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High-temperature, high-dose, neutron irradiation of W results in the formation of Re-rich clusters at
concentrations one order of magnitude lower than the thermodynamic solubility limit. These clusters may
eventually transform into brittle W-Re intermetallic phases, which can lead to high levels of hardening and
thermal conductivity losses. Standard theories of radiation-enhanced diffusion and precipitation cannot explain
the formation of these precipitates and so understanding the mechanism by which nonequilibrium clusters
form under irradiation is crucial to predict material degradation and devise mitigation strategies. Here we
carry out a thermodynamic study of W-Re alloys and conduct kinetic Monte Carlo simulations of Re cluster
formation in irradiated W-2Re alloys. We use a generalized Hamiltonian for crystals containing point defects
parametrized entirely with electronic structure calculations. Our model incorporates recently gained mechanistic
information of mixed-interstitial solute transport, which is seen to control cluster nucleation and growth by
forming quasispherical nuclei after an average incubation time of 13.5(±8.5) s at 1800 K. These nuclei are seen
to grow by attracting more mixed interstitials bringing solute atoms, which in turn attracts vacancies leading to
recombination and solute agglomeration. Owing to the arrival of both Re and W atoms from the mixed dumbbells,
the clusters are not fully dense in Re, which amounts to no more than 50% of the atomic concentration of the
cluster near the center. Our simulations are in qualitative agreement with recent atom probe examinations of
ion-irradiated W-2Re systems at 773 K.

DOI: 10.1103/PhysRevB.96.094108

I. INTRODUCTION

Tungsten is being considered as a candidate structural
material in magnetic fusion energy devices due to its high
strength and excellent high-temperature properties [1–4].
Upon fast neutron irradiation in the 600–1000 ◦C temperature
range, W transmutes into Re by the way of β-decay reactions
at a rate that depends on the neutron spectrum and the
position in the reactor. For the DEMO (DEMOnstration
fusion power plant) reactor concept, calculations show that the
transmutation rate is 2000 and 7000 atomic parts per million
(appm) per displacement per atom (dpa) in the divertor and
the equatorial plane of the first wall, respectively (in each case,
damage accumulates at rates of 3.4 and 4.4 dpa/year) [5,6]. The
irradiated microstructure initially evolves by accumulating
a high density of prismatic dislocation loops and vacancy
clusters, approximately up to 0.15 dpa [7–10]. Subsequently,
a void lattice emerges and fully develops at fluences of around
1 dpa. After a critical dose that ranges between 5 dpa for fast
(>1 MeV) neutron irradiation [9] and 2.2 dpa in modified
target rabbits in the HFIR [10,11], W and W-Re alloys develop
a high density of nanometric precipitates with acicular shape at
Re concentrations well below the solubility limit [9,10]. The
structure of these precipitates is consistent with σ (W7Re6)
and χ (WRe3) intermetallic phases, which under equilibrium
conditions only occur at temperatures and Re concentrations
substantially higher than those found in neutron irradiation
studies [12]. A principal signature of the formation of these
intermetallic structures in body-centered cubic (bcc) W is
the sharp increase in hardness and embrittlement [8–10].
Qualitatively similar observations have been recently made
in W-2Re and W-1Re-1Os alloys subjected to heavy-ion

irradiation [13,14], clearly establishing a link between primary
damage production and Re precipitation. Figure 1 shows the
phase diagram of W-Re from modern analysis [15–17], clearly
showing the solubility limit of Re in W, as well as the region
of existence of the σ and χ phases.

Precipitation of nonequilibrium phases in irradiated ma-
terials is commonplace. The standard theory of irradiation
damage includes radiation-enhanced diffusion (RED) and
radiation-induced precipitation (RIP) as mechanisms that can
drive the system out of equilibrium due to the onset of point
defect cluster fluxes towards defect sinks [18–20]. Within this
picture, Re precipitation in W or W-Re alloys under irradiation
would then, in principle, be unsurprising were it not for the
fact that Re clustering is seen to occur at concentrations
still below the solubility limit even after RED has taken
place. Recent work using energy models based on the cluster
expansion formalism for the W-Re system, and fitted to density
functional theory (DFT) calculations, has revealed a direct
relationship between excess vacancy concentrations and the
formation of Re-solute-rich clusters [21]. These calculations
are substantiated by recent neutron irradiation experiments
of pure W at 900 ◦C up to 1.6 dpa in the HFR in Petten [22].
Postirradiation examination of the irradiated specimens reveals
the formation of a fine distribution of voids with average
5 nm size surrounded by Re-rich clouds. However, the relative
concentration of Re around the voids is still on the order of
12%–18% (from a nominal overall concentration of 1.4% from
transmutation), well below the precipitation limit of Re in W
at 900 ◦C. However, in the ion beam irradiation experiments
of W-2Re alloys by Xu et al. at 300 and 500 ◦C, Re-rich
clusters with bcc structure are seen to form with concentrations
between 12% and 30% Re with no indication of vacancies
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FIG. 1. Re-W phase diagram. The shaded region corresponds to
the temperature range explored in the kMC simulations, while the
crosses mark the 2% Re concentration point (adapted from Ref. [16]).

forming part of the clusters [13,14]. Another piece of evidence
against a strong association between vacancies and Re atoms
comes from irradiation tests of W-Re alloys performed at
EBR-II in the 1970s and 1980s [23–27]. In these studies,
the presence of Re was seen to suppress swelling, which
would seem to suggest a decoupling between vacancy clusters
and Re atoms. Clearly, equilibrium thermodynamics involving
vacancies alone may not suffice to explain the precipitation
tendencies in irradiated W-Re alloys.

All this is suggestive of alternative solute transport mech-
anisms that may be unique to W-Re systems. Indeed, several
recent studies using electronic structure calculations have
independently reported a peculiar association between self-
interstitial atoms (SIAs) and Re solutes that results in very high
solute transport efficacy [28–30]. This mechanism consists of
a series of mixed dumbbell rotations and translations such that
the mixed nature of the dumbbell is preserved and solutes
can be transported over long distances without the need for
vacancy exchanges. Furthermore, this mechanism effectively
transforms one-dimensional SIA diffusion into a 3D mixed-
dumbbell transport process at activation energies considerably
lower than that of vacancy diffusion. The objective of this paper
is to study the kinetics of Re-cluster nucleation and incipient
growth in irradiated W accounting for both vacancy and
mixed-interstitial solute transport. To this effect, we develop
a lattice kinetic Monte Carlo (kMC) model of alloy evolution
parametrized solely using first-principles calculations. We start
in Sec. II by describing the essential elements of our kinetic
model as well as the parametrization effort based on DFT
calculations. In Sec. III we provide our main results, including
semi-grand-canonical Monte Carlo calculations of ternary W-
Re-vacancy and W-Re-SIA systems, and kMC simulations and
analysis of the Re-precipitate nucleation and growth. We finish
with a discussion of the results and the conclusions in Sec. IV.

II. THEORY AND METHODS

A. Energy model

The energy model employed in this work is a cluster
expansion Hamiltonian based on pair interactions truncated

at the second-nearest-neighbor (2nn) shell:

H =
∑

i

∑
α,β

n
(i)
α-βε

(i)
α-β, (1)

where (i) specifies the type of nearest-neighbor interaction
(first or second), α and β refer to a pair of lattice sites,
separated by a distance specified by the index i, nα-β denotes
the number of occurrences (bonds) of each α-β pair, and εα-β is
the bond energy. In a previous work, we have shown how this
Hamiltonian can be reduced to a generalized Ising Hamiltonian
involving solvent and solute atoms (A and B), vacancies (V),
and pure and mixed interstitials (AA, BB, and AB) [31]. The
Hamiltonian is then expressed as a sum of polynomial terms
of various degrees involving spin variables σα and σβ in the
manner of the Ising model:

H =
∑
n,m

∑
α,β

Cnmσn
α σm

β , (2)

where n and m are exponents reflecting the order of each
term, and Cnm are the set of coupling constants. One of the
advantages of using this notation is that the values assigned
to the spin variables conserve the number of atoms N of the
system. We refer the reader to Ref. [31] for more details about
this notation. In this paper we focus on the parametrization
exercise for irradiated W-Re alloys.1

B. Semi-grand-canonical Monte Carlo for AB systems

The thermodynamic phase diagram of the W-Re system
can be studied using semi-grand-canonical Monte Carlo
(SGMC) calculations as a function of temperature and solute
concentration [32–37]. In SGMC, we seek to minimize the
thermodynamic potential of the semi-grand-canonical ensem-
ble, characterized by a constant temperature T , a constant
number of particles N , and a constant chemical potential μ.2

In each SGMC step, a transition involving an atom selected
at random is executed and the new state is accepted with a
probability

pij = exp

(
−�Hij − NB�μ

kBT

)
, (3)

where �Hij is the energy difference between the initial and
final states, i and j , NB = NX is the number of solute atoms
(X: solute concentration), �μ is the change in chemical
potential per atom after the transition, and kB is Boltzmann’s
constant. In this work, each transition is defined by changing
the chemical nature of one atom chosen at random (A → B
or B → A). In terms of the change in spin variable [in the
notation of the generalized Ising Hamiltonian; cf. Eq. (2)],
this always results in a change of δσ = ±2, such that Eq. (3)
can be simplified to

pij = exp

(
−�Hij ± 2�μ

kBT

)
. (4)

1We use the notation A: W atoms; B: Re atoms; V: vacancies, AA:
W-W dumbbell (or self-interstitial atom); BB: Re-Re dumbbell; AB:
mixed W-Re dumbbell.

2For a brief discussion on the differences between the semi-grand-
canonical and the grand-canonical ensembles, see Ref. [38].
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In the calculations, the chemical potential difference �μ

and the temperature T are input variables, while the solute
composition X and the equilibrium configurations are obtained
when convergence is reached.

C. Metropolis Monte Carlo calculations
of ABV system configurations

During irradiation, the introduction of large amounts of
defects has the potential to impact the thermodynamics of
the system. It is therefore of interest to calculate phase
diagrams with fixed defect concentrations using equilibrium
(Metropolis) Monte Carlo. Defect concentrations are not ther-
modynamically equilibrated under irradiation—the number of
vacancies or interstitials is not controlled by the chemical
potential—and so the AB system must be considered in
conjunction with a fixed defect concentration. Take the case
of vacancies, for example: to properly obtain converged
nonequilibrium configurations of ABV systems, we employ
a flip and swap approach: (i) initially a system consisting of
A atoms and a random distribution of vacancies is considered;
(ii) a lattice point is selected at random; (iii) if that lattice point
corresponds to an atom, a SGMC step is carried out, resulting
in a change in the relative concentrations of A and B; if it,
on the contrary, corresponds to a vacant site, then a canonical
Monte Carlo step is carried out, leaving X unchanged, and the
vacancy exchanges its position with a randomly selected atom.
This trial swap is then accepted according to the Boltzmann
distribution:

pij = exp

(
−�Hij

kBT

)
. (5)

In this fashion, equilibrated AB alloys containing a fixed
vacancy concentration are obtained, from which one can
determine the changes relative to the thermodynamic equilib-
rium configurations. Although interstitials are much higher in
energy than vacancies (so that only very small concentrations
need be explored), the procedure for the ABI system is
identical to that of the ABV system.

D. Kinetic Monte Carlo simulations of ABVI systems

The kinetic evolution of W-Re alloys under irradiation is
studied using standard lattice kMC. The system is evolved
by events involving atomic jumps and time is advanced
according to the residence-time algorithm [39]. Jump rates
are calculated as

rij = ν exp

(
−�Eij

kBT

)
, (6)

where ν is an attempt frequency and �Eij is the activation
energy to jump from state i to state j .

