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a b s t r a c t 

Two new robust numerical wall functions are evaluated and the effect of different approximations used 

in earlier numerical wall functions by Craft et al. (2004) and by Bond and Blottner (2011) are demon- 

strated. A standard low-Reynolds-number turbulence (LRN) model is used as reference but with different 

meshing strategies. The objective is to considerably reduce the total central processing unit (CPU) cost of 

the numerical simulations of wall bounded flows while maintaining the accuracy of any LRN model. 

When calculating turbulent flow problems, a tremendous speed-up may be achieved by decoupling the 

solution of the boundary layer from the bulk region by using a wall function . However, most wall func- 

tions are quite limited and based on assumptions which are not valid in complex, non-equilibrium flows. 

The present wall functions solve full momentum and energy equations on a sub-grid, using face fluxes 

of advection and diffusion to transfer the solution to and from the sub-grid. The evaluation was carried 

out on an axisymmetric impinging jet using the turbulence model of Launder and Sharma (1974) with 

the correction of Yap (1987).Compared to standard LRN calculations, the results show perfect agreement 

to less than one-sixth of the computational cost. However, the reason for the speed-up is shown to come 

mainly from the meshing strategy, and none of the evaluated wall functions add much additional value. 

© 2017 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The use of CFD continues to increase in industry, due to the

avings that can be achieved in both time and cost over corre-

ponding experiments. To predict industrial flow problems, which

ften have a turbulent nature, the most common approach is still a

eynolds Averaged Navier Stokes (RANS) simulation together with

 turbulence model. Considering accuracy and computational cost

or a certain class of flows, dominated by boundary layer effects,

he most important aspect of such simulations is how the bound-

ry layer is treated. 

The boundary layer is the fluid layer in the immediate vicinity

f a wall, in other words, where the viscous effect is not negligible.

t extends to the fully turbulent regime and, even though it only

ccupies a smaller part of the flow, this region may account for the

ajority of the computing time. The reason for this relatively high

omputational cost is that boundary layer flow properties change
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t a rate typically two or more orders of magnitude faster than

lsewhere in the flow. 

These high gradients require a very fine computational mesh

n order to be resolved accurately. The family of turbulence mod-

ls that uses this strategy of resolving the boundary layer is called

ow-Reynolds-number (LRN) models. These models use the same

et of equations for all parts of the flow and may be accurate for

ost types of flows, but the resulting equation system converges

lowly, especially at high Reynolds number. The turbulence models

pan from simple mixing-length schemes, through two-equation

ddy-viscosity models of different complexity, to second-moment

losure models. 

To mitigate the slow convergence of the LRN models, the

oundary layer and the fully turbulent region may be decoupled,

hus acknowledging the different computational requirements for

he two regions. The most common approach is the high-Reynolds-

umber (HRN) model together with a “wall function”, which uses

 coarse mesh where the first cell layer covers the inner boundary

ayer, including the inner part of the log-layer. Instead of solving

artial differential equations on a fine mesh, an analytical expres-

ion is used to model the flow in the boundary layer. HRN mod-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 A cleaned up version of the implementation is planned to be published under 

https://github.com/backar . 
els with wall functions are often less accurate, and they are also

sensitive to the mesh resolution close to the wall. Attempts have

also been made to analytically integrate the transport equations,

but these give restrictions on the geometry to allow for analytical

integration. 

A more advanced way of decoupling the boundary layer from

the fully turbulent region is to use a “numerical wall function”.

This wall treatment can be seen as a hybrid of HRN and LRN

modelling where the boundary layer is indeed resolved but with

a slightly simplified set of partial differential equations compared

to what is used in the rest of the domain. 

The first numerical wall function in a RANS context, called

UMIST-N, was developed by Gant (2002) and Craft et al. (2004) .

They divided the wall-adjacent cells into a sub-grid where sim-

plified RANS equations, using some sort of boundary layer as-

sumptions, were solved, including tangential velocity and turbu-

lent quantities. Furthermore, the pressure gradient was assumed

to be constant in the wall-normal direction over the sub-grid and

could hence be interpolated from the main-grid. A Dirichlet condi-

tion, with interpolated values from the main-grid’s first and second

wall-adjacent cells, was set on the boundary of the sub-grid, oppo-

site to the wall, for all solved quantities. The calculated wall shear

stress, averaged turbulent production and dissipation terms from

the sub-grid were then used to replace the corresponding terms in

the main-grid equations. This yielded results close to a default LRN

solution at computing times of an order less in magnitude. 

A few studies have investigated variations of the UMIST-N

model. Myers and Walters (2005) simplified the sub-grid equations

even further by using a linear profile for the wall-normal velocity

and used the 2-D continuity equation to calculate the stream-wise

velocity gradient. The convection was neglected in the turbulence

equations. In this way, the 2-D boundary layer equations were

reduced to 1-D equations for the tangential velocity and turbu-

lent model quantities. Bond and Blottner (2011) proposed a similar

model for compressible and transient flow by neglecting convec-

tion in all transport equations. Chedevergne (2010) also developed

a similar 1-D model but implemented it in an unstructured code

where the sub-grid only covered the main-grid’s wall-adjacent

cells from the wall up to the centroid of the main cells. He also in-

cluded compressibility terms in the model equations. Lastly, Wald

(2016) tried to adapt the UMIST-N for a second-moment closure

turbulence model which gave similar results in accuracy as Craft

et al. reported earlier on an axisymmetric impinging jet. However,

Wald (2016) also concludes that the model is unstable and chooses

not to pursue with other geometries. It is not clear from his thesis

whether the robustness issues arise from the use of UMIST-N itself

or only in combination with the turbulence model used. 

Even though the processing speed of computers is continuously

increasing, the CFD community is generally far from satisfied with

available computing resources, regardless of whether they act in

industry or elsewhere. As e.g. Spalart (20 0 0) describes, HRN and

LRN modelling belong to the simpler variants of methods that

solve turbulent transport equations. Nevertheless, with the use of

these relatively simple models for large and complex problems, the

computational resources often set a limit to what can be done.

If the same models are used in design-of-experiments or optimi-

sation loops, the computing resources will obviously always be a

limitation to what can be achieved with simulations for the next

decades. 

With this background, it is important to acknowledge and de-

ploy turbulence modelling techniques that offer the best compro-

mise between accuracy and computing requirements. The numeri-

cal wall function strategy deployed in RANS modelling has existed

since at least 2004 but has not yet been widely adopted by the CFD

community despite its excellent features of supplying a sweet-spot

between HRN and LRN modelling. The most important reasons for
his are probably the cost of implementation and the close con-

ection to the turbulence model. To support a turbulence model,

arlier numerical wall functions need to implement each model’s

pecific source and sink terms, making the implementation and

aintenance more awkward. 

The purpose of this investigation is twofold: first to make an

mplementation in an openly available and unstructured CFD code

nd relax the dependence between the implementation and spe-

ific supported turbulence models. 1 The second purpose is to eval-

ate different near-wall strategies including commonly used as-

umptions in earlier numerical wall functions. 

