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Abstract 
The project was performed at Consat Engineering AB’s facilities at Lindholmen, Gothenburg, 

in the spring of 2017. Consat Engineering AB produced a prototype that included a vision 

system, to analyze objects. This thesis exists to develop a proof of concept in form of a 

vision program, lowering the cost of the vision system, in order to be able to implement it in a 

commercial product. A pre-study comparing different hardware platforms and software 

libraries was conducted in order to best meet the requested specifications. The open source 

vision library OpenCV was chosen as the software library. A Raspberry Pi, running a Linux 

based OS called Raspbian, equipped with a camera was chosen as the hardware platform. 

Both of the choices included minimal expense towards the final cost of a future product that 

could be developed from this concept. After a finalized concept an evaluation test concluded 

that the program developed during this project fulfilled the requirements and proved that an 

open source solution significantly can lower the cost of the current vision system the 

prototype utilizes.  
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Sammanfattning 
Examensarbetet utförs i Consat Engineering ABs lokaler på Lindholmen, Göteborg under 

våren 2017. Consat Engineering AB har utvecklat en prototyp som, bland annat, innehåller 

ett vision system, för att identifiera objekt. Detta examensarbete går ut på att utveckla ett 

koncept som visar att kostnaden av vision systemet kan sänkas tillräckligt för att vara 

lönsamt för att i framtiden implementeras i en kommersiell produkt. En förstudie har utförts 

för att undersöka den mest lämpliga kombinationen av mjukvara och hårdvara för att ta fram 

det billigaste alternativet som uppfyller kraven på slutprodukten. Förstudien resulterade i en 

Raspberry Pi 3 med ett Linux baserat OS vid namn Raspbian och Open source vision 

biblioteket OpenCV. Efter utvecklingen av visionprogrammet utfördes ett utvärderingstest för 

att säkerställa funktionalitet och precision av programmet. Med positiva körresultat kan det 

konstateras att det framtagna konceptet uppnår examensarbetets uppställda krav och visar 

god potential för vidareutveckling.   
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1. Introduction  
This chapter will introduce the basis of which the thesis stands upon, which will be broken 

down into categories such as: the background of the project, the purpose of the thesis along 

with measurable goals and limitations.   

1.1 Background 

Consat Engineering AB developed a prototype that among other things included a vision 

system, to analyze objects. Since the prototype is expensive and of an industrial caliber, it 

will be less cost-effective to produce on a larger scale intended for commercial distribution. 

There is a need to downscale the prototype to make it viable for a larger market. Therefore a 

“proof of concept” project to lower the cost of the device was started. A proof of concept 

being a preliminary research to investigate the possibilities for further development [1]. 

1.2 Purpose 

The main purpose with this project is to research if a potentially cheaper version of the vision 

system, which can perform at the same or even higher level than the original prototype, can 

be developed. A preliminary study will be conducted concerning different tools and solutions 

that can be utilized to reach an adequate result, as well as widening the perspective into 

systems and solutions of the same type used in the industry today. 

1.3 Goals 

The main focus is developing an program that specializes in continuously analyzing images 

of different singular objects within the visual field of the camera. The goal of the program is 

to pass or fail the individual object within set criterias of size and colour. The object will only 

be approved if a dominant colour can be determined and the size fits into a predetermined 

range of size. The following evaluation parameters will be used to validate the result of the 

thesis: 

 

● Is there a way to make the program run continuously for a trial of 54 tests without 

failing? 

● Can a size test be developed to give the correct output in 90% of the cases during a 

test of 54 objects? 

● Can a colour test be developed that can differentiate between four colours and 

determine the dominant one in 90% of the cases during a test of 54 objects? 
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1.4 Limitations 

Below is a list of limitations set for this project: 

 

● Decision box - The pass or fail signal will be passed on to a different part of the 

finished product that collect the result from the program and perform an action 

depending on the outcome. This different part will henceforth be called the decision 

box. This report will only cover the development of the program of the vision system. 

● Time - The project will be a full time endeavour during ten weeks with a preliminary 

end in the middle of June 2017. 

● Geographic - All of the development conducted during this project will be performed 

on location in Consat Engineering AB’s office at Lindholmen, Gothenburg, Sweden. 

The main reason being that the hardware is located on site and cannot be 

transported.  

● Economical - There is no set budget for the project but all the necessary tools and 

materials that are required to finish the project will be provided by Consat 

Engineering AB.  

● Hardware - Due to time limitation the project will not pay any extended attention to 

the hardware. A commercially available platform will therefore be used to perform 

tests. The project will not include any hardware development.   

● Software - The program that will be developed is to be built as modular as possible 

to facilitate easy adaptation and recycling into other projects. 
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2. Method  
This chapter will discuss the methods chosen to reach a conclusion in this thesis. It is broken 

down into three paragraphs - pre-study, development and evaluation - where each part of 

the process will be described in order to elevate the comprehensibility.  

2.1 Pre-study 

The first step will be a pre-study in order to determine the specifics of the program and how it 

should be able to perform once completed. The pre-study will include an analysis of three 

software libraries and two hardware platforms. The advantages and disadvantages will be 

compared to each other, where one of each from the two categories will be chosen as the 

best option for developing the program. The software libraries will be compared looking at 

licensing fees, language support and hardware compatibility. The hardware will be compared 

focusing on performance and speed of implementation. This is done in order to develop an 

program which can run on the chosen hardware, during ideal conditions, providing proof of 

concept. In a case of computer vision an ideal condition would be where there are no 

variables that could lower the success rate of a demonstration.  

2.2 Development 

Once the pre-study is complete the development of the program will begin. This part of the 

project will include a large portion of searching for and learning from existing program and 

program examples. The gathering of information from the chosen software library will be 

ongoing throughout the development of the program. This is done in order to find the best 

and most efficient way to reach a final result. The development will be a process of trying to 

utilize new tools in order to present an adequate proof of concept. 

2.3 Evaluation 

A runtime evaluation will be conducted on the program’s continuity to secure a memory 

efficient concept and analyze if the specifications can be met. The framework of the 

evaluation will be based on the evaluation parameters put forth previously in the thesis (see 

1.3 Goals).  
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2.3.1 Evaluation test  

The runtime test will be conducted running the program on the chosen hardware while 

documenting the result from each object put in the field of view of the camera. The test will 

consist of a variety of 18 objects. The objects will be selected by size and colour listed 

below: 

 

● Six different colours, whereas four are in the approved range: 

○ Pink - Not approved 

○ White - Not approved 

○ Blue - Approved 

○ Yellow - Approved 

○ Green - Approved 

○ Orange - Approved 

● Three different sizes within each colour, whereas one is approved: 

○ Small - Not approved 

○ Medium - Approved 

○ Large - Not approved  

 

Each separate object will be tested three times to ensure the same result is reached each 

time, adding up to 54 tests. If the result deviates, testing the same object it will be 

considered a failed iteration. If the program for some reason should terminate before all tests 

are finished, the entire test will be restarted. The desired result of the test is to achieve the 

previously mentioned evaluation parameters (see 1.3 Goals). 
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3. Pre-study 
Included in this study is a comparison of three different software libraries available for 

developing and analyzing visual content and two popular hardware platforms often used in 

projects of this type. This study will be an inspection to see which software library and 

hardware platform is best suited to reach the requirements of this project (see 1.3 Goals).  

3.1 Hardware platform 

Since the main focus of this project will be developing the program, the fastest way to get 

started is to find a commercially available platform on which to develop and run the program. 

The two most frequently used hardware platforms for developing concepts and testing 

smaller projects are Raspberry Pi and Arduino [2-4]. They are both compact, affordable and 

have great support for peripheral equipment. Criterias to be evaluated are: clocking speed, 

memory, storage, peripheral support and programmability. These criterias have been chosen 

due to the impact they will have on the development.   

3.1.1 Arduino Due 

There are a multitude of different Arduino microcontroller models with different areas of 

intended use [5]. The Due was chosen as Arduino’s option in this comparison, since the 

Arduino model Due has the highest clocking speed among the different models with 84 Mhz. 