1. Vacancy migration model

Several models have been proposed to describe the acti-
vation energy based on different interpretations of the atomic
migration process (see, e.g., [31,40] for recent reviews). In this
work, the activation energy of vacancy jump is calculated by
the saddle-point energy model (or cut-bond model) [41–44],
according to which �Eij is given by the energy difference of

the configuration when the jumping atom is at the saddle point
and the initial configuration

�Eij =
∑

p

εsp
α-p −

∑
q

ε(i)
α-q −

∑
r �=α

ε
(i)
V-r +

∑
�Enonbroken

ij ,

(7)

where α is the jumping atom, V is the vacancy, and εsp

are the bond energies between the atom at the saddle point
and the neighboring atoms. The first term on the right-hand
side of Eq. (7) reflects the energy of the jumping atom at
the saddle point. In this work, we consider interactions up
to 2nn distances for this term.3 The second and third terms
on the right-hand side of the equation are the energies of the
jumping atom and the vacancy at the initial state i. Finally,
the fourth term gives the energy difference between state i and
j for the nonbroken bonds due to local solute concentration
changes. The dependence of bond coefficients on local solute
concentration will be discussed in Sec. II E.

2. Interstitial defect migration model

Here we consider self-interstitial atoms of the AA type,
and mixed-interstitials AB. Due to their rarity, BB interstitials
are omitted in our calculations. In bcc metals, AA SIAs are
known to migrate athermally in one dimension along 〈111〉
directions with migration energy Em, with sporadic rotations to
other 〈111〉 orientations characterized by an activation energy
Er . These processes, however, are treated separately in the
kMC simulations. In contrast to vacancy migration, activation
energies of interstitial jumps are calculated using the direct
final-initial system energy model [45–48]:

�Eij =
{
Em + �Hij , if �Hij > 0,

Em, if �Hij < 0,
(8)

where �Hij is the same as in Eq. (5). In addition, we include
a bias due to the well-known phenomenon of correlation, by
which a forward jump is slightly more likely to occur than
a backward jump. This is reflected in a correlation factor f

computed as the ratio of forward to backward jumps [49],
which in our simulations is temperature dependent.

For their part, as pointed out in Sec. I, recent DFT studies
have revealed a new migration mechanism for mixed dumb-
bells in W alloys. This mechanism involves a nondissociative
sequence of rotations and translations such that the solute
atom is always part of the mixed dumbbell (in contrast
with the intersticialcy or “knock-on” mechanism commonly
associated with SIAs) [28–30,50]. This effectively makes AB
interstitials move in three dimensions with 2nn jumps along
〈100〉 directions. Calculations for the W-Re system have shown
that the migration energy in this case is very low, on the order of
one tenth of an eV. As we shall see, this plays a important role
in governing the kinetic evolution of irradiated W-Re alloys.

3In the saddle-point configuration for vacancy migration, there are
six 1nn bonds and six 2nn bonds, compared with eight and six for a
lattice point configuration.
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3. Spontaneous events: Recombination and absorption

Any recombination event occurs spontaneously (no sam-
pling involved) when the distance between an interstitial
defect and a vacancy is within the third-nearest-neighbor
distance. Another reaction considered to be instantaneous is
the transition of a SIA into an AB dumbbell when it encounters
a solute atom: AA + B → AB + A. This is because the
binding energy between a SIA and a Re solute atom has been
calculated to be −0.8 eV (negative binding energies represent
attraction). The distance for this transformation is set to be
equal to the 1nn separation.

Defect absorption represents another type of spontaneous
event. Absorption can occur at sinks, such as a plane located in
a stationary position within the simulation box [51], or a free
surface [31]. Sinks can potentially act also as defect emitters, as
in the case of grain boundaries, dislocations, and free surfaces
in real microstructures. Details about the implementation of
these processes can be found in Ref. [31].

4. Frenkel pair generation

In this work, defects are generated as Frenkel pairs at a
prescribed rate set by the damage rate. To insert a defect pair,
two atomic sites are chosen at random; one is replaced by a
vacancy, and the other with an interstitial formed by an A atom
and the lattice atom.

E. Parameters

There are five distinct atomic species used in this work:
W atoms (A), Re atoms (B), vacancies (V), SIAs (AA), and
mixed-interstitials (AB). As mentioned above, our energy
model consists of pairwise interactions up to the 2nn shell.
After discounting interstitial-vacancy bonds, this amounts to
26 different types of bonds (13 for each nearest-neighbor
shell), all of which must be obtained using first-principles
calculations. Moreover, as discussed by Martinez et al. [43]
and Senninger et al. [44], several of these bond energies
are sensitive to the local solute concentration and must be
computed on the fly in each Monte Carlo step. Following
Warczok et al. [52], we reduce the number of unknowns from
26 to 13 by partitioning bond energies according the following
relation:

ε(2) = ε(1)

(
r2nn

r1nn

)−6

, (9)

which is used unless both bond energies can be explicitly
calculated. For the bcc lattice, this results in ε

(2)
α-β/ε

(1)
α-β =

0.421875 for regular bond coefficients, and ε
sp(2)
α-β /ε

sp(1)
α-β =

0.194052 for saddle-point bond coefficients.
The local solute concentration is always computed up to

the 2nn shell. Next we describe the parametrization procedure
for each set of bond energies.

1. W-Re parameters

The W-Re bond coefficients are εA-A, εB-B, and εA-B. They
determine the thermodynamic equilibrium phase diagram of
the alloy. εA-A and εB-B are obtained from the cohesive

TABLE I. Energetics of W-Re systems calculated with DFT. All
the values from Refs. [53,54] listed in this table were also confirmed
by our own calculations.

Quantity Value Source

EA
coh 8.3276 This work

EB
coh 7.4070 This work


∗
s −0.1571 − 0.2311X Ref. [30]

EV
f 3.1690 This work

E
(a)
b −0.2096 This work

E
(b)
b −0.1520 This work

E
(c)
b −0.3079 This work

E
(d)
b −0.2992 This work

EV-V
b,1nn −0.0146 This worka

EV-V
b,2nn 0.3028 This worka

EAA
f 10.16 Ref. [50]

EAB
f 9.49 Ref. [50]

EAA-B
b,1nn −0.52 Ref. [50]

EAB-B
b,1nn −0.53 Ref. [53]

EAA-AA
b,1nn −2.12 Ref. [54]

EAA-AB
b,1nn −2.12 Assumedb

EAB-AB
b,1nn −3.2 Ref. [30]

EV→A
m (A) 1.623 This work

EV→B
m (A) 1.651 This work

EV→A(1)
m [Fig. 3(c)] 1.7151 This work

EV→A(2)
m [Fig. 3(c)] 1.6378 This work

EV→B(3)
m [Fig. 3(c)] 1.577 This work

EV→A
m (V) 1.623 This work

EV→B
m (V) 1.651 This work

aThese are with the xc-energy correction from Ref. [55].
bThe only exception is the binding energy between an AA and an
AB interstitial, which is assumed to be equal to the binding energy
between two AA.

energies:

EA
coh = −z1

2
ε

(1)
A-A − z2

2
ε

(2)
A-A,

EB
coh = −z1

2
ε

(1)
B-B − z2

2
ε

(2)
B-B, (10)

where z1 and z2 are coordination numbers for the 1nn and 2nn
shells, respectively. The cohesive energies calculated using
DFT are given in Table I.4

The coefficient for the A-B bond is obtained from the
enthalpy of mixing of W-Re, �H mix, which can be written
within the Bragg-Williams approximation [56–58] as

�H mix = z1

2

[
(1 − X)ε(1)

A-A + Xε
(1)
B-B + 2x(1 − x)
(1)

s

]

+ z2

2

[
(1 − X)ε(2)

A-A + Xε
(2)
B-B + 2X(1 − X)
(2)

s

]
,

(11)

4These are with the xc-energy correction from Ref. [55].
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FIG. 2. Enthalpy of mixing as a function of solute concentration
from Ref. [30] and third-degree polynomial fit.

where X is the global solute concentration, and 
s is the heat
of solution, defined as


(1)
s = ε

(1)
A-B − 1

2

(
ε

(1)
A-A + ε

(1)
B-B

)
, (12)


(2)
s = ε

(2)
A-B − 1

2

(
ε

(2)
A-A + ε

(2)
B-B

)
. (13)

Combining Eqs. (10) and (11), �H mix can be expressed as

X(1 − X)
∗
s = �H mix + (1 − X)EA

coh + XEB
coh, (14)

where 
∗
s = z1


(1)
s + z2


(2)
s . To obtain the dependence of the

heat of solution on the solute concentration, we fit the left-hand
side of Eq. (14) to the data points for the mixing enthalpies as
a function of X calculated in our previous work [30]. The best
fit, shown in Fig. 2, is achieved when 
∗

s is expressed a linear
function of the concentration:


∗
s = w0 + w1X

with w0 = −0.1571 and w1 = −0.2311. The negative values
of w0 and w1 suggest a moderate tendency towards ordering,
which becomes larger as the solute concentration increases.
Combining Eqs. (9), (10), (12), and (14), one can obtain the
values of 
(1)

s , 
(2)
s , ε

(1)
A-B, and ε

(2)
A-B. A nonconstant 
∗

s effec-
tively implies that εA-B is also a function of the concentration.
Moreover, to reflect local composition variations in the W-Re
alloys, we make the assumption that the dependence of ε

(1)
A-B

and ε
(2)
A-B on X can be transferred to the local environment

of each atom, such that both bond energy coefficients are
functions of the local composition, which we term x, and
must be computed on the fly for each A-B pair in the system.

2. Vacancy parameters

The vacancy bond coefficients are εA-V, εB-V, and εV-V.
εA-V can be readily obtained from the value of the vacancy
formation energy:

EV
f = EA

coh − z1ε
(1)
A-V − z2ε

(2)
A-V, (15)

where EV
f is the vacancy formation energy in pure W (given

in Table I). εB-V can be obtained from the binding energies of

3
1

2

(a) (b) (c) (d)

FIG. 3. Configurations of V-Re clusters used to extract bond
energy coefficients εA-V and εB-V. Blue spheres represent vacancies,
red spheres represents Re atoms. All other lattice sites are occupied
by A atoms, which are omitted for clarity. Green spheres indicate
the various equivalent sites for atoms to exchange positions with the
vacancy.

V-Re configurations, which for a structure involving m solute
atoms and n vacancies is defined as

E
BmVn

b = E
BmVn

f − mEB
f − nEV

f , (16)

where the Ef are the respective formation energies of each
structure. In this work, binding energies for the four vacancy-
solute configurations shown in Fig. 3 have been calculated
(cf. Table I). One can now rewrite Eq. (16) as a function of
the B-V bond coefficients ε

(1)
B-V and ε

(2)
B-V for each one of the

configurations in the figure:

E
(a)
b = ε

(1)
B-V + ε

(1)
A-A − ε

(1)
A-B − ε

(1)
A-V, (17a)

E
(b)
b = ε

(2)
B-V + ε

(2)
A-A − ε

(2)
A-B − ε

(2)
A-V, (17b)

E
(c)
b = 2ε

(1)
B-V + ε

(2)
B-B + 2ε

(1)
A-A + ε

(2)
A-A − 2ε

(1)
A-V − 2ε

(1)
A-B

− 2ε
(2)
A-B + 14�ε

(1)
A-B + 10�ε

(2)
A-B, (17c)

E
(d)
b = 2ε

(2)
B-V + 2ε

(2)
A-A − 2ε

(2)
A-B − 2ε

(2)
A-V, (17d)

where �ε
(m)
A-B is the change in ε

(m)
A-B due to the local solute

concentration change resulting from the vacancy jump.
To define the dependence on x of ε

(1)
B-V, we must consider

two factors. First, our DFT calculations show that ε(1)
A-V > ε

(1)
B-V.

Second, the value of ε
(1)
B-V is seen to increase with local concen-

tration. Both of these conditions are satisfied by assuming a
dependence such as ε

(1)
B-V(x) = ε

(1)
A-V − ax−1, where a is a fitting

constant. As well, ε
(2)
B-V is seen to independently increase with

concentration, such that ε
(2)
B-V(x) = bx + c, where b and c are

fitting parameters.
εV-V can be readily calculated by considering the binding

energy of a divacancy:

EV-V
b,1nn = ε

(1)
A-A + ε

(1)
V-V − 2ε

(1)
A-V, (18)

EV-V
b,2nn = ε

(2)
A-A + ε

(2)
V-V − 2ε

(2)
A-V. (19)

It is interesting to note that, in accordance with several
other studies [53,59–62], EV-V

b,2nn takes a positive value (cf.
Table I), indicating repulsion between vacancies that are at
2nn distances of each other.
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TABLE II. Bond energy coefficients with the equation used for their calculation, and the literature source. x is the local solute concentration.