Two new numerical wall functions are built upon the work

rom Craft et al., but they use a more mathematically stringent cou-

ling which is independent on choice of turbulence model. This

as been achieved by an innovative use of face fluxes, making

 two-way connection between the main-grid and the sub-grid.

hese new numerical wall functions are evaluated on a turbulent

xisymmetric impinging jet with and without assumptions made

n earlier numerical wall functions, but also with standard inte-

ration to the wall using a similar mesh cell distribution which is

ormally used in numerical wall functions. It is found that an ad-

anced mesh strategy gives a similar speed-up as a decoupled ap-

roach, i.e. the numerical wall function, and we demonstrate that

t is also the most robust alternative. Thus, in this study, no added

alue is found for the concept of the numerical wall function. 

. Method 

The effect of different meshing strategies is first investigated

sing a standard wall treatment, i.e. integration to the wall, used

ith LRN turbulence models. Second, the implementation of the

obust wall functions is verified. Third, the new wall functions

re evaluated regarding their sensitivity with respect to how far

he interface is placed from the wall in y + units. Last, the effect

f the assumptions in earlier numerical wall functions Craft et al.

2004) and Bond and Blottner (2011) are compared with the new

obust wall functions and to a standard LRN set-up deploying the

ame local mesh density as with the numerical wall functions. 

All tests and implementations have been done in OpenFOAM®

2015) , Open Field Operation and Manipulation, CFD Toolbox,

hich is a free and open source CFD software package. It uses a

o-located methodology on unstructured polyhedral meshes. This

ethodology is used in both the main-grid and the sub-grid of the

umerical wall functions. However, a restriction is introduced for

he wall-adjacent cells in the main-grid to be prismatic. 

.1. Governing equations 

The full 3D-RANS equations are solved in both the main-grid

nd the sub-grid, with the assumption that the pressure gradient

n the wall-normal direction is constant in the sub-grid. Incom-

ressible Reynolds averaged Navier–Stokes in tensor notation reads

 i,i = 0 , (1)

 i,t + ( u i u j ) , j = − p ,i 
ρ

+ 

[
(ν + νt )( u i, j + u j,i ) 

]
, j 

(2)

 ,t + ( u i T ) ,i = 

[ (
ν

σ
+ 

νt 

σt 

)
T ,i 

] 
,i 

(3)

ith the LRN model of Launder and Sharma (1974) including the

orrection of Yap (1987) , 

 ,t + ( u i k ) ,i = 

[ (
ν + 

νt 

σk 

)
k ,i 

] 
,i 

+ P k − ˜ ε − D (4)

https://github.com/backar
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f  

L  

b  
˜  ,t + ( u i ̃  ε ) ,i = 

[ (
ν + 

νt 

σε 

)
˜ ε ,i 

] 
,i 

+ C ε 1 P k ̃  ε /k − C ε 2 f 2 ̃  ε 2 /k + E + S ˜ ε 

(5) 

here 2 

P k = νt S 
2 , S ≡

√ 

2 S i j S i j , S i j = 0 . 5( ̄u j,i + ū i, j ) , 

k = 1 . 0 , σε = 1 . 3 , C ε 1 = 1 . 44 , C ε 2 = 1 . 92 , 

f 2 = − 0 . 3 exp 

(
− min 

[
50 , k 2 ˜ ε /ν

])
, 

D = 2 ν
[ 
( 
√ 

k ) ,i 

] 2 
, E = 2 ννt 

(
u i, jk 

)2 
. 

(6) 

he Yap correction includes the normal distance to the nearest

all, y n , 

 ˜ ε = 0 . 83 

ε 2 

k 

(
k 1 . 5 

ε l e 
− 1 

)(
k 1 . 5 

ε l e 

)2 

, l e = c −0 . 75 
μ κ y n (7)

nd the turbulent viscosity is expressed as 

t = C μ f μ
k 2 

˜ ε 
, C μ = 0 . 09 , f μ = exp 

(
−3 . 4 

1 + k 2 ˜ ε / ( 50 ν) 

)
. (8)

The standard HRN model k − ε reads: 

 ,t + ( u i k ) ,i = 

[ (
ν + 

νt 

σk 

)
k ,i 

] 
,i 

+ P k − ε (9)

 ,t + ( u i ε) ,i = 

[ (
ν + 

νt 

σε 

)
ε ,i 

] 
,i 

+ C ε 1 P k ε/k − C ε 2 ε 
2 /k (10)

ith the turbulent viscosity as νt = C μ
k 2 

ε and constants

k , σε , C ε 1 , C ε 2 as earlier defined. Together with the HRN model,

 standard wall function is used which sets the value, in the

all adjacent cells, of the turbulent dissipation and the turbulent

roduction 

3 

ε = C 3 / 4 μ k 3 / 2 / (κy n ) 

 k = (ν + νt ) |∇ N w U| C 1 / 4 μ

√ 

k / (κy n ) 
(11) 

here ∇ N w U is the wall-normal gradient of the velocity, κ = 0 . 41 ,

nd y n is, as before, the near-wall distance. 

.2. Mesh strategies 

The difference between typical near-wall mesh strategies in

RN and LRN modelling is the size of the near-wall cells, see

ig. 1 a and b. The cell sizes are generally non-uniform and increase

n size with increasing distance to the wall using a simple geomet-

ic expansion. It is commonly good practice to use a constant and

ufficiently small mesh expansion ratio, resulting in a change in

esh spacing, which is continuous. When numerical wall functions

ave been used, a sub-grid has been added to an HRN mesh ( Craft

t al., 2004; Myers and Walters, 2005; Bond and Blottner, 2011;

hedevergne, 2010 ) to be able to resolve the turbulent boundary

ayer as in LRN modelling. By doing this, a distinct discontinuity

n cell size appears between the sub-grid cell farthest from the

all and the second main-grid cell. To mitigate this discontinu-

ty, this layer of the main-grid cells adjacent to the sub-grid can

e refined. All in all, deploying this strategy in a monolithic mesh

ould create an AMS, Advanced Meshing Strategy, mesh having
2 Observe that the evaluation of P k , involving velocity gradients, at the interface 

etween the main-grid and the sub-grid needs special treatment, see relevant para- 

raph in 2.3.2. 
3 This implementation uses total viscosity in the expression of the turbulent pro- 

uction instead of the more common use of the molecular viscosity. 

s

f

i

t

v

hree layers with different cell expansion ratios, see Fig. 1 c, that

an be optimised individually. Normally, CFD software allows the

ser to adapt the value of r w 

and recommend a value typically less

han 1.2 and emphasize that this region should cover the whole

oundary layer. Here we set the value of r w 

= 1 . 07 to ensure that

iscretization errors are small in this region containing very high

radients. This seems to be especially important for the gradient

f turbulent dissipation, ε which may be huge close to the wall. To

ptimize for speed-up we use a relatively high cell expansion ra-

io outside the boundary layer, r i = 2 , where all gradients are much

ower than those near-wall. Even further away from the wall a uni-

orm grid is used, or with a low cell expansion ratio, r o = 1 . 07 . In

ection 3.1 , this AMS mesh will be compared with an LRN mesh re-

arding accuracy and computational lead-time for a few set-ups at

hree different Reynolds numbers and variations of cell expansion

atios. 

