per day, total number of
trips, distance per day, total distance driven and energy consumption. The per day val-
ues were possible to extract through looping of the date parameter accumulating the trip,
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2. Data and method

distance and energy values separately for each day. Note here that trips that were ended
past midnight were registered to the day before 00:00. The energy values were calculated
with a battery capacity of 24.2 kWh, corresponding to a SoC% difference of 100, and in
accordance with the assumptions of linear discharge and conversion from SoC% difference
to kWh.

Regarding the shifting of the EV charging, values from the historic Nordpool data has
been used [28] for the analysis. By comparing different strategies with the status quo
potential cost savings related to dead-time, SOC values and start charging times have
been calculated.
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3
Results

This part will begin with the sections driving (3.1) and charging behaviour (3.2). The
third section presented here is energy use (3.3), that includes the consumption of energy
from driving, and the final section is presenting cost savings due to shifted charging time
(3.4).

3.1 Driving behaviour
A major part of explaining charging behaviour is of course how individuals are driving
since more driving means more charging, and from here on we will go into detail regarding
driving behaviour. In figure 3.2 we show the number of trips, both in per day and total
values. We see that there are several of the EVs test drivers that have taken over ten trips
during their maximum day. These are also the ones with the highest average number of
trips per day with the exception of EV 2 and EV 13, which have equal average values
as EV 4, EV 9 and EV 14. With the exception of zero trips during a day, which is
not included in figure 3.1, there are four vehicles that drive a minimum of two trips per
day whereas the rest only are driving one. These values will be of further interest when
analyzing distance driven, which will be covered next.
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Figure 3.1: Min, mean, median and max values for the number of trips taken per day when
driving, excluding days of zero trips conducted.
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Figure 3.2: Total number of trips taken for respective EV over the entire time periods.

The distance per day when driving as well as total distance driven is illustrated in figure
3.3 and 3.4, respectively. An example of different behaviours is, for instance that the
number of trips, both per day and in total for EV 15 are almost equal to the number
trips conducted by EV 14. But EV 14 has been driven about 25 % more km’s in total
and 10 % more in average per day. The difference in total and average values between the
two EVs is due to that the number of days that trips have been conducted vary, hence
affecting the total value. Though, it is clear that those EVs (EV 2, EV 3 and EV 8) that
have the highest average km per day also have the highest total values.
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Figure 3.3: Minimum, mean and maximum values for each EV’s distance driven in km per
day when driving, excluding days of zero km driven.
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Figure 3.4: Total distance driven for each EV in km over the entire time periods.

Furthermore, regarding figure 3.3 one can see that EV 2 has the highest average distance
per day when driving, which is about 90 km per day. This value is more than double
than several of the other EVs, where the lowest one (EV 7) has been driven about 30 km
per day on average. This shows quite a difference in driving behaviour between the EVs.
In contrast to that, excluding the high extremes, about 80 % of the EVs have an average
driving range between 30 and 60 km per day, which shows a similar driving behaviour for
the majority of the EV test drivers. This behaviour can also be seen in figure 3.4.

3.2 Charging behaviour
An interesting and important part of the charging patterns is to evaluate how frequent
the EVs are being charged.
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Figure 3.5: Total number of charging events for respective EV over the entire time periods.
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The results in figure 3.5 are straight forward where EV 2 stands out with twice or more
charging events compared to the majority of all other EVs. Moreover, except EV 2, all the
EVs are distributed almost evenly in the interval from 50 to 150 charging events, which
is confirmed by the calculated average value of 102 (EV 2 excluded).
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Figure 3.6: Average number of charging events per 50 km driven for each EV.

Since coordinates were given for each home charging event and trip we were able to see
where each charging event occurred. In figure 3.7 the distribution of charging locations,
separated in the three categories work, other and home, is presented for each EV. If the
number of charging events at the workplace are zero it could be that it has been hard to
localize any reasonable work place, the test drivers does not has possibility to charge there
or simply did not even though they have the option. Most of the EVs have been charged
to a large extent at home spanning from 68 to 99 % of their individual charging events.
There is only one EV (EV 10) that has been charged less home than away. Specifically,
EV 10 has been charged 89 % of the cases at the test driver’s workplace. For four of the
EVs (EV 1, EV 2, EV 8 and EV 10) it is clear that the workplace is used for a substantial
amount of charging.
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Figure 3.7: Charging distribution for respective EV where three charging location alternatives
have been included: At the workplace, home or any other location than the previous two.
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To gain a deeper understanding of the charging behaviour of EV test drivers, the SoC%
levels are an important factor. Especially, the SoC% levels when starting and ending
charging are interesting since these give information regarding the critical level of battery
charge for the drivers. With the critical level we are able to see where each driver feels
the need for charging in order to feel secure. Furthermore, these SoC% levels also points
out the comfortable level of charging, i.e. if some drivers care for the battery more than
others and are charging only in a certain interval. For those with the possibility to charge
at the workplace it could also be that they charge because it potentially is for free. Hence,
they will take the opportunity to charge even though a substantial amount of energy is
left in the battery. The start and end SoC% values of charging for each EV are given in
figures 3.8 and 3.9, where the probability of that charging occurs in 20 % intervals from 0
to 100 % is plotted. The probability for starting charging at 0-20 % is in general always
below 0.1. We also see that most of the charging starts at levels in the interval of 20-80
%, even 40-80 % if excluding some of the EVs. Regarding the end charging levels the
picture is clear; almost all charging ends at levels in the interval 80-100 %.
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(a)

(b)

(c)

Figure 3.8: Distribution of SoC% values when charging is started for all EVs.
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(a)

(b)

(c)

Figure 3.9: Distribution of SoC% values when charging is ended for all EVs.

