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A Study of Poisson Multi-Bernoulli Mixture Conjugate Prior in Multiple Target
Estimation
YUXUAN XIA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Multiple target tracking (MTT) denotes the process of estimating the set of target
trajectories based on a sequence of noise-corrupted measurements including missed
detections and false alarms. Nowadays, MTT has found applications in numerous
areas, such as air traffic control, autonomous vehicles and robotics, computer vision
and biomedical research. In recent years, a significant research trend in MTT is
the development of conjugate distributions in Bayesian probability theory based on
random finite set. Two popular frameworks have been studied so far, one is based on
labelled multi-Bernoulli conjugate prior, and the other is based on unlabelled multi-
Bernoulli conjugate prior. The first contribution of this thesis is a performance
comparison study of filters based on multi-Bernoulli conjugate prior. In this part
of work, we focus on point target tracking that each target is assumed to give rise
to at most one measurement per time scan. The simulation results show that the
Poisson multi-Bernoulli filters arguably provide the best overall performance.

Due to the rapid development of high-resolution sensors equipped on autonomous
vehicles, e.g., near-field radar and lidar, a target may occupy multiple sensor cells
on any given scan, leading to the so-called extended target. Solving the multiple
extended target tracking problem is mainly complicated by the unknown correspon-
dence between targets and measurements that a huge number of data association
events need to be considered. Methods of how to solve the data association in a sin-
gle step that maximises the desired likelihood function using sampling methods are
presented. The second contribution of this thesis is the performance evaluation of
different sampling algorithms, which are integrated into the Poisson multi-Bernoulli
mixture (PMBM) filter.

As an approximation of the PMBM filter, the Poisson multi-Bernoulli (PMB) filter
has shown superior performance in point target tracking, but it is not yet clear
how to adapt this algorithm to extended target tracking. The third contribution of
this thesis is that we present an extended target PMB filter, along with its gamma
Gaussian inverse Wishart implementation. The simulation results show that the
PMB filter can retain most of the advantages of the PMBM filter.

Keywords: multiple target tracking, extended targets, random finite sets, random
matrix model, Bayesian estimation, conjugate prior, sampling methods, variational
inference.
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Introduction

This introduction section is organised as follows. Some future prospects are intro-
duced in Section 1.1. Motivation and the main focus of the thesis are discussed in
Section 1.2, and main contributions of each appended paper are described in Section
1.3. We summarise the conclusions and discuss research ideas for future extensions
in Section 1.4, and the outline of the thesis is presented in Section 1.5.

1.1 Prospect
The Gothenburg region is the heart of the Swedish automotive industry. Many well-
known companies in the region, such as Volvo Cars, Autoliv and Zenuity, have put
a lot of efforts in the research and development of autonomous vehicles. For exam-
ple, there will be 100 self-driving cars operating on public roads in Gothenburg in
2017, and further research towards more advanced and mature autonomous driving
technologies will continue.

The emergence of the concept of self-driving vehicles has been a driving force for
the rapid development of autonomous driving technologies. In order for a car to
navigate without human input, the advanced control system should make correct
decisions based on the environment as they perceive it. An important part of the
environment perception technology is multiple target tracking (MTT) techniques,
which are vital for collision avoidance and traffic safety. They enable the moving
autonomous vehicle to reliably and efficiently model static as well as dynamical ob-
stacles, such as landmarks, pedestrians and other nearby moving vehicles. The MTT
problem is the process of estimating the set of target trajectories based on a sequence
of noise-corrupted measurements including missed detections and false alarms. In
the context of autonomous driving, the targets being tracked are the moving objects
around the self-driving vehicle. Typical sensors used to collect measurements in
self-driving vehicles include the near-field radar and lidar.

Nowadays, MTT techniques have attracted intensive attentions and found numerous
applications in various fields, for example, land, sea, air, and space surveillance for
military use; and collision avoidance, navigation, and image processing for civilian
use. During the last decade, advances in MTT techniques, along with modern sens-
ing and computing technologies, has opened up a remarkable research venue in the
automotive industry. We believe that this thesis includes important contributions
to the MTT research field.
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1.2 Motivation and Main Focus

In many MTT applications, a recursive filtering approach is employed as it allows
estimates to be made each time new observations are received without having to
reprocess existing observations. Popular solutions to MTT include the Joint Prob-
abilistic Data Association filter [1], Multiple Hypothesis Tracker [2] and approaches
based on random finite sets (RFS) [3]. An RFS is a set of random variables whose
cardinality is also a discrete random variable. By representing the targets and mea-
surements in the form of finite sets, RFS-based methods can provide a convenient
mechanism for solving two of the major challenges involved in MTT: one is the un-
known number of targets presented in the surveillance area, and the other is the data
association problem due to the unknown measurement-to-target correspondence.

In this work, we focus on the estimation of the current set of targets, which refers to
multiple target filtering. The random set theory was first developed by Mahler [3]
to cast the multiple target filtering problem in the Bayesian framework. The Bayes
filter is used to predict and update the multitarget set density recursively, so that the
uncertainty of target number and states can be propagated in time. The multitarget
set posterior density, i.e., the density of the set of targets at time k given all the
observations received up to time k, is generally intractable. In the literature, there
are two main filter types that implement the Bayes recursion approximately for the
multitarget set density. The first is based on moment approximations of the posterior
distributions, such as the Probability Hypothesis Density filter (PHD) [4, 5] and the
Cardinalised PHD (CPHD) filter [6, 7], which avoid handling the data association
uncertainty explicitly via approximation. The second is based on parameterised
density representations. Filters of this type are based on conjugate priors, which
can provide accurate approximations to the exact posterior distributions.

In the context of MTT, conjugacy means that if we begin with a multitarget den-
sity of a conjugate prior form, then all subsequent predicted and updated multitarget
densities will also be of the conjugate prior form [8]. Different from the concept of
conjugate prior defined in the exponential family, the data association problem in
MTT causes the parameters needed to represent the posterior density increase very
fast over time, thus harming the tractability of conjugacy. Despite this, different ap-
proximation techniques can be employed to reduce the number of parameters. The
advantage of using conjugate prior in MTT algorithms is that the true posterior can
be approximated arbitrary well, as long as a sufficient number of parameters is used.
Filters based on parameterised density representations have been developed for la-
belled and unlabelled multi-Bernoulli mixture (MBM) conjugate priors respectively.
A labelled RFS can be considered as an RFS, where each variable is augmented with
a unique label.

Filters based on labelled multi-Bernoulli (MB) representation include the Gener-
alised Labelled MB filter (GLMB) [8, 9, 10] and its approximation the Labelled MB
(LMB) filter [11], whereas filters based on unlabelled MB representation include
the Poisson multi-Bernoulli Mixture (PMBM) filter [12, 13] and its approximation

2
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the Poisson multi-Bernoulli (PMB) filter [14]. Compared to the PMBM and PMB
filters, the GLMB and LMB filters are able to produce the estimation of targets
trajectories. These algorithms have shown superior performance over algorithms
based on moment approximations, but it is not yet clear how they compare to each
other regarding computational time and filtering performance. One contribution of
this thesis is the performance evaluation of MB conjugate priors for multiple point
target filtering using the Generalised Optimal Sub-pattern Assignment (GOSPA)
metric [15]. In this part of work, we assume that each target gives rise to at most
one measurement and that targets do not have any shared measurements. Simu-
lation results demonstrate that the PMB filters arguably provide the best overall
performance concerning GOSPA error and computational time.

Due to the development of high-resolution radar and lidar sensors equipped on au-
tonomous vehicles, it is common that a target may occupy several sensor resolution
cells. The tracking of such a target leads to the so-called extended target track-
ing problem, and the objective is to recursively determine the shape and kinematic
parameters of the target over time. In extended target tracking, a non-standard
measurement model is needed to model the number and the spatial distribution of
generated measurements for each target. A common choice for modelling the num-
ber of measurements is the inhomogeneous Poisson Point Process (PPP), proposed
in [16]. As for the modelling of the spatial distribution, two popular models are
the Random Hypersurface Models [17] and the Gaussian inverse Wishart (GIW)
approach [18, 19]. The former is designed for general star-convex shape; the latter
relies on the elliptic shape that it models the spatial distribution of target-generated
measurements as Gaussian with unknown mean and covariance. The Gamma GIW
(GGIW) model [20, 21] is an extension of the GIW model by incorporating the esti-
mation of target measurement rates. Many of the existing multiple extended target
tracking algorithms are based on RFS with the distribution of target-generated mea-
surements modelled as GIW or GGIW, e.g., the PHD filter [22, 23], the CPHD filter
[21], the GLMB filter and the LMB filter [24]; as well as the PMBM filter [25, 26]. It
was shown in [26] that the extended target PMBM filter has improved performance
compared to the extended target GLMB and LMB filters.

Since each extended target can generate multiple measurements per time scan and it
is unknown which group of measurements are generated by the same object (target
or clutter), the problem of data association is very challenging in multiple extended
target tracking. In previous work [20, 25, 26], the data association can be split into
two parts: first, clustering methods are used to find multiple partitions of the set of
measurements; second, assignment methods are used to assign each measurement cell
to a target or a clutter source. In the recently presented work [27], a sampling based
method called stochastic optimisation (SO) is proposed, which directly maximises
the multitarget likelihood function and solves the data association problem in a
single step. It has been demonstrated in [27] that the SO method has improved
performance in comparison to methods which involve clustering and assignment.
In this thesis, an extension of the work [27] is presented, in which the benefits of
solving the data association problem using sampling methods are highlighted and
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more sampling algorithms are investigated. Specifically, we discuss different aspects
of four different sampling methods, namely, the Gibbs sampling, the merge/split
Metropolis Hastings (MH), the combined Gibbs and merge/split MH and the SO,
and compare their performance after integrating them into the PMBM filter in a
simulation study.

For the extended PMBM filter, several approximation techniques can be used to re-
duce the number of parameters in the posterior density representation. First, gating
[3] can be used to separate targets and measurements into independent subgroups.
Second, for each gating group, the multiple updated MB components obtained after
solving the data association problem are pruned to only contain the components
whose cumulative sum of the relative weights exceeds a threshold. Third, the re-
maining MB components with equal number of Bernoulli components and small
symmetrised KL divergence can be merged [26]. In order to further reduce the com-
putational complexity of the PMBM filter, it would be interesting to investigate
the possibility of approximating the MBM as a single MB. A variational method
to find the best-fitting MB that minimises the set Kullback-Leibler divergence from
the MBM was presented in [14] for point target tracking. The proposed PMB filter
is a computationally efficient approximation of the PMBM filter, but it is not yet
clear how the variational method of [14] can be used on extended target tracking.
In this thesis, a PMB filter for extended target estimation is presented, along with
its GGIW implementation. We have discussed two different implementations of the
variational MB algorithm to approximate the MBM representing pre-existing tracks
as a single MB. In addition, a method to create new tracks in a reasonable manner
is proposed. The performance of the PMB filter is compared to the PMBM filter
and the PHD filter in a simulation study.

1.3 Contributions of the Appended Papers

Paper I: Performance evaluation of multi-Bernoulli conjugate
priors for multi-target filtering

In this paper, we evaluate the performance of labelled and unlabelled MB conjugate
priors for multi-target filtering. We analyse various aspects of six different filters: 1)
δ-GLMB with separate prediction and update steps, 2) δ-GLMB with joint predic-
tion and update steps, 3) LMB, 4) PMBM, 5) PMB using Murty’s algorithm, and
6) PMB using loopy belief propagation. Two different scenarios are considered: 1)
targets are well-spaced and 2) targets are in close proximity. The benefit of recy-
cling for the PMBM filter is also studied. Filtering performance is assessed using
the GOSPA metric.

I carried out the comparison study and wrote the paper under the supervision of
the co-authors.
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Paper II: Likelihood-based data association for extended ob-
ject tracking using sampling methods

In this paper, we show that it is possible to handle the data association in a single
step that maximises the desired likelihood function. For single step data association,
we use algorithms based on stochastic sampling, and integrate them into the PMBM
filter. Four sampling algorithms are compared in a simulation study: 1) Gibbs
sampling, 2) merge/split MH, 3) the combined Gibbs and merge/split MH and 4)
SO. The best one is compared to clustering and assignment in an experiment, where
Velodyne data is used to track pedestrians.

I carried out the simulation study comparing four different sampling methods and
participated in the discussion with the co-authors.

Paper III: Poisson multi-Bernoulli filter for extended object
estimation

In this paper, we present a PMB filter for multiple extended targets estimation.
Different methods to merge the MBM are presented, along with their GGIW im-
plementation. The performance of the PMB filter is compared to the PMBM filter
and the PHD filter in three simulated scenarios: 1) high target number and clutter
density, 2) dense birth and 3) parallel manoeuvre.

I carried out the implementations and wrote the paper under the supervision of the
co-authors.

1.4 Conclusions and Future Work

Paper I: Performance evaluation of multi-Bernoulli conjugate
priors for multi-target filtering

PMBM is a more efficient filter structure than δ-GLMB. The Poisson birth model
provides the unlabelled filter with the ability to quickly detect several targets that
appear at the same time at very short distance from each other, and it enables
the use of recycling methods to improve the estimation performance of unlabelled
filters further. In the scenario with coalescence, unlabelled filters have much bet-
ter performance than labelled filters, and the PMB filter presents the best overall
performance.

MTT algorithms based on conjugate priors are developing very fast in recent years.
New implementations and new algorithms continue to be developed. It would be
interesting to compare the performance of labelled and unlabelled filters with more
variants. Another future work direction is to evaluate the performance of unlabelled
MB filters using a MB birth model.
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Paper II: Likelihood-based data association for extended ob-
ject tracking using sampling methods
The data association problem in extended object tracking can be solved in a single,
likelihood-based, step using sampling algorithms, which are shown to outperform
previous work that has been based on the combination of clustering algorithms and
optimal assignment algorithms. The simulation study shows that both the combined
Gibbs and merge/split MH and the SO are good sampling algorithms to solve the
data association problem.

An important topic for future work is investigating how the sampling algorithms
can be implemented as efficiently as possible, for example, by utilising parallelisa-
tion, by storing temporary variables and by testing different algorithms to split a
measurement cell into two parts.

Paper III: Poisson multi-Bernoulli filter for extended object
estimation
The proposed PMB filter is an efficient approximation of the PMBM filter for ex-
tended target tracking. But the simulation results show that the PMB filter can
produce distorted target extent estimation especially when targets move in close
proximity.

A future work direction is to investigate how to improve the estimation of target
extent in the PMB filter, for example, by adjusting the weights of different cost
functions in the E-step. Since the approximation of the MBM representing pre-
existing tracks and new tracks are considered separately in this paper, it would also
be interesting to investigate how to integrate the formation of new tracks in the
variational MB algorithm.

6



Paper I: Performance evaluation
of multi-Bernoulli conjugate priors

for multi-target filtering

Abstract

In this paper, we evaluate the performance of labelled and unlabelled multi-Bernoulli
conjugate priors for multi-target filtering. Filters are compared in two different
scenarios with performance assessed using the generalised optimal sub-pattern as-
signment (GOSPA) metric. The first scenario under consideration is tracking of
well-spaced targets. The second scenario is more challenging and considers targets
in close proximity, for which filters may suffer from coalescence. We analyse various
aspects of the filters in these two scenarios. Though all filters have pros and cons,
the Poisson multi-Bernoulli filters arguably provide the best overall performance
concerning GOSPA and computational time.

2.1 Introduction

Multiple target tracking (MTT) involves the processing of sets of measurements ob-
tained from multiple targets in order to estimate their current states. Solving the
MTT problem is mainly complicated by the unknown correspondence between tar-
gets and measurements, known as data association. Popular solutions to MTT are
the joint probabilistic data association (JPDA) filter [1], multiple hypothesis tracker
(MHT) [2] and algorithms based on random finite sets (RFS) [3]. Developments us-
ing RFS have yielded a variety of tracking methods that avoid handling the data
association uncertainty explicitly, such as probability hypothesis density (PHD) fil-
ter [4, 5], cardinalised PHD (CPHD) filter [6, 7], multiple target multi-Bernoulli
(MeMBer) filter [3], and cardinality-balanced MeMBer (CB-MeMBer) filter [28].

A significant trend in RFS-based MTT is the development of conjugate distributions
in Bayesian probability theory, which means that the posterior distribution has the
same functional form as the prior. MTT algorithms based on conjugate priors for
labelled RFS [8, 9, 10, 11] and unlabelled RFS [12, 13, 14] can provide accurate
approximations to the exact posterior distributions, and appealing performance for
MTT has been demonstrated. Filters based on labelled multi-Bernoulli (MB) conju-
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gate prior using MB birth model include Delta generalised labelled multi-Bernoulli
(δ-GLMB) [8, 9] and its approximation labelled multi-Bernoulli (LMB) [11]. Filters
based on unlabelled MB conjugate prior using Poisson birth model include Poisson
multi-Bernoulli mixture (PMBM) [12, 13] and its variational approximation Poisson
multi-Bernoulli (PMB) [14].