Quantity Value Equation Source

ε
(1)
A-A −1.5815 Cohesive energy, Eq. (9) This work

ε
(2)
A-A −0.6672 Cohesive energy, Eq. (9) This work

ε
(1)
B-B −1.4067 Cohesive energy, Eq. (9) This work

ε
(2)
B-B −0.5935 Cohesive energy, Eq. (9) This work

ε
(1)
A-B −1.5090 − 0.0219x Mixing energy Ref. [30]

ε
(2)
A-B −0.6366 − 0.0092x Eq. (9) Ref. [30]

ε
(1)
A-V −0.4898 Formation energy, Eq. (9) This work

ε
(2)
A-V −0.2067 Formation energy, Eq. (9) This work

ε
(1)
B-V −0.4898 − 0.009432/x Formation energy fitted to ε

(1)
B-V = a + b/x This work

ε
(2)
B-V −0.3311 + 0.036x Formation energy fitted to ε

(2)
B-V = a + bx This work

ε
(1)
V-V 0.5873 1nn binding energy This work

ε
(2)
V-V 0.5566 2nn binding energy This work

ε
(1)
AA-A 0.1740 Formation energy, Eq. (9) Ref. [50]

ε
(2)
AA-A 0.0734 Formation energy, Eq. (9) Ref. [50]

ε
(1)
AB-A 0.1104 Formation energy, Eq. (9) Ref. [50]

ε
(2)
AB-A 0.0466 Formation energy, Eq. (9) Ref. [50]

ε
(1)
AA-B −0.2750 Binding energy Ref. [50]

ε
(2)
AA-B −0.1160 Eq. (9) Ref. [50]

ε
(1)
AB-B −0.3486 Binding energy Ref. [53]

ε
(2)
AB-B −0.1470 Eq. (9) Ref. [53]

ε
(1)
AA-AA −0.1905 Binding energy Ref. [54]

ε
(2)
AA-AA −0.0804 Eq. (9) Ref. [54]

ε
(1)
AA-AB −0.2505 Binding energy Assumeda

ε
(2)
AA-AB −0.1057 Eq. (9) Assumeda

ε
(1)
AB-AB −1.3977 Binding energy Ref. [30]

ε
(2)
AB-AB −0.5897 Eq. (9) Ref. [30]

aThe only exception is the binding energy between an AA and an AB interstitial, which is assumed to be equal to the binding energy between
two AA.

3. Interstitial defect parameters

The interstitial bond coefficients include εAA-A, εAB-A,
εAA-B, εAB-B, εAA-AA, εAA-AB, and εAB-AB. εAA-A and εAB-A

are calculated directly from the formation energies of SIAs
and mixed dumbbells:

EAA
f = −4ε

(1)
A-A − 3ε

(2)
A-A + 8ε

(1)
AA-A + 6ε

(2)
AA-A, (20)

EAB
f = −4ε

(1)
A-A − 3ε

(2)
A-A + 8ε

(1)
AB-A + 6ε

(2)
AB-A. (21)

The other bond coefficients are obtained from various binding
energies:

EAA-B
b,1nn = ε

(1)
AA-B + ε

(1)
A-A − ε

(1)
AA-A − ε

(1)
A-B, (22)

EAB-B
b,1nn = ε

(1)
AB-B + ε

(1)
A-A − ε

(1)
AB-A − ε

(1)
A-B, (23)

EAA-AA
b,1nn = ε

(1)
AA-AA + ε

(1)
A-A − 2ε

(1)
AA-A, (24)

EAA-AB
b,1nn = ε

(1)
AA-AB + ε

(1)
A-A − ε

(1)
AA-A − ε

(1)
AB-A, (25)

EAB-AB
b,1nn = ε

(1)
AB-AB + ε

(1)
A-A − 2ε

(1)
AB-A. (26)

These formation and binding energies are all taken from the
literature.5

All the bond energy coefficients, the equation used for their
calculation, and the source of the numbers are compiled in
Table II.

4. Migration parameters

The attempt frequency [ν in Eq. (6)] used for vacancy jumps
in this work is set to be equal to the Debye frequency of W,
or 6.5 × 1012 Hz [63], while for interstitials we use a value of
1.5 × 1012 Hz [49].

From Eq. (7), there are six different saddle-point bond
coefficients: ε

sp(m)
A-A , ε

sp(m)
A-B , ε

sp(m)
A-V , ε

sp(m)
B-A , ε

sp(m)
B-B , and ε

sp(m)
B-V ,

where m = 1nn, 2nn. In this notation, ε
sp(m)
α-β represents the

5The only exception is the binding energy between an AA and an
AB interstitial, which is assumed to be equal to the binding energy
between two AA.
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TABLE III. Saddle-point bond energy coefficients for vacancy
jumps (in eV).

Quantity Value Quantity Value

ε
sp(1)
A-A −2.5975 ε

sp(2)
A-A −0.5041

ε
sp(1)
A-B −2.6451 ε

sp(2)
A-B −0.5532

ε
sp(1)
A-V 0.5465 ε

sp(2)
A-V 0.1060

ε
sp(1)
B-A −2.5188 ε

sp(2)
B-A −0.4888

ε
sp(1)
B-B −2.5417 ε

sp(2)
B-B −0.4943

ε
sp(1)
B-V 0.2902 ε

sp(2)
B-V 0.0563

energy of the bond between the atom at the saddle point α and
its closest lattice neighbor β. This means ε

sp(m)
α-β �= ε

sp(m)
β-α .

The saddle-point bond coefficients connected to a lattice
atom A (W atom), ε

sp(m)
α-A , can be calculated as

z
sp

1 ε
sp(1)
α-A + z

sp

2 ε
sp(2)
α-A = Em +

∑
n,q

ε
(n)
X-q +

∑
n,r �=X

ε
(n)
V -r , (27)

where z
sp

1 and z
sp

2 are the numbers of first- and second-nearest
neighbors of an atom at the saddle point, which are both equal
to 6 for the bcc lattice, and Em is the migration energy. The term
�Enonbroken

ij in Eq. (7) is zero here since no solute concentration

change is involved in an A-atom jump. ε
sp(2)
α-A is obtained from

ε
sp(1)
α-A using Eq. (9). Vacancy bonds are calculated in a similar

manner.
To calculate the saddle-point bond coefficients pertaining

to B (Re) atoms, ε
sp(m)
α-B , one must consider local solute con-

centration changes. To this end, we resort to the configurations
shown in Fig. 3(c). The A-B saddle-point coefficients ε

sp(m)
A-B are

obtained from A-atom jumps, labeled “1” and “2” in Fig. 3(c),
into the vacant site. The B-B saddle-point coefficient ε

sp(1)
B-B is

computed assuming a B-atom (labeled “3” in the figure) jump
into the vacancy. Equation (9) is then used to obtain the 2nn
coefficients. All the necessary DFT calculations to calculate
the saddle-point bond coefficients were performed as part of
the present work, and are given in Table III.

The migration energies of SIA and mixed interstitials, the
activation energy for SIA rotation, as well as the correlation
factors at different temperatures are taken from the literature,
and listed in Table IV.

5. DFT calculations

Density functional theory calculations were carried
out using the projector augmented wave (PAW) method
[64,65] as implemented in the Vienna ab initio simulation

TABLE IV. Self-interstitial migration parameters. The jump
distance for SIA migration is δ = a0

√
3/2.

Quantity Value Source

EAA
m 0.003 Ref. [28]

EAA
r 0.43 Ref. [28]

EAB
m 0.12 Ref. [30]

f 2.93 − 0.00055T Ref. [49]
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FIG. 4. Solute composition X as a function of chemical potential
�μ at different temperatures.

package [66–69]. Since interstitial configurations involve
short interatomic distances “hard” PAW setups that include
semicore electron states were employed with a plane wave
energy cutoff of 300 eV.

Exchange and correlation effects were described using the
generalized gradient approximation [70] while the occupation
of electronic states was performed using the first-order
Methfessel-Paxton scheme with a smearing width of 0.2 eV.
The Brillouin zone was sampled using 5 × 5 × 5 	k-point grids.
(A detailed discussion of the effect of different computational
parameters on the results can be found in Ref. [50].) All
structures were optimized allowing full relaxation of both
ionic positions and cell shape with forces converged to below
10 meV/Å. Migration barriers were computed using 4 × 4 × 4
supercells and the climbing image-nudged elastic band method
with three images [71].

III. RESULTS

A. Structural phase diagrams

Although our energy model includes thermodynamic in-
formation reflective of the phase stability of W-Re alloys, the
model consists of a rigid lattice with bcc structure and is thus
suitable only for a given, well-defined, concentration range.
Our DFT calculations yield bond energies that are consis-
tent with a stable binary alloy from zero to approximately
40 at.% Re [30]. This is confirmed by way of SGMC
simulations performed as a function of composition and
temperature in 64 × 64 × 64 computational cells. Figure 4
shows the set of stable compositions obtained as a function of
the chemical potential for several temperatures.

The figure shows a clear jump in the Re concentration
at a temperature of approximately 100 K. This is indicative
of a phase transformation, which results in phase-separated
structures at temperatures at or below approximately 200 K
in the 0.0 < X < 0.5 concentration range. In Appendix A we
discuss this phase-separated system in more detail, charac-
terized by precipitation of B2 clusters in the bcc lattice. For
now, to characterize the configurations obtained, we calculate
their short-range order (SRO) according to the Warren-Cowley
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X

FIG. 5. Short-range-order parameter η as a function of global
solute composition X at different temperatures. The dashed line in-
dicates the SRO interval caused by normal concentration fluctuations
during the generation of atomistic samples.

parameter [72]:

η = N−1
B

NB∑
i

(
1 − xi(A)

1 − X

)
, (28)

which gives the SRO parameter η of Re atoms with respect
to matrix W atoms, with xi(A) being the fraction of A atoms
surrounding each solute atom i. The sum extends to all B atoms
in the system.

According to this definition, η > 0 implies phase sep-
aration, η = 0 represents an ideal solid solution, and η <

0 indicates ordering. However, the SRO parameter of a
random solution has a range of ±0.003 regardless of solute
composition due to the random occurrence of dimers, trimers,
and other small clusters. This band of natural order is marked
with dashed lines in Fig. 5, which shows the equilibrium SRO
as a function of X for several temperatures. As the figure
shows, the SRO parameter is near zero for dilute systems,
and gradually becomes negative as the concentration in-
creases. The corresponding T -X phase diagram is provided in
Fig. 6.

The equilibrium structures of the ordered compounds
observed primarily at lower temperatures and higher concen-
trations are analyzed in Appendix A. At high temperatures and
lower Re concentrations, the system behaves like a random
solid solution for all practical purposes.

1. Effect of vacancies on phase diagram

It is well known that nonequilibrium concentrations of
defects can alter the thermodynamic behavior of an alloy.
For the W-Re system, Wrobel et al. have studied the ternary
W-Re-vacancy system and found that Re clustering occurs in
the presence of nonthermodynamic vacancy concentrations
[21]. Although these are unrealistic homogeneous defect
concentrations, we can justify their study to hint at what
could happen in highly heterogeneous situations, such as
near defect sinks in irradiated materials. Clusters appear
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FIG. 6. Structural phase diagram showing regions of changing
SRO. The dashed lines are the limits of applicability of the rigid bcc
lattice model. The system displays slightly negative SRO throughout
the entire temperature-concentration space, indicating a preference
to be in a solid solution state. The gray band at low temperatures
signifies the region of coexistence of the bcc and B2 phases (see
Appendix A).

as semiordered structures of alternating solute and vacancy
planes—a necessity given the short-range repulsion between
Re atoms on the one hand and vacancies on the other
(cf. Table I). Next, we carry out a similar study involving
various vacancy concentrations, temperatures, and solute
concentrations to obtain structural phase diagrams such as that
shown in Fig. 6. Each configuration is optimized by combining
SGMC steps with energy minimization steps following the
process described in Sec. II C. Figure 7 shows the diagrams for
vacancy concentrations of Cv = 0.01,0.1,0.2,0.5 at.% using
64 × 64 × 64 primitive cells.