.3. New numerical wall functions 

Two different robust numerical wall functions have been devel-

ped to solve full Navier–Stokes equations, both in a main-grid and

 sub-grid. The sub-grid equations are assembled and solved prior

o the assembling of the main-grid equations. In contrast to ear-

ier numerical wall functions ( Craft et al., 2004; Myers and Walters,

005; Bond and Blottner, 2011; Chedevergne, 2010 ), local continu-

ty is enforced and the main-grid and sub-grid use identical advec-

ive and diffusive fluxes at the interface, see Fig. 2 . The first model,

abelled NFF, Numerical Face Flux, employs face fluxes in both di-

ections, i.e. to and from the sub-grid, for all solved entities. The

nly difference from the second model called NWF, Numerical Wall

lux, is that the velocity and temperature from the sub-grid to the

ain-grid use wall fluxes, which is also how Craft et al. (2004) cou-

led these entities in this direction. 4 Before going into detail about

he coupling strategies, the mesh set-up is depicted. 

.3.1. Mesh 

The sub-grid is defined to overlap the wall-adjacent cells in the

ain-grid, see Fig. 2 . However, the concept of having a sub-grid

ith multiple cell layers in the wall-adjacent cells of the main-

rid will lead to mesh size discontinuities at the interface between

he main-grid and sub-grid. The two cell layers closest to the wall

f the main-grid are normally close in size. Still, the top cell layer

n the sub-grid facing the second cell layer in this main-grid is far

maller in size, dependent on the number of cell layers in the sub-

rid. Bäckar (2016) investigated the magnitude of this possible dis-

retization problem using three different mesh strategies for the

ain-grid, as displayed in Fig. 3 . It was found that the total num-

er of cells in the extended eMesh can be kept almost as low as in

he discontinuous dMesh at the same time as discretization errors

re almost completely mitigated. The purpose of the continuous

Mesh , see Fig. 3 a, is to resemble a standard LRN mesh as close as

ossible. This mesh is only used during verification of the imple-

entation of the robust numerical wall functions. 

.3.2. Numerical face flux model (NFF) 

In both the main-grid and the sub-grid, boundary conditions

or all entities are set up as in a standard wall treatment of the

RN model with one exception. At the interface boundary , i.e. at the

oundary of the sub-grid which faces the bulk flow, see Fig. 2 , all
4 In the opposite direction, where the NWF model uses face fluxes, Craft et al. 

et a Dirichlet boundary condition for the sub-grid entities with values interpolated 

rom the main-grid except for the wall-normal velocity. This velocity component is 

nstead calculated from continuity within each of the sub-grid cells but then scaled 

o ensure that its value at the outer edge of the sub-grid matches the corresponding 

alue in the main-grid. 
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(a) LRN (b) HRN

ro

ri

rw

(c) AMS

Fig. 1. Typical near-wall mesh strategies for different wall treatments, where HRN and LRN have a constant cell expansion ratio, r . In contrast, the AMS has three regions 

with different ratios. 

Fig. 2. Sketch of the sub-grid arrangement. The height of the sub-grid’s cells in- 

creases with increasing distance to the wall. 
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5 The zero-flux condition is implemented as a derivative of a homogeneous Neu- 

mann condition, i.e. zeroGradient condition in OpenFOAM, where both the advective 

flux and the diffusive flux are set to zero. The motive is to cancel any flux arising 

from the boundary condition and let the wall model add the calculated flux from 
t

Fig. 3. Sketch of the topology of three different main meshes with difference in cell size 

the node centres and dashed lines at the faces, overlap a larger main cell whose node ce
ntities solved for are set to a zero-flux condition. 5 New interface

uxes are then added as source terms, see below. 

ontinuity. As the pressure is not solved on the sub-grid, the con-

inuity needs to be achieved in another way. The mass flux, stored

t the wall-normal faces of the sub-grid, is normalized with the

orresponding cell faces of the main-grid, see Fig. 4 . This is done so

hat the sum of the mass flux of sub-faces equals the mass flux to

he overlapping main face. If the number of layers in the sub-grid

s larger than one, there are also wall-parallel faces in the sub-grid

ot overlapping any face of the main-grid. For these sub-faces the

ass flux is updated to ensure that the sum of the mass flux per

ell is zero, which is the same as a divergence-free velocity field. 

The pressure gradient in the sub-grid is calculated by mapping

t from the main-grid. The normalizing of the mass flux, as well
he main-grid as a source term, see Eqs. (12) , ( 13 ), and ( 15 ). 

discontinuities. Observe that the sub-grid cells, represented by non-filled circles at 

ntre is displayed with a filled circle. 
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Fig. 4. A principal sketch of the mapping of mass flux and the mapping of the 

pressure gradient from the main-grid to the sub-grid. 

Fig. 5. Principal sketch of the coupling in the face flux model where all entities are 

coupled with face fluxes: to and from the sub-grid’s top node, , and within the 

main-grid, . Observe the lack of coupling from the main wall cell, which has 

been decoupled. 
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6 Tests have also been made where u f was interpolated from a combination of 

main and sub nodes but no noticeable difference could be noted. This is not a sur- 

prise as the mass flux in the sub-grid has been normalized by the mass flux from 

the main-grid, see previous paragraph about continuity. 
s the mapping of the pressure gradient, is done before the mo-

entum equations are assembled every iteration. In this way, con-

inuity is secured in all cells in the sub-grid. This is in contrast

o the UMIST-N model by Gant (2002) where the mass flux across

he wall-normal faces in the sub-grid is not normalized with the

orresponding mass flux in the main-grid. However, this model

oes calculate the wall-normal velocity component based on the

all-parallel velocity component using continuity which temporar-

ly generates a divergence free velocity in the sub-grid. Later, when

he wall-normal velocity component is scaled with the correspond-

ng component in the main-grid to achieve matching velocities at

he interface between the main-grid and the sub-grid, the local

ontinuity in the sub-grid is destroyed. However, Gant shows that

he resulting wall-normal velocity component is unaffected at the

tagnation zone of an impinging jet even though local continuity

s not rigorously satisfied in the sub-grid. 

iscretization at the interface. The coupling in the main-grid be-

ween the wall cell and its neighbour away from the wall is decou-

led for all entities but pressure and replaced by couplings to and

rom the sub-grid, see Fig. 5 . The couplings between the main-grid

nd sub-grid of all entities solved for on the sub-grid are handled

ith face fluxes, almost in the same way as grid internal cells are

onnected within both grids. These fluxes include advection and

iffusion. For the diffusion the explicit, S p , and the implicit, S u ,

ources can be written as, super-scripts refer to main or sub, re-
pectively, and x refers to both: 

 

x 
p = [(1 − w ) νs + wνm 

] 
1 

δy s + δy m 

| S f | (12) 

 

s 
u = S x p φ

m (13) 

 

m 

u = S x p φ
s (14) 

ere, ν is the total viscosity, δy s and δy m 

are the distances from

he interfacing face, with a face normal area of S f , to the closest

ode in the sub-grid and the main-grid, respectively, see Fig. 6 . w

s a weighting factor calculated as w = δy s / (δy s + δy m 

) , and φ is

he value at the neighbouring cell centre, across the grid interface,

f the entity in question. In this implementation, the cross-term of

he diffusion has been neglected, see last term in Eq. (2) , as it is

enerally small compared to the main diffusion term. 