21



3. Results

In figure 3.10a the average charging load curves for respective EV have been accumulated
spanning hourly from 00:00 to 23:59, whereas figure 3.10b illustrates charging load curves
during the days when maximum energy and power are demanded. For the latter it
is noteworthy that EVs 1-5 have been separated from EVs 6-15 since their respective
data sets originates from different time periods, thus we can not know if the day of
maximum power or energy demand in one of the sets would occur simultaneously as the
corresponding day in the other set. However, this is not a problem when accumulating
the EVs average values since they all have the same time base (00:00-23:59).
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Load curve during an average day for all EVs
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Load curve during a day with max energy for EVs 6-15

Load curve during a day with max power for EVs 1-5
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Figure 3.10: (a) Average charging load curve in kWh/h accumulated from all EVs over all
days. (b) Charging load curves in kWh/h during days of maximum energy and power demand.
The black dotted line is the same load curve as in the (a) figure, blue is for max power connected
to EVs 6-15, purple is for max energy also connected to EVs 6-15, green indicates the load curve
of maximum power for EVs 1-5 and red the load curve of maximum energy for EVs 1-5. Both
(a) and (b) includes a home and away charging power of 3.4 and 2.2 kW respectively.
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These charging load curves shows a strong tendency towards charging in the afternoon,
with a maximum around 19:00. As seen before in figure 3.7 most EV test drivers charge
their EV at home most of the times, and since they work during the day charging directly
at upon homecoming seems logical. Furthermore, it is interesting to see that all of EVs
1-5 are plugged at the same time during maximum power demand (17 kW), whereas the
maximum power demand (23.8 kW) for EVs 6-15 indicates that only seven of them are
plugged in simultaneously. In figure 3.10a specifically there is a smaller peak around
08:00 which probably could be related to charging at the workplace. Note that 3.4 kW
and 2.2 kW have been assumed as home and away charging power, even though there
were a few away charging events where higher charging powers were used. Regarding the
energy consumption when charging, we found that during the average day 120 kWh were
consumed by all EVs. At the day of maximum consumed energy EVs 1-5 consumed 122
kWh, whereas EVs 6-15 consumed 153 kWh. Though, for the day of maximum power the
energy consumption was calculated to 86 kWh for EVs 1-5 and 124 kWh for EVs 6-15.

3.3 Energy use
Figures 3.11 and 3.12 shows the energy consumption in the form of SoC% per day and
accumulated numbers. Some SoC% values are above 100 % indicating that the vehicle
has been charged at least once during the day, probably twice since it is not possible to
make use of 100 % of the battery’s capacity. Note here that all EVs use at least 70 %
during their busiest day.
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Figure 3.11: Minimum, mean, median and maximum energy consumption from the battery in
kWh per day for each EV. Both kWh and SoC% axes are included in the diagrams, these are
linearly converted where 100 % is equal to 24.2 kWh.
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Figure 3.12: Total energy ccnsumption from the battery in kWh for each EV over the entire
time periods. Both kWh and SoC% axes are included in the diagrams, these are linearly converted
where 100 % is equal to 24.2 kWh.

There is quite a strong correlation between distance driven and consumed energy since
the EVs (EV 2, EV 3, EV 8 and EV 14) that have been driven the most also have the
highest consumption. Moreover, this is true for the rest of the EVs too, although with
some deviations. For instance EV 7 still has the lowest number, but in more competition
now. Looking at the total distance driven and consumed energy EV 4 and EV 5 consume
differently but drive equally long. Here EV 4 consumes quite a bit more than EV5 but,
as mentioned, has been driven almost the same distance. By this it can be clearly seen
that the driving behaviour has a substantial influence on the energy consumption of the
EV. As a side note we can address the fact that mean and median values differ in not
only figure 3.11 but also 3.1 and 3.3, suggesting that the values not are evenly distributed
between the maximum and minimum ones.

As already stated in the comparison between distance driven and energy consumed there
are variations in how much energy the different EVs consume. Therefore further analysis
on how energy consumption changes over the time periods have been included, see figures
3.13 and 3.14. More specifically the data points for each EV have been plotted together
with a linear fit to be able to distinguish trends of consumption. Looking at all these
figures there are quite strong tendencies towards higher energy consumption when reaching
winter. There are also differences between the test drivers as they consume differently
during the same time period. However, as the energy consumption changes over the
time period we can see that some drivers consume more evenly than others. Therefore
a test driver can be a high consumer in the summer or autumn but low consumer in
winter. Basically, the increase in energy consumption for individual drivers span from
25 to over 100 %. Since temperatures fluctuations could occur during seasons yielding
the same temperature in, for instance autumn and winter we also have considered energy
consumption variance relative to daily mean outdoor temperature, see figures A.2 and A.3
in appendix A.2. Here we saw almost the same behaviour with around twice the energy
consumption at the coldest temperatures compared to the warmer ones.
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Figure 3.13: Data points and linearly fitted lines of driving consumption of energy relative to
time of year for each EV.
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Figure 3.14: Comparison of the linearly fitted lines illustrating driving consumption of energy
relative to time of year for each EV.
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3.4 Cost savings due to shifted charging time
The first step in this analysis has been to compare plug in and charging time to get
to know the time when the car is actively charged vs. the time the car is plugged in
(nowadays the charging starts as soon as the car gets plugged in). Dead time is defined as
the hours where the electric vehicle is plugged in, but not charged. This is due to the fact
that the EV car battery has already been completely charged. Long dead time results
in a big potential cost saving for the EV driver. As the EV charging time is bigger than
the plug-in time this means that the car could have been charged during a shorter time
period, e.g. during the night where the electricity price is on average lower, instead of
during the afternoon, which is the status-quo in this analysis.