As a representative example, Fig. 8(a) shows the equili-
brated configuration at 600 K, 1.8 at.% Re (which occurs for
�μ = 0.26), and Cv = 0.5 at.%. The figure shows several
Re-vacancy clusters with an ordered structure, consistent with
the study by Wrobel et al. [21]. Due to their ordered structure,
these solute-vacancy clusters form only at Re concentrations
that are commensurate with the vacancy concentration in the
system, i.e., at values of X � 0.04 in most cases.

2. Effect of interstitial defects on the phase diagram:

Although vacancy concentrations such as those considered
in this section are several orders of magnitude larger than
the vacancy concentration in thermal equilibrium, one can
expect such numbers under far-from-equilibrium conditions
such as under high-dose or high-dose-rate irradiation. The
case is much more difficult to make for SIAs due to their
much higher formation energy (3.2 vs 10.2 eV, to take two
representative numbers [50]). However, given the inclination
of single interstitials to convert into mixed dumbbells in
the presence of solute, it is of interest to repeat the same
exercise of looking at the clustering propensity of Re in
such cases. The results are shown in Fig. 9 for a defect
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FIG. 7. Structural phase diagrams for four different vacancy
concentrations. (a) Cv = 0.01 at.%. (b) Cv = 0.1 at.%. (c) Cv =
0.2 at.%. (d) Cv = 0.5 at.%. The diagrams clearly show the emergence
of regions of solute segregation, characterized by positive SRO and
a shifting of the transition phase boundary, η = 0, towards the right
(higher concentrations).

(a) (b)

FIG. 8. Equilibrated configurations for W-Re alloys containing
different defect concentrations at 600 K. (a) W–1.8 at.% Re alloy,
0.5 at.% vacancy concentration. (b) W–1.4 at.% Re alloy, 0.1 at.%
mixed interstitials. Red spheres represent Re atoms; colored blue or
green ones represent the defect in each case.

concentration of 0.1 at.%. The diagram reveals a stronger
clustering tendency when interstitials are present compared to
vacancies. Such an effect originates from both more attractive
binding energies between mixed interstitials and solute atoms,
and between mixed interstitials with themselves. A snapshot of
the equilibrated atomistic configuration is shown in Fig. 8(b),
where the precipitates are seen to form platelet-like structures
with a mixed dumbbell core surrounded by substitutional
solute atoms.

B. Kinetic evolution of irradiated W-Re alloys

There are a number of factors that call for performing kMC
simulations in W-Re systems:

(1) First, equilibrium Monte Carlo calculations such as
those performed in Sec. III A do not provide information about
the precipitate nucleation and growth mechanisms, as well as
the time scales involved.

(2) Second, there is clear experimental evidence of Re-
cluster formation in the absence of vacancies. Hasegawa et al.
[9,73] and Hu et al. [10] have both reported the formation of
W-Re intermetallic precipitates after high-dose, fast neutron
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FIG. 9. Structural phase diagram for 0.1 at.% mixed-dumbbell
concentration. The diagram shows the emergence of regions of solute
segregation, characterized by η > 0, up to X = 0.1%.
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irradiation. Moreover, recent irradiation experiments have
revealed the formation of Re-rich clusters with bcc structure,
i.e., prior to their conversion into σ and/or χ precipitates.
For example, Klimenkov et al. note that Re-rich particles not
associated with cavities formed in neutron-irradiated single-
crystal W [22]. As well, using atom-probe tomography Xu
et al. have performed detailed analyses of Re-rich atmospheres
in bcc W without detecting significant numbers of vacancies
[14].

(3) New understanding regarding interstitial-mediated so-
lute transport in W-Re alloys [29,30], together with the
results in Sec. III A 2, call for renewed simulation efforts
incorporating these new mechanisms—in particular, the three-
dimensional and associative nature of Re transport via mixed-
dumbbell diffusion.

These considerations motivate the following study of the
Re precipitation kinetics under irradiation conditions. First,
however, we proceed to calculate diffusion coefficients and
transport coefficients for defect species and solute atoms.

1. Calculation of diffusion coefficients

Tracer diffusion coefficients (i.e., in the absence of a
concentration gradient) for vacancies, interstitials, and solute
species in three dimensions are assumed to follow an Arrhenius
temperature dependence:

D(T ) = νf δ2 exp

(
−Ea

kT

)
, (29)

where ν is the so-called attempt frequency, f is the correlation
factor, δ is the jump distance, Ea is the activation energy,
and D0 = νf δ2 is the diffusion prefactor. Defect diffusivities
can be obtained directly from this equation, with Ea ≡ Em.
For solute diffusion via the vacancy mechanism, the above
expression must be multiplied times the probability of finding
a vacancy in one of the 1nn positions, such that D0 = z1νf δ2

and Ea = Em + EV
f . However, fluctuations in local chemistry

prevent us from using equations for homogeneous systems
such as Eq. (29) to calculate the diffusivities of solutes and
vacancies as a function of the global solute concentration. In
such cases, diffusion coefficients must be obtained by recourse
to Einstein’s equation:

D = 〈�r2〉
6�t

, (30)

where 〈�r2〉 is the mean-squared displacement (msd) and
�t is the time interval. This formula assumes equilibrium
defect concentrations, which are generally several orders of
magnitude smaller than what a typical simulation cell can
afford. For this reason, the time in Eq. (30) is not directly the
time clocked in the kMC simulations, �tkMC. Rather, it must
be rescaled by a coefficient that accounts for the difference in
defect concentration [74,75]:

�t = �tkMC
CkMC

Ceq
, (31)

where CkMC and Ceq are the defect concentrations in the kMC
simulations and in equilibrium, respectively. For simulations
involving only one defect, CkMC is simply equal to the inverse
of the number of atoms in the computational cell, CkMC =
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FIG. 10. Diffusivities of vacancies and solute atoms as a function
of temperature and alloy concentration. (a) Vacancy diffusion.
(b) Solute diffusion. The solid lines correspond to the Arrhenius
fits shown in Table V, while the dashed line corresponds to Eq. (29).

N−1, while Ceq = exp(−Ef /kBT ), where Ef is the instan-
taneous defect formation energy, i.e., calculated accounting
for the local chemical environment. This is the approach used
for vacancy mediated diffusion, with EV

f = ∑
i εV-αi

, where
αi symbolizes the neighboring atoms forming a bond with the
vacancy. During simulations of solute and vacancy diffusion,
EV

f is updated in every Monte Carlo time step and time
rescaling is performed on the fly. The starting configuration
for all calculations involving solute atoms is the equilibrated
alloy as obtained in Sec. III A using SGMC simulations. The
results for the vacancy and solute diffusivities, Dv and Ds, can
be seen in Fig. 10, while the parameters resulting from fitting
the data points in the above figures to Eq. (29) are collected
in Table V. While Dv displays a moderate dependence on the
solute concentration, Ds is quite insensitive to it.

As discussed in Sec. II E 4, self-interstitial migration occurs
by way of fast sequences of 〈111〉 transitions punctuated
by sporadic rotations, whereas mixed dumbbell diffusion
occurs via random 〈100〉 hops in three dimensions. Interstitial
diffusivities of both types can be calculated straightforwardly
by using Eq. (29) parametrized with the data in Table IV.
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TABLE V. Diffusion parameters for vacancy and solute diffusion
as a function of solute concentration.

X (at.%) D0 (m2 s−1) Em (eV)

Vacancy diffusion
0.0 [Eq. (29)] 4.84 × 10−7 1.62
0.5 6.86 × 10−6 1.73
1.0 6.92 × 10−5 1.87
2.0 1.26 × 10−3 2.08
5.0 2.57 × 10−3 2.16

Solute diffusion
0.0 [Eq. (29)] 3.87 × 10−6 1.62 + 3.17 = 4.79
0.5 7.56 × 10−7 4.67
1.0 7.80 × 10−7 4.67
2.0 7.89 × 10−7 4.66
5.0 6.75 × 10−7 4.59

2. Calculation of transport coefficients

Within linear response theory, mass transport can be related
to chemical potential gradients via Onsager’s phenomeno-
logical coefficients. The value and sign of these transport
coefficients can provide important physical information about
the nature of solute and defect fluxes. On a discrete lattice, the
transport coefficients Lij coupling two diffusing species can
be calculated as [44,76]

Lij = 1

6V

〈�ri�rj 〉
�t

, (32)

where V is the total volume of the system, �ri is the total
displacement of species i, and �t is the rescaled time. Here
we focus on the relationship between solutes and solutes, and
solute atoms and vacancies, LB-B and LB-V, as a function of
temperature and Re content. Due to the associative transport
mechanism of AB interstitials, the corresponding transport
coefficient relating interstitials with solute atoms is always
positive and we obviate its calculation. Figure 11(a) shows
the results for LB-B, which displays an Arrhenius temperature
dependence and is always positive. The dependence on
solute concentration is not significant up to 5%, with an
average activation energy of 4.7 eV—very similar to the solute
diffusion activation energy—and a prefactor of approximately
3.9 × 1020 m−1 s−1. LB-B is by definition related to the solute
diffusion coefficient presented above.

In Fig. 11(b) we plot the ratio LB-V/LB-B. Two observations
stand out directly from the figure. First, the value of LB-V

is always negative (the exception being at 450 K, when it is
almost zero). This indicates a reverse coupling between solutes
and vacancies; i.e., vacancy fluxes oppose solute fluxes. The
implications of this calculation will become clearer when we
study solute precipitation in the next section. Second, LB-V is
on average about an order of magnitude larger (in absolute
value) than LB-B, which is to be expected for substitutional
solutes moving by a vacancy mechanism.

Finally, we have looked at the ratio LB-V/LA-V. The
values are generally positive, albeit quite small, indicating
that both atomic fluxes are weakly aligned. However, transport
coefficients are not normalized on a per atom basis, which gives
the impression that B-V transport is of smaller magnitude than
A-V transport. This is however misleading, given the large
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FIG. 11. Phenomenological transport coefficients for solute-
solute, vacancy-solute, and solvent-solute interactions. (a) Solute-
solute transport coefficient. (b) Solute-vacancy transport coefficient.
(c) Relation of transport coefficients for solute-vacancy and solvent-
vacancy interactions.

concentration difference between solvent and solute atoms.
Therefore, in Fig. 11(c) we plot the L̃B-V/L̃A-V ratio, where
the tilde indicates per atom. It is clear from the figure that B
atoms undergo a much faster vacancy-mediated transport than
A atoms, which is consistent with a thermodynamic tendency
to mixing for the unirradiated condition.

094108-11



HUANG, GHARAEE, ZHAO, ERHART, AND MARIAN PHYSICAL REVIEW B 96, 094108 (2017)

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

5 nm

R
ad

iu
s 

[n
m

]

Time [s]

FIG. 12. Precipitate growth with time at 1800 K and 10−3 dpa s−1

in a W–2.0 at.% Re alloy. The dashed line represents perfect spherical
growth (cf. Appendix B). A surface reconstruction rendition of one
precipitate at various times is provided in the inset.

3. Kinetic Monte Carlo simulations

To narrow down the large parametric space associated with
irradiation of W-Re alloys (Re concentration, temperature,
dose, dose rate, etc.), we resort to the study performed in
Secs. III A and III A 1. It was seen there that segregation
occurs most favorably at low solute compositions. For this
reason, and to enable comparison with the work by Xu et al.
[13,14], we choose a W-2Re (at.%) alloy for our study. By
way of reference, this would correspond to the transmutation
fraction attained after a dose of 12 dpa or 4 full-power years in
DEMO’s first wall according to Gilbert and Sublet [5]. When
relatively high concentrations of defects are present—as one
might expect during irradiation—precipitation is also favored
at high temperatures, so here we carry out our simulations
between 1700 and 2000 K. This corresponds to the shaded band
in Fig. 1, where dots are shown marking the 2% concentration
point. As the figure shows, the simulation conditions are
well within the solid solubility region of W-Re, where no
precipitation is expected. We use box sizes of 643 and 803

with a damage insertion rate of 10−3 dpa per second. As
shown in Appendix B, the equivalence relation that exists
between both box sizes enables us to compare them directly.
Eight independent simulations were conducted for statistical
averaging and stochastic error estimation.