Thus, making it the model most likely to be able to handle the processing of images that this 

project entails [6]. This model has support for connecting special Arduino cameras and even 

a standard USB webcam [7]. The onboard flash memory is at 512 kB which is supposed to 

hold the program and potential images to be captured. This means small sized images or 

adding extended memory to increase storage potential. Even if the image is small enough to 

fit the built in flash memory the SRAM at 96 kB provides limited room to perform larger 

functions for instance compare two images. The Due has 54 I/O pins that can supply a total 

current output of 800 mA, although each pin is limited to 130 mA [6]. 

 

The Arduino program is written and compiled on a separate computer and then uploaded to 

the board via USB port [6]. Since the Arduino is using a C/C++ language to write code in, 

there is a possibility to use an external Integrated Development Environment (IDE) not 

affiliated with Arduino to write and compile code, as long as the Arduino core library is linked 

properly to the compiler [8]. The easiest option will be to use the free ARDUINO software 

which has a compiler and upload functions built in along with serial monitoring and other 

useful debug tools [9].  

3.1.2 Raspberry Pi 

The microprocessor Raspberry Pi comes in different models separated by performance and 

price [10]. It is now on its third generation with the first generation being released in 2012. 

The main series is named model B and a cheaper version with the same capabilities but 

slightly lower performance is named model A. The alternative for consideration from 

Raspberry Pi will be the Raspberry Pi 3 model B since it is the latest and has the highest 

performance. The microprocessor is equipped with a quad core processor, each core with a 

clock speed of 1.2 GHz, and a 1 GB of SDRAM which is shared with the Graphical 
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Processing Unit (GPU). However, no onboard memory storage is included on the board but 

there is a micro SD card module which is supposed to hold the primary storage [10,11]. 

There are 17 General Purpose I/O (GPIO) pins that can, without risk of damage to the board, 

supply 50 mA from the 3.3V rail and around 300 mA from the 5V rail. The 5V rail is not set, it 

is calculated from the current supplied by the USB power supply minus the current used by 

the hardware itself [12,13].  

 

The Raspberry Pi is using its own Operating System (OS), has audio/video outputs and USB 

inputs for keyboard and mouse. It is therefore more accurate to call it a computer instead of 

a microcontroller like the Arduino. These features add to the simplicity of working with the 

Raspberry Pi. The OS used is a Linux based version called Raspbian and functions like any 

Linux based OS. This allows the user to write code, compile and run it without having to 

upload it to an external controller (which would have slowed down the speed of 

implementation). Since it is using an OS the Raspberry Pi is fully configurable, meaning any 

programming language is available with just a few commands in the control terminal. Making 

it even more adaptable to personal preference or requirements, due to libraries being written 

in specific languages [14,15]. 

3.1.3 Resulting Hardware platform 

Raspberry Pi differs from the Arduino in that it is a microprocessor and not a microcontroller. 

The Arduino focuses on fast processing of analog and digital I/O-signals and a small amount 

on arithmetic processing of data. The latter being where the Raspberry Pi excels.  

 

The strength of the Arduino Due is the amount of current it can supply making it ideal for use 

as a controller when using servo’s and other small electric motors. The max output of current 

from the Arduino Due, before damage is an issue, is around 800 mA compared to where the 

Raspberry Pi 3 model B can supply 50 mA on the 3.3V rail and around 300mA on the 5V rail. 

Seeing as high currents is not required in this project the Arduino exceeds requirements.  

 

The main focus of this project is to develop a program that processes images at a fast pace, 

continuously. The memory and clocking speed of the Arduino Due would be on the lower 

end of performance needed to develop a finished product. It is therefore discarded as an 

alternative. The Raspberry Pi 3 Model B on the other hand excels in these areas with its high 

clocking speed, around 14 times faster, and a memory about 10 000 times larger than the 

Arduino Due’s. 

 

Due to the above mentioned specifications the Raspberry Pi 3 Model B will be the hardware 

platform the vision program will be developed upon along with the camera Raspberry Pi 

Camera V2. The camera is selected due to the high resolution (8 MP) it captures pictures in 

and the wide colour spectrum it can detect (infrared to violet). As an added bonus it has pre-

installed drivers and communicates with the Raspberry Pi well [16]. 
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3.2 Software Library 

Each of the three software libraries about to be compared in this study are powerful enough 

to produce an adequate program that will meet the specification of this project (see 1.3 

Goals). 

3.2.1 Adaptive Vision 

In this software library the building of applications are made simple by adding filter functions 

from well categorized lists in the graphical IDE: Adaptive Vision Studio. The drag and drop 

approach makes the IDE easy to use and will open up computer vision for non-programming 

engineers to create and manage advanced vision systems [17]. The company supplies a 

video tutorial series to get users started with the software adding to the achievable low 

threshold this software library presents [18]. A variety of cameras and frame grabbers are 

compatible with Adaptive Vision. 

 

Adaptive Vision Studio allows partial code to be exported into larger C/C++ and .NET 

projects, making it a good addition for optimizing code that is written using other libraries 

[18]. The IDE also allows third party libraries to be added into the graphical interface, making 

it an even stronger and more versatile software [19]. 

 

Adding all these benefits together with the support the company supplies, continuous 

updates and performance tests ensures a powerful, easy to use all-in-one solution to 

industrial computer vision. A drawback, in the scope of this project, to Adaptive Vision is the 

fact that it has licensing fees [20]. 

3.2.2 Halcon 

Halcon from MVtec software GmbH is a professional vision library developed for industrial 

and commercial applications. It is optimised for performance and precision [21]. Halcon 

applications are built using the IDE HDevelop or by writing code using its library of functions 

and algorithms. The IDE is a user friendly User Interface (UI) that allows non-programmers 

to create applications by selecting filters and functions from different menus. The results are 

then displayed instantly and calibrations updates the result for every new alteration. When 

the building of an application is finished and tested in the IDE, it is exported as a source file 

in the language that best fits the rest of the project structure [22]. Thus, the user has a 

simple way of integrating the vision programs, created in the IDE, into large projects. 

Currently Halcon supports C, C++, C#, Visual Basic, .NET and Delphi [21]. A variety of 

cameras and frame grabbers are compatible with Halcon [23]. 

 

Halcon is a product with technical support along with the library of optimized functions. 

Nevertheless, similar to Adaptive Vision Studio, Halcons is a product with licensing fees 

which would not be desirable in this project [24].  
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3.2.3 OpenCV 

OpenCV (Open Source Computer Vision) is a community driven open source software 

library, making it a good place to start working with computer vision. An obvious drawback 

with using this library is the fact that there is no official IDE to use when building applications 

[25]. To build an application the user is required to use one of the programming languages 

mentioned in the paragraph below, making this the tool with the steepest learning curve. Due 

to the immense user base there are however, many forums in which problems and new 

ideas can be discussed, making the lack of an IDE less of a problem [26].  

 

Written in C++ the library is accessible using C, C++, Python and Java adding to the 

availability and possibilities when using this library. Furthermore, OpenCV supports most 

cameras and frame grabbers. The problem that could arise concerning these is: driver 

compatibility with the computer's operating system. This is however, a possible problem 

which concerns all three of the libraries in question [26]. 

 

The software library is registered as a BSD licence meaning the modification and copying of 

the source code is allowed without having to share the results with the community. 

Therefore, it is free to use in commercial, industrial and private projects [27]. 

3.2.4 Resulting Software Library  

As mentioned previously, the three vision software libraries are all separately powerful 

enough to be able to reach the required specifications of the program (see 1.3 Goals). This 

is based on the fact that each of them are frequently used in industrial vision systems 

[26,28,29], much like the one to be developed in this project.  

 

The following evaluation will focus on: 

● Prerequisite skill required   

● Technical support 

● Hardware compatibility  

● Licence fees 

● Programming language 

 

Since the ultimate goal of this project is to minimize the cost of the product the program will 

have to be built using open source material. This means that all the development will be 

focused around a Linux based environment utilizing free to use software. This limitation 

excludes Halcon and Adaptive vision since they both require a licence to use. This leaves 

OpenCV as the best (and only) option to begin developing the program.   
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4. Technical background 
This chapter will give a basic introduction to how computer vision represent colours and 

which different colour types that are relevant to this project. It will also provide explanations 

and information regarding utilized functions from the software library. 

4.1 An introduction to computer vision  

 
Figure 4.1 A visual explanation of computer vision and colour representation using red 

green and Blue (RGB) cells. 