These algorithms are all important contributions to the MTT literature, but it is
not yet clear how they compare to each other regarding computational time and
performance. The main contribution of this paper is the performance evaluation
of MB conjugate priors for multi-target filtering using the generalised optimal sub-
pattern assignment (GOSPA) metric [15]. Compared with the unnormalised OSPA
metric [29], the GOSPA metric allows for further breaking down the cardinality
mismatch into errors due to missed and false targets. In this work, we assume that
each target gives rise to at most one measurement and that targets do not have
any shared measurements. Simulation results demonstrate that PMBM is a more
computational efficient filter structure than δ-GLMB since it tends to yield better
estimation performance than δ-GLMB with less computational time in a given test
scenario. The advantage of a Poisson birth model over an MB birth model in MTT
is also demonstrated in specific examples. In addition, the unlabelled RFS filter
shows the ability to resolve the coalescence phenomenon, and its performance under
this scenario can be further improved by applying the variational approximation
method [14].

The paper is organised as follows. Background on RFS and Bayesian filtering is
provided in Section II. Section III and IV summarise the labelled and unlabelled
MB conjugate priors with their corresponding filter implementations. Section V
discusses different methods that can be used to reduce the computational cost.
Simulation results are presented in Section VI, and conclusions are drawn in Section
VII.

2.2 Background

In RFS-based methods [3], target states and observations are represented in the
form of finite sets. The system state at time k is modelled as a set Xk, and the set
of measurements obtained at time k is denoted as Zk, including clutter and target-
generated measurements with unknown origin. The sequence of all the measurement
sets received so far up to time k is denoted as Zk. More notations are given in Table
2.1.

A labelled RFS can be formed from its unlabelled version by incorporating labels
into target states such that each state x ∈ X is augmented with a unique discrete
label l ∈ L. Let L(X) be the set of unique labels in X, then a finite subset X on
space X× L has distinct labels if and only if δ|X|(|L(X)|) = 1 [9].

A non-homogeneous Poisson point process (PPP) with intensity function λ(x) has
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Table 2.1: Notations

• Single target states are represented by lower-case letter, e.g., x; multi-target
states are represented by upper-case letters, e.g., X; labelled states are repre-
sented by bold letters, e.g., x,X; spaces are represented by blackboard bold
letters, e.g., X.

• |X|: set cardinality, i.e., number of elements in set X.
• Kronecker delta function

δY (X) =
{ 1 if Y = X,

0 otherwise.

• hX = ∏
x∈X h(x).

• ΠN : set of permutation functions on IN , {1, ..., N}

ΠN = {π : IN → IN |i 6= j ⇒ π(i) 6= π(j)}.

• ]: disjoint set union, i.e., Y ]U = X means that Y ∪U = X and Y ∩U = ∅.
• Im: identity matrix of size m×m.

RFS density
fppp(X) = exp

(
−
∫
λ(x)dx

)
· λX , (2.1)

where |X| is Poisson distributed, and elements x ∈ X are independently and identi-
cally distributed (i.i.d.). A Poisson process is often used to model clutter and target
birth in unlabelled RFS filters.

A Bernoulli process with probability of existence r and existence-conditioned prob-
ability density function (PDF) f(x) has RFS density

f(X) =


1− r X = ∅
r · f(x) X = {x}
0 otherwise,

(2.2)

where |X| is Bernoulli distributed with parameter r. A labelled Bernoulli RFS X is a
Bernoulli RFS X augmented with label l corresponding to the non-empty Bernoulli
component x, i.e., X = {(x, l)} (or X = ∅). A Bernoulli process can capture the
target uncertainty of both existence and state, and it is also used in labelled RFS
filters to model target birth.

Multiple targets can be naturally represented through an MB RFS. An MB RFS X
is a union of independent Bernoulli RFSs Xi, i.e., X = ⋃N

i=1Xi,

fmb(X) =
∑

]Ni Xi=X

N∏
i=1

fi(Xi). (2.3)

An MB RFS can either be labelled or unlabelled.
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2.2.1 Bayesian Filtering Recursion
An RFS density can be expressed using a cardinality distribution c(n), and joint
conditional state distributions fn(x1, ..., xn|n), yielding [12]

f({x1, ..., xn}) = c(n)
∑
π∈Πn

fn(xπ(1), ..., xπ(n)|n), (2.4)

where π(i) is the i-th component of vector π. A labelled RFS and its unlabelled
version have the same cardinality distribution [9].

The multi-target distribution at time k, given all measurement sets up to and in-
cluding time k′ is denoted as fk|k′(Xk|Zk′), and fk(Zk|Xk) is the multi-target mea-
surement likelihood. The multi-target Bayes filter propagates the target set PDF
fk|k−1(Xk|Zk−1) in time using the Bayes update [3, p. 484]

fk|k(Xk|Zk) ∝ fk(Zk|Xk)fk|k−1(Xk|Zk−1), (2.5)

and the Chapman-Kolmogorov prediction [3, p. 484]

fk+1|k(Xk+1|Zk) =
∫
fk+1|k(Xk+1|Xk)fk|k(Xk|Zk)δXk, (2.6)

where the set integral is defined as [3, p. 361]:
∫
f(X)δX , f(∅) +

∞∑
n=1

1
n!

∫
f({x1, ..., xn})d(x1, · · · , xn). (2.7)

2.2.2 Standard Point Target Transition and Measurement
Model

The dynamic point target transition model utilised to solve the RFS-based MTT
problem is based on the following assumptions

• Targets arrive according to a PPP or an MB process, independently of existing
targets.

• At each time step, targets remain with a probability of survival P s(x). Targets
depart according to i.i.d. Markov processes with probability 1− P s(x).

• Targets’ next states only depend on their current states. Target motion follows
i.i.d. Markov processes with transition density fk|k−1(xk|xk−1).

The multi-target transition kernel can be written as the convolution of transition
density for survival targets fmbS (·|X) and transition density for new born targets
fB(·)

f(Xk+1|Xk) =
∑

Sk]Bk=Xk+1

fmbS (Sk|Xk)fB(Bk), (2.8)

where Sk is the set of survival targets, and Bk is the set of new born targets.

In the measurement model, the following assumptions are made.
• Each target-generated measurement is only conditioned on its corresponding

target. The single target measurement likelihood is fk(zk|xk).
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• At each time step, existing targets may or may not be detected. The detection
probability is P d(x).

• The sensor may receive measurements not originating from any target, known
as false alarm or clutter. At each time step, the clutter arrives according
to a PPP with intensity λfa(z), independently of targets and target-generated
measurements.

The multi-target likelihood can be presented in a convolution form

fk(Zk|Xk) =
∑

Tk]Ck=Zk
fmbk (Tk|Xk)fpppk (Ck), (2.9)

where Tk is the set of target-generated measurements, and Ck is the set of clutter
measurements.

2.3 Labelled Multi-Bernoulli Conjugate Prior
This section presents a general description of δ-GLMB and its efficient approxima-
tion LMB. The reader is referred to [8, 9, 10, 11] for detailed analytic derivations
and mathematical expressions.

2.3.1 Delta Generalised Labelled Multi-Bernoulli
A δ-GLMB RFS is a labelled RFS with state space X and label space L distributed
according to [9]

f(X) = δ|X|(|L(X)|)
∑

(I,ξ)∈F(L)×Ξ
w(I,ξ)δI(L(X))(f (ξ))X, (2.10)

where I ∈ F(L) is the set of target labels, and ξ ∈ Ξ represents a history of
association maps. Each pair (I, ξ) is a hypothesis with probability w(I,ξ), which
satisfies ∑

(I,ξ)∈F(L)×Ξ
w(I,ξ) = 1. (2.11)

If the prior distribution is a δ-GLMB of the form (2.10), then under the multi-target
likelihood function (2.9), the posterior and predicted distribution are both δ-GLMB
[9]. According to this conjugacy, the δ-GLMB filter can recursively propagate a
δ-GLMB RFS density in time via the Bayes update and prediction equation (2.5)
and (2.6).

A labelled MB model is used for target birth, and we denote the label space for new
born targets as B. The likelihood for a birth hypothesis yields [8]

wB(L) = [1− r(·)](B−L)[r(·)]L, (2.12)

where r(l) denotes the existence probability of a target with label l ∈ I. For the
surviving targets, their labels are kept from last time step, while the labels of birth
targets are newly assigned. In the δ-GLMB prediction step, each component in the
prior generates a new set of predicted components. In the δ-GLMB update step, each
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component in the predicted density generates a set of updated components for each
possible measurement-to-label mapping. Instead of computing the filtering density
in two separate steps, a fast implementation has been proposed in [10], in which
the prediction and update steps are combined into a single step by formulating a
new mapping between the components of the current and previous filtering density.
Compared with the original mapping used in update step, the associations for non-
survival and unconfirmed birth targets are included in this new mapping.

2.3.2 Labelled Multi-Bernoulli
The LMB filter [11] is based on approximating the posterior and predicted densities
(2.5) and (2.6) as labelled MB RFS densities. In contrast to δ-GLMB, the number of
components maintained in the recursive Bayesian filtering only grows linearly with
time.

The multi-target prediction in the LMB filter is identical to the prediction for MeM-
Ber [28] with target labels interpreted as component indices. The predicted existence
probability and density distribution are re-weighted by the survival probability and
transition density. In the update step, the posterior multi-target density is approx-
imated by exact marginalisation; thus the LMB filter propagates only one com-
ponent. The predicted LMB is first represented as δ-GLMB, then a full δ-GLMB
update is applied directly before the posterior collapsing back to a matching LMB
approximation.

2.3.3 Poisson Multi-Bernoulli Mixture
The PMBM conjugate prior for point target MTT was developed in [12]. It is a linear
combination of independent PPP and multi-Bernoulli mixture (MBM) components
with the following form

f(X) =
∑

Y ]W=X
fppp(Y )fmbm(W ), (2.13)

where Y stands for targets that have not yet been detected, andW stands for targets
that have been detected at least once. For targets that have already been detected,
their distributions can be described as an MBM of the form [12]:

fmbm(X) =
∑

a={h1,...,hN}∈A
wa

∑
]Ni Xi=X

N∏
i=1

fhi(Xi), (2.14)

where each of the MB components a ∈ A corresponds to a particular data association
with weight wa satisfying ∑

a={h1,...,hN}∈A
wa = 1. (2.15)

Each data association hypothesis is made up of single target hypotheses {h1, ..., hN}
on each target [12]. One single target hypothesis can incorporate events, including
that the target never existed, that the target existed before and that the target
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continues to exist, represented via a Bernoulli process. Missed detections may occur
on some proportions of targets that are hypothesised to be born. A target that is
hypothesised to exist but has never been detected is treated as an unknown target
[12]. The distribution of unknown targets is represented by a PPP.

In the prediction step, the MB describing pre-existing tracks and the PPP describing
unknown targets are predicted individually. By having a Poisson birth model, PPP
for new born targets can be easily incorporated into the predicted PPP. In the update
step, PPP and MBM are updated independently. Two single target hypotheses are
created for each measurement, and then the PPP intensity is updated by the miss
detection probability. The first single target hypothesis covers the case that the
measurement is associated with a previous target so that this hypothesis has zero
existence probability and the corresponding PDF of the Bernoulli distribution has
no effect. The second single target hypothesis covers the case that the measurement
corresponds to a false alarm or a new target. For targets surviving from previous
time steps, new single target hypotheses are included from missed detections or
updates of previous hypotheses using one of the new measurements.

2.3.4 Poisson Multi-Bernoulli
A PMB is a union of a PPP describing unknown targets and an MB process describ-
ing already detected targets. In the PMB recursion, the PMB density is preserved
in prediction step, whereas the MB component becomes an MBM due to data as-
sociation. A variational approximation method was presented in [14] to obtain the
best-fitting MB g(X) that minimises the Kullback-Leibler (KL) divergence from the
MBM distribution f(X). In [14], it is shown that this optimisation problem can be
solved approximately as:

min
q(h,j)∈M

−
N∑
j=1

∫  ∑
h∈H

q(h, j)fh(X)
 · log gj(X)δX, (2.16)

where q(h, j) is the probability that a Bernoulli component in f(X) that is utilising
hypothesis h is assigned to the j-th Bernoulli component of g(X), and M is an
approximated polytope needed for tractability

M =

q(h, j) ≥ 0

∣∣∣∣∣∣
∑
h∈H

q(h, j) = pj ∀ j ∈ {1, ..., N},
N∑
j=1

q(h, j) = ph ∀ h ∈ H

.
(2.17)

The algorithm is initialized with

pj(h) =
∑

a=(h1,...,hN )∈A|hj=h
wa, (2.18)

which can either be calculated using the best data association hypotheses and their
corresponding weights obtained from Murty’s algorithm [30] or be approximated
based on loopy belief propagation (LBP) [31].
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2.4 Approximations for Computational Tractabil-
ity

In previous sections, we have summarised the δ-GLMB, LMB, PMBM and PMB.
The common bottleneck for all the filters is the large number of hypotheses gen-
erated in the update step. Since it is not tractable to compute all the possible
components, efficient truncation methods should be implemented by only maintain-
ing components with most significant weights1.

If hypothesis weights are generated in non-decreasing order, the M -best mappings
(i.e. highest weights) can be selected without computing the weights of all possible
mappings exhaustively. The M -best mappings can be found, e.g., by solving the
ranked assignment problem using Murty’s algorithm. Implementation details, e.g.,
how to construct the cost function for an association map, can be found in [9], [10]
and [13]. In the implementation of δ-GLMB with separate prediction and update
steps, additional approximation is needed to truncate the independent surviving and
birth hypotheses separately. The hypotheses with highest weights can be determined
by solving the K-shortest path problem [32].

To further reduce the computational complexity of data association, gating can be
implemented in all the proposed filters to remove unlikely target-to-measurement
pairs before the update step. Moreover, clustering can be used in LMB, PMBM and
PMB to partition well-spaced targets and the corresponding measurements falling
into their gates into independent groups, which allows for parallel computing.

For unlabelled RFS filters, in each MB component, the recycling method of [33]
can be applied to Bernoulli components with low existence probability. The recy-
cled components are approximated as being Poisson and are incorporated into the
PPP representing unknown targets for generating possible new targets in subse-
quent steps. Thus, the number of single target hypotheses in each data association
hypothesis is reduced while maintaining the significant information of already de-
tected targets. In addition, recycling can help recover performance loss due to the
pruning of Bernoulli components with small existence probability [31]. However,
having a PPP for each MB in PMBM would result in multiple PPP updates, which
may instead increase the computational cost. To address this problem, we first find
the best-fitting MB of the MBM to be recycled, and then the approximated MB is
further approximated as being PPP and recycled.

2.5 Simulations and Results

In this section we show simulation results that compare six different filters: 1) δ-
GLMB with separate prediction and update steps [8, 9], 2) δ-GLMB with joint
prediction and update steps [10], 3) LMB [11], 4) PMBM [13], 5) PMB [14] using

1For PMB using LBP, marginal association probabilities are used to merge hypotheses.
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Murty’s algorithm, and 6) PMB using LBP [31]. All the codes are written in MAT-
LAB, except Murty’s algorithm, which is written in C++ 2. The benefit of recycling
for PMBM is also studied. The estimation performances of the filters are evaluated
in two different scenarios. In the first scenario, targets are well-separated most of
the time. The second scenario is more complicated, involving targets that get in
close proximity first and then separate.

2.5.1 State Space Models

The kinematic target state is a vector of position and velocity xk = [px,k, py,k, ṗx,k, ṗy,k]T .
A single measurement is a vector of position zk = [zx,k, zy,k]T . Targets follow a
linear-Gaussian constant velocity model, fk|k−1(xk|xk−1) = N (xk;Fkxk−1, Qk) with
parameters

Fk = I2 ⊗
[
1 T
0 1

]
, Qk = σ2

vI2 ⊗
[
T 4/4 T 3/2
T 3/2 T 2

]

where T = 1s is the sampling period, and σv is the standard deviation of motion
noise. The linear-Gaussian measurement likelihood model has density g(zk|xk) =
N (zk;Hkxk, Rk) with parameters Hk = I2 ⊗

[
1 0

]
and Rk = σ2

ε I2, where σε is the
standard deviation of measurement noise. The target survival probability P s

k and
the detection probability P d

k are assumed to be constant throughout the simulation.
The clutter follows a Poisson RFS with uniform density, giving an average of λfa per
time step. We consider cases with P s

k = 0.99, P d
k ∈ {0.75, 0.98}, and λfa ∈ {10, 30}.

