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Abstract

Spatial characterization and modeling of the structure of a material may pro-

vide valuable knowledge on its properties and function. Especially, for a drug

formulation coated with a polymer film, understanding the relationship be-

tween pore structure and drug release properties is important to optimize the

coating film design. Here, we use methods from image analysis and spatial

statistics to characterize and model the pore structure in pharmaceutical coat-

ings. More precisely, we use and develop point process theory to characterize

the branching structure of a polymer blended film with data from confocal

laser scanning microscopy. Point patterns, extracted by identifying branching

points of pore channels, are both inhomogeneous and anisotropic. Therefore,

we introduce a directional version of the inhomogeneous K-function to study

the anisotropy and then suggest two alternative ways to model the anisotropic
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three-dimensional branching point structure. First, we apply a linear transfor-

mation to the data such that it appears isotropic and subsequently fit isotropic

inhomogeneous Strauss or Lennard-Jones models to the transformed pattern.

Second, we include the anisotropy directly in a Lennard-Jones and a more flexi-

ble step-function model with anisotropic pair-potential functions. The methods

presented here will be useful for anisotropic inhomogeneous point patterns in

general and for characterizing pharmaceutical coatings or other porous material

in particular.

Keywords: Inhomogeneity, K-function, Lennard-Jones pair-potential

function, pairwise Gibbs process, porous media

1. Introduction

Characterization and understanding of the pore structure within pharmaceu-

tical coatings is essential in order to control their mass transport properties like

permeability (Siepmann et al., 2008). Pharmaceutical coatings or dosage films

are usually sprayed around drug formulations to achieve delayed, sustained, or5

repeated drug release (Wen and Li, 2010). Two crucial factors affecting mass

transport and overall releasability of a drug are pore connectivity and tortuos-

ity (Siegel, 2012). These two characteristics can be studied by analyzing the

number, location and connection of the pore branching points, where at least

three pore channels meet. For example, the more branching points there are10

relative to the number of channel ends, the better connected the channels are

(Häbel et al., 2016).

The dosage film studied here is a blended film of two cellulosic polymers,

namely ethyl cellulose (EC) and hydroxypropyl cellulose (HPC). Such bio-based

films are non-toxic, non-allergenic, and have good film forming properties and15

stability (Marucci et al., 2009; Siepmann et al., 2008). In contrast to EC, HPC

is soluble in water and may act as a pore former (Marucci et al., 2013). Hence,

the connected HPC-rich phase can be referred to as the pore phase and the

EC-rich phase as the solid phase. Previous studies have shown some indications
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that the pore structure in EC/HPC blended films can be inhomogeneous and20

anisotropic (Häbel et al., 2016; Marucci et al., 2013). In this work, we find

statistical evidence for the inhomogeneity and anisotropy by describing the pore

structure in terms of its branching points and by using methods from point

process theory. As the first step towards drawing conclusions on mass transport

properties of the film, we characterize and model the spatial arrangement of25

the locations of the branching points. Special attention is paid to anisotropy

as describing directional trends in the structure may help us to understand not

only mass transport properties, but also the film forming mechanism. For this

purpose, methods for analyzing anisotropic inhomogeneous three-dimensional

point patterns are presented. The challenges are to describe the type of the30

anisotropy detected in the data and to clearly distinguish it from inhomogeneity.

In recent research, geometric anisotropy has been of great interest as it

provides a rather simple model framework. A point process is assumed to be

geometrically anisotropic if it can be represented as a linear transformation of

an isotropic point process. Examples are given in Rajala et al. (2016); Reden-35

bach et al. (2009); and Wong and Chiu (2016). Anisotropy may also refer to

point processes, where the points tend to be located along lines. In order to

detect and model anisotropy, spatial summary statistics of point pairs need to

be functions of both length and orientation of pairwise difference vectors. The

K-function, describing the expected number of points within a certain distance,40

was generalized for the detection of linearities in (Møller et al., 2016). Instead

of considering points in a ball, directed cylinders are used as structure elements.

A directed double cone was introduced as an alternative structure element in

Redenbach et al. (2009). In Safavimanesh and Redenbach (2016), the cylin-

drical K-function is compared to a conical alternative for three-dimensional45

compressed or columnar point patterns, where the conical K-function appeared

more suitable for compressed point patterns.

Spatial directional trends may also occur in various other ways that can-

not easily be described with regular shapes. Directional analyses and tests for

isotropy have been discussed in the recent literature. For example, Guan et al.50
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(2006) introduce an asymptotic χ2-test and Møller and Toftaker (2014); Ra-

jala et al. (2016); and Wong and Chiu (2016) consider geometric anisotropy.

An isotropy test based on replicated data was suggested in Redenbach et al.