 

Computer vision is based on a multidimensional matrix to represent images and video 

(stream of images) [30]. An element in the image matrix is more commonly known as a pixel, 

which is an abbreviation of the phrase “picture element” [31]. As depicted in figure 4.1 every 

pixel in an image matrix is divided into cells, referred to as channels in computer vision [32]. 

Each channel holds the specific intensity level that correspond to the amount of colour 

needed, when combining the channels, to result in the colour hue the pixel represents. If the 

matrix depicted in figure 4.2 is interpreted in RGB-mode, those four pixels would all be white 

since the intensity value in every channel is maxed out. The fact that the channels max out 

at 255 is explained by computer vision using unsigned char containers as default to store the 

integer values in, ranging it 0-255 [33]. It is by manipulating and analyzing these element’s 

channels in various ways the image can be altered.  

 

255,255,255 255,255,255 

255,255,255 255,255,255 

Figure 4.2 2x2 matrix with 3 channels (cells) per pixel (element). 

4.1.1 RGB - Red, Green, Blue 

A liquid crystal display (LCD) monitor RGB pixel consists of three cells, or channels, 

containing the intensity value of each individual colour. Each pixel is basically a square 

containing three areas of the colours red, green and blue, as seen in figure 4.3. Irrelevant of 

the shape, RGB-pixels use the same colours: red, green and blue, to produce the resulting 

colour [34]. Considering that many monitors use RGB-pixel technology, it is advantageous to 

use RGB matrices when displaying an output image. Even though each of the different 

colours are displayed in separate areas every pixel on a monitor, the individual cells are too 

small to make out with the human eye. This leads to the separate colours blending together 

and being perceived as the actual colour the monitor is trying to display [33]. 
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RGB colour theory also follows a logic that most people can relate to, the mixing of colours 

to create a new combined colour. In OpenCV the channels are reversed using the order of 

BGR to represent colours [35].  

 
Figure 4.3 Composition of a RGB-Pixel, this particular colour blend [255,255,255] would 

result in a white pixel if small enough. 

4.1.2 HSV - Hue, Saturation, Value 

The first channel in HSV is hue and it defines the pure colour. The second channel 

saturation determines the amount of white that will be incorporated in the mix. And finally 

choosing the resulting shade of the colour with the third channel value which defines the 

amount of black that will be included [36]. A visual explanation of the three different channels 

in HSV can be seen in figure 4.4. 

 
Figure 4.4 HSV colour composition 

 

This colour composition has many advantages in computer vision, since the first channel 

alone defines the colour, apart from the RGB channels which has to be summarized to get 

the final colour. This allows algorithms to find a specific colour hue, without having to weigh 

all channels to find the resulting colour, and it is therefore often used in object-tracking 

software [37]. 

 

A HSV matrix cannot be displayed in a correct manner on a RGB monitor if not converted 

into RGB first. Since the HSV elements use the same amount of channels as RGB (three), 

the matrix can be interpreted as RGB but all the colours would come out incorrect. Forcing a 

RGB monitor to display a HSV matrix would result in the right image in figure 4.5. 
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Figure 4.5 From left to right: RGB matrix displayed on RGB-monitor, HSV matrix displayed 

on RGB-monitor.  

4.1.3 Grayscale 

By standard definition grayscale is defined to be outside the spectrum of perceivable colours 

and is composed of light and lack thereof. For simplicity grayscale will hereby be referred to 

as colours mixed from quantities of black and white. White is academically composed out of 

all the colours in the visible spectrum while black is the absence of any colour [38]. In 

computer vision the computer interprets black areas as the lowest intensity and vice versa 

white is the highest intensity. All shades of gray can be observed in between the minimum 

and maximum values, depicted in figure 4.6. 

 

 
Figure 4.6 Grayscale spectrum, Min and Max representing high and low. 

 

Grayscale matrices is a useful tool in computer vision, since it is represented using only a 

single channel. Using only two intensity levels from the spectrum this type can be interpreted 

as a boolean High and Low, binary value [39].   

4.1.4 Thresholding 

In computer vision and image processing there are many advantages with using binary 

images. Binary in this case meaning boolean high or low, in the grayscale spectrum. Low 

represented with a zero intensity (black) and high is set by the user, however by default set 

to max intensity (white) [39]. Binary images can be utilized in tracking certain colours or 

finding patterns in images otherwise obscured by varying intensity [40]. There are different 

methods to convert an image into a binary image. The common factor of these methods is 

the boundary that separate high from low, i.e threshold. There are ways to create dynamic 

boundaries which will move the threshold, using a larger area to calculate the best threshold 

for the center pixel located in that area. The basic way to threshold an image is to have a 

global static boundary to compare each pixel to and set it accordingly, high or low, 

depending on individual intensity [41]. An example of a global threshold can be seen in 

figure 4.7.   
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Figure 4.7 Threshold set at different levels yields different results. 

 

The result of setting the global threshold too high can be seen in the left image of figure 4.8, 

where some of the information is lost due to shadows or very small intensity variations. In 

the right image of figure 4.8 the whole object can be seen as a result of the global threshold 

being set at the right level for this particular image. 

 

   
Figure 4.8 Resulting image after threshold in Figure 4.7, from left to right: Too high 

threshold, moderate threshold. 

4.2 Vectors in C++ 

A convenient way of storing information in C/C++ is the array container. It makes replacing, 

pulling or erasing data a simple task by selecting an index in the container of interest and 

assigning the new data or reading the existing data. The drawback to arrays, in the scope of 

this project, is that an array must be assigned a size/length, limiting the amount of data 

points that can be stored while the program is running. This is where the vector class in C++ 

make its entrance [42]. 

 

A vector is similar to an array since information can be accessed from the vector by the 

index of the element holding the information. The way that vectors differs from arrays is the 

functionality of vectors that their size/length is dynamically altered when elements are added 

or removed [43]. This functionality makes it a perfect candidate for conserving memory since 

an array would have to be allocated in its entirety regardless if it is filled or not. When using 

vectors it is important to erase or empty the vector when it is used in any kind of continuous 

loop, since it will keep adding to the end of the vector creating a memory leak. 
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4.3 Utilized features in OpenCV 

The following paragraphs is a fraction of the over 500 functions included in the OpenCV 

software library [26]. The following functions are the biggest building blocks in the resulting 

program of this project. 

 

Mat - Image/matrix container 

The Mat container is the container in which OpenCV stores an image, the matrix of pixels. 

Mat is a C++ class consisting of two parts: the header and the pointer. The header holds the 

information about the matrix such as: matrix size, memory location, type and so on. The 

pointer refers to the pixel information and is the dynamic part of the class, meaning that this 

is the part that varies in size while the header always remain the same. The pointer tracks all 

individual pixel values and channels, both depending on the type of matrix (see 4.1 An 

introduction to computer vision) . A Mat can be passed as reference to functions making it 

possible to minimize memory usage by not creating large matrices for temporary use [44,45].    

 

clone() 

If a complete copy of a matrix is needed the function clone() will allocate new space and 

copy all the information to the new matrix [46]. 

 

copyTo() 

The function copyTo() will not create a new matrix like clone() does. It will, however, copy all 

the information from one matrix to a pre-existing matrix. If the destination matrix is of another 

size the function will re-allocate the space needed. The function also allows for a mask 

matrix to be overlaid on the destination matrix creating a cropped matrix with what is called a 

region of interest (ROI)[46]. 

 

cvtColor() 

There are many types that can explain how matrices is supposed to be interpreted by 

different functions. Some types of matrices stores colour values in their channels while some 

are single channeled matrices holding only the intensity. The type also indicates the 

resolution of each channel. cvtColour() is a function that converts a matrix from one type to 

another. It calculates the corresponding value of the new type and places it in the right 

channel of the destination matrix.  

 

The default matrix type of OpenCV is CV_8UC3. The method to decode type names is by 

breaking it down into specific parts, listed and explained below:  

 

● “CV_” is the indication that it is an inherent OpenCV type. 

● “8U” indicates that the size of the individual cells is built of 8-bit unsigned chars, 

giving it values between 0-255. 

● “C3” indicates the amounts of channels or dimensions of each matrix element (pixel).  

 

The function cvtColor() is used to change the size of the matrix and recalculate the colours 

represented by the matrix. For example: 

Converting from BGR-CV_8U3C to Grayscale-CV_8U1C will mean the height and width of 

the matrix will stay the same but the amount of channels will be reduced from three to one.  
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This effectively limits the possible outcome of each pixel from 256^3 = 16 777 216 to 256^1 

= 256. Along with the reduction of channels the values inside the remaining channel will be 

calculated to the grayscale equivalent of the previous resulting colour of each pixel. 