It is seen that, on average, a precipitate starts to grow
after a waiting time of ≈13.5(±8.5) seconds (or ≈0.02 dpa).
This time can be regarded as the average incubation time
for the conditions considered in the study. Of course, this
time does not necessarily correspond to the nucleation time
in the thermodynamic sense, given the length and time
scale limitations in our simulations. Figure 12 shows the
mean size from all eight cases as a function of growth
time, i.e., initializing the clock after the cluster nuclei are
formed regardless of the observed incubation time. The dashed
line in the figure is the associated spherical growth trend,
which the precipitates are seen to follow for approximately
20 s. Subsequently, growth stops at a saturation radius of
4 nm, which is seen to be the stable precipitate size. In the
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FIG. 13. Radial concentration profile as a function of time for the
precipitates formed in the kMC simulations. The experimental results
are taken from the work by Xu et al. [14].

thermodynamic limit, the solute agglomerates into one single
precipitate. However, in simulations, this size is limited by the
simulation box dimensions. Therefore, the value of 4 nm for
the cluster radius found here has no real physical significance,
and we take it to be simply associated with the computational
cell employed here. A surface reconstruction rendition of one
of the precipitates is also provided in the figure as a function of
time. This depiction as a compact convex shape is not intended
to represent the true diffuse nature of the cluster, and is only
shown as an indication of the cluster average size and shape.

The next question we address is the solute concentration
inside the precipitate. Xu et al. [13,14] have performed detailed
atom probe analyses of radial concentration profiles at 573 and
773 K and find that the precipitates that form might be better
characterized as “solute clouds,” reaching concentrations of
around 30% in the center gradually declining as the radius in-
creases. Our analysis is shown in Fig. 13, with results averaged
over the 8 cases tried here. The figure shows that the concen-
tration at the precipitate core (within the inner 1.5 nanometers)
surpasses 50%—the thermodynamic limit for the formation of
intermetallic phases—which could provide the driving force
for such a transformation. Because our energy model is not
valid above the solid solution regime, we limit the interpreta-
tion of such phenomenon, however. What is clear is that the
precipitates are not fully dense, even near their center. In fact,
the relative solute concentration appears to diminish near the
precipitate core once the saturation point has been reached.

Finally, we address the issue of whether it is vacancy or
interstitial mediated transport that is primarily responsible for
solute agglomeration and the formation of Re-rich clusters. To
this end, we track the evolution with time of the incremental
SRO change brought about by any given kMC event during
the formation stage of one the precipitates discussed above.
The results are given in Fig. 14, where contributions from SIA
and mixed-interstitial jumps, vacancy jumps, and Frenkel pair
insertion are plotted. These results conclusively demonstrate
that mixed-interstitial transport is dominant among all other
events to bring solute together. Vacancies, on the other hand,
serve a dual purpose. They first act as a “hinge” between solute
atoms that would otherwise repel, much in the manner shown
in Fig. 8(a). This results in an initial positive contribution
to the SRO, as shown in the inset to Fig. 14, by forming
dimers, trimers, or other small solute clusters. However, once
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FIG. 14. Evolution of the differential SRO during the nucleation
and growth in the kMC simulations.

a critical nucleus forms and starts to grow, vacancies reverse
this behavior and act to dissolve the precipitate (differential
SRO turns negative in Fig. 14), mostly by making the
precipitate/matrix interface more diffuse. As expected, Frenkel
pair insertion has practically no effect on the overall precipitate
evolution.

The precipitate grows by a sustained capture of mixed
interstitials and subsequent attraction of vacancies. This gives
rise to localized recombination at the precipitate, which makes
the precipitates incorporate solute atoms over time. Figure 15
shows the spatial location of the recombination events during a
period of 2.0 s before, during, and after precipitate growth. The
figure clearly shows that, once formed, the precipitate becomes
a preferential site for recombinations, which results in further
growth and eventually in saturation. Because the primary
source of solute is via interstitial transport, which also brings
W atoms, the precipitates are never fully compact (x ∼ 1).
Instead, maximum concentrations of around 50% are seen near
the center when the precipitates reach their saturation size of
4-nm radius. As we will discuss in the next section, this is
consistent with experimental measurements and observations
of both coherent bcc clusters and incoherent σ and χ phases.
As further evidence of the necessity of irradiation to sustain
precipitate formation and growth, we have “relaxed” Re cluster
configurations formed under irradiation by turning off defect
insertion and letting the system evolve under the action of one
isolated vacancy. Indeed, the system returns to a solid solution
as described by the corresponding SRO at the corresponding
temperature and solute concentration. One example of such
relaxations is given in Fig. S2 in the Supplemental Material
[77].

Simulations performed with defect sinks in the same
temperature range simply result in solute segregation in the
manner described in our previous work [31]. Radiation-
induced precipitation results from the onset of defect fluxes
to the sinks, providing sufficient competition to delay the
formation of bulk precipitates beyond the time scales coverable
in our kMC simulations. More information is also provided in
the Supplemental Material [77].

(a)

(b)

(c)

FIG. 15. Spatial distribution of recombination events for sev-
eral stages of precipitate evolution. (a) During cluster nucleation.
(b) During precipitate growth. (c) After size saturation.

IV. DISCUSSION AND CONCLUSIONS

A. Mechanism of nucleation and growth

On the basis of our results, the sequence of events that leads
to the formation of Re-rich precipitates in irradiated W-2Re
(at.%) alloys is as follows:

(1) First, a Frenkel pair is inserted in the computational box
following the procedure specified in Sec. II D. As interstitials
enter the system, they perform a one-dimensional migration
until they encounter a solute atom, after which they become
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mixed AB dumbbells capable of transporting solute in 3D. As
these mixed dumbbells diffuse throughout the lattice, they
encounter substitutional solute atoms and become trapped
forming a B-AB complex with a binding energy of 0.15 eV
(cf. Table I).

(2) The vacancy in the Frenkel pair migrates throughout the
lattice contributing to the formation of small Re complexes
(dimers, trimers, tetramers, etc.). Vacancy motion does not
necessarily imply solute drag, as indicated by the negative
value of transport coefficients in Sec. III B 2. However, as
the evidence from the Metropolis Monte Carlo simulations
in Fig. 7 suggests, they can form small complexes of stable
Re-V clusters.

(3) The vacancy can become locally trapped in the small
Re-V complexes mentioned above. However, at the high
temperatures considered here, it is likely to de-trap and
continue migrating until it finds the immobilized interstitial
from (1), as this provides the largest thermodynamic driving
force to reduce the energy of the crystal. When the vacancy
and the interstitial meet, another small Re cluster is formed.
Throughout this process, both mixed interstitial and vacancy
hops are characterized by an increasing differential SRO
parameter (cf. Fig. 14).

(4) Eventually, one of these Re clusters grows larger than
the rest due to natural fluctuations. When that happens, this
larger cluster has a higher likelihood of attracting the next
V-AB recombination event. This signals the onset of the growth
process, fueled by continued attraction of AB mixed dumbbells
and the subsequent associated recombination. At this stage,
vacancies reverse their role as solute-atom “hinges” and begin
to contribute to cluster dissolution (negative differential SRO
parameter in Fig. 14). This results in the development of
a more or less diffuse interface as the precipitate grows,
which delays the next recombination event and slows down
growth.

(5) Although the precipitate continues to be the main
pole of attraction for vacancy-interstitial recombinations (cf.
Fig. 15), the system reaches a point where most of the solute is
consumed into a diffuse precipitate that halts further growth.
Vacancies then have more time to interact with the interface
atoms before the next recombination event, which results in a
smearing of the precipitate interface. In the absence of sinks, or
other precipitates, the existing cluster is the sole focus of solute
agglomeration, which allows it grow to its maximum size for
the current alloy content of 2% Re and computational cell used
(cf. Sec. III B 3). It is to be expected that with competing solute
sinks in a statistically significant computational volume, the
precipitates will be smaller and/or less solute-dense internally.

This qualitative explanation is built on direct evidence and
interpretation from our results, described in detail in Sec. III.
However, to support some of the above points more explicitly,
we provide additional details in the Supplemental Material
[77].

Interestingly, the essential features of our mechanism were
originally proposed by Herschitz and Seidman [26,27] on
the basis of atom probe observations of neutron-irradiated
W-25Re alloys. Remarkably, these authors had the intuition
to propose the basic ingredients needed to have Re precipitate
formation identified in our work with the significantly more
limited understanding available at the time.

B. Brief discussion on the validity of our results

With the computational resources available to us, we can
reasonably simulate systems with less than 500 000 atoms
into time scales of tens of seconds. This has proven sufficient
to study Re clustering at high temperatures, where vacancy
mobility is high and comparable to mixed-interstitial mobility.
Recall from the previous section that the formation of clusters
is predicated on the concerted action of both defect species,
with mixed interstitials becoming trapped at small Re clusters
followed by a recombination with a vacancy that makes the
cluster grow over time. Clustering and precipitation of Re in
irradiated W has been seen at temperatures sensibly lower than
those explored here, such as 573 and 773 K for ion-irradiated
W-Re [13,14,78], 773 and 1073 K for neutron-irradiated W in
HFIR [10], 1173 K in neutron-irradiated W in the HFR reactor
[22], and by Williams et al. at 973 ∼ 1173 K in EBR-II [25].
The work by Hasegawa et al. in JOYO [9,79] does cover—
by contrast—a similar temperature range as ours. Whether
the mechanism proposed here can be conceivably extended to
lower temperatures with just a time scale adjustment remains
to be seen. An indirect way to study temperature effects is
to vary the values of the migration and binding energies that
are in the Boltzmann exponentials for the transition rates. In
Sec. VI, we analyze the sensitivity of the incubation time,
cluster growth rates, and vacancy-Re clustering to two key
parameters to shed some light on these effects.

Another intrinsic limitation of our model is that it is based
on a rigid bcc lattice and cannot thus capture the transition
of precipitates to the intermetallic phase. As such, our model
does not necessarily reflect the true microstructural state when
the local concentration surpasses 40% ∼ 50%, which is when
σ and χ precipitates are seen to develop according to the
phase diagram [15]. However, in controlled ion irradiation
experiments [13,14,78] there is clear evidence that the pre-
cursors to the formation of these intermetallic precipitates are
noncompact Re-rich clusters with bcc structure. We cannot but
speculate how the transition from these solute-rich clusters to
well-defined line compounds σ and χ takes place (perhaps
via a martensitic transformation, as in Fe-Cu systems [80]),
but it is clear that it is preceded by the nucleation and growth
of coherent Re clusters. In our simulations, we find that the
clusters have a maximum concentration of ≈50% in the center,
in contrast with Xu et al., who observe concentrations no larger
than 30%. This disparity may simply be a consequence of the
different temperatures considered relative to our simulations
(773 vs 1800 K), as it is expected that the accumulation of
solute by the mechanism proposed here will be accelerated by
temperature. Regarding the size of the clusters, it is well known
that in small-scale simulations such as these all the solute tends
to accumulate into a single cluster. Therefore, the final cluster
size depends on solute concentration and computational cell
dimensions, and what we measure here is thus not physically
meaningful in relation to experiments.

As well, our Re clustering mechanism is predicated on
the insertion of Frenkel pairs, when it is well known that
fast neutron and heavy-ion irradiation generally result in the
formation of clusters of vacancies and interstitials directly in
dense displacement cascades. However, even here tungsten is
somewhat of a special case. Recent work [81–83] suggests that
most of the defects in high-energy (>150 keV) cascades in W

094108-14



MECHANISM OF NUCLEATION AND INCIPIENT GROWTH . . . PHYSICAL REVIEW B 96, 094108 (2017)

appear in the form of isolated vacancies and interstitials. This,
together with the fact that most displacement cascades for
nonfusion neutrons and heavy ions have energies well below
the 150-keV baseline, gives us confidence that our mechanism
would be operative even in such scenarios.