(2009). Directional analyses can also be done by using wavelets (Mateu and

Nicolis, 2012) or spectral theory (Møller and Toftaker, 2014; Mugglestone and55

Renshaw, 1996).

In this work, we conduct an orientational study of point pairs in order to

find evidence for anisotropy in a given inhomogeneous point pattern. Based on

a preliminary analysis, we suspect that distances between pore branching points

tend to be smaller vertically than horizontally, which is typical for structures60

compressed vertically. That is why, a three-dimensional inhomogeneous version

of the conicalK-function is introduced. Furthermore, we try to find a model that

describes the branching point structure. The goal of the model fitting is not only

to characterize and understand the spatial arrangement of the pore branching

points, but also to explain the physical chemical dynamics underlying their65

formation. That is why we use the model family of finite pairwise interaction

Gibbs processes, which allows for interaction between points and links back to

statistical mechanics. When studying the interaction between two molecules,

attractive and repulsive forces are often assumed and combined in a Lennard-

Jones potential as a function of the distance between the molecules (Zhen and70

Davies, 1983). Following the idea of intermolecular interaction, a Gibbs model

with a Lennard-Jones pair-potential function seems a reasonable first choice.

The Lennard-Jones model is compared to the Strauss model with only inhibition

between points and a generalization of the Strauss model, namely a step-function

model, allowing for attraction or inhibition at several ranges.75

We suggest two versions of anisotropic pairwise interaction Gibbs processes.

In the first approach similar to Wong and Chiu (2016), we assume geomet-

ric anisotropy and apply a linear transformation to obtain an almost isotropic

point pattern. Then, an isotropic and inhomogeneous model is fitted to the

transformed point pattern. Models for the original, untransformed point pat-80

tern are obtained by transforming the fitted model to an anisotropic one by the
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inverse of the operation of the previous step. In a new second approach, an

anisotropic and inhomogeneous model is directly fitted to the data without any

transformations.

To our knowledge, Gibbs point process models with anisotropic pair-potential85

functions have not yet been studied for three-dimensional point patterns and

without assuming geometric anisotropy. We show the usefulness of anisotropic

pair-potential functions for characterizing and modeling inhomogeneous and

anisotropic structures on the example of a porous polymer blended film. We

present a simple and efficient methodology that is general enough to be appli-90

cable to various other point patterns.

2. Material

2.1. Preparation of polymer films

The porous films prepared for this study are composed of two cellulose deriva-

tives, namely 70% (w/w, dry basis) ethyl cellulose (EC EthocelTM Standard95

Premium of viscosity grade 10 cP, Dow Wolff Cellulosics GmbH, Germany) and

30% (w/w, dry basis) hydroxypropyl cellulose (HPC, grade LF, Aqualon, USA).

30% HPC was used in order to obtain a connected, percolating pore phase with

channels going from one film side to the other (Marucci et al., 2009). 6% of the

HPC had been fluorescent dye (0.005 m/m of glucose) labeled in preparation for100

the confocal laser scanning microscopy (CLSM, Nikon D-ECLIPSE C1 confocal

system with Eclipse TE2000-E inverted microscope). This was done in order to

achieve a good contrast between HPC and EC.

The two polymers were dissolved in hydrous ethanol (95% v/v, Kemetyl

AB, Sweden) at room temperature under stirring overnight. For manufacturing105

a free film, the polymer solution was sprayed onto a rotating cylindrical Teflon

drum with a moving atomizer nozzle in a modified fluidized-bed chamber at

AstraZeneca R&D Mölndal, Sweden, following the procedures as described by

Gebäck et al. (2015). While the film layers dry, ethanol evaporation induces

phase separation of EC and HPC resulting in EC-rich and HPC-rich phases.110
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The process is frozen by a high film viscosity which is reached at a certain solvent

concentration (Marucci et al., 2013). Since several coating layers are sprayed

on top of each other, the lower layers are re-wetted more often than upper

layers. Consequently and due to a small increase in temperature at the end of

the spraying process, phase separation occurs to a lower extent in the upper115

layers resulting in smaller domains towards the air-side of the film compared

to the drum-side (Gebäck et al., 2015; Marucci et al., 2013). As the interfacial

free energy is minimized during phase separation, new HPC drops are more

likely to coalesce with large HPC domains than smaller ones. This may result

in elongated HPC-rich channels. Due to the effects of the film manufacturing,120

the pore structure is relatively isotropic and homogeneous in each sprayed layer,

but anisotropic and inhomogeneous in the air-to-drum-side direction along the

film depth (Gebäck et al., 2015; Häbel et al., 2016).

2.2. Data sets

In the present work, a small sample from the center part of a dried film was125

imaged using CLSM in order to visualize the three dimensional pore structure.