For unlabelled filters, the Poisson birth intensity is a Gaussian mixture λb(x) =∑nb
n=1 λ

b,nN (x;µb,n,Σb,n) with all the Gaussian components sharing the same weight
λb,n = 0.1 and covariance. The PPP intensity of unknown targets is represented as
λu(x) = ∑nu

n=1 λ
u,nN (x;µu,n,Σu,n), with the initial value assumed to be λu0|0(x) =

λb(x). For labelled filters, the birth density is a labelled MB RFS with all the
Bernoulli components sharing the same existence probability rb,n = 0.1. The existence-
conditioned PDF of each Bernoulli is Gaussian distributed. A labelled Poisson RFS
can also be used to model target birth in δ-GLMB [9], but this is not a suitable
option [13]. As a Poisson RFS has a cardinality distribution that expands from zero
to infinity, it is not efficient to consider each possible birth hypothesis separately via
a δ-GLMB filter. Parameter settings for different filters are stated in Table 2.2.

2.5.2 Performance Evaluation
Given a multi-target posterior density, several state estimators are available [9]. In
this work, we choose to extract the target states by finding the maximum a posteriori
(MAP) cardinality estimate, following the methods suggested in [9] and [13].
Filtering performance is assessed using GOSPA metric. It was mentioned in [15] that
the GOSPA metric with parameter α = 2 can be rewritten using the 2D assignment

2For the implementations of δ-GLMB with separate prediction and update steps and LMB, we
use the codes that Profs Ba-Ngu Vo and Ba-Tuong Vo share online. The authors thank them for
providing the codes.
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Table 2.2: Filter Parameters

• Gating size in percentage is 0.999.
• δ-GLMB: capping threshold on the number of hypotheses is 3000; pruning

threshold on the weight of hypothesis is 10−5; requested number of components
used in K-shortest path and Murty’s algorithm is d3000 · we, where w is the
weight of hypothesis; requested number of birth components used in K-shortest
path algorithm is 10.

• LMB: capping threshold on the number of targets is 100; pruning threshold is
10−4; requested number of birth and survival components used in K-shortest
path algorithm are 10 and 30 respectively; requested number of components
used in Murty’s algorithm is d100 ·we in the first testing scenario and d300 ·we
in the second; the number of Gaussian components in each Gaussian mixture
is limited to 10 and components are merged with Mahalanobis distance smaller
than 1.

• PMBM: capping threshold on the number of hypotheses is 100; pruning thresh-
old on the weight of hypotheses and weight of Gaussian components in PPP is
10−4; requested number of components used in Murty’s algorithm is d100 ·we;
pruning threshold on target existence probability is 10−4 without recycling,
and 10−1 with recycling.

• PMB: corresponding pruning threshold is set to the same as PMBM; requested
number of components used in Murty’s algorithm is 20; convergence threshold
used in LBP is 10−6.

set as

d(c,2)
p (X, Y ) ,

[
min

γ∈Γ(|X|,|Y |)

( ∑
(i,j)∈γ

d(xi, yj)p + cp

2 (|X|+ |Y | − 2|γ|)
)] 1

p

, (2.19)

where Γ(|X|,|Y |) is the set of all possible 2D assignment sets, c denotes the cut-off
value at base distance and p determines the severity of penalising the outliers in
the localisation component. GOSPA allows for decomposing the multi-target metric
into localisation error ∑(i,j)∈γ d(xi, yj)p, missed detection error cp(|X| − |γ|)/2, and
false detection error cp(|Y | − |γ|)/2, considering X as the ground truth and Y as
the estimates. In the simulations, we choose p = 1, c = 100, and results are shown
over 200 Monte Carlo trials.

2.5.3 Scenario with Well-spaced Targets
In this scenario, targets are born from four localised positions with ground truth
shown in figure 2.1. The standard deviations of motion and measurement noises
are σv = 5m/s2 and σε = 10m, respectively. In the birth intensity, each Gaus-
sian component has the same covariance Σb,n = 100 × I4 and the mean values
are µb,1 = [0, 0, 0, 0]T , µb,2 = [400,−600, 0, 0]T , µb,3 = [−200, 800, 0, 0]T and µb,4 =
[−800,−200, 0, 0]T . The initial target positions are randomly sampled from these
Gaussian densities.
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Figure 2.1: Target trajectories on the region [−1000, 1000]m × [−1000, 1000]m.
Up to twelve targets travel along straight lines with constant speed in the duration
time of 100s with three targets born at time 1 and 20, two targets born at time 40,
60 and 80 and two targets dead at time 50 and 70. Specifically, the three targets
born at time 20 are from roughly the same position, and the two targets born at
time 40 are from roughly the same position.

Figure 2.2 presents the GOSPA errors and the average computation time required
for a complete Monte Carlo simulation. The GOSPA errors were averaged over
time, and are shown as box plots. In cases with high detection probability, the
median of the GOSPA error due to localisation errors is very similar for all filters,
while in cases of low detection probability, filters using variational approximations
have slightly higher median value compared with the rest. It is clearly visible that
PMBM exhibits a similar or better estimation performance than δ-GLMB while
saving computational time notably. Errors due to missed and false targets can be
reduced by increasing the requested number of components used in K-shortest path
or Murty’s algorithm, but this would further increase the computational burden.

The benefit of recycling is most clear when the probability of detection is low. In
figure 2.2 we see that PMBM with recycling requires less computation time, and has
lower GOSPA error, compared to PMBM without recycling. As for the two variants
of PMB, LBP is a faster implementation than Murty’s algorithm, and it tends to
yield fewer false targets, but more missed targets.

Figure 2.3 shows the mean GOSPA error cost for missed targets against time. Here,
we can see that labelled RFS filters experience higher peaks than unlabelled filters
around initialization period, and at time 20 and 40, when there are two or more new
targets born from roughly the same position.
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Figure 2.2: Filtering performance evaluation of PMB (LBP) with recycling (pur-
ple), PMB (Murty) with recycling (magenta), LMB (brown), PMBM with recycling
(red), PMBM without recycling (green), δ-GLMB with joint prediction and update
(blue) and δ-GLMB (black) using GOSPA in a scenario where targets are well-
spaced. Results are presented in box plots. On each box, ‘�’ indicates the median,
and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The end of ‘Whisker’ corresponds to approximately +/–2.7 units of
standard deviation.

2.5.4 Scenario with Coalescence

In the following simulation, filters are evaluated in a more challenging scenario in-
volving six targets which are in close proximity at the midpoint of the simulation,
achieved by initializing at the midpoint and running forward and backwards dy-
namically. When multiple targets are in close proximity, multiple estimates may be
placed on the same target that leads to missed detection [12].

The midpoint is initialized as x50 = N (x; 0, 10−6 × I4). One possible realisation of
target trajectories is shown in figure 2.4. Standard deviation of motion and mea-
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Figure 2.3: Mean GOSPA error cost for missed targets of δ-GLMB with joint
prediction and update (red), LMB (green), PMBM with recycling (magenta) and
PMB using Murty’s algorithm with recycling (blue). Testing cases from top to
bottom are (a), (b), (c) and (d) respectively.

surement noises are σv = 0.2m/s2 and σε = 1m respectively. For unlabelled filters,
the Poisson birth intensity only contains a single Gaussian, λb(x) = 0.1N (x; 0,Σb),
where Σb = diag[1002, 1, 1002, 1] covers the position and velocity region of inter-
est. For labelled filters, the birth intensity is a single Bernoulli with rb = 0.1 and
f b(x) = N (x; 0,Σb). To generate clear plots, for each type of filter we choose to eval-
uate only the one that yields fewer missed targets: PMB using Murty’s algorithm
with recycling, PMBM with recycling, δ-GLMB with joint prediction and update
and LMB. The results of compared filters are shown in figure 2.5.

One significant difference between the unlabelled and labelled filters is that unla-
belled filters initiate the tracker faster at initialization period. In cases with high
detection probability, none of these filters suffers from the coalescence phenomenon.
However, when detection probability decreases to P d

k = 0.75, we can observe a sub-
stantial increase in missed targets for all the filters after targets become closely
spaced. In this case, the labelled filters present fewer missed targets around mid-
point that correspond to coalescence than unlabelled filters, though it is difficult for
LMB to detect targets when the false alarm rate increases to λfa = 30. Compared
with labelled filters, unlabelled filters exhibit good robustness to coalescence effects,
and the performance is restored after targets become separated. As for the error due
to false targets, we can observe that labelled filters suffer less from false detections
than unlabelled filters. Regarding the localisation error, it is increased abnormally
shortly after the midpoint for labelled filters, though δ-GLMB is an exception to
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Figure 2.4: One dimension of target trajectories in a single Monte Carlo trial on
the region [−100, 100]m× [−100, 100]m. Six targets are all born at time step 1 and
exist throughout the duration time of 100s.

this in cases of high detection probability.

Furthermore, the results demonstrate the success of PMB in resolving the coales-
cence phenomenon, which presents even less deterioration than PMBM. The ad-
vantage with PMB is that it merges tracks using a (variational) technique that
reduces coalescence [14, 34]. In the simulation, we found that the data association
hypotheses have multiple dominant weights when coalescence happens. In this case,
information is lost if we only extract the best states from a single MB component
in PMBM. However, approximating MBM as a single MB by minimising the KL di-
vergence yields an MB RFS density which tends to be closer to the full RFS density
when targets are in close proximity.

2.6 Conclusions and Future Work
In this paper, we have evaluated the δ-GLMB, LMB, PMBM and PMB filters in
two different scenarios. Estimation error due to localisation, false targets and missed
targets have been assessed using the GOSPA metric. Results from the scenario with
well-spaced targets show that PMBM is a more efficient filter structure than δ-
GLMB since it yields similar or better performance with less computational time.
The Poisson birth model provides the unlabelled filter with the ability to detect
multiple targets born from roughly the same position quickly. Also, approximating
the distribution of unknown targets as being Poisson enables the use of recycling
methods to improve estimation performance further. Under the simulation with
coalescence, the labelled filters have fewer missed targets when targets are in close
proximity and fewer false targets than unlabelled filters. The unlabelled filter can
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(a) λfa = 10, P d
k = 0.98
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(b) λfa = 30, P d
k = 0.98
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(c) λfa = 10, P d
k = 0.75
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(d) λfa = 30, P d
k = 0.75

Figure 2.5: Filtering performance evaluation of δ-GLMB with joint prediction and
update (green), LMB (magenta), PMBM with recycling (red), and PMB (Murty)
with recycling (blue) using GOSPA in a challenging scenario with coalescence.

resolve the coalescence phenomenon, whereas δ-GLMB and LMB are affected at
various degrees in cases with low detection probability. By applying variational
approximation, PMB presents the best overall performance in this challenging sce-
nario.

In the simulation study, filters are evaluated using the MAP cardinality estimator
with fixed parameter settings. It would be interesting to evaluate and compare filters
with different estimators and with different complexities by tuning their parameters,
e.g., pruning threshold and requested number of components used in Murty’s algo-
rithm. A technique to solve the data association problem based on Gibbs sampling
was proposed in [35], and it has been applied in δ-GLMB with joint prediction and
update [10] to replace Murty’s algorithm to truncate hypotheses. Thus, a potential
direction for future work is to evaluate the performance and computational time of
different filters using Gibbs sampling.
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Paper II: Likelihood-based data
association for extended object
tracking using sampling methods

Abstract

Environment perception is a key enabling technology in autonomous vehicles, and
multiple object tracking is an important part of this. The use of high resolution
sensors, such as automotive radar and lidar, leads to the extended object tracking
problem, with multiple detections per tracked object. For computationally feasible
multiple extended object tracking, the data association problem must be handled.
Previous work has relied on a two step approach, using clustering algorithms, to-
gether with assignment algorithms, to achieve this. In this paper, we show that it is
possible to handle the data association in a single step that maximises the desired
likelihood function. Single step data association is beneficial, because it enables
better use of the measurement model and the predicted multi-object density. For
single step data association, we use algorithms based on stochastic sampling, and
integrate them into a Poisson Multi-Bernoulli Mixture filter. Four sampling algo-
rithms are compared in a simulation study; the best one is compared to clustering
and assignment in an experiment, where Velodyne data is used to track pedestri-
ans. The results from the experiment clearly show that the proposed single-step
likelihood-based method achieves the best performance, especially in challenging
scenarios where the pedestrians are very close.

Keywords: Target tracking, extended target, data association, Markov Chain Monte
Carlo, Metropolis-Hastings, Gibbs sampling, pedestrian tracking, autonomous vehi-
cles, lidar, Velodyne.

3.1 Introduction

The realization of highly automated driving functions, as well as advanced driver
assistance systems, requires a precise and consistent environment model that incor-
porates dynamic as well as static obstacles. Object-based representations are typi-
cally used for dynamic obstacles whose state is estimated over time using multiple
target tracking (MTT) approaches. The main challenge of MTT is the simultaneous
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estimation of the number of objects and their individual states, based on a sequence
of noisy measurements including missed detections and false alarms.

Modern lidar and radar sensors typically deliver multiple detections per object per
time step, since the object’s extent is not negligible in comparison to the sensor
resolution. During the last decade, extended object tracking approaches, capable of
handling several measurements per object, have been proposed. A single extended
object measurement model has to model the number of measurements per object,
as well as the distribution of each measurement. The Poisson Point Process (PPP)
model [16] is a very popular model, where the individual measurements are modelled
as spatially distributed around the object. Two popular spatial distribution models
are the Gaussian inverse Wishart (GIW), or random matrix, model [18, 19], and the
Random Hypersurface Models [17]; a longer discussion of spatial distribution models
is given in [36]. The GIW model describes the spatial distribution as Gaussian with
unknown mean and covariance; this implies elliptically shaped objects. In [20, 21],
the GIW approach was extended to additionally estimate the Poisson measurement
rate of each object, resulting in the Gamma GIW (GGIW) model.

The most common approach to multiple extended object tracking is to model the
problem using random finite sets (RFS) [3]. The GIW and GGIW models have been
integrated into RFS based filters, e.g., the Probability Hypothesis Density (PHD)
filter [22, 23]; the Cardinalized PHD (CPHD) filter [21]; the δ-Generalized Labeled
Multi-Bernoulli filter and the Labeled Multi-Bernoulli filter (δ-GLMB and LMB)
[24]; as well as the Poisson Multi-Bernoulli Mixture (PMBM) filter [25, 26]. The
PHD and CPHD filters are examples of moment approximations of the multi-object
density, while the δ-GLMB and PMBM are examples of multi-object conjugate pri-
ors. Common to all mentioned multiple extended object tracking filters is that they
have to deal with the unknown measurement origin—it is unknown if a measure-
ment’s source is clutter or an object—something that leads to the combinatorially
complex data association problem.

In previous work [21, 22, 23, 24, 25, 26] the data association problem is handled
in two stages: first, clustering methods are used to find a set of different ways in
which the measurements can be clustered; second, assignment methods are used to
assign measurement clusters to objects. While these approaches have produced good
tracking results, they have difficulty handling dense scenarios with close objects,
and rely on heuristics rather than directly maximising the multi-object likelihood
function.

In this paper, we show that it is possible to handle the data association problem in
a single step, i.e., partitioning and assignment (c&a) simultaneously, while focusing
on the multi-object likelihood. To achieve this we use different stochastic sampling
methods, which are then integrated into the PMBM filter for multiple extended
object tracking. A preliminary version of this work was presented in [27]. In this
paper, we present an extended version of that work, whose contributions can be
summarised as follows:
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• The data association problem inevitably leads to approximations of the filtered
multi-object density. In Section IV, we discuss different methods for density
approximation and analyse the resulting approximation error.

• In Section V, we present four different sampling algorithms that can be used
to find data associations. The first was presented in [35], the second and third
are extended object tracking adaptations of Bayesian non-parametric sampling
algorithms presented in [37, 38], and the fourth is entirely novel work.

• Results from an extensive simulation study, in which we compare the four
different sampling algorithms, are presented in Section VI. Based on the sim-
ulation results we can identify which of the sampling algorithms has more
promising performance.

• An experiment where Velodyne data is used to track pedestrians is presented
in Section VII. Here, sampling methods for single-step likelihood based data
association are compared to two-step c&a based data association. The results
clearly show the benefit of the proposed approach.

In Section II, we give a problem formulation, discuss previous work and explain
how the proposed approach improves upon it. A review of multiple extended object
tracking is given in Section III. The paper is concluded in Section VIII.

3.2 Problem formulation, previous work, and pro-
posed approach

In this section, we clarify our contributions, and we explain why they are impor-
tant. To do so, we give some background to the problem and describe the previous
approaches that can be found in the literature.