For the advection, using the central-differencing scheme, the

ources become: 

 

s 
p = (1 − w )( u f · S f ) S s u = − w ( u f · S f ) φ

m (15) 

 

m 

p = − w ( u f · S f ) S m 

u = (1 − w )( u f · S f ) φ
s (16) 

here u f is the face velocity, interpolated from the main nodes

n each side of the face, 6 and φ means, as before, the cell-centre

alue of the entity in question. 

Every iteration is started by solving all the transport equations

n the sub-grid followed by the same in the main-grid. All source

erms are calculated using the current values from the current grid,

ogether with the earlier values calculated from the other grid. 

elocity gradients at the interface. The gradient in a cell is calcu-

ated from the face values using the Green–Gauss theorem. Thus,

o calculate the gradient correctly, it is sufficient to interpolate the

ell values to face values. For accurate interpolation to the inter-

ace between the main-grid and sub-grid the values of the inter-

ace adjacent cells in both the sub-grid and the main-grid must

e used. One example containing gradients is the cross-terms of

he diffusion, which in this implementation have been neglected,

ee the previous paragraph. However, the turbulent production in-

ludes the gradient of the velocity, see Eqs. (6) and ( 11 ), and must

lso be calculated at the interface. To evaluate this gradient cor-

ectly on the sub-grid we temporarily set a Dirichlet condition at

he interface by interpolating the interface-adjacent cell of the sub-

rid and the cell of the main-grid on the other side of the interface.

irectly after the turbulent production field has been calculated in

he sub-grid, the Dirichlet condition for the velocity is set back to

 zero-flux condition. 

For the velocity in the main-grid we instead use the wall-

djacent cell which is temporarily set to a value so that a cell-

o-face interpolation gives the same value as is calculated for the

nterface boundary of the sub-grid. The wall-adjacent velocity is

eset to its original value as soon as the turbulent production field

as been calculated. 

urbulent viscosity in wall cells. When face flux is used as cou-

ling between the main-grid and sub-grid for the turbulent enti-

ies there is no need to solve any turbulent transport equations

n the wall-adjacent cells of the main-grid. However, in the mo-

entum equation, the turbulent viscosity must be calculated also
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Fig. 6. A sketch of the relation between a face and the related nodes on each side at the interface between the main-grid and the sub-grid. 

Fig. 7. Principal sketch of the velocity coupling from the main-grid and sub-grid 

for the wall flux model. The wall shear stress calculated in the sub-grid’s wall cell, 

, is added to the main-grid’s momentum equation as a wall flux. From the 

main-grid to the sub-grid the velocity is coupled with face flux, , as in the 

face flux model. In the main-grid, the face fluxes, , are untouched. Instead, the 

Dirichlet wall boundary condition in the main-grid is replaced by a slip condition. 
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7 Craft et al. (2004) report that the PLS approach later was abandoned by its orig- 

inators after encountering difficulties when going to more complex geometries. 
for these cells as an input to the diffusion term. This is done by

cell averaging each turbulent entity from the overlapping sub-grid

cells. From these averaged values, the turbulent viscosity is calcu-

lated according to the definition of the specific turbulent model

used. At the end of the chain, the OpenFOAM machinery interpo-

lates the cell values onto the relevant face to get the face values of

the turbulent viscosity which are needed in the equation. 

2.3.3. Numerical wall flux model (NWF) 

In the wall flux model, the coupling in the main-grid from the

wall cell to its neighbour further away from the wall is not de-

coupled. Instead, a slip boundary condition for the velocity is set

at the wall of the main-grid and the coupling from the sub-grid

is in the form of wall shear stress, similar to what is used in the

UMIST-N model of Craft et al. (2004) , see Fig. 7 . The source term

added to the momentum equation in the wall-adjacent cells of the

main-grid is: 

S u = −ν
1 

δy 
| S f | u s , (17)

where ν is the physical viscosity, δy is the distance from the wall

to the wall-adjacent node in the sub-grid, | S f | is the cell face area

at the wall and u s is the velocity in the wall-adjacent node of the

sub-grid. A similar technique outlined here for the velocity is also

used for the temperature. 

2.4. Approximations in the numerical wall function 

The only approximation in the present numerical wall func-

tions, i.e. the NFF and the NWF, is that the pressure gradient in

sub-grid cells is constant in the wall normal direction and equal to

the corresponding term in the overlapping main-grid cell. Further,
hese wall functions solve the equations in the main-grid and in

he sub-grid in sequence in an iterative manner. This is in con-

rast to the AMS where the equations are solved in one mono-

ithic matrix per entity. However, previous numerical wall func-

ions ( Craft et al., 2004; Myers and Walters, 2005; Bond and Blot-

ner, 2011; Chedevergne, 2010 ), only solve boundary layer equa-

ions on the sub-grid and used a few supplementary but different

pproximations. Specifically, in their UMIST-N model, Craft et al.

2004) solve an equation for the wall-parallel velocity and cal-

ulate the wall normal velocity from continuity in the sub-grid.

oreover, the wall-parallel diffusion is neglected and the sub-grid

s actually divided in many one-dimensional sub-grids, each one

f them is overlapping a wall-adjacent cell in the main-grid. We

elieve, the intention has been to create a parabolic form of the

quation where the downstream flow does not influence the up-

tream flow. These equations have then been solved using a fast

arching scheme in the streamwise direction with TDMA (Tri-

iagonal Matrix Algorithm). We evaluate this assumption in a vari-

nt of the NWF model, labelled UMI, but the equations on the

ub-grid are still solved monolithically as the sub-grid has not

een divided into smaller one-dimensional grids. Myers and Wal-

ers (2005) and Bond and Blottner (2011) , whose model is named

he “diffusion model”, here labelled DIF, simplified the equations

n the sub-grid even further by including only the wall-normal

iffusion. In this way, they were able to simplify the equations

o be completely one-dimensional. In another variant of the NWF

odel, called NnA (Numerical no Advection), we evaluate this as-

umption and hence neglect advection for all solved entities. As

n UMI, all entities are solved on the full sub-grid in three di-

ensions. It should be noted that we evaluate what effect these

ifferent assum ptions will give on their own without using a fast

arching scheme, which of course could have been deployed for

hese parabolic equations, see e.g. Patankar and Spalding (1972) .

acovides and Launder (1984) reports a speed-up of 2–3 of the

omputational time for PLS, i.e. their implementation of this kind

f time-marching scheme, applied on a low-Reynolds-number set-

p. 7 

The under-relaxation used in each model has been adapted in-

ividually to give shortest lead-time for converging the solution.

or an overview of solver and modelling differences in the differ-

nt numeric wall treatments see Tables 1 and 2 , respectively. 