The x-y pixel size on each two-dimensional layer was 78.57× 78.5nm2 and the

acquiring step size through the film from air-side to drum-side was 100 nm.

Furthermore, the cross-section of the film was imaged by scanning electron mi-

croscopy (SEM Quante 200, FEI Company). For this purpose, a piece of the130

film was embedded in an epoxy-glue mold and the resulting stem of glue was cut

in a Leica Ultracut UCT ultramicrotome to expose the film cross-sections. First

a glass knife, then a diamond knife was used for the cutting. The embedded cut

film was exposed to water for several days to remove all leachable HPC. The

cross-section was coated with a thin layer of gold in an ion-sputtering device135

(Cressington sputter coater 108 ants) before imaging.

Figure 1 presents a small section of the obtained three-dimensional CLSM

data on the left. The HPC-rich phase, which corresponds to the pore phase, is

depicted in brighter voxels. The pores seem to be larger in cross-sections (xz, yz)

than on the top layer (xy). Similar images showed that the domains on xy-layers140
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at any film depth appear to form more homogeneous structures than on cross-

sections. Figure 1 shows a two-dimensional SEM image of the film cross-section

with a higher resolution than of the CLSM image. It can be seen that there tend

to be more, but smaller pores at the top layer (air-side) of the film than in the

lower layers towards the drum-side. The pores appear to be elongated along the145

drum-side with vertical branches. Taking the differences in size and shape of the

pores into account, the pore structure appears inhomogeneous and anisotropic.

We find statistical evidence for this conclusion in the characterization presented

in Section 4.1.

Z

X

Y

Figure 1: Left: Processed CLSM image of a 23.57×23.57×17 µm3 film section. Dark voxels

correspond to the EC-rich phase and bright voxels to the HPC-rich phase. Dimension z

goes from drum-side to air-side. The pore structure appears anisotropic with large elongated

domains in cross-sections (z) compared to the displayed top layer (xy) with smaller domains

forming a homogeneous structure. Right: Film cross-section (ca. 30 µm) obtained by SEM

after HPC leaching showing more pores on the top (air-side) than on the bottom (drum-

side). The gray region above and below the pores is the epoxy-glue in which the sample was

embedded.

2.3. Image analysis150

The image processing for the pore branching point extraction was conducted

in MAVI (MAVI - Modular algorithms for volume images, 2015). The aim of

the image processing was to segment the pore (HPC-rich) and solid (EC-rich)
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phase. The major challenge was to develop a procedure that preserves the pore

connectivity, while holding the volume fraction at the known level for 30% HPC155

films. A three-dimensional ultimate homotopic skeleton was extracted from the

binarized CLSM image following a topology preserving algorithm developed by

Couprie et al. (2007). Here, a skeleton refers to a system of connected one-

dimensional line segments located centrally inside the pore phase. A voxel on

the skeleton has value one and voxels outside the skeleton value zero. For a160

correction of edge effects introduced by the skeletonization method, the window

was reduced by two voxel layers in all directions. A more detailed descrip-

tion of the image analysis methods used for noise reduction, binarization and

skeletonization can be found in the supplementary material.

Isolated, end, and branching points of the skeleton were identified using165

a classification by neighbor counting in a 26-neighborhood implemented in a

function in R. For this purpose, the skeleton was translated into a spatial graph

using the R package spatgraphs (Rajala, 2012), where each skeleton voxel cor-

responds to a node in the graph. For each node or skeleton voxel, the sum of the

connected components is calculated. The obtained sum can be used to classify170

skeleton voxels into four classes.

0) If the sum is zero, the skeleton voxel is an isolated point with no neighbors.

These points are important for the pore volume fraction, but they do not

affect the mass transport. Consequently, isolated points were disregarded

in the spatial modeling described below.175

1) If the sum is one, the voxel is an end point with just one skeleton neighbor.

A large number of end points may affect the mass transport as mass can

get trapped in pore channels with dead ends. Here, however, the number

of end points was very low throughout the whole film and end points were

also declared irrelevant for the modeling.180

2) If the sum is two, a voxel has two neighbors and is regarded as a connecting

point. The connecting points can be used to study pore tortuosity and

connectivity. For such studies, it is important to keep in mind, that the
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number and position of connecting skeleton points highly depends on the

applied image analysis. That is why, we do not construct a model based185

on the whole skeleton, but only use branching points as they are more

robust to the processing.

3) If the sum is larger than two, the voxel is classified as a branching point

with at least three neighbors. Sets of branching points with maximal dis-

tance of three voxels between points were reduced to their centroid to190

make the branching point extraction more robust to structural peculiari-

ties of a sample and image processing choices (Liebscher and Redenbach,

2013).