 

The two types in the example above both use 8-bit unsigned char containers in their 

matrices. However this is not the only size of container a cell can have. There are types that, 

instead of using 8-bit cells, use 16, 32 and 64-bit size. This dramatically increase the 

resolution of the chosen colour spectrum. If we compare the RGB colour resolution in the 8-

bit to the 64-bit we have 256^3 against 9,223,372,036,854,775,807^3 different colours, 

Although not discernable with human eyes, this high resolution can be used in computer 

vision due to everything being interpreted as numerical values. Using the method from 

earlier to decode the identifier, the type in the resolution comparison above would be 

CV_64FC3, where U for uchar is replaced with F for float, although the channels, C3, remain 

the same since RGB still has three channels [47].   

 

erode(), dilate() 

The functions erode() and dilate() are each other's inverse functions, the pair can be used to 

eliminate or enhance light and dark areas in any matrix. They are often used in succession 

of each other and is an effective way to eliminate noise and shadows from a matrix. The 

effect can be seen in figure 4.9 where it is demonstrated that dilate() expands light areas 

contra erode() that diminishes the same. Depending on the composition of the matrix they 

are applied to, they can be utilized to many different effects [48,49].   

 

 
Figure 4.9 Visualizing the effect of erode/dilate functions 
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Threshold() 

The function Threshold() represent the most basic method to threshold an image. Using a 

static global intensity value that every pixel is compared to and then set high or low 

depending on the outcome of that comparison. The function requires a single channel matrix 

as input, in most cases a grayscale matrix is used. Different types of thresholding exist that 

will affect the output of the function [39,50]. The types relevant in this project is listed below: 

 

● THRESH_BINARY - pixel intensity above the threshold is set to high, other to low. 

● THRESH_BINARY_INV - pixel intensity below the threshold is set to high, other to 

low. 

 

There are three other types that can be used in this function, however, they will not produce 

a binary image and are therefore not mentioned [39]. 

 

adaptiveThreshold() 

In the event that the previous function Threshold() does not produce a desired outcome, the 

more advanced adaptiveThreshold() can be utilized to great effect. Instead of evaluating 

each pixel individually, a small matrix, default size 3x3, is established. That matrix is then 

used to examine the surrounding pixels intensity to determine where the threshold should be 

set, for the pixel currently in the center element of the matrix. This matrix is then moved so 

as the center element of the matrix is placed over the pixel that is yet to be analyzed. This 

method of thresholding will not suffer from the same shortcomings, over and underexposure, 

as Threshold() does [41,51]. As seen in figure 4.10 the adaptive method of thresholding will 

produce an image with minimal loss of information.  

 

 
Figure 4.10 Image series displaying the different results that can come from the different 

threshold functions [41]. 
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There are two methods to evaluate the neighborhood of pixels: 

● ADAPTIVE_THRESH_MEAN_C 

● ADAPTIVE_THRESH_GAUSSIAN_C 

 

Both methods use a straightforward formula for calculating the mean value of the neighborhood 

of pixels before subtracting a constant C. The formula can be seen below [52]: 
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The difference between the Mean and the Gaussian method is that the neighborhood matrix 

used in the Mean-matrix is filled with ones as a multiplier, to create the average of the 

neighborhood. The neighborhood matrix used in the Gaussian method is filled with 

multipliers mimicking the gaussian bell curve or normal distribution curve [53]. This will add 

more weight to the pixel neighbours closest to the center pixel when calculating the 

threshold. An example of a 7x7 multiplier neighborhood matrix can be seen in figure 4.11. 

 

 
Figure 4.11 From left to right: Examples of Mean multiplier neighborhood and Gaussian 

multiplier neighborhood.  

 

Canny() 

Canny works differently from the other methods briefed above, the most noticeable 

difference being that it uses two threshold values to resemble a type of hysteresis interval. 

This allows the function to detect strong contrasts as the beginning of edges and follow the 

edge down to the lowest threshold, making it very proficient in drawing closed edges that 

envelopes an entire object. 

 

Canny() identifies the center pixel of the edge gradient and draws the edge a single pixel 

wide, giving it a more precise representation in the output matrix [54,55], an example of this 

can be seen in figure 4.12. This is where Canny() differs the most from the earlier binary 

conversion functions, which follow their set parameters and set each pixel either high or low 

(white or black) based on the intensity of each pixel (Threshold()) or based on the 

neighborhood of pixels (adaptiveTreshold()). 
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Figure 4.12 Canny edge detection results  

 

findContours() 

The function findContours(), as the name suggest, finds contours, exclusively in binary 

matrices as the function encircles areas of pixels with high values. All pixels next to each 

other that encircle a single area of High-intensity pixels is grouped together and stored in a 

vector vector pointer (VVP). What we call a contour the computer sees as a vector of 

pointers that point to pixels that edges the transition from high to low-intensity and vice 

versa. Due to the fact that the contour is stored as a vector it is not connected to a matrix but 

is an independent container of data ready to be used in other functions [56].  

 

Hierarchy 

To distinguish one contour from another, in a VVP, a hierarchy is set when the contour is 

found to give it a place in a sequence. Hierarchy level is defined using four identifiers: [next, 

previous, first_child, parent]. With these it is possible to locate a certain contour within 

another by looking at the identifiers parent and previous. If an identifier is “-1” it does not 

have a contour that fits that parameter. As in figure 4.13 the first parent is the “0” contour but 

since there is no other contour in the same level of hierarchy as “0” it will have no previous, 

next or parent. The children of “0” are “1”, “2” and “3” but only the first child is set as an 

identifier. The identifier for the “0” would be [-1,-1,1,-1]. As seen in the figure the first child of 

the “0” contour the “1” is also a parent to the “4” contour inside of it and the identifier for that 

hierarchy level would look like: [-1, 2, 4, 0] [Ref:57,58].  
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Figure 4.13 Descriptive figure clarifying how hierarchy is used in OpenCV. 

 

This functionality can be used to pinpoint certain attributes of the contours by locating its 

parents or else by looking at contours which has children. The latter would signify that there 

is a contour inside another contour which could mean a hole or deviation in the object’s 

surface. 

 

approxPolyDP() 

This function is used to approximate the contours found using findContours(). The function 

will approximate the new contour by minimizing convex and concave areas, and in doing so 

smoothing out the contour [59-61]. 

 

contourArea() 

The function contourArea() can be used to calculate the amount of pixels that are encircled 

by a contour. It will also indicate the orientation of the contour, positive or negative [62].  

 

arcLength() 

This function is another way to determine the approximate size of an area encircled by a 

contour. This is achieved by measuring the arclength of the contour and use the results to 

compare contours to each other. The longer contours will theoretically encircle a larger area 

[62].   

 

drawContours() 

The function drawContours() can draw a found contour or fill the contour with any specified 

colour in any given destination matrix [62]. 

 

countNonZero() 

Similar to contourArea() the function countNonZero() can be used to calculate area. Instead 

of calculating the amount of pixels encircled by a contour like contourArea(), countNonZero() 

will summarize the pixels that are not equal to zero, which is all pixels that are not black 

elements. This function can be applied to both colour or Grayscale matrices and is 

particularly useful along with the function absdiff() [63].   
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absdiff() 

By calculating the absolute difference between two matrices of the same height and width, 

the function absdiff() will produce a grayscale matrix, the difference of each pixel marked 

with the corresponding intensity in the grayscale matrix. This will create a matrix that will 

highlight the difference between the two source matrices. This can be utilized in motion 

tracking and background reduction among other things [64].   

 

inRange() 

The inRange() function is another way to threshold into a binary matrix. The difference and 

great benefit with using this function, contra Threshold(), is that the input matrix does not 

need to be a single channel type. As a combination of cvtColour() and Threshold(), 

inRange() will convert the type of the matrix to output a grayscale matrix with only binary 

High and Low pixel values. The power of this function lies in the range that it compares 

every pixels against. The upper and lower bounds are set for each channel in order to get 

the desired result. Whether it is a HSV or BGR matrix, inRange() is a good way to find the 

pixels that fit the predefined range. Using the binary matrix output to create regions of 

interest or pair it with the countNonZero() function to get the amount of pixels that are in 

range, are a few different ways the function can be used [65].  
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5. Theoretical draft 
By reading a tutorial from OpenCV’s tutorial documentation [45] a theoretical draft was 

formed as a first approach to build an program that could perform according to specification 

in 1.3 Goals. The draft in form of a flowchart below in figure 5.1. displays an overview of the 

preliminary flow of the program.  