3.4.1 Electricity curve and prices in SE3
The region of Västra Götaland, where the EV test data has been collected, is located in
SE3 of the Nordpool electricity price region. In the figure 3.15, which is shown below,
the electricity price per €/MWh can be seen for the EV test periods from October 2015
to May 2016. The electricity curve of Sweden is also dependent on the electricity produc-
tion and usage of its neighbour regions like SE2 (north of Stockholm) and SE4 (south of
Gothenburg). Furthermore the electricity system of Sweden is nowadays interconnected
due to electricity trade with e.g. Denmark, Norway and Finland. This makes it possible
for the whole Nordpool region to use e.g. cheap overproduction wind energy from Den-
mark.

Figure 3.15: Average Nordpool electricity price for SE3 in the test periods autumn 2015 and
spring 2016

In addition to the monthly average electricity price in figure 3.15, the average electricity
prices for each hour of the day can be seen in table 3.1. The values have been calculated
separately for both test periods autumn 2015 and spring 2016, by using historic market
data extracted from Nordpool.
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Table 3.1: Average electricity price per hour for both test periods (autumn 2015 and spring
2016) in €/MWh

Autumn 2015
1.10.2015 - 22.02.2016

Spring 2016
11.01.2016 - 30.05.2016

0-1 h 19.3044 20.1131
1-2 h 19.0474 19.3806
2-3 h 18.3591 18.8379
3-4 h 17.9626 18.8111
4-5 h 18.0285 19.1599
5-6 h 18.6360 20.1073
6-7 h 19.6540 21.3413
7-8 h 21.8300 27.0406
8-9 h 28.6212 30.0111
9-10 h 31.5350 28.8374
10-11 h 29.7975 26.2370
11-12 h 27.7975 24.9305
12-13 h 26.0919 24.1423
13-14 h 25.4218 23.7380
14-15 h 24.9600 23.2124
15-16 h 24.8049 23.5721
16-17 h 26.0379 26.5936
17-18 h 30.8616 29.3149
18-19 h 34.6631 27.6575
19-20 h 30.3540 24.4282
20-21 h 25.0328 22.9396
21-22 h 22.6361 22.1621
22-23 h 21.3882 21.4595
23-24 h 20.3474 20.4826

Having a closer look at the electricity price values in the autumn test period it can be seen
that the lowest electricity price is on average 17.96 [€/MWh], while the highest electricity
price is on average 34.66 [€/MWh] throughout the day in test period autumn 2015. The
highest hourly value is nearly double as high as the lowest hourly value in autumn 2015.

The gap between minimum average, 18.81 [€/MWh], and maximum average, 30.01 [€/MWh],
electricity price per hour in spring 2016 is lower compared to autumn 2015. While the
lowest electricity price is in both cases between 3-4 h in the night, the highest can be
found between 8-9 h in the morning during spring 2016. In contrast to this the highest
hourly electricity price in autumn 2015 can be found between 18-19 h in the evening.

Looking at the electricity price per hour in spring (figure 3.19) it can be seen that only
seven days of the test period have an electricity price of over 50 [€/MWh] during one time
of the day. In comparison to this it can be said that in test period autumn, throughout the
day, (figure 3.17) about double as many days had an electricity price of over 50 [€/MWh]
during one time of the day. This could be explained by the ambient temperature differ-
ences between the test periods and the resulting higher electricity demand, as the higher
demand with constant supply results in higher prices.
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3. Results

Figure 3.16: Average electricity price [€/MWh] per hour in autumn test period

Figure 3.17: Electricity price [€/MWh] per hour in autumn test period throughout the day
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Figure 3.18: Average electricity price [€/MWh] per hour in spring test period

Figure 3.19: Electricity price [€/MWh] per hour in spring test period throughout the day
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Autumn 2015 probability distribution

Figure 3.20: Probability of SOC level when starting to charge in autumn 2015

Figure 3.21: Probability of charging time in autumn 2015
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Figure 3.22: Probability of plugin time in autumn 2015

Figure 3.23: Probability of dead time in autumn 2015
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Figure 3.24: Probability of start charging time in autumn 2015

Spring 2016 probability distribution

Figure 3.25: Probability of SOC level when starting to charge in spring 2016
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Figure 3.26: Probability of charging time in spring 2016

Figure 3.27: Probability of plugin time in spring 2016
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Figure 3.28: Probability of dead time in spring 2016

Figure 3.29: Probability of start charging time in spring 2016

In the test period autumn 2015 more than 84.4 % of the SOC level when starting charging
was higher than 60 % (figure 3.20), which relates to an average value of 77.55 %. Com-
pared to this the average value for the test period in spring 2016 is 63.32 % (figure 3.25).
Whereas the starting times for charging the EV are very similar, 15:59 h for spring 2016
and 15:45 h for autumn 2015. This shows a similar behaviour of starting the charging
when coming home after work in the afternoon. In 60 % of the cases the charging started
between 15-19 h in autumn 2015 (figure 3.24) and 44 % of home charging started between
14-18 h in spring 2016 (figure 3.29). The probability of dead time below 5 h is in both
cases around 60 % , which fits to the average values. The average dead time is 5 h 33 min
for spring 2016 and 6 h 31 min for autumn 2015 (figure 3.23 and 3.28).