The graph was reduced to the branching points by deleting all other nodes

from the graph that were not branching points. Less than 10% of the remaining195

branching points are connected to more than three other branching points.

3. Methods and Theory

The set of pore branching point locations extracted from the processed

CLSM images of the film form a point pattern, which is mathematically ex-

pressed as a realization of a point process X = {Xi} of random locations

Xi : Ω→ R3, i = 1, 2, . . .

on some probability space (Ω,A,P). In what follows, W ⊂ R3 denotes the

bounded observation window in which the point process X is observed. Let |W |

denote the volume of the window and NX(W ) ≥ 0 the number of points of X

in W . The first moment of the integer-valued random variable NX(W ) is given

by

E[NX(W )] =

∫
W

λ(s)ds,

where it is assumed that E[NX(W )] has a density λ with respect to the Lebesque

measure. λ is called the first-order intensity function. For stationary and

isotropic point processes with constant λ(s) = λ, ∀s ∈ R3, Ripley’s K-function200
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can be used to describe second-order characteristics, where λK(r) gives the ex-

pected number of points of X within a ball b(o, r) without counting o itself given

that there is a point at o (Illian et al., 2008, p.214 ff.,Chiu et al., 2013, p.99 ff.).

3.1. Anisotropic and inhomogeneous K-function

The K-function was generalized in Baddeley et al. (2000) for second-order205

intensity-reweighted stationary point processes, where second-order character-

istics are still functions of distances between points. Combining this inho-

mogeneous version with the directional K-function presented in Redenbach

et al. (2009), we introduce an anisotropic and inhomogeneous version of the

K-function, Kanin.210

Let C(u, a) be a double cone with central axis u ∈ S2 on the unit sphere S2

and opening angle 2a ∈ [0, π]. For a ball b(o, r) with radius r around the origin

o, let C(u, a, r) = C(u, a) ∩ b(o, r). Then we define

Kanin(u, a, r) =
1

|W |
E

∑
x∈X∩W

∑
y 6=x∈X∩W

1[(y − x) ∈ C(u, a, r)]

λ(x)λ(y)
, r ≥ 0.

Figure 2 shows the structure element C(u, a, r) for angle a = π/6 in direction

u = (1, 0, 0) as the intersection of the double cone C(u, a) = C(u, a,∞) with the

ball b(o, r). The inhomogeneous version by Baddeley et al. (2000) is obtained

for a = π/2 and a constant λ yields the conical K-function by Redenbach et al.

(2009).215

An estimator for Kanin is given by

K̂anin(u, a, r) =
1

|W |
∑

x∈X∩W

∑
y 6=x∈X∩W

1[(y − x) ∈ C(u, a, r)]

wxyλ̂(x)λ̂(y)
, r ≥ 0

with translation edge correction factors wxy = |(W − x) ∩ (W − y)| , where

W −x refers to the translation of the window W by the vector x. The intensity

function λ was estimated using an edge corrected Gaussian kernel estimator, for

which the smoothing bandwidth was chosen using the Cronie and van Lieshout

(2016) method.220
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(0, 0, 1)
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a

Figure 2: Structure element C(u, a, r) (dark gray) of the directional K-function in direction

u = (1, 0, 0) with opening angle 2a = 2π/6 in a ball b(o, r) centered at the origin o with radius

r (light gray).

3.2. Finite pairwise interaction Gibbs processes

Let us consider the spatial exponential family of finite Gibbs processes with

n points of X in W and density function

fn(x1, . . . , xn) =
exp(−E(x1, . . . , xn))

Zn

for x1, . . . , xn ∈ W , where Zn is a normalizing constant and the function E :

Rn×3 −→ (−∞,∞] assigns an ‘energy’ to the point configuration (x1, . . . , xn)

(Illian et al., 2008, p.141 ff.). For an isotropic pairwise interaction process, the

energy function can be written in the following form

E(x1, . . . , xn) =
∑
i

α(xi) +
∑
i<j

φ(dij),

for pairwise distances dij = ‖xi − xj‖. The function α : R3 −→ R is called the

chemical activity function and describes the likelihood of a point being located

at x ∈ W . For a stationary process, α(x) = α, α ∈ R, is a constant. The

function describing pairwise interactions φ : (0,∞) −→ R ∪ {∞} is called the

pair-potential function. We consider three different pair-potential functions.