 
Figure 5.1 Theoretical draft of the program.  

 

After the program has declared functions, defined variables and connected various libraries, 

the program will enter its main loop. When the object arrive in the camera’s field of view it 

will still be in motion and therefore a function is required to verify when the object is 

stationary. In order to capture a detailed image to analyze, the object has to be stationary. 

Once this condition is satisfied, the analysis will be initialized.  

 

The first attribute to be analyzed is the object’s size. Depending on the outcome of the size 

analysis the program can skip the upcoming colour analysis by sending a “fail signal” to the 

decision box to remove the object since both tests has to be fulfilled in order to send an 

“approved signal”. After the object has been removed, irrespective of the outcome of the 

analysis, the program will jump to the beginning. The main loop, as seen in figure 5.1, will 

continue until manually terminated, this allows for continuous analysis of objects.  
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6. Implementation  
This chapter starts with an overview of the program’s workflow to roughly explain how the 

program works. The core revolves around the size test and colour test, which each requires 

preparations to produce the tests’ input.  

6.1 Program overview 

As seen in figure 6.1 the flow of the final program has more steps compared to figure 5.1 

from chapter 5. Theoretical draft. Those steps are added to improve the accuracy of each 

analysis and to ensure the continuity of the program. The added steps to the flow of the final 

program are: 

● Detection of a new object in the camera’s field of view by using motion detection.  

● Confirming object removal with motion detection.  

● Reset the program in conjunction with previous step.  
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Figure 6.1 The final flowchart of the programs workflow.  
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6.2 Startup and new object detection  

Before the object is ready to be analyzed the program is required to perform a couple of start 

up necessities. After the start up is done two loops follows to determine if the object’s state  

lacks motion and thus is ready to be analyzed. This in order to ensure that sharp images can 

be captured.  

6.2.1 Initiation  

Upon executing the program, the required setup is performed as listed below:   

● Connecting all relevant libraries.  

● Function declarations.   

● Input and output devices are defined. 

● Containers are allocated and initiated.  

● Debug windows are created.  

 

In addition to the standard C++ libraries there are several other libraries that must be linked 

with the program to function. The most important are:   

● Library containing functions to operate the Raspberry Pi camera.  

● Library containing functions to control GPIO-pins of the Raspberry Pi.  

● OpenCV vision library.  

6.2.2 Wait sequence for new object  

The solution to secure that the object have attained a stationary state is divided into two 

parts. The first part is a loop to detect motion and the second part is another loop that 

detects the lack of motion. In other words the first loop detects if a new object has arrived in 

the camera’s field of view, and the second loop detects if if the new object has stopped 

moving.  

 

Before entering the loop to detect motion a matrix is captured as reference and stored as a 

file. Once the program has entered the motion detection loop another matrix is captured and 

also stored as a file. The motion detection function compares the two latest captured 

matrices using the function absdiff(), which calculates the difference between two pixels and 

displays the result in a grayscale matrix. A change has occurred if the result is separated 

and is displayed as a grayscaled pixel with its intensity varying by the difference. If no 

change has occurred the pixel is displayed by a low value (white). The greater the amount of 

low value pixels, the less motion has been detected. The generated grayscale matrix is used 

as an input to the function countNonZero(), which calculates the amount of low value pixels. 

The amount of low value pixels are then divided with the total amount of pixels contained 

within the whole matrix. This gives the portion of pixels that has not encountered any 

change. If more than 10% change has been detected in the two last captured matrices the 

loop will be terminated, otherwise the detect motion function will start over.  

 

The second loop is almost identical to the first loop explained above, but instead the loop 

terminates if less than 5% motion has been detected. Upon the second loop terminating the 

program will recognize the object as ready to be analyzed.  
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6.3 Creating the matrix 

The program now recognize the object to be still and ready to be captured by the camera. In 

order for the program to accurately analyze the matrix’s attributes, and later use them in the 

size and colour test, the matrix must first undergo a few procedures. The required 

modifications are: 

● A grayscale conversion.  

● Removal of white and black clutter. 

● A binary conversion.  

● Reinforcement of brittle edges.  

The goal is to achieve a matrix that displays the background by low values (black) and the 

object by high values (white).  

6.3.1 Capturing a matrix  

At this stage the object is motionless and the camera can capture a sharp matrix. Per default 

the information from the camera is only stored temporarily by the chosen hardware platform. 

To be able to use the captured matrix in later operations the program stores the matrix as a 

file and also as an element in a vector of mats. It is this file that will be continuously edited 

throughout the program, and in next program cycle replaced with a new matrix. The vector of 

mats has twenty elements and stores matrices captured and post significant modifications. 

The functionality of the program does however only require two stored matrices for 

comparison functions but the additional history can sometimes come in handy. The 

sequence of matrices can be displayed on a monitor to ease debugging.  

6.3.2 Conversion to a grayscale matrix 

The program has a matrix to work with and the modifications of the matrix can begin. The 

grayscale conversion is performed by the function cvtColor(), see chapter 4.1.3 Grayscale. 

The function’s input is a RGB coloured matrix and it calculates a single value (one channel) 

out of the three channels. The calculated value ranges from 0-255 and is displayed as a 

intensity going from black to white. As seen below in figure 6.2 the input image on the left 

has been transformed into a colourless matrix on the right.  

 

  
Figure 6.2 From left to right: The input matrix to the function cvtColor()  

and the function’s output to the right.  



 
Chalmers University of Technology  Victor Friedmann Sandin, Anna Thomsen 

 

25 

6.3.3 Removal of noise  

The matrix is now grayscaled but contains white and black clutter from the conversion, these 

needs to be removed in order to get a black background, as mentioned in 6.3 Creating the 

matrix. The clutter is random data produced by the camera in the moment of when the matrix 

is captured, this phenomenon is referred to as noise [66]. The human eye may not be 

disturbed by the noise when trying to decipher the matrix, but the program do not know 

which pixels are flawed and not intended to be taken in account for. The program interprets 

the flawed pixels just as valid as any other pixel and the noise will therefore be of a problem 

in later stages if not addressed appropriately. To cut down the amount of noise two functions 

called dilate() and erode() are used, see chapter 4.3 Utilized features in OpenCV. In 

combination they smooth out contrasts and eliminate a significant amount of noise.  

 

First dilate() is used ten times to expand light areas and overgrow nearby clutter, then 

erode() ten times to decrease the light areas to their original size. Below in figure 6.3 the 

image to the left shows the matrix before the use of dilate() and erode() and to the right the 

result thereof. Note that the right image have smoother intensity transitions but a contrast 

between the foreground and background is still notably present.  

  
Figure 6.3 From left to right: Grayscale image and the result from the use of erode  

and dilate functions. 

6.3.4 Conversion to a binary matrix  

Most of the noise in the grayscaled matrix has been blended into the matrix and the contrast 

between the foreground and background has been made more notable by the earlier 

grayscale conversion. To gain maximum contrast in the matrix it is converted into a binary 

matrix where the object will be displayed by high values and the background by low values. 

Unfortunately some noise might be leftover and also be displayed by high values. Four 

methods are considered for the conversion and those functions are:  

● threshold().  

● adaptiveThreshold(), mean method. 

● adaptiveThreshold(), gaussian method.  

● canny().  

Below is a briefing of all four methods and an examination of their results. The methods are 

arbitrarily judged by their visual outcome with the most important aspect being how 

accurately represents the object’s shape. In an ideal case the whole object is displayed by 

high values and the background by low values. The chapter ends with a conclusion of which 

method is chosen to be best suited for the task.  
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All four methods convert a single pixel to either a high or low value but each method has its 

own way of determining the value. See chapter 4.3 Utilized features in OpenCV for a deeper 

explanation of each method.  