Regarding plug-in time it can be calculated that this value has been more than one hour
higher for autumn 2015, 9 h 17 min, than for spring 2016, 8h 6 min. This could be ex-
plained by people leaving home later in the morning during winter compared to summer
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(figure 3.27 and 3.21). The values for charging time are nearly similar, 2 h 46 min for
autumn 2015 and 2 h 33 min for spring 2016.

3.4.2 Charging Strategies
Three different strategies have been evaluated in this analysis to calculate cost savings by
shifting EV charging using historic electricity price data from Nordpool.

• Status-quo is defined by the average start charging time and average charging time
calculated for both test periods.

• Strategy A is defined as shifting the average charging time for both test periods
to a start charging time of 12 p.m.

• Strategy B is an extension to Strategy A, which adds the de-charging of the EV
before charging it during the night (11 p.m. to 6 a.m.).

• Strategy C including ex-post and ex-ante uses historic Nordpool data to calculate
the cheapest possible charging price (ex-post), as well as the cheapest charging price
by using a cap, which starts charging as soon as the electricity price drops below a
set level (ex-ante).

Strategy A

Different strategies have been evaluated to look into possible cost saving effects of shifted
charging for electric vehicles. Strategy A is evaluating the usage of the cars electronic to
schedule the charging of the electric vehicle from 12 p.m. in the night to 6 a.m. in the
morning. This time has been set as the last time to be finished with charging to make
sure that people can go to work with a charged EV. This strategy aims to use the on
average lower electricity prices during night to save costs.

Firstly it can be said that only 2.71 % in the autumn 2015 test period and 2.49 % in
the spring 2016 test period of all home charging events are longer than six hours and can
therefore not be fit in the proposed charging period of strategy A. This results in the fact
that over 97 % of the home charging events could be conducted in the time window from
12 p.m. to 6 a.m. without compromising full charging of the battery.

To calculate the cost savings on a daily level the actual charging habits of the test drivers
(status-quo) need to be compared with strategy A. On average the electric vehicles, in
the test period of spring 2016, have a start SOC level of 63.32 % and start charging at
15:59 h. While the average charging start time was 15:45 h and a start SOC level of 77.55
% in autumn 2015.

Table 3.2: Average start time for home charging and the average SOC value when starting
home charging in the test periods autumn 2015 and spring 2016

Autumn 2015
1.10.2015 - 22.02.2016

Spring 2016
11.01.2016 - 30.05.2016

start_charg_SOC 77.55 % 63.32 %
start_charg_time 15:45 h 15:59 h
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Strategy B

An extension to strategy A would be the discharging of the electric vehicle during the
peak period of 16h to 23h in the evening, when coming home, and then charging during
the off-peak period between 23h to 6h in the night, as 7 h are needed to fully charge
the EV. Discharging the car first in the afternoon, would create a cost saving for the
household as it is basically purchasing electricity for the off-peak price while there is ac-
tually a peak price in that moment. This can be explained by the fact that the electric
vehicle is charged during off-peak in the night, where electricity is cheaper, while using
the electricity actually during the evening between 4 p.m. and 10 p.m. when electricity is
more expensive. In addition to this, the charging itself also saves electricity costs as it is,
generally speaking, cheaper to purchase electricity during night than during the afternoon.

Every day there is, due to different driving behavior (weekend/weekday, weather, outer
temperature, light hours etc), a different re-charging possibility. As displayed in table
3.3, on average the electric vehicle got home with a SOC of 63.32 % in the test period of
spring 2016. In this period 86.80 % of the cars had a SOC value >40 %. More than half
of the electric vehicles (61.28 %) had a SOC value >60 % when starting home charging,
and 20.18 % even had a SOC value >80 %. The average SOC level of the EVs in the
autumn 2015 test period where 77.55 %, which implies a definite possibility to use the
battery for cost saving de-charging in the evenings peak-period.

Table 3.3: Probability for EV battery SOC levels when starting the home charging in the test
periods autumn 2015 and spring 2016

Autumn 2015
1.10.2015 - 22.02.2016

Spring 2016
11.01.2016 - 30.05.2016

start_charg_SOC >40% 95.74 % 86.80 %
start_charg_SOC >60% 84.62 % 61.28 %
start_charg_SOC >80% 51.60 % 20.18 %

By using the average electricity prices per hour, which have been shown for both test pe-
riods in table 3.1, as well as the average SOC value and time when starting the charging
from table 3.2, the cost savings using this strategy can be calculated for both test periods
individually.

According to Energiföretagen [29] on average a Swedish citizen uses 32.9 kWh per day in
the household. This means that 31.86% in spring 2016 and 42.33% in autumn 2015 could
be provided by using the battery of the electric vehicle.

Strategy C

The third strategy uses ex-post pricing based on Nord Pool spot prices to calculate fi-
nancial gains by shifting the charging period from the afternoon to the night. Elspot
pricing from the Nordpool database for 2015 and 2016 in €/MWh has been used for the
calculations [28].
The cheapest electricity prices for charging the car 2:33 h in spring 2016 and 2:46 h in
autumn 2015, which are the average charging times for these periods, in the time window
of 4 p.m. to 6 a.m. have been collected for the first week of each test period and are
displayed in table 3.4 and table 3.5. By using these, the absolutely lowest charging price
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can be calculated for this week. Comparing these ex-post calculated charging prices to the
average price for charging after coming home in the afternoon (15:45 h in autumn 2015
and 15:59 h in spring 2016) the cost savings for each strategy related to the status-quo
can be extracted.