C. Implications of our study

Beyond the obvious interest behind understanding the
kinetics of Re-cluster formation in irradiated W-Re alloys, our
model is useful to interpret other physical phenomena. For ex-
ample, it is well known that swelling is suppressed in irradiated
W-Re alloys compared to pure W [23]. By providing enhanced
avenues for interstitial-vacancy recombination, small Re clus-
ters capture mixed interstitials, allowing sufficient time for
vacancies to find them and suppressing or delaying the onset
of swelling. Intrinsic 3D mobility of mixed dumbbells is likely
to favor recombination as well. However, we do not discard a
mechanism for swelling suppression similar to that proposed
for Fe-Cr alloys, where 1D migration of SIAs is restrained by
Cr atoms [84]. This could conceivably occur in W-Re systems,
with Re atoms and small Re clusters trapping SIA clusters and
hindering their one-dimensional escape.

The mechanisms proposed here refer to homogeneous
nucleation; i.e., Re clustering occurs without any assistance
from RED or RIP, and hence without the need for defect sinks.
This is again a remarkable feature of these alloys, confirmed
by several studies [14,22,27]. As noted by Herschitz and
Seidman, “The coherent precipitates were not associated with
either linear or planar defects or with any impurity atoms; i.e.,
a true homogeneous radiation-induced precipitation occurs
in this alloy,” or by Klimenkov et al., “The formation of
Re-rich particles with a round shape was detected in the single-
crystal material. These particles were formed independently of
cavities.” We leave out heterogeneous precipitation at voids,
as the evidence in the literature is conflicting at this stage:
discounted in some works [14,27] and observed in others [22].

D. Sensitivity of results to model uncertainties

The issue of sensitivity of mesoscale models to atomistic
parameters is of course of extraordinary importance and the
subject of the field of uncertainty quantification (UQ). This is
especially true in a case like ours, where properties evaluated
at the atomic/molecular scale are transferred to the mesoscopic
scale. As it relates to this work, sources of uncertainty may
originate in numerical uncertainty, model uncertainty, and
parametric uncertainty. Numerical uncertainties are related
to the finite time of a dynamic simulation and the intrinsic
stochasticity of the kMC method (in turn related to random
number generators or the number of independent cases run).
Parametric uncertainties stem from errors in parameter values
due to noisy or insufficient calculations, or in approximations
used to calculate them. In this work we have performed all DFT
calculations using best practices as accepted by the electronic
structure community. As such, it is difficult to ascertain where
the sources of errors may be found without carrying out an
exhaustive UQ study. Instead, here we apply a scale factor to
two key kinetic parameters and study the effects of the imposed
variations on “global” kinetic metrics.

TABLE VI. Nucleation time for ±15% variations of two key
parameters in our model. The value calculated for the nominal
parameter set is 13.5(±8.5). All values are in seconds.

Parameter +15% −15%

EAB
m 16.4(±8.2) 17.7(±8.7)

E
(a-d)
b 16.9(±7.5) 24.4(±3.0)

Given the presumably important role of mixed dumbbells
in solute transport and cluster nucleation, we have chosen to
vary their migration energy by ±15% from its original value
of 0.12 eV (EAB

m in Table IV). As well, we have applied the
same variation of ±15% to the value of the solute-vacancy
binding energy [E(a-d)

b in Eqs. (17a)–(17d)]. This parameter
sets the value of the εB-V bond energy, which depends on the
local solute concentration (cf. Table II). The global metrics
used to assess the impact of these changes are the nucleation
time of 13.5(±8.5) s and the cluster growth rates shown in
Fig. 12. Four independent simulations were performed for
every parameter change. As shown in Table VI, we find that
the changes in EAB

m of ±15% result in nucleation times that
are within the natural variability of our kMC simulations. The
nucleation times increase by approximately 24%, within the
error bars of ≈60% of the standard case. Interestingly, we find
no effect whatsoever on the growth rate of the clusters from
these changes.

The details of these simulations are provided in the Supple-
mental Material [77]. For their part, changes of ±15% in E

(a-d)
b

seem to have a different effect. The +15% change appears to
also have a small measurable impact on the nucleation time,
on the same order as changes in EAB

m . However, the negative
change results in a value of 24.4(±3.0) s, clearly beyond the
statistical error of the nominal nucleation time of 13.5(±8.5) s.
This represents a change of +85%, indeed significant. Whether
this is a true effect is difficult to establish without a more
thorough sensitivity analysis. Also, it is not clear why the
effect is nonexistent for the corresponding +15% change.

Where changes in E
(a-d)
b do have a clear impact is on the

static phase diagrams in the presence of vacancies, such as
those shown in Fig. 7. Indeed, we have seen slight shifts of
the phase boundary corresponding to η = 0 (signaling the
transition from phase separation to ordering/solid solution).
The rest of the phase diagram remained unaltered. These
changes do not modify the overall behavior of the alloy,
however, which still displays the same global features as the
original results. These phase diagrams are also provided in the
Supplemental Material [77].

In any case, changes in the two parameters selected do
not appear to change the governing mechanisms of Re cluster
formation (as described in Sec. IV A), only the associated
time scales. So we preliminarily conclude that variations of
up to ±15% in the migration energy of the mixed interstitial
have little impact on the nucleation time and cluster growth
rates, while a decrease of −15% in the binding energy between
vacancies and solute atoms results in an appreciable increase in
the nucleation time (although still no effect on the growth rate).
The reasons behind this numerical sensitivity are not clear, but
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FIG. 16. Atomistic snapshots of the equilibrium configurations
of the W-50Re system and associated pair correlation function at 200
and 300 K. (a) X ≈ 0.50. (b) Pair correlation function.

this limited study gives an idea of the impact of key energetic
parameters on the kinetics of cluster nucleation and growth.
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APPENDIX A: ALLOY EQUILIBRIUM STRUCTURES
PREDICTED BY SEMI-GRAND-CANONICAL MONTE

CARLO SIMULATIONS

The equilibrium structures predicted by our bond energy
model are consistent with ordered intermetallics of various
types. Here we analyze alloy configurations at concentrations
of 25 and 50 at.%, each at 200 and 300 K. Atomistic snapshots
for the W-50Re structures are shown in Fig. 16.
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FIG. 17. Atomistic snapshots of the equilibrium configurations
of the W-25Re system and associated pair correlation function at 200
and 300 K. (a) X ≈ 0.25. (b) Pair correlation function.

The observed atomistic configurations have almost perfect
B2 structure. A well-defined phase boundary can be seen in the
200-K image, while more random phase defects are generated
at 300 K. Higher temperatures stabilize these defects such that
a lot of the order observed in the figure is lost and the system
resembles more a random solid solution. The corresponding
pair distribution function is shown in Fig. 16(b). An almost
perfect match with a reference B2 structure can be clearly
appreciated in the figure, confirming the qualitative atomistic
picture.

At lower concentrations, the system phase separates into
two distinct regions. Effectively, the Re atoms precipitate into
clusters of intermetallic B2 phase surrounded by a pure W
bcc structure. This phase corresponds to the shaded region
in Figs. 6 and 7. The g(r) analysis, shown in Fig. 17(b), is
consistent with this picture. We have found no evidence of the
formation of other intermetallics based on the bcc lattice such
as the D03 configuration in our simulations.

Therefore, at low temperatures (below approximately
300 K) the energetics of our lattice model predicts a phase-
separated system with regions of B2 containing the solute
atoms precipitating out in the pure W bcc lattice. As the
temperature increases, this weak order is lost in favor of
an effective solid solution with small local B2 precipitates
internally.
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APPENDIX B: SIZE DEPENDENCE OF PHYSICAL
TIME IN kMC SIMULATIONS

As explained in Sec. IV, the mechanism of formation of Re
clusters requires the concerted action of both interstitials and
vacancies. In order to be able to capture their formation dur-
ing reasonable computational times, the temperature regime
considered must be one where the mobility of both species is
comparable (1700 ∼ 2000 K in our case). Then, the rate of
arrival of solute atoms to a previously-nucleated Re cluster
can be approximated by

rs = 1

tFP + tdiff
, (B1)

where tFP and tdiff are the average time in between successive
Frenkel-pair insertions and a characteristic diffusion time
required by a vacancy and an interstitial to recombine with
one another. rs is measured in units of atoms per unit time. At
the temperatures and dose rates considered here, tFP 
 tdiff ,
such that rs ≈ tFP

−1. Assuming then that for each Frenkel pair
inserted a minimum of one solute atom is transported,

rs = dNB

dt
= rdpaN, (B2)

where NB is the total number of solute atoms in the precipitate.
rdpa in the above equation is the damage rate, expressed in units

of dpa s−1. The precipitate volume growth rate is directly equal
to the atomic volume times rs :

V̇ppt = 
ars = 
a

dNB

dt
= 
ardpaN. (B3)

Assuming that the precipitate is close to spherical,

V̇ppt = 4πR2
pptṘppt = 
ardpaN.

And, operating, we arrive at the equation for the evolution of
the precipitate radius with time:

Rppt =
(


ardpaNt

4π

) 1
3

, (B4)

which is the equation used for fitting in Fig. 12.
Then, from Eq. (B2), for a given constant dpa rate, it is

clear that the ratio rs(V1)N−1
1 = rs(V2)N−1

2 = constant, where
V1 and V2 are two different box sizes. For as long as the
approximation in Eq. (B1) is valid, then

t
(1)
FP N1 = t

(2)
FP N2 = constant,

which allows us to compare simulations done on box sizes of
643 and 803 directly. We emphasize that at lower temperatures,
and/or high dose rate, where tFP ≈ tdiff , this comparison is no
longer valid.
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Roberts, L. Romaner, M. Rosiński, M. Sanchez, W. Schulmeyer,
H. Traxler, A. Ureña, J. G. van der Laan, L. Veleva, S. Wahlberg,
M. Walter, T. Weber, T. Weitkamp, S. Wurster, M. A. Yar, J. H.
You, and A. Zivelonghi, J. Nucl. Mater. 432, 482 (2013).

[3] S. P. Fitzgerald and D. Nguyen-Manh, Phys. Rev. Lett. 101,
115504 (2008).

[4] C. S. Becquart and C. Domain, J. Nucl. Mater. 385, 223 (2009).
[5] M. R. Gilbert and J.-C. Sublet, Nucl. Fusion 51, 043005 (2011).
[6] M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J.-C.

Sublet, Nucl. Fusion 52, 083019 (2012).
[7] J. He, G. Tang, A. Hasegawa, and K. Abe, Nucl. Fusion 46, 877

(2006).
[8] T. Tanno, A. Hasegawa, J. C. He, M. Fujiwara, M. Satou, S.

Nogami, K. Abe, and T. Shishido, J. Nucl. Mater. 386-388, 218
(2009).

[9] A. Hasegawa, T. Tanno, S. Nogami, and M. Satou, J. Nucl.
Mater. 417, 491 (2011).

[10] X. Hu, T. Koyanagi, M. Fukuda, N. K. Kumar, L. L. Snead, B.
D. Wirth, and Y. Katoh, J. Nucl. Mater. 480, 235 (2016).

[11] X. Hu, T. Koyanagi, Y. Katoh, M. Fukuda, B. D. Wirth, and L. L.
Snead, Defect evolution in neutron-irradiated single-crystalline
tungsten, in Semiannual Progress Report for Period Ending June
30, 2015, DOE/ER-0313/58.

[12] G. A. Cottrell, J. Nucl. Mater. 334, 166 (2004).
[13] A. Xu, C. Beck, D. E. Armstrong, K. Rajan, G. D. Smith, P. A.

Bagot, and S. G. Roberts, Acta Mater. 87, 121 (2015).
[14] A. Xu, D. E. Armstrong, C. Beck, M. P. Moody, G. D. Smith,

P. A. Bagot, and S. G. Roberts, Acta Mater. 124, 71 (2017).
[15] M. Ekman, K. Persson, and G. Grimvall, J. Nucl. Mater. 278,

273 (2000).
[16] S. G. Fries and B. Sundman, Phys. Rev. B 66, 012203 (2002).
[17] T. Leonhardt, JOM 61, 68 (2009).
[18] G. S. Was, Fundamentals of Radiation Materials Science:

Metals and Alloys (Springer Science & Business Media, New
York, 2007).

[19] G. J. Dienes and A. Damask, J. Appl. Phys. 29, 1713 (1958).
[20] R. Cauvin and G. Martin, J. Nucl. Mater. 83, 67 (1979).
[21] J. S. Wróbel, D. Nguyen-Manh, K. J. Kurzydłowski, and S. L.