 

Function: Threshold 

The function threshold() is based on a single pixel’s value and therefore found to be the most 

straightforward binary conversion. The user inputs a value of 0-255 into the function and the 

function determines if a pixel belongs to the upper or lower range of that value. If the pixel 

belongs to the upper range it results as a low value pixel and vice versa. This option is very 

basic and sometimes leaves the object unrecognizable because it does not take in account 

for variances by light.  

 

Function: adaptiveThreshold, mean method  

The function adaptiveThreshold() converts a pixel depending on its own value and also the 

pixel’s neighborhood. The width of the neighborhood can be configured to adjust the 

smoothness of the light transitions. There are two methods to adaptiveThreshold(), the first 

method is by the neighborhoods mean value and the second is a weighted value by a 

gaussian curve, the latter method will be addressed later. The adaptiveThreshold() function 

is useful for when the light varies across the image, as the additional information make the 

pixel better reflect its surroundings. This means the function can better preserve edges.  

 

Function: adaptiveThreshold, gaussian method 

The second method of adaptiveThreshold() is by the gaussian curve. In addition to the width 

of the neighborhood also the pixel’s output value can be configured by two parameters: the 

impact of the gaussian curve and a constant subtracted post the gaussian calculation. A 

higher value of the gaussian curve parameter means the pixel’s own value weigh more than 

the neighborhood and its original value is better preserved. The calculated value is then 

subtracted with a constant. By the gaussian method the function produced a similar result as 

with the mean method. An advantage to the gaussian method is its ability to smooth out 

larger noise that has been left over from the previous noise removal functions in chapter 

6.3.3 Removal of noise. This was achieved by the gaussian curve minimizing the influence 

of the noise and using a large neighborhood.  

 

Function: Canny()  

The function canny() does not work as previously explained methods. It displays the image’s 

contrasts as thin lines, not as an area as the other three methods. As a head feature it can 

pick up many details in an image but an important issue is that the lines do not necessarily 

connect. For the output matrix to be adaptable with later functions the lines needs to be 

connected. In order to use the function Canny() additional image processing is required on 

the output matrix.  
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Resulting binary conversion method 

The rugged result produced by the function Threshold() caused it to be disqualified at an 

early stage. Because adaptiveThreshold() produced acceptable results without further image 

processing needed to attain good results, the function Canny() was scrapped. This left the 

function adaptiveThreshold() with mean and gaussian method as the most viable options. 

Between the two methods the gaussian proved better by its bonus ability to also eliminate 

larger noise by itself. The final parameters used was a square neighborhood with the length 

and height of 19 elements. The subtracted constant was set to 3.  

6.3.5 Enhancement of thin lines  

Empiric studies has proven that the matrix sometimes ends up with the object’s sharp 

corners chopped off, for example a squared object’s corners was excluded. This issue can 

be solved by performing multiple iterations of dilate() on the matrix to extend the area of the 

object. The iteration is performed two times.  

6.4 Creating region of interest and size test  

The original matrix has in the been altered to only contain high and low values, which 

separate the object and the background from each other. Some scattered noise still remains 

and are also represented by high values, in the same way as the object. To determine which 

of the high value shape that is correct and represents the object the program needs a way to 

interpret the shapes individually and to assign them. Furthermore the program also need a 

sorting mechanism to single out the correct shape. Once the object’s shape is obtained the 

program can analyze it in the size test.  

6.4.1 Finding contours in the binary matrix 

Currently the matrix contain a mix of high and low values and the program cannot distinguish 

one shape from another or address them in some way. The solutions to this revolves around 

a key function called findContours() which have the ability to find all high value contrasts 

within a binary matrix and create a way to address them. The function detects areas with 

high values that are encircled by high contrast and formulate a range of points that describes 

the areas’ boundaries, called a contour. The advantage to use contours in the selected 

software is that there are many functions to use that can calculate heavy tasks with basic 

input parameters.  

 

The information found by the function findContours() is stored by using vectors. A single 

contour’s range of points are stored as elements within in a single vector, a so called a 

vector of points. To store multiple contours all the vectors of points are stored in an outer 

vector, creating a vector vector of points. This vector vector pointer works like a library of 

contours that describes the contours pixel positions in the matrix. Each contour can be 

reached by indexing the outermost vector, if you know which one to look for.  

 

A disadvantage of the library is that the contours are not arranged in a systematic order. 

When findContours() is performed on a matrix an additional vector vector pointer is created 

that stores information about each contour’s hierarchy attributes.  
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The hierarchy tells how the contours are set in relationship to each other: if they are inside or 

outside one another and in which order they are in if they share the same level. See chapter 

4.3 Utilized features in openCV for further explanation about the hierarchy system. To be 

able to use a specific contour in another function its index must be known to reach the 

contour in the library of contours. The key to get the index of a specific contour is to look for 

its hierarchic attributes from the beginning of the hierarchy’s vector vector pointer til the end 

and along the way let an integer numerically keep track of how many vector of pointers has 

been analyzed. When the a contour is hit the integers value can be used as index in vector 

vector pointer of the library of contours, because it shares the same sequence of contours as 

the hierarchy. When the index is known a single contour can be selected, from the library of 

contours, to for example send the contour as an input to another function to calculate its 

area, or in another function to be manipulated.  

6.4.2 Finding the object’s outline 

The remaining noise will be detected by findContours() and those contours needs to 

differentiated from the correct contour and sorted out. The undesired contours originates 

from noise and random structures found in the background and the elimination of the them 

can be done in a few different ways. Three of these methods are considered below and 

utilizes a contours’ attributes such as their enclosed area, contour length and contour 

hierarchy level. All methods outputs a single contour that should depict the object.  

 

The methods are visually observed by the use of findContours() sibling called 

drawContours(), see chapter 4.3 Utilized features in OpenCV. The function can draw an 

input contour in any preferred colour onto an input matrix. This makes it possible in this case 

to see where in the matrix contours are found, how many of them and how precise they 

findContours() has detected them. With the help of drawContours() the three methods below 

has been visually examined by their reliability to pinpoint the correct contour and how well 

the object’s boundary is depicted. The region within the correct contour will be referred to as 

region of interest (ROI).  

 

Hierarchy 

As mentioned earlier in chapter 6.4.1 Finding formations in the binary matrix, hierarchy can 

be utilized to find contours by their relation to other contours. In this case, all the contours 

that does not have a parent are subjected to possibly be the object’s contour. In general 

several contours fits this description and a further sorting mechanism is needed. The 

remaining contours are sent as input to the function contourArea() to calculate each 

contour’s enclosed area. The function’s output is compared and the largest area is assumed 

to represent the object and the rest are discarded. This method was controlled manually and 

proved reliable.  

 

Length  

A method considered was to sort out the correct contour by measuring the contours lengths 

using the function arcLength(). The trouble with measuring the contours length is that a 

contour’s points can be approximated quite roughly in the earlier stage by findContour(). For 

example, a contour describing a circle’s circumference could take on the shape of a zig-zag 

line instead of a smooth line.  
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The function arcLength() would then calculate the zig-zag line as of greater length, than if 

the line would have been more smooth and followed the circle better. Another function called 

approxPolyDP() can help to refine the contour’s sometimes roughly allocated points, see 

chapter 4.3 Utilized features in OpenCV. The function relocates deviating points and puts 

them along an approximated calculated line based of its neighboring points. By the looks of 

it, this function makes the contour considerably smoother but does not help arcLength() 

enough to give an accurate depiction of the object.  This method was discarded.  

 

Area  

This method has already been mentioned above in the hierarchy method. The function 

contourArea() with a basic area comparison can alone be used as a method to determine 

the contour with the greatest area.  

 

Resulting contour sorting method 

The area method is the most straightforward and has proven in empirical studies to be 

sufficient enough on its own. A drawback is that it only works in a process where the 

program can assume only a single object is observed. In this case the project is only focused 

on a single object but to maintain the possibility to further develop the program for other 

purposes it is relevant to preserve the ability to evaluate multiple objects. In the case of 

multiple objects the hierarchy will ensure only the outermost contours are selected. It can 

prove quite difficult to achieve the same by depending on the contourArea() as the key 

function. In the case of two objects with different size the function findContour() might find an 

irrelevant contour within the bigger object’s outmost contour. That contour could be larger 

than the second object’s outmost contour, and thus faulty determine the irrelevant contour to 

be an object’s contour. The conclusion is that the method utilizing hierarchy is the better 

choice in the long run.  