Table 3.4: The cheapest average price for 2:33 hours charging in week 2 during test period
spring 2016 [€/MWh]

11 Jan 12 Jan 13 Jan 14 Jan 15 Jan 16 Jan 17 Jan
19.58 18.79 18.82 22.21 22.99 24.30 20.61

Table 3.5: The cheapest average price for 2:46 hours charging in week 2 during test period
autumn 2017 [€/MWh]

01 Oct 02 Oct 03 Oct 04 Oct 05 Oct 06 Oct 07 Oct
10.29 7.07 11.03 12.39 12.81 11.27 11.16

The cheapest electricity prices in both test periods are usually between 2 a.m and 5 a.m.
As the range for the average electricity prices varies between 18.82 [€/MWh] and 24.30
[€/MWh] for the first week of spring 2016, and 7.07 [€/MWh] and 12.81 [€/MWh] for
the first week of autumn 2015 it is hard to give an average cost saving for this charging
strategy. When comparing table 3.4 and 3.5 it can be seen that the lowest electricity price
in the first week of the test period in spring 2016 is nearly equal to the highest electricity
price in the first week of the test period in autumn 2015. When comparing the absolute
highest and lowest average electricity price for the night charge period a difference be-
tween 17.23 [€/MWh] can be seen (24.30 [€/MWh] to 7.07 [€/MWh]).

The ex-ante cost savings are harder to approach, one possibility would be to set a cap
for the electricity price, with checking the price every hour. The car would then start
charging as soon as the price is lower than this cap. Assuming a cap of 20 [€/MWh] for
spring 2016 and 12 [€/MWh] for charging from 4 p.m. to 6.00 a.m. a cost saving from 24
to 62 % can be calculated. If the electricity price drops under the set cap the car starts
charging. The charging is done without any breaks, even if electricity price is no longer
underneath the cap in the following hour. If the price does not drop under the cap the
EV starts charging automatically so it is fully charged at 6 a.m. in the morning.

By comparing these two solutions it can be seen that the cost saving effects of the two
different approaches (ex-post and ex-ante) are delivering similar cost saving results. The
calculation has been performed for the average charging time of 2:33 hours in the Second
week of the spring test period and for 2:46 hours in the Second week of the autumn test
period.

Comparing the different strategies
When comparing all three examined strategies the cost savings per test period related to
the status-quo can be given.
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Table 3.6: Charging costs per strategy and cost savings compared to the status-quo in autumn
2015

Autumn 2015
01.10.2015 - 07.10.2015

status-quo strategy A strategy B ex-post ex-ante
0.27021 € 0.16976 € 0.0280 € 0.101881 € 0.102323 €

- 37.17 % - 89.64 % - 62.29 % - 62.13 %

Table 3.7: Charging costs per strategy and cost savings compared to the status-quo in spring
2016

Spring 2016
11.01.2016 - 17.01.2016

status-quo strategy A strategy B ex-post ex-ante
0.2421 € 0.16404 € 0.17438 € 0.182664 € 0.183749 €

- 32.24 % - 27.97 % - 24.55 % - 24.10 %

All in all, the charging costs per strategy and cost savings compared to the status-quo,
are displayed in table 3.6 for autumn 2015 and in table 3.7 for spring 2016. Shifting the
charging time results in cost savings of 37.17 to 89.64 % in autumn 2015 and 24.10 to
32.24 % in the test period in spring 2016.

Strategy A, which is the easiest to implement by the test drivers themselves has an average
cost saving of 32.24 to 37.17 % per day. The highest savings could be seen for strategy B
in autumn 2015 as a lot of electricity has been used from the battery for a very low price
compared to the actual grid price. Strategies to shift charging periods, using off-peak
electricity, as well as using the battery of the EV during peak are worth investigating
further.
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Discussion

In this thesis we have analyzed data of 15 EVs placed at different test drivers situated in
the Gothenburg region. The data consists of parameters related to driving and charging
split up in four data sets, two for each time period. In the analysis we have found
driving and charging behaviours including energy consumption, and in the process some
assumptions have been made. One assumption was that of a constant charge rate over the
entire span of battery capacity, which is true for lower charging powers like 3.4 kW used
during home charging. However, in some, very few away charging events higher charging
power has been used, and then assuming a constant charge rate is far from accurate.
Still, this assumption was considered valid due to the low number of such events. We
also assumed that SoC% is linearly convertible to kWh through a conversion factor which
was calculated through calibration when comparing home charging events in charging and
trip data. As we illustrated in the results this calibration was fairly good but not 100 %,
which could have something to do with uncertainty of SoC% values taken from the OBD
system, as well as the fact that we were not able to match all of the home charging events.
In the paper "Charging behaviour of Dutch EV drivers" published by Spoelstra from
Utrecht University in the Netherlands [18] it was stated that behavioural training and
knowledge about TOU-pricing is essential to stabilize the energy system and keep prices
low for the consumer. In our results it can be clearly seen that the a few EV test drivers
have a different driving behaviour than the majority. For instance, some test drivers con-
sumed more than others during the same time of the year. This could, however switch
depending on season were some of the drivers that consumed little in summer now had
problems maintaining that during winter. Generally, the consumption of energy increased
when reaching colder time periods. This can partly be explained due to that it is harder
to draw energy from cold batteries, which is a problem especially when the driving range
is short. Furthermore, a higher energy is needed to heat the car and its’ inside climate
at colder temperatures compared to moderate temperatures [20]. In conclusion from the
driving behaviour there are cases in which energy savings, as well as lower stress on the
electricity system potentially are possible. Therefore, education such as presented in the
Dutch report could be a solution in order to lower energy consumption, as well as even
it out among EV consumers. In the best case scenario this should possibly be realized
already before the purchase of an EV.