3.2.1 Problem formulation

Let xik denote the state of the ith object at discrete time step k, and let the object set
be denoted Xk. The object set is modeled as a random finite set (RFS) [3], meaning
that the number of objects, i.e., the object set cardinality is a time-varying discrete
random variable, and each object state xk ∈ Xk is a random variable. The set of
measurements obtained at time step k is also modeled as an RFS, and is denoted
Zk. Further, Zk denotes all measurement sets Zm from m = 0 up to, and including,
m = k. The MTT problem consists of using the information in the sequence of
measurement sets Zk to estimate the set of objects Xk, i.e., we are interested in
both the number of objects, as well as the states of the individual objects.

The multi-object density is denoted fk|k(Xk|Zk). This distribution captures what is
known about the set of objects, given the sets of measurements. In this work we use
the PMBM conjugate prior [12, 25, 26] to represent the multi-object distribution.
The extended object PMBM filter [25, 26] propagates in time the object set PMBM
density using a Bayes update and a Chapman-Kolmogorov prediction. The focus in
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this work is on the Bayes update, defined as

fk|k(Xk|Zk) = fk(Zk|Xk)fk|k−1(Xk|Zk−1)∫
fk(Zk|Xk)fk|k−1(Xk|Zk−1)δXk

, (3.20)

where fk(Zk|Xk) is the multi-object measurement set density, and
∫
g(X)δX, for

some function g(X), denotes the set integral, defined in [3].

Because of the unknown measurement origin, the update includes consideration of
all possible data associations A, i.e., all possible ways to assign measurements to
measurement sources. This has combinatorial complexity, and approximations are
necessary to enable computationally tractable tracking algorithms. The approxima-
tion consists of finding a subset of associations A that are highly probable, i.e., that
have high likelihoods LAk|k−1, and then truncating the associations that are unlikely.
Finding a subset of highly probable associations in multiple extended object tracking
is the problem considered in this paper.

3.2.2 Previous two-step approach: clustering and assign-
ment

Data association in extended object tracking can be understood by separating it
into two parts, called partitioning and assignment, see, e.g., [36]. The partitioning
divides Zk into non-empty disjoint subsets called cells—this specifies which mea-
surements are from the same object. An illustrative example of partitioning is given
in [36, Sec. IV.C]. Given a partitioning, an assignment then assigns the cells to
measurement sources, either clutter or objects. Previous work, see, e.g., [22, 23,
24, 25], has dealt with the data association problem by first using combinations of
different clustering algorithms to compute a set of partitions, and then using, for
each partition, assignment algorithms, e.g., Murty’s algorithm [30], to assign the
cells to different objects. This efficiently reduces the number of data associations,
and empirical results are good.

In early multiple extended object tracking, a clustering scheme called distance par-
titioning (DP) was proposed [22]. DP builds upon a single linkage hierarchical clus-
tering algorithm, and given an upper and a lower threshold for the spatial proximity
of measurements, it finds a subset of partitions. DP has been shown to work well
when the objects are spatially separated, however it has also been shown to result
in missed objects when two or more objects are spatially close [22]. The reason is
that the detections from multiple spatially close objects are also spatially close, and
clustering algorithms based on spatial proximity, which DP and also Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [39] are two examples of,
will then return a single measurement cluster, incorrectly indicating that there is
only one object.

To improve the tracking results for close objects, two different extensions based
on k-means clustering and expectation maximisation for Gaussian mixtures, called
sub-partition (SP) and EM-partition (EMP), respectively, were proposed in [22, 23].
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Both simulations, as well as experiments where 2D lidar is used to track pedestrians,
have shown that handling of close objects is possible when DP is used together with
SP and EMP, see [23]. Nevertheless, a few drawbacks can be identified:

• The clustering does not consider the multi-object likelihood, which is the quan-
tity that we ultimately would like to maximise with the computed association.

• To handle close objects multiple clustering algorithms are necessary, see, e.g.,
[23].

• Performance depends on the clustering parameters. In the worst case, incorrect
parameter values lead to poor clustering, which leads to poor tracking results.

Even though intuition about the tracking problems can be used as guidance when
selecting and parameterising the clustering algorithms, there is no guarantee that
the computed clusterings will actually yield highly probable associations. Instead,
one has to rely on empirical evidence that confirms that this is the case.

3.2.3 Proposed single-step approach
In this paper, we show that it is possible to solve the extended object data asso-
ciation problem in a single step, while focusing on the multi-object likelihood. We
achieve this by using sampling based methods, and show that these methods can be
integrated in existing tracking filters, such as the GGIW-PMBM filter.

The main idea in the sampling methods is to start with an initial data association
for the measurements, and then randomly take actions that change the association.
By basing the probability of selecting an action on its impact on the multi-object
likelihood—the higher the resulting likelihood, the higher the probability of select-
ing the action—the sampling approaches efficiently find highly probable associations.
From an obtained sequence of associations, a subset of associations with high likeli-
hoods is then taken. The use of sampling algorithms for data association in extended
object tracking is inspired by works in Bayesian nonparametrics, see, e.g., [37, 38],
and work on extended object mapping [35].

The benefits of a single-step approach based on sampling methods, in comparison
to previous two-step approaches based on c&a, can be summarised as follows:

• It works directly on the likelihood, which is directly related to the quantity
which we wish to maximise.

• It works equally well for both close and distant objects.
• It only has one parameter: the number of iterations.

In order to evaluate the tracking performance and the computational cost of single-
step data association, sampling methods are integrated into the PMBM filter. In a
simulation study, different sampling algorithms are compared, and the best one is
used in an experiment where Velodyne lidar data is used for pedestrian tracking. In
the experiment, single step data association using sampling is compared to the most
common variants of two step c&a data associations, namely DP, and DP+SP/EMP.

Note that the sampling methods are not limited to the PMBM filter; it is straight-
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forward to integrate them into other types of multiple extended object tracking
filters. For example, when integrated into the PHD filter the tracking performance
is improved; this is similar to the PMBM results presented in this paper. Due to
page length constraints, the PHD filter results were not included in this paper.

3.3 Multiple extended object tracking
In this section, we review random set modelling of multiple extended object tracking,
and review the standard extended object tracking model. Next we briefly introduce
the PMBM conjugate prior for multiple extended object tracking, and then give an
overview of the data association within the PMBM measurement update, under the
assumed standard measurement model.

3.3.1 Random set modelling
Two types of RFSs are important in this work: the PPP and the Bernoulli process.
A PPP is an RFS whose cardinality is Poisson distributed, and each object is inde-
pendent and identically distributed (i.i.d.). A PPP has one parameter, the intensity
D(x). The intensity can be broken down into two parts D(x) = µf(x): the Poisson
rate µ and the spatial distribution f(x).

A Bernoulli RFS X is an RFS that is empty with probability 1−r or, with probability
r, contains a single element with distribution f(x). In other words, the cardinality
is Bernoulli distributed with parameter r. A typical assumption in MTT is that
the objects are independent, see, e.g., [40]. A multi-Bernoulli (MB) RFS X is the
union of independent Bernoulli RFSs Xi, X = ]i∈IXi, where I is an index set. The
MB distribution is defined entirely by the parameters {ri, f i(·)}i∈I of the involved
Bernoulli RFSs. Here |I| is the maximum number of objects that the MB RFS can
represent.

Lastly, an MB mixture (MBM) is an RFS whose multi-object density is a normalized
weighted sum of MB densities, where the components correspond to, e.g., different
data association sequences. An MBM density is defined entirely by the set of param-
eters {(Wj, {rj,i, f j,i(·)}i∈Ij)}j∈J, where J is an index set for the MBs in the MBM
(also called components of the MBM), Wj is the weight of the jth MB, and Ij is an
index set for the Bernoullis in the jth MB.

3.3.2 Standard extended object measurement model
The set of measurements obtained at time step k is the union of object generated
measurements and clutter measurements, Zk = (∪iWi

k) ∪ Kk, where Kk denotes
the set of clutter measurements, and Wi

k denotes the set of measurements from
the ith object. Standard MTT assumptions are that the sets are all independent,
and that the measurement origin is unknown, i.e., for the measurement set Zk it is
not known which measurements are clutter, nor is it known which measurements
originated from which object.
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The set of clutter measurements Zk is modelled as a PPP with rate λ and spatial
distribution c(z), and the clutter PPP intensity is κ(z) = λc(z). An extended object
with state xik is detected with state dependent probability of detection pD(xik), and,
if it is detected, the object measurement set Wi

k is modelled as a PPP with state
dependent Poisson rate γ(xik) and spatial distribution φ(·|xik). For a non-empty
set of measurements (|Wi

k| > 0) the conditional extended object measurement set
likelihood is denoted

`Wi
k
(xik) =pD(xik)e−γ(xik) ∏

z∈Wi
k

γ(xik)φ(z|xik). (3.21)

Note that this is the product of the probability of detection and the PPP den-
sity. The effective probability of detection for an extended object with state xik is
pD(xik)(1 − e−γ(xik)), where 1 − e−γ(xik) is the Poisson probability of generating at
least one detection. Accordingly, the effective probability of missed detection, i.e.,
the probability that the object is not detected, is

qD(xik) = 1− pD(xik) + pD(xik)e−γ(xik). (3.22)

Note that qD(xik) is the conditional likelihood for an empty set of measurements,
i.e., `∅(xik) = qD(xik) (cf. (3.21)).

3.3.3 The PMBM conjugate prior
The PMBM conjugate prior was developed for extended objects in [25, 26], and for
point objects in [12]. The PPP describes the distribution of the objects that are thus
far undetected, while the MBM describes the distribution of the objects that have
been detected at least once. Thus, the set of objects can be divided into two disjoint
subsets, X = Xu]Xd, corresponding to undetected objects Xu and detected objects
Xd. The PMBM density is defined entirely by the parameters

Du , {(Wj, {(rj,i, f j,i)}i∈Ij)}j∈J , (3.23)

where
• Du(·) is the PPP intensity for the set of undetected objects Xu. Higher/lower

intensity in a location implies a higher/lower probability that a yet undetected
object is located there. This can be used to model object occlusions, see [26]
for an example.

• j is an index for the MB components, and J is an index set. There are |J| MB
components. Each MB component corresponds to a unique global hypothesis
for the detected objects, i.e., a particular history of data associations for all
detected objects.

• The probability, or weight, of the jth MB component is Wj.
• For the jth MB component, i is an index for the Bernoulli estimates, and Ij

is an index set. The jth component has |Ij| Bernoulli estimates. In the jth
global association hypothesis, the ith Bernoulli has probability of existence rj,i
and object state pdf f j,i(·).
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3.3.4 PMBM data association

Let the predicted multi-object density be a PMBM density, with parameters

Du , {(Wj, {(rj,i, f j,i)}i∈Ij)}j∈J , (3.24)

let the measurements in the set Z be indexed by m ∈M,

Z = {zm}m∈M (3.25)

and let Aj be the space of all data associations A for the jth predicted hypothesis.
A data association A ∈ Aj is an assignment of each measurement in Z to a source,
either to the background (clutter or new object) or to one of the existing objects
indexed by Ij. Note that M ∩ Ij = ∅ for all j.

Formally a data association A ∈ Aj consists of a partition of M∪ Ij into non-empty
disjoint subsets called index cells, denoted C ∈ A. The meaning of a cell is that all
elements in the cell are associated together3. Due to the standard MTT assumption
that the objects generate measurements independent of each other, an index cell
contains either no object index, or one object index, i.e., C ∩ Ij 6= ∅ ⇒ |C ∩ Ij| = 1
for all C ∈ A. If the index cell C contains a object index, then let iC denote
the corresponding object index. Further, let CC denote the measurement cell that
corresponds to the index cell C, i.e., the set of measurements

CC = ∪m∈Czm. (3.26)

By [26, Theorem 1], the updated multi-object density is also a PMBM. Given a
predicted set of PMBM parameters, for each predicted global hypothesis there are
multiple possible data associations, each of which will result in a MB component in
the updated MB mixture. The weight for the component in the updated PMBM,
that resulted from updating predicted global hypothesis j ∈ J with association
A ∈ Aj, is [26]

Wj
A = WjLjA∑

j′∈J
∑
A′∈Aj′Wj′Lj′A′

(3.27)

where Wj is the predicted weight, and LjA is the likelihood of predicted hypothesis
j and association A ∈ Aj.

3For example, let M = (m1,m2,m3) and I = (i1, i2), i.e., three measurements and two objects.
One valid partition of M ∪ I, i.e., one of the possible associations, is {i1,m1,m2}, {m3}, {i2}. The
meaning of this is that measurements m1,m2 are associated to object i1, object i2 is not detected,
and measurement m3 is not associated to any previously detected object, i.e., measurement m3 is
either clutter or from a new object.
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The likelihood LjA can be expressed as [26]

LjA =
∏
C∈A:
C∩Ij=∅
C∩M 6=∅

LbCC

∏
C∈A:
C∩Ij 6=∅
C∩M 6=∅

Lj,iCCC

∏
C∈A:
C∩Ij 6=∅
C∩M=∅

Lj,iC∅ (3.28a)

LbC =
{
κC + 〈Du; `C〉 if |C| = 1
〈Du; `C〉 if |C| ≥ 1 (3.28b)

Lj,iC = rj,i〈f j,i; `C〉 (3.28c)
Lj,i∅ = 1− rj,i + rj,i〈f j,i; qD〉 (3.28d)

where 〈a; b〉 =
∫
a(x)b(x)dx. The three products in (3.28a) correspond to

• cells that are associated to the background,
• cells that are associated to previously detected objects,
• previously detected objects that are miss-detected.

By multiplication by 1 in (3.28a) we get

LjA =
∏
C∈A:
C∩Ij=∅
C∩Mk 6=∅

LbCC

∏
C∈A:
C∩Ij 6=∅
C∩Mk 6=∅

Lj,iCCC

Lj,iC∅

∏
i∈Ij
Lj,i∅ (3.29)

=Lj∅
∏
C∈A:

C∩Mk 6=∅

LjCC
(3.30)

where Lj∅ = ∏
i∈Ij Lj,i∅ is the likelihood that none of the previously detected objects

are detected in this time step, and

LjCC
=

 LbCC
if C ∩ Ij = ∅

Lj,iCCC

(
Lj,iC∅

)−1
if C ∩ Ij = {iC}

(3.31)

is the likelihood for measurement cell CC under association A ∈ Aj.

The updated weight resulting from updating predicted hypothesis j with association
A ∈ Aj, see (3.27), can thus be written as follows

Wj
A ∝ WjLj∅

∏
C∈A:
C∩M 6=∅

LjCC
(3.32)

Notice that, for predicted hypothesis j, the predicted weight Wj and the likelihood
of all objects being missed Lj∅ are constant and independent of the data association
A ∈ Aj. In other words, the difference lies in the product over the cell likelihoods
LjCC

.

3.4 Multi-object density approximation

As noted above, the size of the association space Aj is extremely large, it is not
possible to consider all associations in the tracking update, and approximations
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are necessary. In this section, we discuss some important theoretical aspects of
multi-object density approximation, with a focus on the approximation errors that
follow from considering only a subset of data associations. It will be shown that
the approximation errors are smallest when the data association is approximated by
only considering data associations with large likelihoods (3.28). This highlights the
benefit of using the proposed single-step likelihood based data association.

3.4.1 Multi-object density approximation
It is shown in [26] that, following the Bayes update (3.20), the density is a mixture
density, where each component in the mixture corresponds to a particular association
sequence. In this section, for the sake of brevity, we express this compactly as

f(X) =
∑
A∈A
WAf(X|A), (3.33a)

WA = LA∑
A′∈A LA

′ . (3.33b)

Here, A is the finite discrete association space, LA is the likelihood of the association
A ∈ A, the weightWA is the probability of the association A ∈ A, and ∑A∈AWA =
1.

The number of possible associations, i.e., the size |A| of the association space, is
combinatorial, which leads to (at least) two challenges:

1. The number of mixture components, i.e., number of summands in (3.33a), is
computationally intractable.

2. The association weights (3.33b) are in general difficult to compute, because
the normalisation requires a summation over A ∈ A. However, note that the
association likelihoods LA can be computed straightforwardly.

The prevailing approach to these challenges is to compute an approximate mix-
ture density that has a computationally tractable number of components, and to
approximate the component weights. The approximate density

fÂ(X) =
∑
A∈Â

ŴAf(X|A) (3.34)

considers a subset of associations, Â ⊆ A, and approximate association weights ŴA,
where ∑A∈Â ŴA = 1 and ŴA′ = 0 for all A′ 6∈ Â.