The first yields the Strauss process with pair-potential function

φS(r) = β1[r < R] (1)

11



and serves as a reference model with interaction between points being less than

distance R > 0 apart. Each R-close point pair contributes with interaction

strength γ = exp(−β), β ∈ R, 0 < γ < ∞. A regular pattern with inhibition

between points is obtained with β > 0 and γ < 1, respectively. β = 0 and γ = 1

correspond to a Poisson process with no interaction. For a process with a fixed

number of points, β < 0 and γ > 1 yield attraction. Otherwise an attractive

Strauss process is not well defined (Møller and Waagepetersen, 2004, p.84). The

Strauss model can be generalized by a step pair-potential function

φS(r) =

 βs , cs−1 < r ≤ cs
0 , r > cS

(2)

allowing for both inhibition (βs > 0) and attraction (βs < 0) at different ranges

cs, s = 1, . . . , S with c0 = 0. In that way, any continuous pair-potential function

can be approximated by a sufficiently large number of jumps S with relatively

weak model assumptions (Clyde and Strauss, 1991). A popular parametric

model for short range inhibition and mid-range attraction is the 12-6 Lennard-

Jones potential

φLJ(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
. (3)

The pairwise interaction changes from inhibition to attraction at the character-

istic distance σ > 0, where the pair-potential function becomes zero. σ may

also be referred to as an interaction range. The parameter ε ≥ 0 determines

the interaction strength. A more general Lennard-Jones model can be found in225

Ogata and Tanemura (1981).

3.3. Anisotropic pair-potential functions

Anisotropic potentials have already been used for describing intermolecular

dynamics with different interactions within and between connected components

of a system (Affouard et al., 1996). Here, the idea is adopted to the pair-230

potential function of a pairwise interaction Gibbs process, where points may

interact differently depending on the direction.
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Isotropic pair-potential functions as discussed in Section 3.2 assign the same

interaction strength to point pairs with the same interpoint distance. We now

introduce anisotropic pair-potential functions, where the interaction parameters

depend on both the length and the orientation of the pairwise difference vectors.

In particular, for direction u ∈ S2 and angle a ∈ [0, π/2], point pairs with

a difference vector inside a double cone C(u, a) are allowed to have different

model parameter values than point pairs with difference vectors outside the

double cone. Let v = y − x be the difference vector of a point pair (x, y) of

X ∩W and let δ(u,a)(v) = 1[v ∈ C(u, a)]. Then (2) and (3) can be modified to

φS(u, a, v) =


β1s , cs−1 < r ≤ cs, δ(u,a)(v) = 1

β2s , cs−1 < r ≤ cs, δ(u,a)(v) = 0

0 , r > cS

(4)

and

φLJ(u, a, v) = δ(u,a)(v)4ε1

((
σ1
‖v‖

)12

−
(
σ1
‖v‖

)6
)

+
(
1− δ(u,a)(v)

)
4ε2

((
σ2
‖v‖

)12

−
(
σ2
‖v‖

)6
)
.

(5)

In the pair-potential function (4), β1s and β2s, s = 1, . . . , S, are interaction

strength parameters inside the double cone and outside the double cone, re-

spectively. The corresponding ranges of interaction are here chosen to be the235

same in all directions. In (5), ε1 and ε2 are the interaction strength parameters

of the Lennard-Jones model in the double cone and outside the double cone,

respectively, σ1 and σ2 are the corresponding interaction ranges. Besides single

double cones also combinations of double cones or other structuring elements

may be used to define anisotropic pair-potential functions.240

3.4. Parameter estimation and simulations

There are several methods available for the parameter estimation of finite

Gibbs processes with pairwise interactions. Comparisons of different methods

and further references can be found in Baddeley and Turner (2000); Diggle
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et al. (1994); and Mateu and Montes (2001). In this study, we use the logistic245

regression version of the maximum pseudolikelihood estimation as discussed in

Baddeley et al. (2014). This method is based on the Papangelou conditional

intensity such that the normalizing constant can be disregarded. Furthermore, it

is computationally simple because it can be computed with standard software.

For the estimation of the step pair-potential function, a Bayesian smoothing250

technique as suggested in Heikkinen and Penttinen (1999) was used since it can

handle large variations of parameter estimates due to low point counts in the

design matrix. Minus-sampling was chosen as edge correction (Illian et al., 2008,

p.185 f.).

Markov chain Monte Carlo was used for the simulation of point patterns.255

In general, Metropolis-Hastings algorithms are popular for the simulation of

Gibbs processes with an unnormalized density on a bounded region (Møller and

Waagepetersen, 2004, p.107). Here, we used the Metropolis-Hastings algorithm

for the conditional case of point processes with a density presented in (Møller

and Waagepetersen, 2004, p.109). We ran 2 · 105 iterations on a standard 2016260

laptop (16Gb RAM, 2.4 GHz processor) to make sure that the stationary distri-

bution was reached, which took about 14 minutes. A guard window as discussed

in Mateu and Montes (2001) was used to correct for missing data outside the

observation window with a fixed number of points resulting in the same intensity

in the original window. The guard window size was chosen to have an additional265

side length of four times the interaction range. As the interaction range is the-

oretically infinite for the Lennard-Jones potential, the interpoint distances were

truncated to obtain a finite range of 4σ and 4 max(σ1, σ2), respectively.