.5. Set-up of test cases and used output 

Here, we outline the set-up of the test cases used in the verifi-

ation and validation of the different wall treatments. For all calcu-

ations performed using an LRN model, the mesh density is chosen

o give an y + value close to unity, in practice y + ∈ [0 . 75 , 1 . 02] . For

ll solved entities, the central differencing scheme, CD, is used for

aminar set-ups, and the linear upwind scheme, LUD, is used for

urbulent set-ups. 
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Table 1 

Overview of solver differences between the different wall treatments. 

Acronyms used in table; BCG (pre-conditioned Bi-Conjugated Gradient), 

TDMA (Tri-Diagonal Matrix Algorithm). 

Property / Model NFF NWF UMI NnA UMIST 

Grid 

Co-located Main Yes Yes Yes Yes No 

Sub Yes Yes Yes Yes Yes 

Algebraic solver Main BCG BCG BCG BCG TDMA 

Sub BCG BCG BCG BCG TDMA 

Relax. U,V,W Main 0.9 0.9 0.9 0.9 0.35 

Sub 0.9 0.9 0.9 0.9 1.0 

T Main 0.99 0.99 0.99 0.99 0.6 

Sub 1.0 1.0 1.0 1.0 1.0 

k , ε Main 0.8 0.8 0.8 0.8 0.45 

Sub 0.8 0.8 0.8 0.8 0.85 

Table 2 

Overview of model differences between the different wall treatments. 

Acronyms used in table; Cnt (Entity evaluated from continuity), Slv (Entity 

is solved for), FF (Face Flux), WSS (Wall Shear Stress), SST (Source and Sink 

Terms of the turbulent equations), DIV (Dirichlet using Interpolated Values 

from main-grid). 

Treatment of NFF NWF UMI NnA UMIST DIF 

Solved dimensions 3 3 3 3 3 ∗ 1 

Accounts for advection Yes Yes Yes No Yes No 

Mass flux Cnt Cnt Cnt N/A Cnt N/A 

Wall-normal velocity Slv Slv Cnt Slv Cnt Cnt 

To main U, T FF WSS WSS WSS WSS WSS 

k , ε FF FF FF FF SST SST 

To sub U, T FF FF FF FF DIV DIV 

k , ε FF FF FF FF DIV DIV 

∗The UMIST model solve its equations in 3D but on a number of one- 

dimensional grids. 
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.5.1. Channel flow 

The channel flow is a simple test case with neither a wall-

ormal advection nor a non-zero pressure gradient. Fully devel-

ped flow is ascertained by using a periodic boundary condition

n the streamwise direction, together with a pressure gradient as

he driving source. 

.5.2. Axisymmetric impinging jet 

The test case chosen for most verifications and validations of

he numerical wall models in the literature is the axisymmet-

ic semi-confined impinging jet on a plane surface ( Baughn et al.,

991; Cooper et al., 1993 ), see Fig. 8 . The distance between the noz-

le and the impinging wall is set to two nozzle diameters, the

uter radius of the impinging wall is set to 10 nozzle diameters,

nd the half angle of the sector is set to 1 °. The boundary opposite

f the impinging wall is set to a symmetric boundary condition. 8 

ully developed flow in the nozzle is ascertained by feeding the

nlet from a pipe with periodic streamwise boundary conditions.

he impinging jet involves both advection and diffusion, and has a

on-uniform pressure gradient. Hence, we can here verify whether

hese features are implemented correctly. 

For comparisons the skin friction, C f , and the Nusselt num-

er, Nu , are used. The skin friction is defined as C f = 2 τw 

/ (νU 

2 
in 
) ,

here τw 

is the wall shear stress, ν is the viscosity, and U in is

he velocity at the inlet. The Nusselt number is defined as Nu =
 N w T / (T w 

− T in ) /D, where ∇ N w T is the wall-normal gradient of the

emperature, T w 

and T in are the temperatures at the wall and the

nlet, respectively, and D is the inlet diameter. 
8 Use of a symmetry condition is a common simplification of the more correct 

se of an ambient pressure condition. The symmetry condition adds stability to the 

olution but may have an impact on comparisons with experiments. As no compar- 

son with experiments is made, we allow ourselves to use this simplification. 

r  

m  

I  

w  

o

.6. Verification and validation 

In the concept of systems engineering the definition of verifi-

ation means that the problem has been solved “right”, and vali-

ation should ensure that the “right” problem is being worked on.

chwer (2009) presents a commonly accepted definition of verifi-

ation and validation of mathematical models, where the second

art focuses on asserting the predictive capability of the model.

owever, this research aims to reduce the computational cost, or

mprove the speed-up, of the predictive capability of a turbulence

odel family. The aspect of computational cost of the predictive

odel is silently ignored by Schwer (2009) but may be mapped to

he more general definition of validation in systems engineering.

ence, the definitions used here are a mixture of both definitions

bove. Verification is used to affirm that certain simulations using

he robust numerical wall functions give more or less identical re-

ults as a simulation using the default wall treatment, i.e. a LRN

odel. This is close to the special definition of code verification by

chwer (2009) . Several aspects are tested during validation, accu-

acy, robustness and speed-up, which maps closest to the counter-

art in systems engineering. 

.6.1. Verification 

During the verification, only grids of cMesh type, see Fig. 3 a, are

sed to mimic LRN as closely as possible. For the same reason, the

D advection scheme would also have been used for turbulent set-

ps if it were not a question of robustness problems. Instead, the

UD scheme is used for all turbulent set-ups. Recall that the advec-

ive fluxes over the interface are computed using the CD scheme.

xcept for differences in the advection scheme, a correct imple-

entation would give identical results for the sub-grid model and

 default wall treatment of any low-Reynolds-number turbulence

odel under any of the following premises: 

• the pressure gradient is constant across the domain covered by

the sub-grid. The test case is the turbulent channel flow. 
• the sub-grid has only one cell layer. The test case is the laminar

set-up of the impinging jet. 

The exchange of fluxes to and from the sub-grid for all enti-

ies needs to be verified. First, the diffusion is tested using a tur-

ulent channel flow, Re τ = 590 , using the Launder–Sharma model.

owever, as a turbulence model is included, the correction of the

elocity gradients used in the production term at the interface is

lso verified. Recall that the turbulent production is proportional

o the square of the velocity gradient. To test for a combination

f advection and diffusion, the laminar axisymmetric impinging jet

n a plane surface is used, Re D = 450 . This test case also includes

 non-uniform pressure gradient. Hence, all of these features are

ested simultaneously but must be tested with a single layer in the

ub-grid. The verification is presented in Section 3.3 . 