6.4.3 Size test  

Only one contour remain and the matrix is ready to be analyzed in the size test. It is difficult 

to approximate the physical size of an object from a sole matrix since the matrix it only have 

two dimensions while the object have three. The camera is however in a fixed position and 

the object is located almost at the same spot every time. This opens up the possibility to 

approximate a relative size as a portion of the matrix’s area. The amount of pixels the object 

occupies have already been calculated by the function contourArea() in chapter 6.4.2 

Finding the objects formation. The total amount of pixels contained in a matrix is calculated 

as well by contourArea() by using a matrix filled with only high values as input. The occupied 

space by the object is set in portion to the whole matrix to give a relative size.  

 

Finally the portion is tested if it is within in the range of 5-20% of the matrix total size. If the 

test is approved the program will continue the process towards the colour test and activate 

an I/O-pin on the hardware to light a diode. The diode neatly display the size test result 

without the need to look at the code. If the portion on the other hand is failed the program will 

try to reset itself by waiting for the object to be disposed of and for a new object to arrive. 

The disposal of the object will be explained in a later chapter.  
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6.5 Calculating colours in region of interest and colour test 

After the size test has been cleared the program’s next step is to prepare the matrix for the 

colour test and execute it. To solely calculate the object’s amount of colours they need to be 

isolated from the object’s environment. The result strived for is a black matrix with only the 

object left in colours. Once the isolation is done, the program will analyze each pixel’s value 

if it fits into a few preset colour intervals to determine how much of the object consist of each 

colour. At last the calculated colour portions will weigh in at the colour test.  

6.5.1 Isolating the object’s colours by its contour  

The process to produce a matrix with the object in colour and the surroundings portrayed in 

only low values is done in a few steps. In order to isolate the object a masked matrix is first 

created by filling a matrix with low values and then draw the object’s contour in high values 

by the function the familiar function drawContour(). A input parameter to drawContours() is 

set to enable the ability to fill the contour with high values as well. This creates a masked 

matrix, see left image in figure 6.5. The binary matrix is then applied to the original matrix, 

see middle image in figure 6.5, by the Mat function copyTo(). The function layer one input 

matrix ontop of a second input matrix, and ignores the high values found in the top layer. 

This allows the values from the underlying matrix to emerge and by that the cropped matrix 

is finished, see the right image in figure 6.5.  

 

   
Figure 6.5 From left to right: Masked matrix, original matrix, cropped matrix.  

6.5.2 Finding the object’s amounts of colour  

Only the pixels representing the object remain in colour and the program can start to prepare 

for the colour test to obtain the quantity of a four predetermined colours. There colours are: 

green, blue, orange and yellow. Other colours can be added as well but only four was 

chosen to prove the concept. The four colours are predefined by intervals, describing the 

channel values required to define a pixel as a certain colour. So far the matrix values has 

been described by the standard BGR, which describe a hue by three channels. However, a 

simpler way to go about describing a colour when the intensity is the most interesting value 

is by the standard HSV (see chapter 4.1.2 HSV - Hue, Saturation, Value), because the hue 

is only described by one channel. The earlier used function cvtColor() is used to convert the 

matrix from BGR to HSV. The initial idea to only describe a colour with one channel did not 

work entirely as intended and the result by using only the H channel came out flawed. A 

more accurate colour description was achieved by using all three channels in HSV. Even 

though this nullified the intended practical advantage of converting the matrix from BGR to 

HSV, the colour mixing is more comprehensible with HSV.  
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A short separate program was written to find each colour’s interval values. The program 

captures and displays a binary matrix and six track bars. Each channel has a lower and 

upper track bar that can be drawn to change its value, the included colours are displayed by 

high values and the rest by low values. The binary presentation makes it easy to see when 

the whole shape of the object is included. With the six track bars the program can 

immediately display how a change of an interval value would affect the output. Practically the 

colours was found by capturing a matrix of a monochrome object of each colour and fiddle 

with the track bars until only the object’s shape was visible. This eased the empiric studies to 

find appropriate channel intervals significantly. 

 

With the intervals at hand the analysis can finally begin. The program can only analyze one 

predefined colour at the time and makes use of the function inRange() to examine which of 

the matrix’s pixels fits the colour description. The output is a binary matrix with the current 

analyzed colour displayed in high values and the rest in low values. The amount of high 

valued pixels are calculated by the function countNonZero(). The quantity of high value 

pixels are set in portion to the pixel quantity contained in the whole matrix. The procedure is 

repeated as many times as there are predefined colours. In the end the greatest weighted 

portion is claimed as the dominant colour of the cropped matrix and is stored away for later 

use in the colour test.  As can be seen below in figure 6.6 four procedures exerted on the 

cropped image generate four correlating binary matrixes as in figure 6.7.  

 

 
Figure 6.6 The cropped matrix.  
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Figure 6.7 From top left to bottom right: Binary matrices representing the areas of green, 

blue, orange and yellow.  

6.5.3 Colour test 

The dominant portion of colour determined in the previous chapter can now be used as input 

to the colour test. The object will be approved in the colour test if the dominant colour’s 

quantity exceeds 10% of the matrix’s pixels. The error portion of 10% has been taken in 

consideration to expel small quantities of unintentional colours contained in the matrix that 

accidently match any of the predefined colours. If the colour is approved an I/O-pin is 

activated by the program to display the that the object has passed the colour test and as well 

a third diode to show that the object has passed both test and is OK. In theory an approved 

signal would have been sent to the decision box. If the object instead is failed the program 

will try to reset itself.  

6.6 Reset of the program  

To reach the reset point of the program the object has either cleared both the size and 

colour test or been failed in the size test. The main purpose of the program is done and the 

object shall be removed to allow the next object to enter the camera’s field of view. At this 

point the program has theoretically transmitted an approve or fail signal to the decision box 

which next would remove the object on scene. The decision box could then tell the program 

that a removal has been made but since this is not the practical case the signal need a 

replacement. The signal instead comes from another run of the motion detection loop used 

in 6.2.2 Wait sequence for new object. The object is removed by hand and when the motion 

detection loop notices a difference of 10% the program starts over.  
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7. Result 
In this chapter the resulting program of the implementation will be presented by discussing 

the results from the evaluation test, on said program. The test was performed in order to 

ensure the program’s functionality and whether the requirements of this thesis were met (see 

1.3 Goals).  

7.1 Results from evaluation test 

The resulting program, developed during this project, performs well and has fulfilled all 

requirements stated in 1.3 Goals. The documentation from the evaluation test can be viewed 

in its entirety in Appendix A. The summarized results can be seen in figure 7.1. 

 

Categories Required accuracy Measured accuracy 

Size 90% 100% 

Colour 90% 94.4% 

Continuity Yes Yes 

Figure 7.1 Summarized results of the evaluation test. 

 

The only deviation that occurred during the test (see “Measured accuracy - Colour” in figure 

7.1) can be explained by variables in the hardware settings, which were not taken into 

account. The camera hardware used as the visual sensor in this project (see 3.1.3 Resulting 

Hardware platform) is programmed, by default, to adjust the amount of light permitted into 

the optical sensor. This is a built in feature that is present in most modern cameras to avoid 

over and underexposure in images, commonly referred to as Auto White Balance [67]. The 

deviation in the evaluation test occurred due to the the yellow, large test object reflecting too 

much light back into the camera which automatically lowered the amount of light permitted in 

order to balance the exposure. This automatic adjustment of light led to a shift in the 

perceived colour, causing the object to fall outside the “allowed” range of colours, hence 

failing it. As can be seen in figure 7.2 the small and medium sized, yellow test objects 

produced the expected result while the larger ones failed. The approved ranges are set 

using medium sized objects of the correct colour, making this deviation a previously not 

discovered occurrence. This is a risk connected to bright colours and having set ranges, in 

which colours are approved or not, due to the camera having auto white balance enabled. A 

solution would be to turn off this feature on the camera and supply constant light conditions 

at all times and recalibrate the ranges accordingly. 