4. Results

The spatial analysis was conducted in R version 3.3.1. The anisotropic and270

inhomogeneous K-function can be found in the package Kdirectional available

on Github. The newly implemented R-functions are extensions of functions

available in the R package spatstat version 1.37-0 (Baddeley and Turner, 2005).
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The main difference in the new R-functions is the construction of the design

matrix. Otherwise, the new functions call the standard glm() R-function and275

the package vblogistic available on Github. For the Lennard-Jones model,

interpoint distances were rescaled to a unit equal to the smallest interpoint

distance present in the point pattern to reduce numerical problems such as slow

convergence (Baddeley and Dereudre, 2013).

Two samples were available for the analysis, which gave similar results and280

let to the same conclusions. In what follows, the results of one sample are

presented in detail. Corresponding plots of the other sample can be found in

the supplementary material.

4.1. Pore characterization

Inhomogeneity in the studied data is visible in the histogram of the number285

of branching points per film layer shown in Figure 3 (top left). The intensity

within the pore branching point pattern seems to follow a linear trend along the

film depth. This result can be explained by the film manufacturing. The number

of connecting points between two branching points tends to be comparable to

their Euclidean distance. This finding speaks for rather straight pore channels.290

In what follows, we will focus on the pore channel orientation.

For detecting anisotropy, the orientation of pairwise difference vectors was

investigated. Studying the inclination is of special interest as it can be linked

to mass transport properties. If a pore channel is close to a straight, vertical

cylindrical tube, for instance, the mass transport will only be affected by the295

pore thickness.

Figure 3 (top right) shows the inclination angles of the pairwise distance vec-

tors between connected pore branching points. Interestingly, the distribution of

the inclination for the first nearest neighbors is similar as can be seen in Figure 3

(bottom left). Judging by the peaks of the bimodal distributions, it appears that300

a point pair has a preferred orientation. This observation can be due to the fact

that the points lie on a gird. However, jittering and randomizing the order of

the points still resulted in a bimodal distribution which can be used as evidence
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for anisotropy in the point pattern. Furthermore, it can be concluded that the

nearest neighbors are most likely branching points connected by a pore channel.305

This is an important finding for describing the pore tortuosity since it indicates

that the shortest pore channels are mostly close to vertical. The anisotropic be-

havior as observed for the connected branching points and the nearest neighbors

seems to decrease for the third nearest neighbor whose inclination distribution

is approaching the isotropic case as shown in Figure 3 (bottom right). In other310

words, the orientation of pairwise difference vectors seems to depend on their

length, where short difference vectors are rather vertically and long ones more

horizontally oriented. This is another sign for anisotropy.

In order to find further evidence for anisotropy, the anisotropic and inhomo-

geneous version of the K-function, Kanin, can be studied in Figure 4 in form of

its variant

L(r) =
3

√
4K(r)

3π
, r ≥ 0.

Figure 4 also shows estimates for the inhomogeneous and conical K-functions.

It can be seen that there is a hard-core distance of about 0.03 as a consequence315

of the pore branching point extraction algorithm. Furthermore, there seem

to be more branching points within short distance r > 0.03 than expected in a

completely spatially random pattern without interactions between points (black

dotted line). The point pattern appears clustered even for longer distances when

not accounting for anisotropy in Lestinhomo.320

For the directional analysis, an opening angle of π/3 was chosen in order to

distinguish between the chosen direction by non-overlapping double cones and

still have wide enough cones containing sufficiently many points for a good esti-

mation of the K-function. Varying the opening angle lead to the same conclu-

sions only more or less prominent for smaller or wider angles. When studying the325

K-function in different directions, the interaction in the z-direction along film

depth appears to be different from the other two main directions (x = (1, 0, 0)

and y = (0, 1, 0)). Whereas there is attraction between points in z-direction, the

points form a rather regular pattern in x- and y-directions. Consequently, inter-
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Figure 3: Top left: histogram of the number of branching points per film layer along film depth

going from air-side (0) to drum-side (1). Top right: histogram of inclination of connected

branching points showing preferred directions of about π/4 and 3π/4 radians from the z-

axis in direction (0, 0, 1). Bottom left: histogram of inclination of the first nearest neighbor.

Bottom right: histogram of inclination of the third nearest neighbor. The inclination for an

isotropic point pattern is represented by the solid curve.

point distances tend to be smaller vertically than horizontally and anisotropy330

in form of a directional trend can be detected.