.6.2. Validation 

The purpose of the validation is to investigate the usefulness of

he different wall treatments in terms of accuracy and speed-up.

n addition, the difference in robustness, i.e. the easiness of find-

ng a converged solution, is highlighted. The HRN approach repre-

ents the fast, low precision prediction, and the LRN approach rep-

esents the slow, high precision prediction. In the LRN approach,

any more cells are used as compared to what is used in HRN.

t thus has a higher computational cost. The AMS mesh together

ith all the numerical wall functions represent different strategies

f finding a sweet-spot between accuracy and speed-up. 
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Fig. 8. Left part of an AMS mesh for a turbulent axisymmetric impinging jet set-up at Re D = 23 , 0 0 0 where the symmetry line is at x = 0 and the impinging wall at z = 0 . 

The inlet of the impinging jet is fed with flow conditions from a periodic pipe, i.e. fully turbulent flow. The coloured frames are locations of zoom in, see Figs. 9 and 10 . 
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3. Results 

3.1. Evaluation of meshing strategies 

Fig. 8 displays the part of the mesh containing the inlet for a

set-up of the turbulent impinging jet where AMS is applied to both

the impinging wall and the pipe wall. The thick blue line at the

walls is in fact many thin lines representing the borders of many

thin cells with a high aspect ratio. The coloured boxes, in green
w  
nd red, indicate the regions where zoom-ins are available, see

igs. 9 and 10 . 

In Table 3 , the number of cells, required iterations, and lead

ime are collected for a number of set-ups of the turbulent imping-

ng jet, at three different Reynolds numbers, using different mesh

trategies at the impinging wall and the pipe wall. Applying the

MS reduces the number of cells compared to a standard LRN set-

p to a fraction of around 0.6 for AMS at the impinging wall, 0.4

or AMS at the pipe wall, and 0.25 when AMS is applied to both

alls. The number of iterations are also reduced, but only for set-



J.-A. Bäckar, L. Davidson / International Journal of Heat and Fluid Flow 67 (2017) 27–42 35 

Fig. 9. Meshing details at the impinged wall for a mesh for turbulent axisymmetric impinging jet at Re D = 23 , 0 0 0 . For location see coloured frames in Fig. 8 . 
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ps where AMS is applied to the pipe wall. The combined effect of

 fewer number of cells and iterations leads to a substantial reduc-

ion in lead time, a factor between 6 and 12 when AMS is applied

o the pipe wall and between 9 and 16 when applied to both walls.

The turbulent dissipation is often the entity that displays the

ighest gradients in a RANS simulation. Thus, this is a good can-

idate to use when asserting that the mesh is fine enough to re-
olve the shear and boundary layers. In Fig. 11 , the magnitude of

he gradient of the turbulent dissipation is compared for a set-

p using AMS with a typical LRN set-up at a Reynolds number

f 71,0 0 0. Only a minor difference can be spotted around the jet’s

hear layer close to the pipe exit, where the typical LRN mesh, us-

ng four times as many cells, resolves it only slightly better. 
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Fig. 10. Meshing details at the pipe for a mesh for turbulent axisymmetric impinging jet at Re D = 23 , 0 0 0 . For location see coloured frames in Fig. 8 . 
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To examine the features at the wall, we examine the wall shear

stress and the heat transfer at the wall, which are both plotted in

Fig. 12 for all mesh strategies at a Reynolds number of 71,0 0 0. The

wall shear stress in Fig. 12 a is evaluated to exactly the same val-

ues for all mesh strategies, as all lines are plotted on top of each

other. The only possibility to separate the results from each other

is by recognising that the number of cells along the impinging wall
iffer if AMS is applied to the pipe wall or not. For the heat trans-

er, a similar agreement is shown in Fig. 12 b except for the cell at

he very centre of the stagnation point, where a small difference is

oticeable. 

Hence, from a naive meshing strategy, the number of cells can

e reduced by a factor of four and the lead time a factor of ten

ithout sacrificing any accuracy using the AMS near the walls. 
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Fig. 11. The magnitude of the gradient of the turbulent dissipation, ˜ ε , at Re D = 71 , 0 0 0 . 
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.2. Evaluation of mesh stretching 

Similar data are collected in Table 4 , as were earlier displayed in

able 3 , from set-ups with different stretchings, i.e. geometric cell

xpansion. The same stretching is applied in the wall normal direc-

ion for both the impinging wall and the pipe wall, including the

ells below the nozzle exit. Both the standard LRN, with a uniform

tretching, and the AMS meshes have been considered, where the

iven stretching refers to the near-wall stretching, r w 

. For the AMS

esh the stretching in the ‘interface’ region, r i , and in the outer

egion, r o , also have to be set, see Figs. 1 and 8 . Here the outer

tretching, r o , is set to give the same maximal cell sizes in the wall

ormal direction as the corresponding LRN set-up. The ratio used

n the region interfacing the near-wall and the bulk region, r i , is set

o a value of two to quickly increase the cell size going from the

all to the bulk. In order not to introduce large discretization er-
ors using a high stretching, it is important to locate the interface

egion to where there are not any high gradients. Specifically, this

egion should be at a sufficient distance from the wall where the

radient of the turbulent dissipation has decreased considerably

rom its near-wall peak value. Three different stretchings, near-wall

or AMS, are considered, r, r w 

∈ [1.07, 1.09, 1.11], which were all

emonstrated to be robust in terms of reaching a converged so-

ution. As is shown in Table 4 , an increased stretching ratio results

n fewer cells and iterations and hence also shorter computational

ead-times. Going from r = 1 . 07 to r = 1 . 11 gives less than half the

ead-time for both LRN and AMS. The reference used for the rela-

ive lead-time is the corresponding AMS set-up from Table 3 with

tretching ratios r w 

= r o = 1 . 07 and r i = 2 . This difference in outer

tretching, r o , between the reference and the corresponding AMS

et-up in Table 4 gives a difference in relative lead-time of 30%. 
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Table 3 

Number of cells and computing times, i.e. wall clock time, for the axisym- 

metric impinging jet using the Launder–Sharma model for different mesh 

strategies/wall treatments at the impinging wall. y + 
i 

denotes location of the 

interface. 

Re D Meshing Wall #Cells Iter. Time 

y + 
i,pipe 

y + 
i,imp. 

treat. [s] (rel.) 

230 0 0 – – LRN 10,925 1384 217 10.3 

– 100 AMS 6815 1305 126 6.0 

50 – AMS 4196 743 42 2.0 

50 100 AMS 2636 521 21 1.0 

710 0 0 – – LRN 15,503 2548 590 8.6 

– 200 AMS 10,058 2755 407 5.9 

100 – AMS 5657 1540 130 1.9 

100 200 AMS 3710 1164 69 1.0 

220 0 0 0 – – LRN 21,278 6738 2010 15.8 

– 300 AMS 14,648 7472 1647 13.0 

150 – AMS 8158 2028 279 2.2 

150 300 AMS 5749 1645 127 1.0 

Fig. 12. Turbulent axisymmetric impinging jet at Re D = 71 , 0 0 0 comparing; : 

standard LRN, : AMS ( y + 
i 

= 100 ) on pipe wall, : AMS ( y + 
i 

= 200 ) on im- 

pinging wall, and : AMS on both walls, y + 
i 

as earlier. 