3.4.2 Approximation error upper bound
The L1-norm of a function g(X) is defined as

‖g‖1 =
∫

abs(g(X))δX, (3.35)

and it is a useful performance measure for density approximation, see, e.g., [9].
Using the triangle inequality, it is straightforward to show that the L1-error of the
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density approximation is upper bounded,

‖f − fÂ‖1 ≤
∑

A∈A\Â

WA +
∑
A∈Â

abs
(
WA − ŴA

)
. (3.36)

Equality holds, e.g., in the special case when there is no overlapping support between
the conditional densities, i.e.,

suppf(·|A) ∩ suppf(·|A′) = ∅ (3.37)

for all A ∈ A and A′ ∈ A such that A 6= A′.

The L1-error upper bound (3.36) shows that the approximation error is not only
determined by which associations are included in the subset Â, but also by how the
approximate association weights ŴA are chosen.

3.4.3 Weight approximations
Given a subset of associations, one possibility is to compute the approximate mixture
weights as

ŴA
L = LA∑

A′∈Â LA
′ . (3.38)

We call this likelihood based weight approximation (L). For approximate weights
computed as in (3.38), the upper bound on the L1-error is

‖f − fÂ‖1 ≤ 2
∑

A∈A\Â

WA. (3.39)

In other words, the approximation error is less than two times the sum of the weights
of the mixture components that are pruned, i.e., the components whose weights are
approximated as zero. An interpretation of (3.39) is that, by pruning components
with small weights, the sum of pruned weights will be small, and the approximation
error will be small.

Consider a subset of associations Â, such that∑
A∈A\ÂWA = ε ⇔ ∑

A∈ÂWA = 1− ε, (3.40)

for ε > 0. We can rewrite this in terms of the likelihoods as follows,

ε =
∑
A∈A\Â LA∑

A′∈A\Â LA
′ +∑

A′′∈Â LA
′′ . (3.41)

From this we see that if the following holds for the sums of likelihoods,∑
A′∈Â

LA′ �
∑

A′′∈A\Â

LA′′ , (3.42)
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Figure 3.6: Illustrative example with four object densities i1 to i4, a PPP intensity
b for the background (new object or clutter), and four measurements m1 to m4.
Note that the only association that is highly ambiguous is measurement m1: is it
from object i1 or from the background b? The corresponding significant associations
are given in Table 3.3.

Table 3.3: The two most significant associations, and their corresponding weights,
for the scenario in Figure 3.6

A39 : {i1,m1}, {i2,m2}, {i3,m3,m4}, {i4} WA = 0.87
A616 : {i1}, {i2,m2}, {i3,m3,m4}, {i4}, {m1} WA = 0.13

then ε in (3.41) will be a small number. In other words, for the density approxima-
tion (3.34) with likelihood based weights (3.38), we can make the L1-error arbitrarily
small by including in Â all associations A with large likelihoods LA. This is equiva-
lent to including in Â all associations A that have large weights WA. Note that we
can make the upper bound on the L1-error arbitrarily small, regardless of the sizes
of Â and A; as long as (3.42) holds, |Â| can be several orders of magnitude smaller
than |A|. We illustrate this with the following example.

Example 3.4.1 Consider a one-dimensional scenario where there are four existing
objects denoted i1 to i4, a PPP representing object birth denoted b, and four measure-
ments denoted m1 to m4. In this case there are 799 possible data associations Ai, for
the sake of simplicity indexed i from 1 to 799. Note that the order of the associations
does not have a specific meaning; one was simply chosen for the illustration.
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Figure 3.7: Illustrative example with four object densities i1 to i4, a PPP intensity
b for the background (new object or clutter), and four measurements m1 to m4.
Compared to Figure 3.6, the scenario is more complex; the associations of both m1
and m2 are ambiguous. For m1 and m2 there are three different highly probable
measurement sources, i1, i2 and b. Further, it is unknown if both measurements are
from the same source, or if they are from two different sources. The corresponding
significant associations are given in Table 3.4.

One realisation of such a scenario is shown in Figure 3.6, where the object densities
and the measurements are shown. In this case only two associations have significant
weights; these two associations are given in Table 3.3. The two associations corre-
spond to the only highly ambiguous assignment in this scenario: is measurement m1
from existing object i1, or from a new object? If Â = {A39, A616}, then the density
approximation (3.34) with likelihood based weights (3.38) has an L1-error with upper
bound (3.39) equal to 0.008. Thus, despite truncating over 99.7% of the possible
associations, the approximation error has a very low upper bound.

If object i2 and measurement m2 are closer to object i1 and the birth PPP intensity,
the data association becomes much more ambiguous. This is illustrated in Figure 3.7.
In this case, if Â includes only the two most probable associations, then the density
approximation (3.34) with likelihood based weights (3.38) has an L1-error with upper
bound of 0.9.

For the scenario in Figure 3.7, the ten associations with highest weights are given in
Table 3.4. Note that, as expected, in all of the ten significant associations, measure-
ments m3 and m4 are associated to object i3, and object i4 is not associated to any
measurement. If Â is set to include the ten associations listed in Table 3.4, then
the L1-error has an upper bound of 0.0005, while truncating 98.7% of the possible
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Table 3.4: The ten most significant associations, and their corresponding weights,
for the scenario in Figure 3.7

A39 : {i1,m1}, {i2,m2}, {i3,m3,m4}, {i4} WA = 0.29
A180 : {i1}, {i2,m1,m2}, {i3,m3,m4}, {i4} WA = 0.27
A154 : {i1,m2}, {i2,m1}, {i3,m3,m4}, {i4} WA = 0.14
A13 : {i1,m1,m2}, {i2}, {i3,m3,m4}, {i4} WA = 0.13
A616 : {i1}, {i2,m2}, {i3,m3,m4}, {i4}, {m1} WA = 0.04
A119 : {i1,m1}, {i2}, {i3,m3,m4}, {i4}, {m2} WA = 0.04
A260 : {i1}, {i2,m1}, {i3,m3,m4}, {i4}, {m2} WA = 0.04
A727 : {i1}, {i2}, {i3,m3,m4}, {i4}, {m1,m2} WA = 0.02
A579 : {i1,m2}, {i2}, {i3,m3,m4}, {i4}, {m1} WA = 0.02
A766 : {i1}, {i2}, {i3,m3,m4}, {i4}, {m1}, {m2} WA = 0.01

associations. �

The example illustrates that to ensure a tight upper bound on the L1-error, one must
ensure that the subset of associations Â includes all associations with non-negligible
likelihoods. The number of associations that have non-negligible likelihoods depends
on the scenarios; in the examples in Figure 3.6 and Figure 3.7, this number is 2 and
10, respectively. However, in a typical object tracking scenario, the number of non-
negligible associations is not known a priori. Further, this number may be larger
than what the computational resources allow, meaning that associations with non-
negligible likelihoods must be truncated.

For such cases, the likelihood based weight approximation (3.38) is not guaranteed
to yield small errors, and we may possibly obtain better approximations using other
weights. When a sampling method has been used to obtain a set of association
samples A = {A(i)}Ni=1, an obvious alternative is to approximate the density (3.33)
using the Monte Carlo average,

fA(X) = 1
N

N∑
i=1

f(X|A(i)) =
∑
A∈A

NA

N
f(X|A), (3.43)

where NA is the number of samples A(i) ∈ A that are equal to A ∈ A. Not all
A ∈ A will be sampled at least once, meaning that NA = 0 for A 6∈ A. Thus,
the Monte Carlo density approximation (3.43) is of the same form as the density
approximation (3.34), with Â = ∪Ni=1{A(i)} and approximate mixture weights

ŴA
S = NA

N
. (3.44)

We call this relative frequency based weight approximation (S). For approximate
weights computed as in (3.44), the upper bound on the L1-error becomes

‖f − fA‖1 ≤
∑

A∈A\Â

WA +
∑
A∈Â

abs
(
WA − ŴA

S

)
. (3.45)
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Empirical results from simulated tracking scenarios show that weight approxima-
tion based on relative frequency (3.44) can give the same tracking performance as
weight approximation based on the likelihood (3.38), but relative frequency requires
a considerably high number of iterations N . There are two main reasons for this:

1. Relative frequency weights should (preferably) be based on samples from the
stationary distribution. In general, sampling methods, e.g., Markov Chain
Monte Carlo (MCMC) algorithms, require a period of “burn-in” before one
can reasonably assume that the samples are from the stationary distribution.
This means that the batch of samples from the “burn-in” cannot be used, as
they are not from the stationary distribution.

2. Relative frequency weights are more accurate, the more samples there are.
This means that, after the “burn-in” period, the sampling algorithm has to
run for a sufficient number of iterations.

Because, holding all else equal, more iterations lead to higher computational cost,
we favour likelihood based weight approximation.

3.5 Sampling methods
In this section, we discuss sampling based methods for obtaining a sequence of sam-
ples from the discrete distribution over the associations, P{A}. Due to the com-
plex nature of the extended object tracking data associations problem, direct sam-
pling from P{A} is difficult, and approximate sampling methods are therefore used.
Specifically, we discuss two existing MCMC methods, called Gibbs sampling and
split/merge Metropolis Hastings, and we propose a new algorithm called Stochastic
Optimisation (SO).

3.5.1 Assignment variable
We start by defining an assignment variable ϕ; this variable facilitates the descrip-
tion, as well as the implementation, of the sampling algorithms. Let ϕ be a vector of
length |Zk|, with entries ϕm that indicate which sources the measurements are asso-
ciated to. If ϕm ∈ Ij, then the measurement with index m is associated to Bernoulli
estimate with index ϕm, and if ϕm 6∈ Ij, then the measurement with index m is asso-
ciated to a background object (clutter or new object). Further, if ϕm1 = ϕm2 , then
measurements zm1

k and zm2
k are associated to the same source, and if ϕm1 6= ϕm2 ,

then measurements are associated to different sources. Note that for ϕm 6∈ Ij, it does
not matter what value ϕm takes, it only matters which measurements are associated
together (i.e., for which m we have equal ϕm). A set of measurements associated to
the same source is, analogously to (3.26), denoted

Cc =
⋃

m:ϕm=c
zmk . (3.46)

Given an assignment vector ϕ we can obtain the equivalent association A(ϕ) by
simply forming subsets of the measurement indices that have equal assignments,
and including the object index if ϕm ∈ Ij. Note that the associations A are unique,
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however, the assignments are not; i.e., two assignments ϕ 6= ϕ′ can have the same
equivalent association, A(ϕ) = A(ϕ′).

Given ϕ(t), where superscript t denotes the iteration, the next assignment ϕ(t+1)

is obtained by the sampling methods as follows. First, a measurement index r1
is randomly sampled; let C(t)

c1 denote the corresponding cell, i.e., ϕ(t)
r1 = c1. By

performing an action α that involves the measurement we can obtain a different
assignment vector, i.e., a different association. Thus, starting from the assignment
ϕ(t) and performing a randomly sampled action α, we get the next assignment
ϕ(t+1) = ϕ(t)

α , i.e., a randomly sampled association A(t)
α = A(ϕ(t)

α ).

In the implementations the number of iterationsN is set adaptively toN = NI(|M|+
|Ij|), where NI > 1 is a scaling factor. The following sub-sections presents the
different sampling methods in detail.

3.5.2 MCMC sampling methods
MCMC methods are a class of algorithms that construct a Markov chain whose sta-
tionary distribution is equal to the probability distribution that is of interest, which
in this context is P{A}. MCMC methods have been used to handle data association
in point object tracking, see, e.g., [10, 41, 42, 43, 44]. However, those results do not
apply here, because of the significant differences between point object tracking and
extended object tracking, especially in terms of how the data association is defined.

3.5.2.1 Gibbs Sampling

Gibbs sampling is an iterative MCMCmethod that can be used when direct sampling
from a multivariate distribution is difficult. Applied to extended object tracking data
association, the basic idea is that given the randomly chosen measurement index r1,
the corresponding association is randomly changed while holding all other associ-
ations fixed. For the assignment vector, this means that ϕr is randomly changed,
while all other elements of ϕ are constant.

A Gibbs sampling algorithm was developed for the PMBM conjugate prior in [35];
the Gibbs algorithm in [35] was in turn inspired by work by Neal [45], where the
ideas were applied to Dirichlet Process mixture models. For conjugate models, the
Gibbs algorithm uses the following conditional distribution, cf. [45, Eqn. 3.2] and
[35, Eqn. 45],

P
{

ϕ(t+1) = ϕ(t)
α

∣∣∣ϕ(t), r1
}
∝ Lj,A

(t)
α

k|k−1. (3.47)

The Gibbs actions, and the updates of the association vector, are given in Table 3.5,
where S(t) = Ij ∪ {ϕ(t)

m } is used for notational brevity.

3.5.2.2 Split/Merge Metropolis-Hastings

In [38] it was noted that the Gibbs sampling [45] can be slow, because it changes
at most the assignment of a single measurement in each iteration. To speed things
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Table 3.5: Single measurement actions

Update assignments as

ϕ(t+1)
m =

{
c? if m = r1
ϕ(t)
m otherwise (3.48)

where there are three different possibilities for c?,
1. c? = c1: Do not change the assignment vector.
2. c? ∈ S(t)\c1: Move selected index r to one of the existing cells.
3. c? 6∈ S(t): Move selected index r to a new cell.

up, a Metropolis-Hastings (MH) algorithm was proposed in [38], in which so called
splits and merges were used. The splits and merges change the assignments for
entire cells in each iteration, which leads to a faster algorithm. MH algorithms are
suitable when we wish to sample from a distribution which we can evaluate up to
a normalising constant; this is the case for MTT data associations where we can
evaluate the likelihood LA of an association A, but not the weight WA.

In the MH algorithm, one additional measurement index r2 is randomly chosen. If
the two indices belong to the same cell, i.e., if ϕr1 = ϕr2 = c1, then corresponding
cell is a candidate for a cell split. If ϕr1 = c1 6= ϕr2 = c2, then the two corresponding
cells are considered for a cell merge. For a merge, there is one way to merge the
two involved cells. However, for a split, there are multiple ways in which the two
sub-cells can be assigned, i.e., there are multiple possible split-actions. When the
MH algorithm is integrated into a tracking filter, we select the split-action that
has highest likelihood. The split/merge actions, and the updates of the association
vector, are given in Table 3.6.

There are many ways to split a set of measurement indices into two subsets. We have
evaluated two alternatives in a simulation study, namely restricted Gibbs sampling,
suggested in [38], and the k-means++ algorithm [46]. Empirically we found that
both can yield equally good results, however, restricted Gibbs requires a larger
number of iterations, and therefore has a significantly higher computational cost.
Further, in a simulation scenario with very dense birth, restricted Gibbs gave worse
results than k-means++, even with a very high number of iterations. From these
tests we conclude that k-means++ is more suitable for use in an extended object
tracking context.

The Metropolis-Hastings (MH) algorithm with merge and split actions in [38] has
acceptance probability of the form [38, Eqn. 3.1]

P {α} = P
{

ϕ(t+1) = ϕ(t)(α)
∣∣∣ϕ(t)

}
= min

1,
q
(

ϕ(t)
∣∣∣ϕ(t)(α)

)
q (ϕ(t)(α)|ϕ(t))

P{A(t)
α }

P{A(t)}

 (3.51)

where the action α is either split or merge; q(·|·) is a proposal density; P{A} is the
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Table 3.6: Cell merge and cell split actions

1. Cell merge:

ϕ(t+1)
m =

{
c2 if ϕ(t)

m = c1
ϕ(t)
m otherwise (3.49)

2. Cell split: First, split set of indices {m}
ϕ

(t)
m =c1

into two subsets denoted R1 and
R2. Next, given the split, either the indices m ∈ R1 are assigned to another
cell,

ϕ(t+1)
m =

{
c? if m ∈ R1
ϕ(t)
m otherwise (3.50a)

or the indices m ∈ R2 are assigned to another cell,

ϕ(t+1)
m =

{
c? if m ∈ R2
ϕ(t)
m otherwise (3.50b)

For both alternatives, we may have c? ∈ S(t) and the split cell is assigned to
an existing cell, or c? 6∈ S(t) and the split cell is assigned to a new cell.

density that we want to sample from; and, for the PMBM filter, we have that

P{A(t)
α }

P{A(t)}
=
Lj,A

(t)
α

k|k−1

Lj,A
(t)

k|k−1

. (3.52)

Choosing the proposal density is in general not simple, and it is especially difficult
here, considering the very large dimension of the MTT data association problem. A
general discussion of different methods for cell split, and the corresponding proposal
densities, is given in [38]. Empirically, we have found that for object tracking with
the PMBM filter, best results are achieved if the proposal density is chosen to be
symmetric, i.e., q(ϕ(t)|ϕ(t)(α))

q(ϕ(t)(α)|ϕ(t)) = 1. In this case the acceptance probabilities become

P {merge} = min
[
1,Lj,A

(t)
merge

k|k−1

(
Lj,A

(t)

k|k−1

)−1
]
, (3.53a)

P {split} = min
[
1,Lj,A

(t)
split

k|k−1

(
Lj,A

(t)

k|k−1

)−1
]
. (3.53b)

The acceptance probabilities (3.53) give a split/merge MH algorithm that is greedy:
if the likelihood of the association resulting from the action is larger than the like-
lihood of the current association, the action is performed with probability one.