4.2. Pore branching point modeling

Using the results from the pore characterization, four Gibbs models were

fitted to the data, namely a compressed inhomogeneous Strauss (Strauss), a

compressed inhomogeneous Lennard-Jones (LJ A) and two anisotropic Gibbs335

models with an anisotropic Lennard-Jones (LJ B) and step (Step) pair-potential
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Figure 4: From left to right: estimated inhomogeneous L-function (Lestinhomo, a = π/2),

conical L-function (Lestcone, a = π/6), and anisotropic and inhomogeneous L-function

(Lestanin, a = π/6) for the pore branching points (data). The theoretical curve is given by

Ltheo(u, a, r) = 2/3r3(1 − cos(2a)) for a completely spatially random pattern and envelopes

based on 999 simulations of the theoretical model are given.

function. Prior to fitting inhomogeneous Strauss and Lennard-Jones models

with a linear trend in intensity along the film depth, the data were stretched to

an isotropic pattern by a factor of 1/0.17 = 5.882. This transformation factor

was estimated by following the approach introduced in Redenbach et al. (2009),340

and among several compression factors the one resulting in the most isotropic

pattern is identified using the K-function. The range parameter R = 0.1 of

the Strauss model was chosen through a grid search. The final model for the

untransformed data is a by a factor of 0.17 compressed version of the fitted

model. All linear transformations were done conserving the total volume of345

the observation window. For the anisotropic Lennard-Jones model, LJ B, the

direction of the double cone was set to z = (0, 0, 1) and the opening angle to

2π/3 based on a goodness-of-fit analysis over several angles. The corresponding

estimated parameters can be found in Table 1.

An anisotropic Strauss model was not fitted to the data as it appeared350

unsuitable for modeling the clustering observed along the film depth. Instead,

its generalized version was fitted as a second anisotropic model, Step. At first,

10 equally spaced jump points were used in order to identify a smaller number
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of jumps for the final model. Several options were compared in a goodness-

of-fit analysis. The parameter estimates (γ̂2 = exp(−β̂2)) for the first jump355

after the hard-core distance dhc = 0.030 are presented in Table 1. All other

parameter estimates (β̂s, s = 1, 3, 4, 5) for five jumps at distances 2dhc, . . . , 5dhc

are depicted in Figure 5.

Global envelopes were constructed for the L-function and the rank envelope

test introduced by Myllymäki et al. (2017) was conducted for each tested main360

direction. Figure 6 presents the respective summary plots for the directions x

= (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1) and global envelopes based on 2499

simulations for a 95% confidence test.

Model Parameter estimates P-values

range strength trend x y z

R γ

Strauss 0.100 0.802 -0.203 0.018 0.017 0.015

σ1 σ2 ε1 ε2

LJ A 0.012 1.577 -0.199 0.020 0.019 0.017

LJ B 0.031 0.030 2.464 0.952 -1.245 0.020 0.021 0.020

c1 c1 γ12 γ22

Step 0.030 0.030 3.512 1.432 -1.187 0.018 0.022 0.105

Table 1: Parameter estimates for the four fitted models. Model Strauss is a compressed

inhomogeneous Strauss model with interaction range R and interaction strength γ = exp(−β).

Model LJ A is a compressed inhomogeneous Gibbs model with a Lennard-Jones pair-potential

function with interaction range σ and interaction strength ε. Model LJ B has an anisotropic

Lennard-Jones pair-potential function with different parameter values (σ1, ε1) and (σ2, ε2) for

point pairs within the structure element and outside. Model Step is a Gibbs model with an

anisotropic step pair-potential function, where only the first jump after the hard-core distance

is given for inside (γ12 = exp(−β12)) and outside (γ22 = exp(−β22)) the structure element.

The slope estimates of the fitted linear trend along the film depth are listed under trend.

Multiplicity adjusted p-values (Bonferroni correction) based on rank envelope tests with 2499

simulations are given for L-functions in three main directions x = (1, 0, 0), y = (0, 1, 0) and z

= (0, 0, 1) estimated within a double cone with an opening angle of π/3.
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outside (xy).

5. Discussion

From Figure 6 and the p-values presented in Table 1, it can be concluded that365

the data do not seem to be compatible with any of the suggested models in all

directions. Especially, the compressed models performed poorly. On one hand,

this indicates that the geometrical anisotropy assumption might not hold and

the observed directional trends have to be explained differently. Furthermore,

the anisotropy study in Section 4.1 does not support a simple compression in z-370

direction, but suggests a more complex transformation. On the other hand, Ellis

(1986) found that a very large compression may cause the transformed pattern to

behave approximately like a Poisson process. This may also have happened here,

when the data were stretched by a factor of 1/0.17. In that case, parameters

almost corresponding to the completely spatially random case are fitted and375

linear transformations become ineffective. This explanation is supported by the

parameter estimate for the interaction strength γ̂ = exp (−β̂) = 0.802 of the

Strauss model for the transformed data.