Table 4 

Number of cells and computing times, i.e. wall clock time, for the axisymmetric 

impinging jet using the Launder–Sharma model for different mesh strategies. r w 
denotes near-wall stretching. 

Re D Meshing Wall #Cells Iter. Time 

y + 
i,pipe 

y + 
i,imp. 

r w treat. [s] (rel.) 

71,0 0 0 – – 1.07 LRN 15,503 2548 590 8.6 

– – 1.09 LRN 10,608 2342 397 5.8 

– – 1.11 LRN 7660 2180 277 4.0 

100 200 1.07 AMS 3946 1160 87 1.3 

100 200 1.09 AMS 2951 809 51 0.7 

100 200 1.11 AMS 2339 655 34 0.5 

Fig. 13. Turbulent impinging jet at Re D = 71 , 0 0 0 with different mesh stretching, r w , 

for standard LRN and AMS ( y + 
i,pipe 

= 100 and y + 
i,imp 

= 200 ); : LRN ( r w = 1 . 07 ), 

: LRN ( r w = 1 . 09 ), : LRN ( r w = 1 . 11 ), : AMS ( r w = 1 . 07 ), : AMS 

( r w = 1 . 09 ), and : AMS ( r w = 1 . 11 ). 
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Fig. 13 plots the skin-friction and the heat transfer for all set-

ps in Table 4 . As can be seen, the results are plotted on top of

ach other for both skin-friction, see Fig. 13 a, and heat transfer, see

ig. 13 b. Thus, minor changes of the stretching ratio do not affect

he accuracy but can substantially improve the lead-time. 

.3. Verification of wall function implementations 

Fig. 14 compares the results for the turbulent channel flow of

he default LRN, the face flux and the wall flux models on typical

RN meshes, see Figs. 1 a and 3 a. By observing the results in Fig. 14 a

e can already tell that the diffusion scheme has been imple-

ented correctly, as the plots match perfectly. That the turbulent

ntities are also plotted on top of each other in Fig. 14 b demon-

trates that the velocity gradients at the interface have also been

orrected properly before the turbulent production is evaluated in

he cells next to the interface in the main-grid. 9 

Fig. 15 presents simulation results of the laminar impinging jet,

here the verification of the CD advection scheme shows the same

awless agreement for both skin-friction and heat transfer as was

arlier presented for the diffusion scheme. 

.4. Evaluation of new wall functions 

It is important for a wall meshing strategy to be insensitive to

he location of the interface as the boundary layer thickness is

ot known a priori . In Fig. 16 , the wall shear stress and the heat

ransfer at the impinging wall are compared for different mesh-

ng strategies for two different locations of the interface near the

mpinged wall. At the peak of the wall shear stress, see Fig. 16 a,
9 Recall that the turbulent production is proportional to the square of the velocity 

radient. 
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Fig. 14. Turbulent channel flow at Re τ = 590 comparing : default wall treat- 

ment with the use of the sub-grid models, having 24 cell layers in the sub-grid; 

: face flux and : wall flux. Markers represent cell centres. 

Fig. 15. Laminar semi-confined axisymmetric impinging jet at Re D = 450 comparing 

default wall treatment with the use of the sub-grid models, having one single 

cell layer; face flux and wall flux. Markers represent face centres at the 

wall. 

Fig. 16. Re D = 23 , 0 0 0 , AMS is applied to the pipe wall ( y + 
i 

= 50 ) and different 

near-wall strategies are applied to the impinging wall, comparing; : AMS y + 
i 

= 

10 0 , : AMS y + 
i 

= 30 0 , NFF y + 
i 

= 10 0 , : NFF y + 
i 

= 30 0 , : NWF 

y + 
i 

= 100 , and : NWF y + 
i 

= 300 . 
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i  
 small difference is noticeable for the wall flux model, but over-

ll, all mesh strategies are very insensitive to the location of the

nterface, y + 
i 

∈ [10 0 , 30 0] . For the heat transfer, see Fig. 16 b, the in-

ensitivity is even more remarkable as there is hardly any at all.

owever, smaller differences between the different mesh strategies

re visible in this plot. At the very centre of the stagnation point,

oth the face flux and the wall flux model predict the heat transfer

lightly lower than with the implicit wall strategy. Another small

ifference is that the face flux model predicts one extra bump at

 = 5 R . It is believed that this has to do with the combination of

sing face flux coupling with the Yap correction, as this bump is

ot visible for set-ups without the Yap correction (not shown). 

.5. Evaluation of wall function approximations 

The number of cells, required number of iterations, and lead

ime are collected in Table 5 for all investigated wall strategies.

LW denotes standard log wall functions applied to both the im-

inging and the pipe wall at a fixed wall distance, y + , indicated

ithin parentheses in the columns for y + 
i 

values. 

For all other set-ups, AMS has been utilized at the pipe wall and

he indicated wall treatment at the impinging wall. The number

f cells is governed by the y + 
i 

parameter for the respective wall,

nd the aim has been to use one value for each Reynolds number.

nfortunately, some wall treatments have not been robust enough

nd, for these cases, the y + 
i,pipe 

parameter has been reduced enough

o reach a convergent solution. In this way, a wall treatment that is

ifficult to converge will result in a larger lead-time value, which is

he case for the NnA treatment and occasionally for the NWF and

he UMI treatments. The UMI treatment has been removed from

he test at the highest Reynolds number as no convergent solution

ould be found. 

The observation that can be made is that the SLW treatment

s consistently five times faster than the reference AMS treatment.
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Table 5 

Number of cells and computing times, i.e. wall clock time, for the axisym- 

metric impinging jet using the Launder–Sharma model for different mesh 

strategies/wall treatments at the impinging wall, UMI and NnA are defined in 

Section 2.4 . 

Re D Mesh interface Wall #Cells Iter. Time 

y + 
i,pipe 

y + 
i,imp. 

treat. (main + sub) [s] (rel.) 

23,0 0 0 50 100 AMS 2636 521 23 1.0 

50 100 NFF 154 4 + 114 4 645 29 1.3 

50 100 NWF 154 4 + 114 4 548 24 1.0 

50 100 UMI 154 4 + 114 4 628 25 1.1 

2 100 NnA 3938 + 3014 1372 103 4.5 

(40) (100) SLW 678 318 4 0.2 

71,0 0 0 100 200 AMS 3710 1164 78 1.0 

100 200 NFF 1999 + 1770 1295 79 1.0 

100 200 NWF 1999 + 1770 1133 73 0.9 

3 200 UMI 4877 + 4590 2141 239 3.1 

4 200 NnA 4613 + 4350 1754 192 2.5 

(40) (100) SLW 1742 389 12 0.2 

220,0 0 0 150 300 AMS 5676 1886 173 1.0 

150 300 NFF 3121 + 2628 1951 156 0.9 

3 300 NWF 7331 + 6588 5149 818 4.7 

3 300 NnA 7331 + 6588 5144 781 4.5 

(40) (100) SLW 3663 728 43 0.2 

Fig. 17. Re D = 23 , 0 0 0 , AMS is applied to the pipe wall for all set-ups using an LRN 

model and different near-wall strategies are applied to the impinging wall, compar- 

ing; : AMS, : NFF, NWF, : UMI, : NnA, and : HRN. 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Re D = 71 , 0 0 0 , AMS is applied to the pipe wall for all set-ups using an LRN 

model and different near-wall strategies are applied to the impinging wall, compar- 

ing; : AMS, : NFF, NWF, : UMI, : NnA, and : HRN. 
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For set-ups that has the same value of the y + 
i,pipe 

parameter as the

AMS reference have also a lead-time within 10% of the reference.