The charging behaviour of the test drivers indicated that most them charged at home,
with the exception of one EV (EV 10) that had been charged at the workplace in 89 % of
the cases. There were other EVs that also had been charged at the workplace, and this
is interesting since it will demand electricity during working hours (08:00-17:00) instead
at times during homecoming in the late afternoon. Thereby, the possibility of shifting
the peak demand of electricity probably increases with the possibility to charge at the
workplace. We also saw that most test drivers charged their EVs mostly when the bat-
teries had a SoC% level in the range of 20-80 %. The SoC% values when charging was
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ended were in the range of 80-100 % in almost all of the cases. Both these latter results
indicate that most test drivers prefer not to wear out the battery too much, as well as
not to gamble on the battery level risking a stop without the possibility to charge. From
the average load curve in the charging behaviour section one can see that charging tend
to occur mostly during the afternoon with a smaller peak in the morning. There is a
risk that this will coincide with behaviour of electricity usage by households resulting in
a very contra productive situation, when planning to use the EVs to stabilize the elec-
tricity system and ease out peaks. In order to make it work in a V2G system it would
be necessary to develop ”smart grid” technologies. Another, more near future solution to
ease out charging peaks during afternoons could for instance be to make use of incentives
for charging during off-peak hours. Furthermore, the possibility for charging at work or
other places outside home, might perhaps be larger in the future, which would shift the
majority of the EV charging events away from the peak-hours and stretch it out over
the day. The energy consumed through charging during a day varied depending on if it
was an average day of charging or maximum. Here we had to separate EVs 1-5 and 6-15
since their data was conducted during two different time periods, and therefore we did
not know if they could be charging at the same time. What we do know is that four out
of EVs 1-5 were charging simultaneously during their day of maximum energy, whereas
this were only true for six out of EVs 6-15 during the day of maxmimum power. Though,
there was one day were all of EVs 1-5 and seven of EVs 6-15 were charging but here the
charging energy demand was substantially lower during those two days. In conclusion it
seems that not all EVs in a system will be charged at the same time. Though, since we
had a small data set of only 15 EVs one should be careful drawing too big conclusions.
For the actual consumption when charging all EVs demanded 120 kWh during an average
day, whereas during the day of maximum energy EVs 1-5 and 6-15 demanded 122 and
153 kWh, respectively. Note that Evs 1-5 and EVs 6-15 consumed less energy during the
day of maximum power: only 86 and 124 kWh, respectively.

We have contributed with charging and driving behaviour including energy consumption,
which can be suitable to include in another context such as energy system modeling
including a V2G system. Another angle for continued work could be to use these analyzes
in the work of education charging behaviour, maybe as a before case. It has been shown
from one of the reports in the literature study that different stress is put on the energy
system in the week and on weekends by EVs. EVs are mostly driven during the week for
going to work, doing grocery shopping, picking up the kids etc., and less at the weekends.
In contrast to that energy usage by household are higher for the weekend than weekdays,
as people spend more time at home during the weekend, doing the laundry, watching TV
etc. By introducing more EVs into the energy system these two contrary effects could ease
out each other, creating a more even energy use during the week, which will be easier to
be provided by the usual energy production. Separating energy consumption in weekdays
and weekends is, however not something that we have covered but could definitely be
included in future research within this field.
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Conclusion

• The driving behaviour differed between the test drivers, some more than others,
and therefore also the energy consumption as seen in values regarding: kWh/day
(figure 3.11); total kWh (figure 3.12); and kWh/km/day (figure 3.13). Note that
the driving behaviour correlated to the energy consumption for the respective driver.

• The charging behaviour of the test drivers showed that most of them charged at
home, with some exceptions. One of the EVs (EV 10) had been charged at the
workplace in 89 % of all the cases, whereas the second biggest, EV 1, only 50 %.
Logically, the charging load curves in figure 3.10 showed a large tendency towards
charging directly at upon homecoming to the evening (17:00-21:00), although with
a smaller peak in the morning (07:00-09:00).

• With input from previous studies we concluded that educational and economical
(TOU pricing) measures could be useful for new and old EV drivers, in order to
lower energy consumption and change time upon charging.

• The analysis of possible shifting of charging showed a big potential for cost savings
of about 30 to 50 % during both test periods.

42



References

[1] COP21 - United Nations Conference on Climate Change 2015, Paris Agreement
Text , http://unfccc.int/files/meetings/paris_nov_2015/application/pdf/
paris_agreement_english_.pdf

[2] Reto Knutti, Joeri Rogelj, Jan Sedláček & Erich M. Fischer, A scientific critique of
the two-degree climate change target, Nature Geoscience, 2015

[3] International Energy Agency, Energy Policies of IEA Countries - Sweden 2013
Review, http://www.iea.org/publications/freepublications/publication/
Sweden2013_free.pdf

[4] International Energy Agency, Global Ev outlook 2016 - Beyond one million elec-
tric cars, https://www.iea.org/publications/freepublications/publication/
Global_EV_Outlook_2016.pdf

[5] A.P. Robinson and P.T. Blythe and M.C. Bell and Y. Hübner and G.A. Hill, Analysis
of electric vehicle driver recharging demand profiles and subsequent impacts on the
carbon content of electric vehicle trips, 2013