Dudarev, J. Phys.: Condens. Matter 29, 145403 (2017).
[22] M. Klimenkov, U. Jäntsch, M. Rieth, H. Schneider, D. Arm-

strong, J. Gibson, and S. Roberts, Nucl. Mater. Energy 9, 480
(2016).

[23] J. Matolich, H. Nahm, and J. Moteff, Scr. Metall. 8, 837 (1974).
[24] V. Sikka and J. Moteff, Metallurgical Mater. Trans. B 5, 1514

(1974).
[25] R. K. Williams, F. W. Wiffen, J. Bentley, and J. O. Stiegler,

Metall. Trans. A 14, 655 (1983).
[26] R. Herschitz and D. N. Seidman, Acta Metall. 32, 1155 (1984).

094108-17

https://doi.org/10.1016/S0920-3796(00)00320-3
https://doi.org/10.1016/S0920-3796(00)00320-3
https://doi.org/10.1016/S0920-3796(00)00320-3
https://doi.org/10.1016/S0920-3796(00)00320-3
https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1103/PhysRevLett.101.115504
https://doi.org/10.1103/PhysRevLett.101.115504
https://doi.org/10.1103/PhysRevLett.101.115504
https://doi.org/10.1103/PhysRevLett.101.115504
https://doi.org/10.1016/j.jnucmat.2008.11.027
https://doi.org/10.1016/j.jnucmat.2008.11.027
https://doi.org/10.1016/j.jnucmat.2008.11.027
https://doi.org/10.1016/j.jnucmat.2008.11.027
https://doi.org/10.1088/0029-5515/51/4/043005
https://doi.org/10.1088/0029-5515/51/4/043005
https://doi.org/10.1088/0029-5515/51/4/043005
https://doi.org/10.1088/0029-5515/51/4/043005
https://doi.org/10.1088/0029-5515/52/8/083019
https://doi.org/10.1088/0029-5515/52/8/083019
https://doi.org/10.1088/0029-5515/52/8/083019
https://doi.org/10.1088/0029-5515/52/8/083019
https://doi.org/10.1088/0029-5515/46/11/001
https://doi.org/10.1088/0029-5515/46/11/001
https://doi.org/10.1088/0029-5515/46/11/001
https://doi.org/10.1088/0029-5515/46/11/001
https://doi.org/10.1016/j.jnucmat.2008.12.091
https://doi.org/10.1016/j.jnucmat.2008.12.091
https://doi.org/10.1016/j.jnucmat.2008.12.091
https://doi.org/10.1016/j.jnucmat.2008.12.091
https://doi.org/10.1016/j.jnucmat.2010.12.114
https://doi.org/10.1016/j.jnucmat.2010.12.114
https://doi.org/10.1016/j.jnucmat.2010.12.114
https://doi.org/10.1016/j.jnucmat.2010.12.114
https://doi.org/10.1016/j.jnucmat.2016.08.024
https://doi.org/10.1016/j.jnucmat.2016.08.024
https://doi.org/10.1016/j.jnucmat.2016.08.024
https://doi.org/10.1016/j.jnucmat.2016.08.024
https://doi.org/10.1016/j.jnucmat.2004.07.001
https://doi.org/10.1016/j.jnucmat.2004.07.001
https://doi.org/10.1016/j.jnucmat.2004.07.001
https://doi.org/10.1016/j.jnucmat.2004.07.001
https://doi.org/10.1016/j.actamat.2014.12.049
https://doi.org/10.1016/j.actamat.2014.12.049
https://doi.org/10.1016/j.actamat.2014.12.049
https://doi.org/10.1016/j.actamat.2014.12.049
https://doi.org/10.1016/j.actamat.2016.10.050
https://doi.org/10.1016/j.actamat.2016.10.050
https://doi.org/10.1016/j.actamat.2016.10.050
https://doi.org/10.1016/j.actamat.2016.10.050
https://doi.org/10.1016/S0022-3115(99)00241-X
https://doi.org/10.1016/S0022-3115(99)00241-X
https://doi.org/10.1016/S0022-3115(99)00241-X
https://doi.org/10.1016/S0022-3115(99)00241-X
https://doi.org/10.1103/PhysRevB.66.012203
https://doi.org/10.1103/PhysRevB.66.012203
https://doi.org/10.1103/PhysRevB.66.012203
https://doi.org/10.1103/PhysRevB.66.012203
https://doi.org/10.1007/s11837-009-0107-6
https://doi.org/10.1007/s11837-009-0107-6
https://doi.org/10.1007/s11837-009-0107-6
https://doi.org/10.1007/s11837-009-0107-6
https://doi.org/10.1063/1.1723032
https://doi.org/10.1063/1.1723032
https://doi.org/10.1063/1.1723032
https://doi.org/10.1063/1.1723032
https://doi.org/10.1016/0022-3115(79)90593-2
https://doi.org/10.1016/0022-3115(79)90593-2
https://doi.org/10.1016/0022-3115(79)90593-2
https://doi.org/10.1016/0022-3115(79)90593-2
https://doi.org/10.1088/1361-648X/aa5f37
https://doi.org/10.1088/1361-648X/aa5f37
https://doi.org/10.1088/1361-648X/aa5f37
https://doi.org/10.1088/1361-648X/aa5f37
https://doi.org/10.1016/j.nme.2016.09.010
https://doi.org/10.1016/j.nme.2016.09.010
https://doi.org/10.1016/j.nme.2016.09.010
https://doi.org/10.1016/j.nme.2016.09.010
https://doi.org/10.1016/0036-9748(74)90304-4
https://doi.org/10.1016/0036-9748(74)90304-4
https://doi.org/10.1016/0036-9748(74)90304-4
https://doi.org/10.1016/0036-9748(74)90304-4
https://doi.org/10.1007/BF02643781
https://doi.org/10.1007/BF02643781
https://doi.org/10.1007/BF02643781
https://doi.org/10.1007/BF02643781
https://doi.org/10.1016/0001-6160(84)90122-6
https://doi.org/10.1016/0001-6160(84)90122-6
https://doi.org/10.1016/0001-6160(84)90122-6
https://doi.org/10.1016/0001-6160(84)90122-6


HUANG, GHARAEE, ZHAO, ERHART, AND MARIAN PHYSICAL REVIEW B 96, 094108 (2017)

[27] R. Herschitz and D. N. Seidman, Nucl. Instrum. Methods Phys.
Res., Sect. B 7, 137 (1985).

[28] T. Suzudo, M. Yamaguchi, and A. Hasegawa, Modell. Simul.
Mater. Sci. Eng. 22, 075006 (2014).

[29] T. Suzudo, M. Yamaguchi, and A. Hasegawa, J. Nucl. Mater.
467, Part 1, 418 (2015).

[30] L. Gharaee, J. Marian, and P. Erhart, J. Appl. Phys. 120, 025901
(2016).

[31] C.-H. Huang and J. Marian, J. Phys.: Condens. Matter 28,
425201 (2016).

[32] K. Binder, J. L. Lebowitz, M. K. Phani, and M. H. Kalos, Acta
Metall. 29, 1655 (1981).

[33] B. Dunweg and D. P. Landau, Phys. Rev. B 48, 14182 (1993).
[34] C. Pareige, F. Soisson, G. Martin, and D. Blavette, Acta Mater.

47, 1889 (1999).
[35] F. Tavazza, D. P. Landau, and J. Adler, Phys. Rev. B 70, 184103

(2004).
[36] L. Cannavacciuolo and D. P. Landau, Phys. Rev. B 71, 134104

(2005).
[37] A. Biborski, L. Zosiak, R. Kozubski, R. Sot, and V. Pierron-

Bohnes, Intermetallics 18, 2343 (2010).
[38] The semi-grand-canonical (SG) ensemble employed in the

present work is characterized for a two-component system by the
following parameters: (i) the total number of sites (or particles)
N , (ii) the chemical potential difference between the components
μ, (iii) the temperature T , and (iv) the volume V . By contrast,
the equivalent grand-canonical (GC) ensemble depends on the
number of sites (particles) of type A, NA, and B, NB, as well
as T and V . Accordingly, in the GC ensemble the total number
of sites (particles) is not constant. While Monte Carlo (MC)
simulations of the present kind based on lattice Hamiltonians
are occasionally described as GCMC simulations, the fact that
the total number of atoms is fixed implies that they should be
instead referred to as SGMC simulations.

[39] W. M. Young and E. W. Elcock, Proc. Phys. Soc. 89, 735 (1966).
[40] F. Soisson, C. S. Becquart, N. Castin, C. Domain, L. Malerba,

and E. Vincent, J. Nucl. Mater. 406, 55 (2010).
[41] F. Soisson, A. Barbu, and G. Martin, Acta Mater. 44, 3789

(1996).
[42] F. Soisson and C.-C. Fu, Phys. Rev. B 76, 214102 (2007).
[43] E. Martínez, O. Senninger, C.-C. Fu, and F. Soisson, Phys. Rev.

B 86, 224109 (2012).
[44] O. Senninger, F. Soisson, E. Martínez, M. Nastar, C. Fu, and

Y. Brechet, Acta Mater. 103, 1 (2016).
[45] F. G. Djurabekova, L. Malerba, C. Domain, and C. S.

Becquart, Nucl. Instrum. Methods Phys. Res., Sect. B 255, 47
(2007).

[46] E. Vincent, C. S. Becquart, and C. Domain, J. Nucl. Mater. 382,
154 (2008).

[47] E. Vincent, C. S. Becquart, C. Pareige, P. Pareige, and C.
Domain, J. Nucl. Mater. 373, 387 (2008).

[48] C. Reina, J. Marian, and M. Ortiz, Phys. Rev. B 84, 104117
(2011).

[49] W. Zhou, Y. Li, L. Huang, Z. Zeng, and X. Ju, J. Nucl. Mater.
437, 438 (2013).

[50] L. Gharaee and P. Erhart, J. Nucl. Mater. 467, Part 1, 448 (2015).
[51] F. Soisson, J. Nucl. Mater. 349, 235 (2006).
[52] P. Warczok, J. Ženíšek, and E. Kozeschnik, Comput. Mater. Sci.

60, 59 (2012).

[53] W. Setyawan, G. Nandipati, and R. J. Kurtz, Interaction of
interstitial clusters with rhenium, osmium, and tantalum in
tungsten, Tech. Rep. DOE/ER-0313/60, 2016.

[54] C. Becquart, C. Domain, U. Sarkar, A. DeBacker, and M. Hou,
J. Nucl. Mater. 403, 75 (2010).

[55] D. Kato, H. Iwakiri, and K. Morishita, J. Nucl. Mater. 417, 1115
(2011).

[56] W. L. Bragg and E. J. Williams, Proc. R. Soc. London, Ser. A
145, 699 (1934).

[57] W. L. Bragg and E. J. Williams, Proc. R. Soc. London, Ser. A
151, 540 (1935).

[58] E. J. Williams, Proc. R. Soc. London, Ser. A 152, 231 (1935).
[59] C. S. Becquart and C. Domain, Nucl. Instrum. Methods Phys.

Res., Sect. B 255, 23 (2007).
[60] L. Ventelon, F. Willaime, C.-C. Fu, M. Heran, and I. Ginoux,

J. Nucl. Mater. 425, 16 (2012).
[61] M. Muzyk, D. Nguyen-Manh, K. J. Kurzydłowski, N. L. Baluc,

and S. L. Dudarev, Phys. Rev. B 84, 104115 (2011).
[62] Y. Oda, A. M. Ito, A. Takayama, and H. Nakamura, Plasma

Fusion Res. 9, 3401117 (2014).
[63] M. R. Gilbert, S. L. Dudarev, P. M. Derlet, and D. G. Pettifor,

J. Phys.: Condens. Matter 20, 345214 (2008).
[64] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[65] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[66] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[67] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[68] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[69] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[70] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996); 78, 1396(E) (1997).
[71] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys.