The exception is the NFF at the lowest Reynolds number which

is 30% slower than the AMS. Work has been done to remove in-

efficiencies in the implementation of the different wall functions.

And, as similar differences in lead-time between the numerical

wall functions and the AMS are also seen in the number of iter-

ations, one can rule out any major bottlenecks. Hence, taking into

account computational lead-time no clear advantages can be seen

for any of the numerical wall functions compared to “only” opti-

mising the local mesh resolution (AMS). 
In Figs. 17–19 , all wall strategies are compared in terms of

hear stress and heat transfer at the impinging wall for different

eynolds numbers. The intention is to investigate the results from

all treatments using an LRN turbulence model and, hence, AMS

s used as a reference. However, as the SLW treatment, employing

n HRN turbulence model with a standard wall function, is used

o compare computational lead-time, it is also included in these

gures for completeness. For both the shear stress and heat trans-

er, all treatments display less difference from the reference with

igher Reynolds number. 

As the largest deviations, in general, are seen for the small-

st Reynolds number, these results are used to point out a few

ifferences for the different wall treatments, see Fig. 17 . The NnA

reatment displays the largest deviations around r/D = 1 for both

hear stress and heat transfer. This is no surprise as, in this region,

he advection is not negligible when the flow is changing direc-

ion and NnA does not contain any advection terms. It should be

tated that the diffusion model from Bond and Blottner, which NnA

ries to resemble, was not developed for advective flows. With this

n mind, it is more astonishing that this model recovers and fol-

ows the reference closely for r > 2 r / D . In contrast, the results of

he UMI model agree with the reference very well from the stag-

ation point to 2 r / D . Further downstream, the results deviates from

he reference case, especially for the heat transfer. As UMI only

olves for the velocity component parallel to the wall, it is obvious

hat it is important to solve for all velocity components to ensure

 well predicted direction of the mass flux further away from the

tagnation zone. 

Craft et al. (2004) demonstrated similar accuracy and better

peed-up for the original UMIST-N model which differs from the

MI model in several aspects, see Tables 1 and 2 . However, the

ost important factor for the difference in speed-up is the lack

f robustness for the UMI model which resulted in a speed-up

enalty when using a larger number of grid cells to reach con-

ergence. Nevertheless, the combined accuracy and speed-up re-
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Fig. 19. Re D = 220 , 0 0 0 , AMS is applied to the pipe wall for all set-ups using an 

LRN model and different near-wall strategies are applied to the impinging wall, 

comparing; : AMS, : NFF, NWF, : NnA, and : HRN. 
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orted for the UMIST-N model is impressive. The results of the NFF

nd the NWF treatment are already commented in Section 3.4 but

gree with the reference far better than the other treatments in-

estigated. 

. Concluding remarks 

Two new numerical wall functions, independent of the tur-

ulence model, have been implemented in the open source CFD

ackage OpenFOAM. They use a sub-grid which overlaps the wall-

djacent cells in an ordinary main-grid . The coupling between the

wo grids uses only face fluxes or wall fluxes, giving a stringent

athematical implementation from a finite volume perspective.

ontinuity on the sub-grid is obtained by ensuring the mass flux

ver the faces overlapping a main-grid face is equal to that of the

ain-grid face’ before cell internal mass flux in the sub-grid is up-

ated to give a divergence-free velocity field in each and every cell

f the sub-grid. The results show excellent agreement with default

ow-Reynolds-number calculations, while the computing require-

ent is somewhere between the requirements of high-Reynolds-

umber models with wall functions and those of low-Reynolds-

umber models. 

Compared to earlier numerical wall functions ( Craft et al., 2004;

ant, 2002; Myers and Walters, 2005; Chedevergne, 2010; Bond

nd Blottner, 2011 ), presented in the introduction, the present nu-

erical wall functions are the first ones not being restricted to

 specific turbulence model due to the use of face fluxes for the

oupling of the turbulent entities together with the implementa-

ion in the highly modular CFD package OpenFOAM. This indepen-

ence makes it very general, and should work directly with any

ow-Reynolds-number model constituted by transport equations. 10 
10 It should also work with any extra transport equation of any scalar or vector. 

he present numerical wall functions could also be adapted to a low-Reynolds- 

umber model, which includes other type of equations, e.g. elliptic ones. 

B  

C  

 

arlier methods have instead used Dirichlet boundary conditions

ith interpolated values from the main-grid, together with aver-

ged volume sources of the turbulent production and dissipation

erms from the sub-grid, for the coupling between the two meshes.

he new wall functions are also the first ones to ensure continu-

ty on the sub-grid, which is the most plausible reason for being

ery robust for a wide range of Reynolds number and insensitive

o changes in size of the near-wall main-grid cells. 

However, an even more robust set-up was found using a stan-

ard low-Reynolds-number model with an optimized mesh that

elaxes the general recommendations for grid generation of the

ear-wall resolution. This finding, resulting in similar speed-up as

he implemented numerical wall functions, proves that the major

alculation cost of the boundary layer is the diffusion and not the

ontinuity for steady-state flows. To summarize, a number of infer-

nces can be drawn: 

• for complex flow, HRN , especially for heat transfer 
• new recommendations for grid design on near-wall resolution

can drastically reduce the computing times required for LRN

modelling for certain types of flows 
• no advantages have been demonstrated with the face flux

model compared to using the LRN turbulence model with an

AMS mesh 

• the numerical wall flux model, i.e. NWF, can give slightly larger

speed-up but may suffer from robustness problems 

The numerical wall functions, and the relaxed grid design rec-

mmendations, bring a sweet-spot between accuracy and comput-

ng time for the tested low-Reynolds-number model, which is ben-

ficial for many turbulent flow problems, but especially for com-

lex industrial cases. The results from the set-ups presented here

re in excellent agreement with the investigated turbulence model,

nd will probably be for any low-Reynolds-number model. The

omputing requirement is up to an order of magnitude less than

or a default set-up of a low-Reynolds-number model. 

The most compelling strategy is of course the relaxed grid de-

ign recommendation, i.e. AMS, as this does not require any al-

eration of the CFD code. To increase the understanding of what

peed-up can be expected using AMS for different flows, more test-

ng is needed. Bäckar (2016) already tested the AMS approach on

he backward-facing step, having an adverse pressure gradient and

igh wall-normal gradients relatively far from the wall across the

eparation bubble. Thus, it is difficult to divide this set-up into two

istinct regions with high and low gradients, respectively. The re-

ulting speed-up was only around 30%. 
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