Fitting a Gibbs model with an anisotropic pair-potential function circum-

vents the problem of reaching Poisson like behavior. For the two fitted anisotropic380

models, in fact, a difference between the envelopes for the x- and y-directions to
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Figure 6: Anisotropic and inhomogeneous L-functions with global envelopes for the four

fitted models, a compressed inhomogeneous Strauss (Strauss), a compressed inhomogeneous

Lennard-Jones (LJ A), an anisotropic Lennard-Jones model (LJ B) and an anisotropic Gibbs

model with a step pair-potential function (Step) . The dashed lines give the global envelope

bounds based on 2499 simulations. The thick solid curves correspond to the data. Three

directions were investigated, x = (1, 0, 0), y = (0, 1, 0) and z = (0, 0, 1) within a double cone

with opening angle π/3.
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the z-direction can be seen in Figure 6. Model LJ B, performs well for interpoint

distances up to 0.12 (about 2 µm) in x- and y-directions and tends to overes-

timate the interaction strength for larger distances. Even though the model fit

is far from perfect according to the rank envelope test, the global envelopes for385

Model LJ B suggest that the model is not unfeasible. In z-direction for short

interpoint distances up to 0.06 (about 1 µm), Model LJ B overestimates the

interaction strength and tends to slightly underestimate it for larger distances.

Changing the opening angle and structure element did not improve the model

fit. The findings suggest that the model could be improved by also introducing390

distance dependent interaction parameters. For this purpose, the step pair-

potential function was fitted, which captured the anisotropy in z-direction very

well.

On studying the pair-potential functions of Model LJ B and Model Step

in Figure 5, two explanations can be found on why the Lennard-Jones pair-395

potential function did not fit well. First, there seems to be mid-range re-

pulsion in xy-direction which is not possible to capture in a Lennard-Jones

pair-potential function. Second, even though the shape of the Lennard-Jones

pair-potential function seems suitable in z-direction, the estimated attractive

range and strength were too low. From both anisotropic models two important400

conclusions can be drawn. First, the interaction range appears to be invariant

under rotation. Second, the pairwise interaction seems to be more than twice as

strong vertically along the film depth (z) than horizontally on each layer (xy).

The model fit was very good in the z-direction but not in the x- and y-directions.

The physical-chemical assumption was that the xy-layers are homogeneous and405

isotropic. No strong evidence against this assumption was found in the pore

characterization analysis. Based on the goodness-of-fit results, however, one

could reinvestigate this assumption.
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6. Conclusions

In this article, tools for characterizing and modeling spatial anisotropy in410

three-dimensional, inhomogeneous point patterns have been presented. For this

purpose, new R-functions had to be implemented for the three-dimensional ori-

entational analysis, model parameter estimation and simulations. A modeling

approach based on a linear transformation of the point pattern was compared

to a model with an anisotropic pair-potential function. We have found that415

even though geometric anisotropy may be a good first guess, a model with an

anisotropic pair-potential function might be the better choice.

The presented methods were applied to model the locations of pore branch-

ing points in a porous film used as a pharmaceutical coating. A preliminary

model with an anisotropic Lennard-Jones pair-potential function motivated by420

molecular dynamics was given. The model was improved by changing the pair-

potential function to a step-function allowing for inhibition and attraction at

longer ranges. The model fit may be improved further by taking possible hetero-

geneity on film layers into account. In order to fit a representative model more

replicates are needed, which are however very time consuming to obtain. A com-425

pletely different modeling approach may also be interesting to study, where the

pore branching points are modeled in consecutive layers. Such a model would

describe more the temporal process of the film formation and less the molecular

dynamics within the whole film.

Three important conclusions on the film pore structure were drawn. First,430

it was found that the number of branching points decreases linearly from upper

to lower film layers. Second, the pore branching points appear to be connected

to their nearest neighbor by almost vertical pore channels. Third, the verti-

cal pairwise interaction between branching points seems to be different from

horizontal interaction. These results are not only important for identifying im-435

portant features of the pore structure, but also for further studies in which a

complete model for the pore structure will be constructed.

This work has shown that it is possible to link experimental and statis-
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tical findings for a better understanding of anisotropy and inhomogeneity in

three-dimensional data. The developed tools can be of great value for the char-440

acterization and modeling of any porous material using point process theory. In

this way, material properties can be improved or new materials developed based

on predictive science and fewer resource consuming experiments.
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