[6] C. Sandels and U. Franke and N. Ingvar and S. Nordström and R. Hamrén, Vehicle
to Grid – Reference Architectures for the Control Markets in Sweden and Germany,
2008

[7] Josh Goldman, Comparing Electric Vehicles: Hybrid vs. BEV vs.
PHEV vs. FCEV, 2014-02-12 http://blog.ucsusa.org/josh-goldman/
comparing-electric-vehicles-hybrid-vs-bev-vs-phev-vs-fcev-411

[8] Indiana Office of Energy Development, Electric vehicles (EVs, HEVs, PHEVs) http:
//www.in.gov/oed/2675.htm

[9] International Energy Agency, Global EV Outlook 2016 https://www.iea.org/
publications/freepublications/publication/Global_EV_Outlook_2016.pdf

[10] Electric Car Charging 101 — Types of Charging, Charging Net-
works, Apps, & More!, 2015-09-10 http://evobsession.com/
electric-car-charging-101-types-of-charging-apps-more/

[11] Chris Mooney, ‘Range anxiety’ is scaring people away from electric cars — but the
fear may be overblown, 2016-08-15

[12] Roth, Hans (March 2011). Das erste vierrädrige Elektroauto der Welt [The first four-
wheeled electric car in the world] (in German). pp. 2–3.

[13] David Jolly, Norway is a model for encouraging electric car sales, 2015-
10-16 http://www.nytimes.com/2015/10/17/business/international/
norway-is-global-model-for-encouraging-sales-of-electric-cars.html?
_r=0

[14] US Department of Energy, Evaluating electric vehicle charging impacts and
customer charging behaviours - experiences from six smart grid invest-
ment grant projects, 2014-12 https://www.smartgrid.gov/files/B3_revised_
master-12-17-2014_report.pdf

43

http://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf
http://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf
http://www.iea.org/publications/freepublications/publication/Sweden2013_free.pdf
http://www.iea.org/publications/freepublications/publication/Sweden2013_free.pdf
https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf
https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf
http://blog.ucsusa.org/josh-goldman/comparing-electric-vehicles-hybrid-vs-bev-vs-phev-vs-fcev-411
http://blog.ucsusa.org/josh-goldman/comparing-electric-vehicles-hybrid-vs-bev-vs-phev-vs-fcev-411
http://www.in.gov/oed/2675.htm
http://www.in.gov/oed/2675.htm
https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf
https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf
http://evobsession.com/electric-car-charging-101-types-of-charging-apps-more/
http://evobsession.com/electric-car-charging-101-types-of-charging-apps-more/
http://www.nytimes.com/2015/10/17/business/international/norway-is-global-model-for-encouraging-sales-of-electric-cars.html?_r=0
http://www.nytimes.com/2015/10/17/business/international/norway-is-global-model-for-encouraging-sales-of-electric-cars.html?_r=0
http://www.nytimes.com/2015/10/17/business/international/norway-is-global-model-for-encouraging-sales-of-electric-cars.html?_r=0
https://www.smartgrid.gov/files/B3_revised_master-12-17-2014_report.pdf
https://www.smartgrid.gov/files/B3_revised_master-12-17-2014_report.pdf


References

[15] MPCE, Driving pattern analysis of Nordic region based on National Travel Surveys
for electric vehicle integration, 2015-08-04

[16] Idaho National Laboratory, Plugged In: How Americans Charge Their Electric Ve-
hicles

[17] IEEE, Patterns of Electric Vehicle Charging with Time of Use rates: Case studies in
California and Portland

[18] Charging behaviour of Dutch EV drivers - Utrecht University
[19] Electric vehicle http://batteryuniversity.com/learn/article/electric_

vehicle_ev
[20] Electric Vehicles Out in the Cold, by Kevin Bullis, December 13, 2013 https://www.

technologyreview.com/s/522496/electric-vehicles-out-in-the-cold/
[21] 10 Things You Need To Know About The 2015 Volkswagen e-Golf, by Benjamin

Hunting http://www.autobytel.com/volkswagen/e-golf/car-buying-guides/
10-things-you-need-to-know-about-the-2015-volkswagen-e-golf-126667/

[22] Electromobility in the Netherlands, Highlights 2015 by Netherlands En-
terprise Agency in June 2016 http://nederlandelektrisch.nl/u/files/
2016-08-highlights-en-2015.pdf

[23] Alternative Fuel Data Center by the U.S. Department of Energy http://www.afdc.
energy.gov/fuels/electricity_infrastructure.html

[24] Tesla Supercharger https://www.tesla.com/sv_SE/supercharger?redirect=no
[25] Assessing range and performance of electric vehicles in Nordic driving con-

ditions –Project Final Report http://gnf.fi/wp-content/uploads/2016/05/
RekkEVidde.pdf

[26] 18th International Symposium Transport and Air Pollution Session 3: Elec-
tro and Hybrid Vehicles Electric vehicle and plug-in hybrid energy efficiency
and life cycle emissions by H. Helms, M. Pehnt, U. Lambrecht and A.
Liebich https://www.ifeu.de/verkehrundumwelt/pdf/Helms20et20al.20(2010)
20Electric20vehicles20(TAP20conference20paper).pdf

[27] Energy Saving Trust, Ecodriving in Electric Vehicles http://travelchoice.org.
uk/wp-content/uploads/2015/07/EV-Ecodriving-April-2014.pdf