 

 

 

 

 

 

 

 



 
Chalmers University of Technology  Victor Friedmann Sandin, Anna Thomsen 

 

34 

Test case Size Hue Expected size 

result 

Actual size 

result 

Expected colour 

result 

Actual colour 

result 

Pass (green) 

Fail (red) 

28 S Y F F A A  

29 S Y F F A A  

30 S Y F F A A  

31 M Y A A A A  

32 M Y A A A A  

33 M Y A A A A  

34 L Y F F A F  

35 L Y F F A F  

36 L Y F F A F  

 

Figure 7.2 Yellow test results deviating from expected result during the evaluation test (see 

2.3.1 Evaluation test). 

7.2 Displaying the results 

When running the program, with a monitor connected to the hardware, the resulting image 

matrix is displayed in different stages of processing. The status of the program and the 

relevant results are printed in the terminal window and displayed on the monitor. The 

different stages of processing and colour portions are mainly displayed for debugging 

purposes during the development of the program. The final cropped image, in BGR colours, 

are shown in figure 7.3 alongside the printout in the terminal. The final outcome of the object 

is communicated using the three LED indicators, see figure 7.4, lighting up if the object is 

approved in the tests of size and colour.  

 

  
Figure 7.3 The results of the colour analysis performed on the image to the left is displayed 

in the terminal window to the right. 
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Figure 7.4 LED used to indicate if test results are approved. “Pin 3” indicating size result, 

“Pin 2” indicating colour result, “Pin 4” indicate the final verdict approving the object’s 

attributes. 

7.3 Discussion 

The development of the program has constantly presented itself with hard decisions, leading 

to alternative solutions left unexplored. Furthermore, the size of the OpenCV library is both a 

great benefit and a source of eternal strife. The fact that the library could solve anything 

requested of it, within reason, was really a good feature. On the other hand, the library often 

had many different solutions to each problem which led to frustration when not all pros and 

cons were obvious during implementation. Drawbacks to a particular function could show 

itself much later in the progression of the program, which created many instances of 

rewriting functions that were considered sound. However, this is a common problem when 

building applications and programs in a new environment and would have been a problem 

whichever software library used while developing the program. Learning was always a large 

part of the project, and with learning comes mistakes to learn from, i.e. experience.   

 

A constant issue during the development was light consistency in the environment around 

the workstation. The fact that the equipment is located on a desk close to an east facing 

window with bright buildings reflecting different amounts of light depending on time of day, 

created issues. The windows automatic shades did not improve the situation, going up and 

down seemingly at will. The testing of functions became difficult since the result differed 

depending on the time of day and present weather conditions outside. A permanent solution 

to this problem would have been to build some sort of shielding to limit the amount of light 

permitted into the camera’s field of vision. The conditions are briefly mentioned in 2.1 Pre-

study when stating that the proof of concept should be able to meet the required 

specifications “during ideal conditions”. A final solution was never really found for this 

particular problem. A result of this issue was that all testing was performed after calibrating 

the ranges and values of the program to fit the situational conditions in the environment, a 

problem that has to be solved in order to have a fully automated process. 

 

The fact that OpenCV does not have any official technical support raises the question 

whether “free” really is the cheapest alternative in the long run. The problem lies in that the 

community that is keeping OpenCV alive with updates, tutorials and examples could simply 

disappear.  
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There are no rules or guidelines to when or if a question should be answered in a user 

based forum and web pages with information can be taken down without notice since most 

of them are run by organisations not driven by monetary gain. This is where a licence comes 

in handy, since when a contract is struck, the buyer/user knows exactly how many years the 

support will be available through service agreements.  

7.3.1 Ethics and sustainability 

Ethically this project does not conflict with anything new, since it is not new technology. 

Therefore the same can be said about this project as with all other technology that aim to 

automate a process and diminish human error/involvement. There is a possibility that some 

work opportunities are lost due to this automatisation, but it could on the other hand create 

jobs in terms of service and updates. 

 

An argument can be made that this kind of technology can be weaponized and used for 

destructive purposes. However, this fact is true for almost all technology developed today. 

 

Concerning the sustainability of a product that can be produced using this research, it 

provides opportunities to automate processes, and in that regard save resources in other 

cases spent on transporting workers and vehicles. Diverting these resources into larger 

problems that exist in society would be a possible outcome from making use of a product like 

this. A centralized control facility would be able to better manage resources and minimize 

production problems by monitoring huge amount of locations, that human employees would 

not be able to reach physically.  
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8. Conclusion 
With the gathered results from the final program, it is clear that the prototype (see 1.1 

Background) can be replaced with a cheaper alternative. The program developed during this 

project is well suited for continuous analysis of objects placed in the field of view of the 

camera, which clearly meets the specifications listed below:       

 

The stated specifications stated in 1.3 Goals are repeated below:    

 

● Is there a way to make the program run continuously for a trial of 54 tests without 

failing? 

● Can a size test be developed to give the correct output in 90% of the cases during a 

test of 54 objects? 

● Can a colour test be developed that can differentiate between four colours and 

determine the dominant one in 90% of the cases during a test of 54 objects? 

 

The results from the evaluation test (see 2.3.1 Evaluation test) can be seen in Appendix A. 

The conclusion to be drawn from the results is that with a 94.4% colour accuracy and a 

100% size accuracy, while never terminating the program, is enough to provide the proof of 

concept this project was started to achieve (see 1.1 Background).   

 

OpenCV as the vision library of choice, is more than large and powerful enough to build an 

program of this type. The documentation supporting the library is well written and easy to 

understand. The wealth of examples and explanations in the OpenCV community have been 

able to answer any and all questions that arose during the development process, and has 

been invaluable as a source of knowledge.    

 

The program has been developed, exclusively, using open source software. This points to 

the fact that further development would most likely lead to a stable and cheap solution that 

could be incorporated into a commercial product, with no attached licensing fees. The 

argument can also be made, concerning the hardware, that the Raspberry Pi, while being a 

good platform during development, is too costly as the ultimate hardware in production. The 

hardware performance can definitely be lower, than what the Raspberry Pi supplies, and still 

perform at a satisfying speed. Thus, cutting the cost of a final product even further. 
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8.1 Further development 

The current program can only analyze one object at the time by its two dimensional size and 

only determine the object to be one of four colours. The range of colours is simple to expand 

and the approved size interval easily changed in the code. A few ideas that could further 

develop the functionality of the program are:  

 

● Document the amount of detected, passed and failed items for statistics by the use of 

the size test and colour test.  

● Analyze an object of multiple colours by a more complexed colour portion program.  

● Analyze multiple objects in camera’s field of view.  

● Expand the reset of the program to notice when an object has not been removed as 

anticipated.  

 

Applications that demands more time to develop:  

 

● Implement shape and pattern recognition, for example to find defect items in a 

production line or for scanning barcodes.  

● An algorithm that can learn a colour by analyzing several objects/images with the 

right colour.  
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Appendix A – Table of evaluation test results 
Test 

case 

Size Hue Expected 

size result 

Actua

l size 

result 

Expected 

colour 

result 

Actual 

colour 

result   

Test 

case 

Size Hue Expected 

size 

result 

Actual 

size 

result 

Expected 

colour 

result 

Actual 

colour 

result  

1 S P F F F F   28 S Y F F A A  

2 S P F F F F   29 S Y F F A A  

3 S P F F F F   30 S Y F F A A  

4 M P A A F F   31 M Y A A A A  

5 M P A A F F   32 M Y A A A A  

6 M P A A F F   33 M Y A A A A  

7 L P F F F F   34 L Y F F A F  

8 L P F F F F   35 L Y F F A F  

9 L P F F F F   36 L Y F F A F  

10 S G F F A A   37 S W F F F F  

11 S G F F A A   38 S W F F F F  

12 S G F F A A   39 S W F F F F  

13 M G A A A A   40 M W A A F F  

14 M G A A A A   41 M W A A F F  

15 M G A A A A   42 M W A A F F  

16 L G F F A A   43 L W F F F F  

17 L G F F A A   44 L W F F F F  

18 L G F F A A   45 L W F F F F  

19 S B F F A A   46 S O F F A A  

20 S B F F A A   47 S O F F A A  

21 S B F F A A   48 S O F F A A  

22 M B A A A A   49 M O A A A A  

23 M B A A A A   50 M O A A A A  

24 M B A A A A   51 M O A A A A  

25 L B F F A A   52 L O F F A A  

26 L B F F A A   53 L O F F A A  

27 L B F F A A   54 L O F F A A  

S = Small, M = Medium, L = Large 

P = Pink, G = Green, B = Blue 

Y = Yellow, W = White, O = Orange  

A = Approved, F = Failed   



 
 

 
 

 

 

 