113, 9901 (2000).
[72] J. M. Cowley, Phys. Rev. 77, 669 (1950).
[73] T. Tanno, A. Hasegawa, J.-C. He, M. Fujiwara, S. Nogami,

M. Satou, T. Shishido, and K. Abe, Mater. Trans. 48, 2399
(2007).

[74] Y. Le Bouar and F. Soisson, Phys. Rev. B 65, 094103 (2002).
[75] M. Nastar and F. Soisson, Phys. Rev. B 86, 220102 (2012).
[76] A. Allnatt and A. Lidiard, Atomic Transport in Solids

(Cambridge University Press, Cambridge, 2003).
[77] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.094108 for additional details about the
simulations referred to in the main text.

[78] P. D. Edmondson, A. Xu, L. R. Hanna, M. Dagan, S. G. Roberts,
and L. L. Snead, Microsc. Microanal. 21, 579 (2015).

[79] T. Tanno, A. Hasegawa, M. Fujiwara, J.-C. He, S. Nogami, M.
Satou, T. Shishido, and K. Abe, Mater. Trans. 49, 2259 (2008).

[80] P. Erhart, J. Marian, and B. Sadigh, Phys. Rev. B 88, 024116
(2013).

[81] A. E. Sand, S. L. Dudarev, and K. Nordlund, Europhys. Lett.
103, 46003 (2013).

[82] X. Yi, A. E. Sand, D. R. Mason, M. A. Kirk, S. G. Roberts,
K. Nordlund, and S. L. Dudarev, Europhys. Lett. 110, 36001
(2015).

[83] W. Setyawan, G. Nandipati, K. J. Roche, H. L. Heinisch, B. D.
Wirth, and R. J. Kurtz, J. Nucl. Mater. 462, 329 (2015).

[84] D. Terentyev, L. Malerba, and A. V. Barashev, Philos. Mag. Lett.
85, 587 (2005).

094108-18

https://doi.org/10.1016/0168-583X(85)90544-0
https://doi.org/10.1016/0168-583X(85)90544-0
https://doi.org/10.1016/0168-583X(85)90544-0
https://doi.org/10.1016/0168-583X(85)90544-0
https://doi.org/10.1088/0965-0393/22/7/075006
https://doi.org/10.1088/0965-0393/22/7/075006
https://doi.org/10.1088/0965-0393/22/7/075006
https://doi.org/10.1088/0965-0393/22/7/075006
https://doi.org/10.1016/j.jnucmat.2015.05.051
https://doi.org/10.1016/j.jnucmat.2015.05.051
https://doi.org/10.1016/j.jnucmat.2015.05.051
https://doi.org/10.1016/j.jnucmat.2015.05.051
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1063/1.4956377
https://doi.org/10.1088/0953-8984/28/42/425201
https://doi.org/10.1088/0953-8984/28/42/425201
https://doi.org/10.1088/0953-8984/28/42/425201
https://doi.org/10.1088/0953-8984/28/42/425201
https://doi.org/10.1016/0001-6160(81)90048-1
https://doi.org/10.1016/0001-6160(81)90048-1
https://doi.org/10.1016/0001-6160(81)90048-1
https://doi.org/10.1016/0001-6160(81)90048-1
https://doi.org/10.1103/PhysRevB.48.14182
https://doi.org/10.1103/PhysRevB.48.14182
https://doi.org/10.1103/PhysRevB.48.14182
https://doi.org/10.1103/PhysRevB.48.14182
https://doi.org/10.1016/S1359-6454(99)00054-3
https://doi.org/10.1016/S1359-6454(99)00054-3
https://doi.org/10.1016/S1359-6454(99)00054-3
https://doi.org/10.1016/S1359-6454(99)00054-3
https://doi.org/10.1103/PhysRevB.70.184103
https://doi.org/10.1103/PhysRevB.70.184103
https://doi.org/10.1103/PhysRevB.70.184103
https://doi.org/10.1103/PhysRevB.70.184103
https://doi.org/10.1103/PhysRevB.71.134104
https://doi.org/10.1103/PhysRevB.71.134104
https://doi.org/10.1103/PhysRevB.71.134104
https://doi.org/10.1103/PhysRevB.71.134104
https://doi.org/10.1016/j.intermet.2010.08.007
https://doi.org/10.1016/j.intermet.2010.08.007
https://doi.org/10.1016/j.intermet.2010.08.007
https://doi.org/10.1016/j.intermet.2010.08.007
https://doi.org/10.1088/0370-1328/89/3/329
https://doi.org/10.1088/0370-1328/89/3/329
https://doi.org/10.1088/0370-1328/89/3/329
https://doi.org/10.1088/0370-1328/89/3/329
https://doi.org/10.1016/j.jnucmat.2010.05.018
https://doi.org/10.1016/j.jnucmat.2010.05.018
https://doi.org/10.1016/j.jnucmat.2010.05.018
https://doi.org/10.1016/j.jnucmat.2010.05.018
https://doi.org/10.1016/1359-6454(95)00447-5
https://doi.org/10.1016/1359-6454(95)00447-5
https://doi.org/10.1016/1359-6454(95)00447-5
https://doi.org/10.1016/1359-6454(95)00447-5
https://doi.org/10.1103/PhysRevB.76.214102
https://doi.org/10.1103/PhysRevB.76.214102
https://doi.org/10.1103/PhysRevB.76.214102
https://doi.org/10.1103/PhysRevB.76.214102
https://doi.org/10.1103/PhysRevB.86.224109
https://doi.org/10.1103/PhysRevB.86.224109
https://doi.org/10.1103/PhysRevB.86.224109
https://doi.org/10.1103/PhysRevB.86.224109
https://doi.org/10.1016/j.actamat.2015.09.058
https://doi.org/10.1016/j.actamat.2015.09.058
https://doi.org/10.1016/j.actamat.2015.09.058
https://doi.org/10.1016/j.actamat.2015.09.058
https://doi.org/10.1016/j.nimb.2006.11.009
https://doi.org/10.1016/j.nimb.2006.11.009
https://doi.org/10.1016/j.nimb.2006.11.009
https://doi.org/10.1016/j.nimb.2006.11.009
https://doi.org/10.1016/j.jnucmat.2008.08.019
https://doi.org/10.1016/j.jnucmat.2008.08.019
https://doi.org/10.1016/j.jnucmat.2008.08.019
https://doi.org/10.1016/j.jnucmat.2008.08.019
https://doi.org/10.1016/j.jnucmat.2007.06.016
https://doi.org/10.1016/j.jnucmat.2007.06.016
https://doi.org/10.1016/j.jnucmat.2007.06.016
https://doi.org/10.1016/j.jnucmat.2007.06.016
https://doi.org/10.1103/PhysRevB.84.104117
https://doi.org/10.1103/PhysRevB.84.104117
https://doi.org/10.1103/PhysRevB.84.104117
https://doi.org/10.1103/PhysRevB.84.104117
https://doi.org/10.1016/j.jnucmat.2013.02.075
https://doi.org/10.1016/j.jnucmat.2013.02.075
https://doi.org/10.1016/j.jnucmat.2013.02.075
https://doi.org/10.1016/j.jnucmat.2013.02.075
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2015.09.003
https://doi.org/10.1016/j.jnucmat.2005.11.003
https://doi.org/10.1016/j.jnucmat.2005.11.003
https://doi.org/10.1016/j.jnucmat.2005.11.003
https://doi.org/10.1016/j.jnucmat.2005.11.003
https://doi.org/10.1016/j.commatsci.2012.02.033
https://doi.org/10.1016/j.commatsci.2012.02.033
https://doi.org/10.1016/j.commatsci.2012.02.033
https://doi.org/10.1016/j.commatsci.2012.02.033
https://doi.org/10.1016/j.jnucmat.2010.06.003
https://doi.org/10.1016/j.jnucmat.2010.06.003
https://doi.org/10.1016/j.jnucmat.2010.06.003
https://doi.org/10.1016/j.jnucmat.2010.06.003
https://doi.org/10.1016/j.jnucmat.2010.12.211
https://doi.org/10.1016/j.jnucmat.2010.12.211
https://doi.org/10.1016/j.jnucmat.2010.12.211
https://doi.org/10.1016/j.jnucmat.2010.12.211
https://doi.org/10.1098/rspa.1934.0132
https://doi.org/10.1098/rspa.1934.0132
https://doi.org/10.1098/rspa.1934.0132
https://doi.org/10.1098/rspa.1934.0132
https://doi.org/10.1098/rspa.1935.0165
https://doi.org/10.1098/rspa.1935.0165
https://doi.org/10.1098/rspa.1935.0165
https://doi.org/10.1098/rspa.1935.0165
https://doi.org/10.1098/rspa.1935.0188
https://doi.org/10.1098/rspa.1935.0188
https://doi.org/10.1098/rspa.1935.0188
https://doi.org/10.1098/rspa.1935.0188
https://doi.org/10.1016/j.nimb.2006.11.006
https://doi.org/10.1016/j.nimb.2006.11.006
https://doi.org/10.1016/j.nimb.2006.11.006
https://doi.org/10.1016/j.nimb.2006.11.006
https://doi.org/10.1016/j.jnucmat.2011.08.024
https://doi.org/10.1016/j.jnucmat.2011.08.024
https://doi.org/10.1016/j.jnucmat.2011.08.024
https://doi.org/10.1016/j.jnucmat.2011.08.024
https://doi.org/10.1103/PhysRevB.84.104115
https://doi.org/10.1103/PhysRevB.84.104115
https://doi.org/10.1103/PhysRevB.84.104115
https://doi.org/10.1103/PhysRevB.84.104115
https://doi.org/10.1585/pfr.9.3401117
https://doi.org/10.1585/pfr.9.3401117
https://doi.org/10.1585/pfr.9.3401117
https://doi.org/10.1585/pfr.9.3401117
https://doi.org/10.1088/0953-8984/20/34/345214
https://doi.org/10.1088/0953-8984/20/34/345214
https://doi.org/10.1088/0953-8984/20/34/345214
https://doi.org/10.1088/0953-8984/20/34/345214
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1103/PhysRev.77.669
https://doi.org/10.1103/PhysRev.77.669
https://doi.org/10.1103/PhysRev.77.669
https://doi.org/10.1103/PhysRev.77.669
https://doi.org/10.2320/matertrans.MAW200722
https://doi.org/10.2320/matertrans.MAW200722
https://doi.org/10.2320/matertrans.MAW200722
https://doi.org/10.2320/matertrans.MAW200722
https://doi.org/10.1103/PhysRevB.65.094103
https://doi.org/10.1103/PhysRevB.65.094103
https://doi.org/10.1103/PhysRevB.65.094103
https://doi.org/10.1103/PhysRevB.65.094103
https://doi.org/10.1103/PhysRevB.86.220102
https://doi.org/10.1103/PhysRevB.86.220102
https://doi.org/10.1103/PhysRevB.86.220102
https://doi.org/10.1103/PhysRevB.86.220102
http://link.aps.org/supplemental/10.1103/PhysRevB.96.094108
https://doi.org/10.1017/S1431927615003694
https://doi.org/10.1017/S1431927615003694
https://doi.org/10.1017/S1431927615003694
https://doi.org/10.1017/S1431927615003694
https://doi.org/10.2320/matertrans.MAW200821
https://doi.org/10.2320/matertrans.MAW200821
https://doi.org/10.2320/matertrans.MAW200821
https://doi.org/10.2320/matertrans.MAW200821
https://doi.org/10.1103/PhysRevB.88.024116
https://doi.org/10.1103/PhysRevB.88.024116
https://doi.org/10.1103/PhysRevB.88.024116
https://doi.org/10.1103/PhysRevB.88.024116
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/10.1209/0295-5075/110/36001
https://doi.org/10.1209/0295-5075/110/36001
https://doi.org/10.1209/0295-5075/110/36001
https://doi.org/10.1209/0295-5075/110/36001
https://doi.org/10.1016/j.jnucmat.2014.12.056
https://doi.org/10.1016/j.jnucmat.2014.12.056
https://doi.org/10.1016/j.jnucmat.2014.12.056
https://doi.org/10.1016/j.jnucmat.2014.12.056
https://doi.org/10.1080/09500830500383563
https://doi.org/10.1080/09500830500383563
https://doi.org/10.1080/09500830500383563
https://doi.org/10.1080/09500830500383563