In [38] it is noted that improved performance can be obtained if the merge/split
MH algorithm is followed by refinement using Gibbs sampling. The combination of
split/merge MH and Gibbs has also been implemented and evaluated for extended
object tracking.
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3.5.3 Stochastic optimisation

In this section, we present a novel approach to handling the extended object data
association problem, that is inspired by the previous work [35, 38]. The presented
method is called stochastic optimisation (SO) because it takes stochastic steps to-
wards maximising the likelihood (3.28a). This sampling method combines the Gibbs
actions and the merge/split actions and considers them all simultaneously. For the
split actions, there is one important difference compared to the MH algorithm: here,
given a cell split, we consider all possible ways to assign the two subcells. In the MH,
only the split with highest likelihood was considered. The main intuition behind
mixing the Gibbs actions, the merge action, and all possible split actions, is that one
should obtain an algorithm that requires fewer iterations, because in each iteration
there is a broader variety of different actions to choose from. Indeed, results from a
simulation study confirms that this is the case.

The downside to mixing the Gibbs actions and the split/merge actions is that the re-
sulting algorithm does not satisfy all the theoretical properties of an MCMCmethod.
This means that we cannot guarantee that in the limit we are sampling from the
distribution of interest P{A}. However, in the context of multiple extended object
tracking, we are interested in finding probable data associations, not in generating
samples from the posterior distribution.

In the SO algorithm, the possible actions affect either the selected measurement
index, or all measurement indices with the same assignment. The selected mea-
surement index can be moved to another cell, either an existing or a new cell.
Alternatively, the selected cell can be merged with an existing cell, or split into
two parts. The updates to the assignment vector are as presented in Table 3.5 and
Table 3.6. More details are found in [26]; due to page length constrains they could
not be included.

Given an assignment ϕ(t), the probability for the next assignment resulting from an
action α is given by the relative likelihood (cf. (3.27)),

P
{

ϕ(t+1) = ϕ(t)
α

∣∣∣ϕ(t)
}

=
Lj,A

(t)
α

k|k−1∑
α′ L

j,A(ϕ(t)
α′ )

k|k−1

(3.54)

where A(t)
α = A(ϕ(t)

α ) is the equivalent association that follows from applying action
α to assignment ϕ(t), and ∑α P

{
ϕ(t+1) = ϕ(t)

α

∣∣∣ϕ(t)
}

= 1. As noted above, the algo-
rithm is not a proper MCMC algorithm. However, by using (3.54), data associations
with high posterior probabilities will be sampled more often, which is a key property
for our purposes. We are explicitly looking for data associations with high posterior
probabilities, i.e., large Lj,A

(t)
α

k|k−1.
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3.5.4 Implementational aspects

3.5.4.1 Reducing the cost of the likelihood computation

As shown in (3.30), each likelihood Lj,A
(t)
α

k|k−1 is proportional to a product over the cells
resulting from the association. However, for each action α, only a subset of the cells
given by A will be changed. This fact can be utilized to simplify the computations
of the probabilities (3.54). For example, given the assignment ϕ(t) with equivalent
association A(t)

α = α(ϕ(t)
α ), and an action α that affects cells c1 and c2, we obtain a

new assignment ϕ(t)
α with equivalent association A(t)

α and likelihood

Lj,A
(t)
α

k|k−1 = Lj,A
(t)

k|k−1L
A

(t)
α

Cc1

(
LA(t)

Cc1

)−1
LA

(t)
α

Cc2

(
LA(t)

Cc2

)−1
(3.55)

For the general case, we express this as Lj,A
(t)
α

k|k−1 = Lj,A
(t)

k|k−1L(t)
α , where L(t)

α represents
the product of the likelihoods of the cells that are affected by the action. It is
straightforward to calculate what L(t)

α is for the different types of actions. Inserting
this into (3.54) and simplifying gives

P
{

ϕ(t+1) = ϕ(t)
α

∣∣∣ϕ(t)
}

= L(t)
α∑

α′ L
(t)
α′

(3.56)

which is cheaper to compute than (3.54) is. Naturally, this can also be used to lower
the computational cost of computing the Gibbs conditional distribution (3.47) and
the split/merge MH acceptance probabilities (3.53).

3.5.4.2 Initialisation

The sampling algorithms above—Gibbs sampling, split/merge MH, and SO—can in
theory be initialised with any valid partition; given enough iterations the sampling
algorithm should yield good results. Two simple initialisations are starting with a
partition with all the measurement in individual cells, or starting with a partition
with all measurements in a single cell. However, empirically we have found that the
different algorithms show varying sensitivity to the initialisation.

• Gibbs sampling requires an extremely large number of iterations if all mea-
surements are initialised in a single cell. In general, Gibbs sampling can fail to
move a group of measurements from one cell to another (this corresponds to
the cell split in MH and SO). The reason for this is that the Gibbs sampling
has to go via intermediate associations that have relatively low likelihood.

• Split/merge MH has shown poor performance when all measurements are ini-
tialised in individual cells. In this case several cell merges are required in the
first iterations. However, before larger cells can be formed, the algorithm must
pass through intermediate associations with relatively low likelihood.

In comparison, the SO algorithm has not shown any sensitivity to the initialisation.
We attribute, at least in part, this robustness to the initialisation to the fact that
the SO algorithm in each iteration considers more actions, compared to what Gibbs
and MH do.

By using the predicted PMBM parameters, it is possible to find an initialisation that

42



Table 3.7: Simulation scenario parameters

Scen λc pD pS N g
I N mh

I N mhg
I N so

I

1 60 0.90 0.99 10 10 5 + 3 3
2 20 0.90 0.99 20 40 20 + 10 10
3 10 0.98 0.99 20 50 20 + 10 20

allows the sampling algorithm to run in fewer iterations. The assignment variables
are initialised as

ϕ(0)
m =

{
îm if îm ∈ Ij
m+ |Ij| otherwise , (3.57a)

îm = arg max
i∈Ij∪{0}

`m,init
j,i , (3.57b)

`m,init
j,0 = λc(zm) + pD〈Du; `{zm}〉, (3.57c)
`m,init
j,i = pDr

j,iγ(x̂j,i)φ(zm|x̂j,i), (3.57d)

where x̂j,i = Efj,i [x]. In other words, if the maximum PPP likelihood corresponds
to a object, then the measurement is associated to that object. Otherwise the
measurements initial association is a background object.

3.5.4.3 Finding a subset of associations

After the algorithm is run for T iterations, a set of highly probable unique asso-
ciations is obtained by sorting the unique equivalent associations A(t) in order of
descending likelihood LA(t)

k|k−1, and then taking the associations whose cumulative
sum of the relative likelihood exceeds a threshold. In the simulation and experiment
presented below, the threshold was set to 99.99%.

3.6 Simulation results

Four different sampling method were compared in a simulation study: Gibbs sam-
pling (g), split/merge Metropolis-Hastings (mh), split/merge Metropolis-Hastings
with Gibbs refinement (mhg), and stochastic optimisation (so). The sampling al-
gorithms were integrated into the GGIW-PMBM filter [25, 26], and tested in three
scenarios:

1. The first scenario contains 27 objects, and it tests the tracking filters capabil-
ities of handling objects that appear/disappear in dense clutter.

2. The second scenario has five objects and tests the tracking filters capabilities
of handling dense birth, i.e., when several objects appear at the same time
step at very short distance from each other. Close objects has been shown
in previous work, see, e.g., [22, 23], to lead to challenging data association,
because the resulting measurements form a single cluster, rather than sev-
eral distinct clusters. Dense birth is especially difficult, because there is no
predicted information that can be utilised.
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Table 3.8: Average time [s] to run one full Monte Carlo simulation

Scen g mh mhg so
1 62.7 69.0 57.6 63.7
2 119.5 44.5 45.8 56.6
3 48.4 98.1 88.6 147.3

3. The third scenario has two objects that manoeuvre while staying next to each
other. Here, in addition to the challenge of close objects, the non-linear ma-
noeuvre adds additional complexity because the object motion model is linear,
i.e., there is a model mismatch in the prediction step.

The scenario parameters clutter rate λc, detection probability pD, and survival prob-
ability pS, as well as the iteration number scaling factors NI used for the different
sampling methods, are summarized in Table 3.7. The scaling factors NI were tuned
such that the resulting tracking algorithms would yield good tracking performance
at a reasonable computational cost, as measured by the average cycle time.

For each scenario, 100 Monte Carlo runs were simulated. The tracking performance
is evaluated using the Gaussian Wasserstein distance (GWD) [47] integrated into the
GOSPA metric [15]. The results are shown in Figure 3.8. The results show that in
general g and mh lead to worst tracking performance, and require a larger number of
iterations than the other two methods. In general, mhg and so give approximately
equal performance, however, so achieves this in fewer iterations. The simulation
study shows that both Gibbs actions and merge/split mh actions are necessary
for finding a good set of highly probable data associations in as few iterations as
possible.

Note that, in the implementations that we have, fewer iterations did not automati-
cally translate to lower average cycle time, because the cycle time is greatly affected
by how many actions we have to compute the likelihood of the resulting association
for. The average times to run a single Monte Carlo simulation of the three sce-
narios are given in Table 3.8. The average cycle times can be lowered by utilising
parallelisation, as well as storing information to avoid computing the same things
twice.

3.7 Experimental results

The data for the experimental results is recorded with the test vehicle of Ulm Uni-
versity. For the evaluation, the data of four Velodyne Puck 16 is used. The sensors
are mounted on the roof, one in the front, one over each of the B-pillars and one at
the back. The raw measurements are projected to the ground plane and discretized
in the x-y plane using grid cells of 0.1 m in order to reduce the total number of
measurements. The data for the evaluation was recorded with the car parked on
the campus of Ulm University. A histogram of the discretized measurements over
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Figure 3.8: Results from simulation of three scenarios, from top to bottom: 1) 27
objects, 2) dense birth, and 3) parallel manoeuvre.
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Figure 3.9: Visualisation of Velodyne data. The 2D world was gridded, and for
each grid the number of times a detection fell inside was recorded. The logarithmic
colorscale corresponds to the number of times the grid cell was detected. Stationary
structures can be seen as yellow, the traces left by moving objects can be seen as
green/light-blue. The data that was used to evaluate pedestrian tracking was taken
from the area indicated by the red rectangle.

10 minutes is visualized in Figure 3.9.

We have compared three different variants of the GGIW-PMBM extended object
tracking filter. Due to page length constraints the GGIW-PMBM filter details can-
not be given; the reader is referred to [25, 26] for details. All three filters are identical
except for the different approximations used to handle the data association in the
update: PMBM-DP uses distance partition (DP); PMBM-SP/EMP uses DP, sub-
partition (SP) and expectation maximisation partition (EMP); and PMBM-SO uses
stochastic optimisation (SO).

For most parts of the data the three compared tracking filters have identical perfor-
mance; this is expected when the objects are well separated because all three filters
are based on the same single object models. Therefore we highlight results from
parts of the data that proved to be challenging due to spatially close objects. In this
data the pedestrians move such that their respective measurements change between
forming one measurement cluster per pedestrian, and forming joint measurement
clusters (i.e., two or more pedestrians per cluster).

Figure 3.10 shows two pedestrians moving in the same direction. As soon as the
objects become close, PMBM-DP merges the objects, while PMBM-SP/EMP and
PMBM-SO can maintain both objects. Note how PMBM-DP maintains a single
object, even after the data clearly forms two clusters; because the separation happens
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Figure 3.10: Measurements (gray), PMBM-DP (orange), PMBM-SP/EMP (red),
and PMBM-SO (blue). The object position is shown for each time step. For clarity,
measurements and ellipses are shown for a subset of time steps. As indicated by the
time steps (k), the three objects move left to right.
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slowly, the object estimate is able to slowly adapt. A similar scenario, but with three
objects, is shown in Figure 3.11. In this case PMBM-DP merges the close objects
again. PMBM-SP/EMP can maintain three objects, however, the estimated tracks
are not as smooth as the results from PMBM-SO. In these two scenarios, because
the objects are moving in the same direction and with the same speed, the merging
can be seen as a benign error—the tracked object represents a group of pedestrians.
However, merging of objects moving in different direction is a worse problem, as it
causes estimates that are significantly erroneous.

Figures 3.12 and 3.13 show scenarios in which objects pass each other at close dis-
tance, while moving in opposite directions. For increased clarity, we have plotted
each time step on its own, rather than all time steps in one plot as in Figures 3.10
and 3.11. Velocity vectors indicate the direction the object is heading; for increased
clarity the length of the vectors are tripled in the plots. Note that in the first
figures, time steps k = 1111 and k = 748, because the objects have been well sep-
arated all three filters have the same estimates. When the objects become close,
PMBM-SO manages to keep track of all three objects, while both PMBM-DP and
PMBM-SP/EMP produce significantly worse estimates of the objects. As the ob-
jects separate again, PMBM-DP and PMBM-SP/EMP can recover all three objects,
however, the estimated extents are too large compared to the results from PMBM-
SO, see time steps k = 1122 and k = 757. Note also that PMBM-SO produces
better estimates of the velocity vector than the other two filters do.

3.8 Concluding remarks
In this paper, we show that it is possible to solve the data association problem
in extended object tracking in a single, likelihood-based, step. This is achieved
using sampling algorithms, which are shown to outperform previous work that has
been based on the combination of clustering algorithms and optimal assignment
algorithms. An important topic for future work is investigating how the sampling
algorithms can be implemented as efficiently as possible, for example by utilising
parallelisation.
The sampling methods were evaluated in both simulations and in experiments where
Velodyne data was used to track pedestrians. The experiments clearly showed that
improved tracking performance is obtained when the sampling methods are used,
especially when the pedestrians pass close to each other when moving in opposite
directions. This result is important in an autonomous driving context: for safe and
robust operation, the decision making requires not only accurate position estimates
for all surrounding moving objects, but also accurate estimates of their motion
parameters, such as velocity.
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Figure 3.11: Measurements (gray), PMBM-DP (orange), PMBM-SP/EMP (red),
and PMBM-SO (blue). The object position is shown for each time step. For clarity,
measurements and ellipses are shown for a subset of time steps. As indicated by the
time steps (k), the three objects move left to right.
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Figure 3.12: Measurements (gray), PMBM-DP (orange), PMBM-SP/EMP (red),
and PMBM-SO (blue).
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Figure 3.13: Measurements (gray), PMBM-DP (orange), PMBM-SP/EMP (red),
and PMBM-SO (blue).
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Paper III: Poisson multi-Bernoulli
filter for extended object

estimation

Abstract

In this paper, a Poisson multi-Bernoulli (PMB) filter for multiple extended targets
estimation is presented. The PMB filter is based on the Poisson multi-Bernoulli
mixture (PMBM) conjugate prior and approximates the multi-Bernoulli mixture
(MBM) in the posterior as a single multi-Bernoulli. Different methods to merge the
MBM are presented, along with their gamma Gaussian inverse Wishart implemen-
tation. The performance of the PMB filter is compared to the PMBM filter and the
Probability Hypothesis Density filter in different simulated scenarios.

Keywords: Multiple target tracking, extended target, random matrix model, random
finite sets, Bayesian estimation, variational inference

4.1 Introduction

Multiple target tracking (MTT) denotes the process of estimating the set of target
trajectories based on a sequence of noise-corrupted measurements, including missed
detections and false alarms. Traditionally, MTT algorithms have been tailored to
the “point target” assumption: each target is modelled as a point without spatial
extent, and that each target gives rise to at most one measurement per time scan.
However, the high-resolution modern radar and lidar sensors makes the “point tar-
get” assumption unrealistic, since it is common that a target may occupy several
sensor resolution cells. The tracking of such a target leads to the so-called extended
target tracking problem, and the objective is to recursively determine the extent
and kinematic parameters of the target over time. In this paper, we focus on the
estimation of the current set of targets, which refers to multiple target filtering.

In extended target tracking, a non-standard measurement model is needed to model
the number and the spatial distribution of generated measurements for each target.
A common choice for modelling the number of measurements is the inhomogeneous
Poisson Point Process (PPP), proposed in [16]. As for the modelling of the spatial
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distribution, two popular models are the Random Hyper-surface Models [17] and
the Gaussian inverse Wishart (GIW) approach [18, 19]. The former is designed for
general star-convex shape; the latter relies on the elliptic shape and it models the
spatial distribution of target-generated measurements as Gaussian with unknown
mean and covariance. The Gamma GIW (GGIW) model [20, 21] is an extension of
the GIW model that incorporates the estimation of target measurement rates.

