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Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-

Planck (VFP) codes to assess their accuracy in situations relevant to both inertial fusion hohlraums

and tokamak scrape-off layers. The models tested are (i) a moment-based approach using an eigen-

vector integral closure (EIC) originally developed by Ji, Held, and Sovinec [Phys. Plasmas 16,

022312 (2009)]; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits, Joseph, and Umansky

[Phys. Plasmas 21, 055907 (2014)]; and (iii) Schurtz, Nicola€ı, and Busquet’s [Phys. Plasmas 7,

4238 (2000)] multigroup diffusion model (SNB). We find that while the EIC and NFLF models

accurately predict the damping rate of a small-amplitude temperature perturbation (within 10% at

moderate collisionalities), they overestimate the peak heat flow by as much as 35% and do not pre-

dict preheat in the more relevant case where there is a large temperature difference. The SNB

model, however, agrees better with VFP results for the latter problem if care is taken with the defi-

nition of the mean free path. Additionally, we present for the first time a comparison of the SNB

model against a VFP code for a hohlraum-relevant problem with inhomogeneous ionisation and

show that the model overestimates the heat flow in the helium gas-fill by a factor of �2 despite pre-

dicting the peak heat flux to within 16%. VC 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.5001079]

I. INTRODUCTION

Performing full integrated simulations of large-scale fusion

devices, such as the National Ignition Facility (NIF) or the

ITER tokamak, is very challenging due to the wide range of

scales over which the important physical processes occur.

Codes, such as HYDRA1 and BOUTþþ,2 used to perform

integrated simulations of inertial and magnetic confinement

fusion (ICF/MCF), respectively, often include reduced models

to capture the complex aspects of the physics. The accuracy of

the models used naturally affects the predictive capability of

these codes. In this paper, we compare three different models

for kinetic (i.e., nonlocal) effects on electron thermal conduc-

tion against Vlasov-Fokker-Planck (VFP) simulations: (i) the

eigenvector integral closure (EIC)3–5 and (ii) the non-Fourier

Landau-fluid (NFLF)6,7 models, which have recently been sug-

gested for application in the tokamak edge and scrape-off layer

(SOL); and (iii) the Schurtz, Nicola€ı, and Busquet’s multigroup

diffusion (SNB) model,8–12 which is currently the most widely

used in inertial fusion and laser-plasma applications.

In collisional plasmas, where the mean free path (mfp) is

much less than the temperature scalelength, the electron heat

flow parallel to any macroscopic magnetic field in the plasma

has been shown by Braginskii13 to obey Fourier’s law

QðBÞ ¼ �jðBÞnevTkðBÞei rkBTe; (1)

where jðBÞ is the dimensionless thermal conductivity, ne the

electron density, and vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me

p
is the thermal velocity

kðBÞei ¼ 3

ffiffiffi
p
2

r
kBTeð Þ2

4pZnee4 log Kei

; (2)

is an averaged electron-ion mean free path this can be ommitted

in Gaussian units (which shall be used throughout this paper), kB

is Boltzmann’s constant, Te is the electron temperature, Z is the

average ionisation, e is the magnitude of the electron charge,

and log Kei is the Coulomb logarithm for electron-ion scattering

which is typically between 2 and 10 in cases of interest here.

Here and for the entirety of this paper, we assume there to be no

drift velocity or current (hence, the ion and electron rest frames

are equivalent). Note that Epperlein and Haines14 have calcu-

lated jðBÞ to an increased accuracy and Epperlein and Short15

later suggested that this can be approximated well by

jðBÞ � nðZÞ128=3p, where nðZÞ ¼ ðZ þ 0:24Þ=ðZ þ 4:2Þ.
Equation (1) breaks down if the collisionality of the

electrons becomes low. This is due to the inadequacy of thea)Electronic mail: jonathan.brodrick@york.ac.uk

1070-664X/2017/24(9)/092309/14/$30.00 VC Author(s) 2017.24, 092309-1

PHYSICS OF PLASMAS 24, 092309 (2017)

http://dx.doi.org/10.1063/1.5001079
http://dx.doi.org/10.1063/1.5001079
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.5001079
mailto:jonathan.brodrick@york.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5001079&domain=pdf&date_stamp=2017-09-06


assumption that the electron distribution function is close to

Maxwellian; electrons with mfp’s larger than the tempera-

ture scalelength can in fact escape gradients before being

scattered and depositing their energy into the plasma, leading

to a distortion of the distribution function away from

Maxwellian.

The largest contribution to the heat flow comes from

suprathermal electrons with a velocity of approximately 4vT.

Due to the v4 scaling of the appropriate mfp’s, these supra-

thermals can travel over a hundred times further than thermal

electrons enabling excess heat to be deposited beyond the

steepest part of the temperature profile (often referred to as

“preheat” in the literature15) A reduced population of supra-

thermals is left behind in the region of steep temperature gra-

dient, contributing to a reduction in the heat flux. These

“nonlocal” effects can become important even for tempera-

ture scalelengths as long as �200 thermal mfp’s.8

Such situations occur frequently in important regions of

both MCF and ICF experiments: In tokamaks, nonlocal ther-

mal transport is thought to play a role in heat flow from the

core plasma to the “divertor,”16 a region of the tokamak

edge specifically designed to absorb and exhaust excess heat

from the plasma. Thermal electrons entering the SOL at the

separatrix have mfp’s ranging from 1% (C-Mod) to 20%

[DIII-D/Tokamak de Varennes (TdeV)] of the distance to the

divertor target (connection length). For ITER, this is esti-

mated to be 8%. In fact, the ratio of kðBÞei to the local tempera-

ture scalelength LT ¼ 1=rk log Te tends to vary along the

SOL from approximately 1 (TdeV) or 0.1 (DIII-D) near the

separatrix, to 0.01 near the colder divertor.17 These ratios are

all two orders of magnitude higher for suprathermal elec-

trons, rendering the heat transport inherently nonlocal.