[28] Historic market data http://www.nordpoolspot.com/historical-market-data
[29] Energifoerbrukning https://www.eon.se/privat/for-hemmet/

energiradgivning/normalfoerbrukning.html

44

http://batteryuniversity.com/learn/article/electric_vehicle_ev
http://batteryuniversity.com/learn/article/electric_vehicle_ev
https://www.technologyreview.com/s/522496/electric-vehicles-out-in-the-cold/
https://www.technologyreview.com/s/522496/electric-vehicles-out-in-the-cold/
http://www.autobytel.com/volkswagen/e-golf/car-buying-guides/10-things-you-need-to-know-about-the-2015-volkswagen-e-golf-126667/
http://www.autobytel.com/volkswagen/e-golf/car-buying-guides/10-things-you-need-to-know-about-the-2015-volkswagen-e-golf-126667/
http://nederlandelektrisch.nl/u/files/2016-08-highlights-en-2015.pdf
http://nederlandelektrisch.nl/u/files/2016-08-highlights-en-2015.pdf
http://www.afdc.energy.gov/fuels/electricity_infrastructure.html
http://www.afdc.energy.gov/fuels/electricity_infrastructure.html
https://www.tesla.com/sv_SE/supercharger?redirect=no
http://gnf.fi/wp-content/uploads/2016/05/RekkEVidde.pdf
http://gnf.fi/wp-content/uploads/2016/05/RekkEVidde.pdf
https://www.ifeu.de/verkehrundumwelt/pdf/Helms20et20al.20(2010)20Electric20vehicles20(TAP20conference20paper).pdf
https://www.ifeu.de/verkehrundumwelt/pdf/Helms20et20al.20(2010)20Electric20vehicles20(TAP20conference20paper).pdf
http://travelchoice.org.uk/wp-content/uploads/2015/07/EV-Ecodriving-April-2014.pdf
http://travelchoice.org.uk/wp-content/uploads/2015/07/EV-Ecodriving-April-2014.pdf
http://www.nordpoolspot.com/historical-market-data
https://www.eon.se/privat/for-hemmet/energiradgivning/normalfoerbrukning.html
https://www.eon.se/privat/for-hemmet/energiradgivning/normalfoerbrukning.html


A
Appendix A

A.1 Calibration and validation

The calibration process included a comparison of energy values in home charging data
and SoC% values in trip data for each EV. In figure A.1 the worst (EV 12) and best (EV
8) match are illustrated. Basically, we matched the time points where charging occurred
in home charging and trip data, and from there we found linearity between the two with
a nearly constant difference of zero.

A calibration value of 31 kWh has been used converting SoC% difference to kWh when
charging, since that matched best considering all vehicles. In theory this indicates that if
charging the battery fully from 0 to 100 SoC% (24.2 kWh) there will be charging losses
of 6.8 kWh in the process. On average we were able to match the charging time intervals
between the two data sets in about 65 % of all the home charging events. For the best
match, figure A.1b as many as 90 % of the events were practically identical. The time
points of the remaining charging events differed irregularly between the data sets inhibit-
ing a time synchronization and further matching of events.

The discrepancies between data points for home charging events in the data sets can be
partially explained due to that some test drivers were using the car heater simultaneously
as the vehicle were charged, thus using more energy from the charging box than stored
in the battery. In addition, data errors probably are another reason, however this is not
validated.

In order to validate the assumption of a constant charge rate we found the home charging
events in the trip data where the plug-in duration matched actual charging duration. A
reorganized version of equation 2.1 in section 2 were used to calculate Pcharg in order to
find the events with a charging power of 3.4 kW, without adjusting for the end charge
time points (tcharg,end). At these events the SoC% levels have been analyzed whereupon
a charging rate (Ċ) has been calculated as SoC% difference per hour, equation (A.1).

Ċ = ∆SoC%
∆Tplug−in

(A.1)
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Figure A.1: The energy and converted SoC% values for matched charging events plotted against
energy values from home charging data, where (a) illustrates the worst match and (b) the best.
The energy values from the charging data are indicated by blue, converted values from trip data
by green and the difference between the two by red.

In table A.1 home charging events with charging power of around 3.4 kW are summarized
for analysis of the charging rate at different SoC% levels. The charging rate were close to
constant between all of the charging events, which confirmed the assumption of constant
charging rate used in SoC% difference to kWh calculations.
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Table A.1: Charge rate for home charging events (3.4 kW) at different SoC% levels where
charging and plug-in duration are equal.

EV id index ch. duration [h] ch. interval [SoC%] ch. rate [SoC%/h]
2 120 1.6 30.8 - 49.6 11.4
2 302 1.5 61.2 - 77.2 10.7
2 336 3.5 50.8 - 88.8 11.2
2 364 4.9 33.2 - 84.8 10.6
3 59 2.0 42.8 - 63.6 10.5
3 136 3.8 32.8 - 72.0 10.4
3 181 6.3 25.6 - 91.2 10.4
3 187 4.5 24.8 - 74.4 10.9
3 249 2.0 36.8 - 57.6 10.4
3 368 3.1 49.6 - 82.4 10.7
4 70 3.5 54.0 - 92.0 10.8
5 25 1.4 39.2 - 54.8 10.9
5 249 1.7 43.6 - 62.4 11.0
5 287 3.4 60.8 - 97.2 10.7
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A.2 Temperature dependent energy use
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Figure A.2: Data points and linearly fitted lines of driving consumption of energy relative to
temperature for each EV.
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Figure A.3: Comparison of the linearly fitted lines illustrating driving consumption of energy
relative to temperature for each EV.
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