Solving the MTT problem is complicated by the unknown correspondence between
targets and measurements, known as data association. Because each target can gen-
erate multiple measurements per time scan, the problem of data association is even
more challenging in multiple extended target tracking, compared to multiple point
target tracking. Many of the existing multiple extended target tracking algorithms
are based on random finite sets (RFS) [3], with the distribution of target-generated
measurements modelled as GIW or GGIW, e.g., the Probability Hypothesis Density
(PHD) filter [22, 23]; the Cardinalised PHD (CPHD) filter [21]; the δ-Generalised
Labelled Multi-Bernoulli filter and its approximation the Labelled Multi-Bernoulli
filter (δ-GLMB and LMB) [24]; as well as the Poisson Multi-Bernoulli Mixture
(PMBM) filter [25, 26]. The PHD and CPHD filters are based on moment approx-
imations of posterior densities, while the δ-GLMB filter and the PMBM filter are
based on conjugate priors that can provide accurate approximations to the exact
posterior densities.

Due to the unknown number of data associations, the number of MB components
in the posterior density of filters based on conjugate priors grows rapidly as more
data is observed. Different methods to keep the number of MB components at a
tractable level have been discussed in [24, 25, 26, 27]. The extended target LMB
filter is an efficient approximation of the extended target δ-GLMB filter, in which
the MBM is approximated as a single MB [24]. To our best knowledge, this type
of approximation, which simplifies the MBM in the posterior as a single MB, has
not been presented for the extended target PMBM filter yet. Thus, it would be
interesting to seek an approximation of the extended target PMBM filter, such that
the approximated posterior density is a Poisson MB (PMB).

An algorithm based on variational Bayesian approximation was presented in [14].
It is designed for point target tracking, and finds the best-fitting PMB by approx-
imating the true posterior MBM with the MB that minimises the Kullback-Leibler
(KL) divergence. A performance evaluation of filters based on MB conjugate prior
for point target estimation given in [48] has shown that the PMB filter has the best
overall performance regarding estimation error and computational time, but it is
not yet clear how the variational MB algorithm [14] can be used on extended target
tracking.

The main contribution of this paper is presenting a PMB filter for multiple extended
target estimation, along with its GGIW implementation. Two different implementa-
tions of the variational MB algorithm for merging MBM describing already detected
targets are studied, one is based on the efficient approximation of feasible set pro-
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Table 4.9: Notations

• 〈a, b〉 =
∫
a(x)b(x)dx: inner product of a(x) and b(x).

• |V |: determinant of matrix V .

• |X|: cardinality of set X.

• ΠN : set of permutation functions on IN , {1, ..., N}

ΠN = {π : IN → IN |i 6= j ⇒ π(i) 6= π(j)}.

• ]: disjoint set union, i.e., Y ] U = X means that Y ∪ U = X and Y ∩ U = ∅.

• DKL(p||q) =
∫
p(x) log

(
p(x)
q(x)

)
dx: KL divergence between p(x) and q(x).

• Γd(·): multivariate gamma function.

• ϕ0(·): digamma function.

• Tr(X): trace of matrix X.

• Im: identity matrix of size m×m.

posed in [14], and the other is based on the optimal assignment following a similar
optimisation procedure used by the set joint probabilistic data association (SJPDA)
filter [34]. In addition, we propose a method to merge the MBM describing newly
detected target in a reasonable way.

The paper is organised as follows. Background on multiple extended target tracking
is given in Section II. The PMB filter and its GGIW implementation are presented
in Section III and IV. Simulation results are presented in Section V.

4.2 Background

In this section, we first give some background on Bayesian filtering and RFS mod-
elling. Next, the standard target transition model and extended target measurement
model used in this work are outlined. At last, we review the PMBM conjugate prior
and data association.

4.2.1 Bayesian multi-object filtering

In RFS-based MTT methods, target states and measurements are represented in
the form of finite sets. Let xk denote the single target state at discrete time step k,
and let Xk denote the target set. The target set cardinality |Xk| is a time-varying
discrete random variable, and each target state xk ∈ Xk is also a random variable.
The set of measurements obtained at time step k is denoted as Zk, including clutter
and target-generated measurements with unknown origin. The sequence of all the
measurement sets received so far up to time step k is denoted as Zk. More notations
are given in Table 4.9.
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The objective of multiple target filtering is to estimate the set of targets Xk, in-
cluding the number of targets and individual target state, using the information
contained in the measurement set sequence Zk. In extended target tracking, the
target state models both kinematic properties and target extent. Let fk|k(Xk|Zk),
fk,k−1(Xk|Xk−1) and fk(Zk|Xk) denote the multi-target set density, the multi-target
transition density and the multi-target measurement likelihood respectively. The
multi-target Bayes filter propagates in time the multi-target set density
fk−1|k−1(Xk−1|Zk−1) using the Chapman-Kolmogorov prediction

fk|k−1(Xk|Zk−1) =
∫
fk,k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Zk−1)δXk−1, (4.58)

and then updates the density using the Bayes update

fk|k(Xk|Zk) = fk(Zk|Xk)fk|k−1(Xk|Zk−1)∫
fk(Zk|Xk)fk|k−1(Xk|Zk−1)δXk

, (4.59)

where the set integral,
∫
f(X)δX, is defined in [3, Sec 11.3.3].

4.2.2 Random set modelling
Two basic forms of RFS distribution used in this work are the PPP and the Bernoulli
process. A PPP is an RFS whose cardinality is Poisson distributed, and each target
is independent and identically distributed (i.i.d.). The PPP intensity D(x) = µf(x)
is determined by the scalar Poisson rate µ and the spatial distribution f(x). The
PPP density is given by

f(X) = e−µ
∏

x∈X
µf(x). (4.60)

A Bernoulli process with probability of existence r and existence-conditioned prob-
ability density function (PDF) f(x) has RFS density

f(X) =


1− r X = ∅
r · f(x) X = {x}
0 otherwise,

(4.61)

where the cardinality |X| is Bernoulli distributed with parameter r ∈ [0, 1]. The
Bernoulli process offers a convenient way to capture both the uncertainty regarding
target existence and state. In MTT, targets are typically assumed to be independent.
Thus, multiple targets can be represented as a multi-Bernoulli RFS X, which is a
disjoint union of independent Bernoulli RFSs Xi, i.e., X = ]i∈IXi, where I is an
index set. The RFS density of an MB process can be represented as

f(X) =


∑
]i∈IXi=X

∏
i∈I f

i(Xi) |X| ≤ |I|
0 |X| > |I|.

(4.62)

The MB distribution can be defined entirely by the parameters {ri, f i(·)}i∈I of the
involved Bernoulli RFSs. Lastly, an MBM density is an RFS density that is a nor-
malised, weighted sum of MB densities. In MTT, the weights typically correspond
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to the probability of different data association sequences. An MBM is defined en-
tirely by the parameters {(Wj, {rj,i, f j,i(·)}i∈Ij)}j∈J, where Ij is the index set of
Bernoulli components in the jth MB, rj,i and f j,i(·) are the existence probability
and existence-conditioned PDF of the ith Bernoulli process in the jth MB, and Wj

is the weight of the jth MB.

4.2.3 Standard extended target measurement model
The set of measurements Zk is a union of a set of clutter measurements and sets
of target-generated measurements. The clutter is modelled as a PPP with Poisson
rate λ and spatial distribution c(z), independent of targets and any target-generated
measurements. Each extended target may give rise to multiple measurements with a
state dependent detection probability pD(x). If the extended target is detected, the
target-generated measurements are modelled as a PPP with Poisson rate γ(x) and
spatial distribution φ(z|x), independent of all other targets and their corresponding
generated measurements. The extended target set measurement likelihood for a
nonempty set of measurements Z is the product of target detection probability and
the PPP density of target-generated measurements [26]

`Z(x) = pD(x)e−γ(x) ∏
z∈Z

γ(x)φ(z|x). (4.63)

For an extended target state x, the effective detection probability is the product of
target detection probability and the probability that target generates at least one
measurement, which is 1− e−γ(x). Then the effective probability of missed detection
can be calculated accordingly as

qD(x) = 1− pD(x) + pD(x)e−γ(x). (4.64)

This is also the measurement likelihood for an empty measurement set, `∅(x).

4.2.4 Standard target transition model
In this work, we focus on the update, hence the prediction and the transition model
is only briefly discussed. In the standard target transition model, it is assumed that
targets arrive according to a PPP, independently of any pre-existing targets. At each
time step, a single target remains with a probability of survival pSk (x). The targets
depart according to i.i.d. Markov processes with probability 1− pSk (x). The target
state at next time step only depends on its current state. Targets evolve indepen-
dently according to i.i.d. Markov process with transition density fk+1,k(xk+1|xk).

4.2.5 PMBM conjugate prior and data association
The PMBM conjugate prior for multiple extended target filtering was developed
in [25, 26]. In the PMBM filter, the target set is a union of two disjoint sets of
undetected targets Xu and detected objects Xd, i.e., X = Xu]Xd. The distribution
of targets that have not been detected yet Xu is described by a PPP, while the
distribution of targets that have been detected at least once Xd is described by an
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MBM, which is a normalised weighted sum of MB densities. The PMBM density is
defined entirely by the parameters,

Du, {(Wj, {rj,i, f j,i(·)}i∈Ij)}j∈J, (4.65)

where Du(·) is the PPP intensity of the set of undetected targets.

The PMBM form is preserved by prediction and update [12]. Each MB corresponds
to a unique global hypothesis for the detected targets, i.e., a particular history of
data associations for all detected targets. Given a predicted PMBM density, for
each predicted global hypothesis there are multiple possible data associations, each
of which will result in an MB component in the updated MBM. Let M be the set
of indices of measurement set Z and let Aj be the space of all data associations A
for the jth predicted hypothesis. Formally a data association A ∈ Aj consists of a
partition of M∪ Ij into non-empty disjoint subsets called index cells, denoted C ∈ A
[26]. An index cell can contain at most one target index. If the index cell C contains
a target index, then let iC denote the corresponding target index. Further, let CC

denote the measurement cell that corresponds to the index cell C.

Global hypotheses are made up of single target hypotheses, each of which can rep-
resent the event that target iC is updated with CC , the event that target iC is not
detected and the event that it is the first detection of the background (clutter or
new target), which means C ∩ Ij = ∅, via a Bernoulli process. A track is defined
as a collection of single target hypotheses corresponding to the same target that
was first detected. As a consequence, a new track is created for each measurement
cell. If the measurement cell is associated to a pre-existing track, the new track
would have existence probability equal to zero. A complexity analysis of the data
association problem given in [26] has shown that the number of MB distributions
grows very rapidly over time. Approximations of the data association problem have
been presented in [26, 27], which can keep the number of global hypotheses at a
tractable level. In this work, we focus on approximating the MBM as a single MB
after solving the data association problem.

4.3 Poisson Multi-Bernoulli Filter
In the PMB filter, the PMB density is preserved in the prediction step, whereas in
the update step the posterior first becomes a PMBM density due to data associa-
tion, then it is approximated as a PMB afterwards. In this section, the prediction
and update steps of the PMB filter are presented. We then discuss approximation
methods that result in a PMB posterior. The time index is omitted for brevity.

4.3.1 PMB filter recursion
Given a posterior PMB density with parameters Du, (ri, f i(·))i∈I and the standard
dynamical model, the predicted density is a PMB density with parameters

Du
+, (ri+, f i+(·))

i∈I, (4.66)
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where

Du
+(x) = Db

+(x) + 〈Du, pSfk+1,k〉, (4.67a)
ri+ = 〈f i, pS〉ri, (4.67b)

f i+(x) = 〈f
i, pSfk+1,k〉
〈f i, pS〉

, (4.67c)

and Db(·) denotes the PPP birth intensity. Detailed derivations can be found in
[12].

Given a prior PMB density with parameters (4.66), a set of measurements Z, and the
standard measurement model, the updated density is a PMBM (4.65). The updated
PPP intensity is Du(x) = qD(x)Du

+(x). For tracks continuing from previous time
steps, a hypothesis can be included as a missed detection or an update using a
measurement cell CC . For missed detection hypotheses, the Bernoulli densities
have parameters (i ∈ I)

rj,i = ri+〈f i+, qD〉
1− ri+ + ri+〈f i+, qD〉

, (4.68a)

f j,i(x) = qD(x)f i+(x)
〈f i+, qD〉

. (4.68b)

For hypotheses updating pre-existing tracks, the Bernoulli densities have parameters
(i ∈ I)

rj,i = 1, (4.69a)

f j,i(x) = `CC
(x)f i+(x)
〈f i+, `CC

〉
. (4.69b)

For new tracks with corresponding measurement cell associated to the background,
the updated densities are Bernoulli densities with parameters (i ∈ Ij \ I)

rj,i = 〈Du
+, `CC

〉
λc(CC) + 〈Du

+, `CC
〉
, (4.70a)

f j,i = `CC
(x)Du

+(x)
〈Du

+, `CC
〉
. (4.70b)

After updating, the number of Bernoulli components representing detected targets
in each MB remains unchanged, while the number of Bernoulli components rep-
resenting newly detected targets becomes |Ij \ I| in the jth MB. Because how to
solve the data association problem is out of the scope of this paper, mathematical
expressions regarding association likelihood and global hypotheses weights are not
given. The reader is referred to [26] for more details. In the MBM approxima-
tion, we seek to find the MB distribution {r̂i, f̂ i(·)}i∈Î that best matches the MBM
{(Wj, {rj,i, f j,i(·)}i∈Ij)}j∈J. In this work, the MBM approximations for pre-existing
tracks and new tracks are considered separately.

59



4.3.2 Pre-existing track formation
In this subsection, the MBM describing new tracks is disregarded, and we denote
the MBM f(X) describing pre-existing tracks as {(Wj, {rj,i, f j,i(·)}Ni=1}j∈J, where
N is the number of pre-existing tracks. A variational method was presented in [14]
to obtain the best-fitting MB g(X) that minimises the set KL divergence from the
MBM distribution f(X):

arg min
g

∫
f(X) log f(X)

g(X) = arg max
g

∫
f(X) log g(X)dX. (4.71)

An approximate solution is based on minimising the upper bound of the true objec-
tive (4.71), following a similar process to expectation-maximisation [49]. The corre-
spondence between the underlying Bernoulli distribution in f(X) and the Bernoulli
component in the best-fitting distribution g(X) is treated as missing data q(π). An
approximated upper bound to the objective of (4.71) is given by [14]

DUB(f(X)||g(X)) = −
∑

j∈J,π∈ΠjN

Wjqj(πj)
N∑
i=1

∫
f j,π

j(i)(X) log gi(X)δX, (4.72)

where Πj
N is the set of all ways to assign the Bernoulli components in the jth MB

f j(X) to the Bernoulli components in g(X); the missing data qj(πj) is constrained
to vary only with the jth MB, and it satisfies qj(πj) ≥ 0 and ∑πj∈ΠjN

qj(πj) = 1.
The standard method for solving the form of (4.72) is by block coordinate descent,
which alternates between minimisation with respect to gi(X) (M-step) and qj(πj)
(E-step) [14].

Because solving the above problem suffers from combinatorial complexity, approxi-
mation is needed to obtain tractable solution. In the remainder of this subsection,
two different approaches to solving this minimisation problem are studied. The first
one is based on finding the best assignment for each MB in the MBM; the second
one is based on an approximation of the set of missing data distribution qj(πj).

4.3.2.1 Optimal assignment

The MB density is invariant to the indexing of the Bernoulli components, and there-
fore the selection of the assignment mapping π in each MB will not change the MBM
process but only determine which Bernoulli components are going to be merged. The
minimisation problem can be interpreted as the Bernoulli components in each MB
are permuted in such a manner that the upper bound (4.72) is minimised but the
density of the reordered f(X) remains unchanged, following a similar approach to
KLSJDPA [34]. The similarities between the best-fitting MB and KLSJPDA were
explored in [14]. Empirically, we found that finding a set of most likely assign-
ments for each MB is computationally heavy. Hence, we choose to find the single
optimal assignment π̂j for each MB f j(X). In this case, the missing data becomes
qj(πj) = 1 ∀ j, and the E-step can be expressed as

π̂j = argmin
πj

−
N∑
i=1

∫
f j,π

j(i)(X) log gi(X)δX, (4.73)
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where the optimal assignment π̂j can be obtained using methods such as the auction
algorithm. The minimisation of (4.72) with respect to the approximated MB g(X)
simplifies to

gi(X) =
∑
j∈J
Wjf j,π̂

j(i)(X). (4.74)

4.3.2.2 Efficient approximation of feasible set

It was revealed in [14] that the minimisation of the upper bound (4.72) can be solved
approximately as

argmin
q(h,i)∈M

−
N∑
i=1

∫ ( ∑
h∈H

q(h, i)fh(X)
)

log gi(X)δX, (4.75)

where H is the set of single target hypotheses, q(h, i) is a simplified representation
of qj(πj), which specifies the weight of single target hypothesis density fh(X) in the
new Bernoulli component gi(X), and the feasible setM is an approximation needed
for tractability

M =

q(h, i) ≥ 0

∣∣∣∣∣∣
∑
h∈H

q(h, i) = 1 ∀ i ∈ {1, ..., N},
N∑
i=1

q(h, i) = ph ∀ h ∈ H

. (4.76)

The constraint ph satisfies ph = ∑N
i=1 pi(h), where

pi(h) =
∑

fj(X)|fj,i(X)=fh(X)
Wj. (4.77)

The derivation of (4.75) can be found in [14]. Note that here the missing data
distribution is no longer constrained to vary only with the global hypotheses. In
this case, each approximated Bernoulli component can be expressed as the weighted
sum of different single target hypothesis densities, and the M-step becomes

gi(X) =
∑
h∈H

q(h, i)fh(X), (4.78)

while the E-step reverts to a LP:

argmin
q(h,i)

∑
h∈H

N∑
i=1
−q(h, i)

∫
fh(X) log gi(X)δX, (4.79)

subject to
N∑
i=1

q(h, i) = ph ∀ h,∑
h∈H

q(h, i) = 1 ∀ i,

q(h, i) ≥ 0 ∀ h, i.

Problem of this type can be solved using methods such as the simplex algorithm.
The resulting algorithm can be initialised with q(h, i) = pi(h) ∀ h, i.
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4.3.3 New track formation

A big barrier in the extended target PMB filter is the formation of new tracks.
In point target tracking, a new track is created for each measurement. Given |Z|
measurements, there are |Z| mutually independent possible new tracks. The new
tracks can be formed out of the marginal association probabilities (cf. (4.77)) [12].
In extended target tracking, measurements are partitioned into measurement cells
and a new track is created for each measurement cell. Given |Z| measurements,
there are 2|Z| − 1 possible ways in which we can form a subset of measurements.
Each such subset can, in an association, be associated to a new target. This means
that in extended target tracking, the updated MBM can at most contain 2|Z| − 1
different possible new targets. Let N j

+ denote the number of measurement cells in
the jth updated global hypothesis. According to the definition of track, there are
N j

+ new tracks created, but only N j
+ − N of them, which are associated to newly

detected targets, have valid existence probability in the jth global hypothesis.

One strategy to form new tracks, which is similar to [12], is only to merge single
target hypotheses across different global hypotheses that are created by the same
measurement cell and treat each different single target hypothesis as a candidate
for a potential new target. In order words, the existence probability of new track
created by measurement cell C is determined by summing over the data association
hypotheses where C is associated to the background. This approach is simple to
implement; nevertheless, it has several drawbacks. First, a large number of new
tracks with low existence probability can be created using this approach. Second,
this approach approximates new tracks generated by different measurement cells as
independent. But if some of the measurement cells have shared measurements, which
is the typical case, there might be a high dependency between the new tracks that
are created by these measurement cells. This is not consistent with the assumption
that tracks are independent.

In this subsection, a method to form new tracks in the PMB filter is presented. The
intuition behind this proposed method is that we want to merge highly correlated
Bernoulli components across different MB distributions so that similar new tracks
will not be formed in the same local region and new tracks with significant different
Bernoulli densities will not be merged. Let Cj,i denote the ith measurement cell
that is associated with the background in the jth global hypothesis, and let Ij,i
denote the label of the corresponding Bernoulli component which represents this
created new track. The objective is to give the same label to Bernoulli components
representing new tracks that are considered similar enough.

Bernoulli components across different global hypotheses may have the same label,
but the Bernoulli components in the same global hypothesis must be assigned to
different labels due to the independence assumption. For any pair of Bernoulli
densities, the symmetrised KL divergence is used to measure the similarity, which
is defined as

DSKL(p||q) = DKL(p||q) +DKL(q||p). (4.80)
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Because reordering the MB distributions will not change the MBM process, we
assume that the MB distributions are sorted in the descending order of their weights
so that f 1(X) has the highest weight. Starting from Ij,i = 1, we calculate the
symmetrised KL divergence of Bernoulli densities between the new track created by
C1,1 and the new tracks in other global hypotheses. For each f j(X) with j ≥ 2,
pick the Bernoulli component which represents the most similar track to f 1,N+1(X)
in f j(X). If the minimum symmetrised KL divergence is below a certain threshold
τ , let the label of the selected Bernoulli component be the same with I1,1. This
procedure is repeated for every Bernoulli density of new track in every f j(X) until
all the Bernoulli components are assigned a label. At last, the number of new tracks
formed is equal to the number of unique labels, which is also the largest label index
Imax.

New tracks can be formed by only merging Bernoulli components across different
MB distributions with the same label. For the lth (l ∈ {1, ..., Imax}) new track in
the approximated MB g(X), its Bernoulli density can be written as

gN+l(X) =
∑
j∈J
Wj

Nj
+−N∑
i=1

f j,N+i(X)δ
(
Ij,i(X)− l

)
. (4.81)

The pseudo code of the resulting algorithm is given in Table 4.10. Empirical re-
sult shows that the number of tracks formed using this approach can be kept to a
relatively small number.

4.3.4 Recycling
For the approximated MB distribution g(X), the recycling method of [33] can be
applied to Bernoulli components with low existence probability. The recycled com-
ponents are approximated as being Poisson and are incorporated into the PPP
representing undetected targets for generating possible new targets in subsequent
steps.

Suppose that a Bernoulli component f(X) in the form of (2.2) is approximated as
a PPP

f(X) ≈ f̃(X) = e−u
∏

x∈X
D(x). (4.82)

As shown in [3, p. 359], it is optimal to set D(x) = µf(x) and µ = r. The value of
the KL divergence at this optimal choice

DKL(f(X)||f̃(X)) = r + (1− r) log(1− r), (4.83)

is very small for existence probability r less than 0.1 [33]. Denote R as the set
of indices of Bernoulli components to be recycled. After recycling, the total PPP
intensity of undetected targets can be expressed as

D̂u(x) = Du(x) +
∑
i∈R

rif i(x). (4.84)
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Table 4.10: Pseudo Code of New Tracks Forming

Input: f j,i(X),Wj , τ
Output: g(X)

Sort f j(X) in the descending order of Wj ;
I ← 1;
for all j = {1, ..., |J|} do

for all i = {1, ..., N j
+ −N} do

if Ij,i is empty then
Ij,i ← I;
I ← I + 1;

end if
for all j+ = {j + 1, ..., |J|} do

for all i+ = {1, ..., N j+

+ −N} do
if Ij+,i+ is empty then
di+ ← DSKL

(
f j,N+i(X)||f j+,N+i+(X)

)
;

end if
end for
[d∗, i∗]← min(d);
if d∗ < τ then
Ij+,i∗ ← I;

end if
end for

end for
end for
for all i = {1, ..., I} do

Calculate gN+i(X) using (4.81).
end for

The benefits of recycling in the point target PMBM and PMB filters have been eval-
uated in [48]. An additional benefit of recycling in the extended target PMB filter
is that we can ensure that only new tracks with relatively high existence probability
are formed.

4.4 GGIW Implementation

In this section, some implementation details of the PMB filter are presented. A
GGIW implementation of the PMBM filter has been given in [26]. To make com-
parison easy, we choose to use the random matrix model [18, 19], in which the target
shape is approximated as an ellipse.

4.4.1 Single target models
In the random matrix model, it is assumed that the measurements are Gaussian
distributed around the centroid of the target. The extended target state xk is
the combination of a random Poisson rate γk modelling the average number of
measurements generated by the target, a random vector ξk describing the target
kinematic state, and a random covariance matrix χk describing the target size and
shape, i.e., xk = {ξk+1, χk+1, γk+1}.
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The motions models are

ξk+1 = F (ξk) + wk, (4.85a)
χk+1 = M(χk)χkM(χk)T , (4.85b)
γk+1 = γk, (4.85c)

where F (·) is a motion model, wk is zero mean Gaussian noise and M(·) is a trans-
formation matrix. The measurement likelihood for a single measurement z is

φ(zk|xk) = N (zk;Hkξk, χk), (4.86)

where Hk is the measurement model. The single target conjugate prior for the PPP
model (4.60) with single measurement likelihood (4.86) can be expressed as

fk|k(xk) = GAM(γk; ak|k, bk|k)N (ξk;mk|k, Pk|k)IWd(χk; vk|k, Vk|k) , GGIW(ξk; ζk|k),
(4.87)

where d is the dimension of the random matrix Vk|k and
ζk|k = {ak|k, bk|k,mk|k, Pk|k, vk|k, Vk|k} is the set of GGIW density parameters.

4.4.2 MBM merging

The GGIW implementations regarding the prediction and update of PPP and Bernoulli
components are not presented due to page limits. The reader is referred to [25, 26]
for more details. In this subsection, we choose to present the GGIW implementa-
tions regarding the block coordinate descent used to merge the MBM representing
pre-existing tracks. The time index is omitted for simplicity.

4.4.2.1 E-step

In order to solve the optimisation problems (4.73) and (4.79) arisen in the E-step,
the cross entropy between two Bernoulli-GGIW distribution must be calculated.
Since the gamma distribution, the Gaussian distribution and the inverse Wishart
distributions are mutually independent, a tractable solution can be derived.

Suppose fh(X) and gi(X) are two Bernoulli process with the following form

fh(X) =

1− rh X = ∅,
rhGGIW(xh; ζh) X = {x},

(4.88a)

gi(X) =

1− ri X = ∅,
riGGIW(xi; ζ i) X = {x}.

(4.88b)
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The cross entropy between fh(X) and gi(X) can be decomposed into:

−
∫
fh(X) log gi(X)δX = −(1− rh) log(1− ri)

− rh log ri − rh
(∫
N (ξh;mh, P h) logN (ξi;mi, P̂ i)dX

+
∫
GAM(γh; ah, bh) log GAM(γi; ai, bi)dX

+
∫
IW(χh; vh, V h) log IW(χi; vi, V i)dX

)
, (4.89)

where∫
N (ξh;mh, P h) logN (ξi;mi, P i)dX =

− d

2 log(2π)− 1
2 log |P i| − 1

2Tr
((
P h + (mh −mi)(mh −mi)T

)(
P i
)−1

)
, (4.90a)

∫
GAM(γh; ah, bh) log GAM(γi; ai, bi)dX =

ai log bi − log Γ(ai) + (ai − 1)(ψ0(ah)− log bh)− bia
h

bh
, (4.90b)

∫
IW(χh; vh, V h) log IW(χi; vi, V i)dX =

− (vi − d− 1)d
2 log 2 + vi − d− 1

2 log |V i| − log Γd
(
vi − d− 1

2

)

− vi

2

(
log |V h| − d log 2−

d∑
j=1

ψ0

(
vh − d− j

2

))
− 1

2Tr
(
(vh − d− 1)(V h)−1V i

)
.

(4.90c)

4.4.2.2 M-step

Given a Bernoulli-GGIW mixture, the existence probability of the approximated
Bernoulli is a weighted sum of the existence probability of each Bernoulli component.
The mixture reduction for multivariate Gaussian distribution is straightforward.
Theorems describing how a sum of an arbitrary number of Gamma components or
inverse Wishart component can be merged into a single Gamma or inverse Wishart
component were presented in [20] and [50] respectively. They are both performed
via analytically minimising of the KL divergence. The same merging techniques
also apply to merging the MBM representing new tracks (4.81). Corresponding
mathematical expressions are not presented here due to page limits.

Empirically, we have found that in extended target filtering with GGIW implemen-
tation it is generally not advisable to merge the whole GGIW components. The
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main reason is the extent state: merging two densities with significantly different
extent estimates will result in an approximate density in which the extent estimates
are distorted. This problem is exacerbated in the extended PMB filter, since the
distorted extent states contained by the approximated single MB can easily lead to
poor target state estimations in subsequent time steps. A simple strategy to handle
this problem is to use a criterion for deciding which components should be merged.
In this work, the KL divergence is used as the similarity measure between any pair
of GGIW distributions. The component with the highest weight GGIW(ξh∗ ; ζh∗)
is chosen as the comparison baseline, which is merged with all other components
GGIW(ξh; ζh) for which it holds

DKL(GGIW(ξh∗ ; ζh∗)||GGIW(ξh; ζh)) < τ, (4.91)

where threshold τ determines how aggressively the GGIW components are going to
be merged.

4.5 Simulations and Results
In this section, we show simulation results that compare the PHD filter [22, 23],
the PMBM filter [25, 26], and two variants of the PMB filter presented in this
paper, namely one with the optimal assignment (OA) and one with the efficient
approximation of feasible set (EAFS). In the PMBM filter, MB distributions with
an equal number of Bernoulli components and small symmetrised KL divergence are
merged [26].

4.5.1 State space model
The kinematic target state is a vector of position and velocity xk = [px,k, py,k, ṗx,k, ṗy,k]T .
The single measurement is a vector of position zk = [zx,k, zy,k]T . The random matrix
Vk is two-dimensional. The motion model F (·) and process noise Qk are

F (ξk) = I2 ⊗
[
1 T
0 1

]
ξk, Qk = σ2

vI2 ⊗
[
T 4/4 T 3/2
T 3/2 T 2

]
,

where T = 1s is the sampling period, and σv is the standard deviation of motion
noise. Because the kinematic state motion model is constant velocity, the extent
transformation function M is an identity matrix, i.e., M(ξk) = I2.

4.5.2 Performance evaluation
For GGIW-PMB, the target states are extracted by taking the mean vector of all
Bernoulli components with existence probability larger than 0.5. For GGIW-PMBM,
target state extraction is performed analogously, but only from the MB distribution
with the highest weight. For GGIW-PHD, target states are obtained from all the
GGIW components with weight larger than 0.5.

The estimation performance is evaluated using the Gaussian Wasserstein distance
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Figure 4.14: True target trajectories of three scenarios, from left to right: 1) 27
objects, 2) dense birth, and 3) parallel manoeuvre.

Table 4.11: Average time [s] to run one full Monte Carlo simulation

Scenario PHD PMBM PMB w/ OA PMB w/ EAFS
1 34.1 57.6 37.9 41.1
2 21.4 45.8 7.7 8.5
3 92.0 41.4 25.5 25.1

(GWD) [51] integrated into the generalised optimal sub-pattern assignment (GOSPA)
metric [15]. The GOSPA metric allows for decomposing the estimation error into
localisation error, missed detection error and false detection error.

4.5.3 Simulation study
Filters are evaluated in three different scenarios. True target trajectories are shown
in Fig. 4.14. For each scenario, the result is averaged over 100 Monte Carlo trials.
In the first scenario, 27 randomly generated targets are born from four localised
position, and they appear and disappear the surveillance area at different time
steps. The parameters were set to pD = 0.90, pS = 0.99 and λ = 60. This scenario
illustrates how the different filters behave with a high target number and high clutter
density scenario. In the second scenario, five targets are born at a very short distance
from each other at the same time step. The parameters were set to pD = 0.90, pS =
0.99 and λ = 20. This scenario tests different filters capabilities of handling dense
birth. In the third scenario, two targets first get close, and then they manoeuvre in
close proximity before splitting. The parameters were set to pD = 0.98, pS = 0.99
and λ = 10. Here, the data association is very challenging due to coalescence and
motion model mismatch.

The GOSPA performance of different filters is shown in Fig. 4.15, and the average
times to run a single Monte Carlo trial of the three scenarios are given in Table 4.11.
From the results of the simulation study, we see that filters based on MB conjugate
priors have better performance than the PHD filter. The two variants of the PMB
filter showed very similar performance in these three scenarios. The PMB filter has
lower computational complexity than the PMBM filter, and the difference of average
running time is most distinct in the scenario with dense birth. But the PMBM filter
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is able to produce better target extent estimations than the PMB filter especially in
the scenario with parallel manoeuvre.

4.6 Conclusions
This paper has proposed a tractable and efficient extended target filtering algorithm
based on a PMBM conjugate prior approximation to the posterior density. A simu-
lation study shows that the proposed PMB filter retains the advantage of the PMBM
filter but with lower computational complexity. Possible future work includes how
to improve the estimation of target extent and how to incorporate the formation of
new tracks in the variational MB algorithm.
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Figure 4.15: Results from simulation of three scenarios, from left to right: 1) 27
objects, 2) dense birth, and 3) parallel manoeuvre.
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