Furthermore, transient events—Edge Localised Modes

(ELMs), disruptions and filaments—can create even higher

temperatures and steeper gradients, with which the associ-

ated suprathermals would be almost collisionless.4

Current state of the art codes, such as SOLPS18,19 and

UEDGE,20 have been shown to significantly underestimate

the outer divertor target electron temperature and overesti-

mate its density compared to the experiment in the existing

tokamaks, which in turn affects other plasma parameters.

Chankin and Coster21 have suggested that nonlocal effects in

addition to inadequate treatment of neutrals (which has

largely been ruled out by a sensitivity analysis) and inappro-

priate use of time-averaging could explain this discrepancy.

The plausibility of this hypothesis is supported by recent

gyrokinetic simulations performed by Churchill et al.22

Another important factor is the effect of the enhanced supra-

thermal population on Langmuir probe characteristics:23–26

Ďuran et al.27 have shown that a more sophisticated interpre-

tation of probe results can reduce but not eliminate the dis-

crepancy. Resolution of this discrepancy is critical as

excessive heat loads could erode and severely limit the life-

times of the divertor target plates.28

For the case of indirect-drive inertial fusion, steep tem-

perature gradients of approximately 100 lm are set up near

the inner surface of the gold hohlraum that contains both the

helium gas-fill and the fuel capsule. This is induced by the

high-energy lasers which ionise and ablate the hohlraum

wall. Ratios of kðBÞei =LT exceeding 10%–20% in this region

have been reported.8 Significant nonlocal effects on the ther-

mal conduction are consequently observed, particularly in

the neighbouring low-density gas-fill where the mfp’s of

heat-carrying electrons can be very long. Failure to simulate

this nonlocality accurately can have implications for hohl-

raum temperatures and implosion symmetry.1

A common approach to incorporate the flux reduction

aspect of nonlocal transport is to restrict the local heat flow to

some fraction fL of the free-streaming limit Qfs ¼ nekBTevT.

However, at best the flux-limiter fL must be tuned against the

previous experiments, limiting predictive capability—values

ranging from 0.03 to 0.15 have been suggested for NIF design

codes1,29 and up to 3 for SOL modeling30—and preheat effects

cannot be predicted.

A more complete way to take nonlocal effects into

account, however, is with a fully kinetic approach. By solv-

ing the Vlasov-Fokker-Planck (VFP) equation for the elec-

tron distribution function directly (along with self-consistent

electric and magnetic fields), we need not assume it is close

to Maxwellian; nonlocal effects are calculated ab-initio.

Such an approach typically assumes binary collisions and

small-angle scattering limiting its applicability in regions

where the plasma is strongly coupled (log K approaching

unity) such as in ICF fuel capsules or the colder part of the

partially ionised hohlraum wall. While it is possible for VFP

codes to treat collisions between multiple ion species31 and

even neutrals32 (though the latter might require coupling to a

neutral Monte Carlo code such as EIRENE33–35 due to the

importance of large-angle collisions), here we only consider

the collisions of electrons with a single stationary ion spe-

cies. Quantum-mechanical effects such as Fermi degeneracy,

which could be of importance in solid density material,

are also typically negelcted;36 nevertheless, methods to

incorporate these have been suggested.37

However, due to the extra dimensionality associated

with solving in velocity-space, VFP codes are computation-

ally intensive and difficult to incorporate into the existing

integrated modeling codes. Such demands of resolving the

distribution function and collision time are especially restric-

tive in cold, dense regions such as deep in the hohlraum wall

where a fluid treatment might even be sufficient. Therefore,

alternative models that have more predictive capability than

flux-limiters, and reduced computational requirements com-

pared to a full kinetic simulation, are desirable. A dedicated

experiment to measure nonlocal effects performed by Gregori

et al.38 has shown that a model of this kind can approximate

measured temperature profiles better than flux-limiters.

A large number of reduced models for nonlocal electron

thermal transport have been suggested for applications in

inertial fusion and laser-plasmas8–12,15,39–42 and to the

SOL.3–7,26,43,44 This paper focuses on three of these models,

here referred to as the SNB,8–12 EIC,3–5 and NFLF6,7 models

(described in Sec. III), and compares them for accuracy

against VFP simulations. While the SNB model has recently

been compared to VFP results by Marocchino et al.,45 this

has shown that the two approaches agree well for Z¼ 1 but

begin to deviate from each other as the ionisation increases.

This is surprising as the SNB model was originally derived
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in the high-Z (Lorentz) limit, and we observe here that such

findings are sensitive to precise implementation details of the

model. Additionally, while the EIC and NFLF models have

been shown to predict similar heat-fluxes,7 they have not yet

been validated against a full time-dependent VFP code.

The first problem we investigate here is the damping of

a small-amplitude sinusoidal temperature profile of various

wavelengths in Sec. IV. This test will be used to justify a

tuning parameter which can be applied to the SNB model to

improve agreement with VFP simulations. We will addition-

ally suggest a new analytic fit for the conductivity reduction

and use this to obtain improved coefficients for the NFLF

model.

In Sec. V A, we will then consider the case, more rele-

vant to both hohlraums and the SOL, of a plasma with a large

temperature variation. We will show that the SNB model

agrees very well with VFP simulations using the same tuning

factor as in the linearised problem described above and that

the EIC and NFLF models overpredict the peak heat flux.

While this suggests that the SNB model may also be useful

in SOL simulations, we also consider potential improve-

ments to the other models to improve their performance.

Finally, we will show in Sec. V B that the SNB model

can significantly overpredict the heat flow relative to VFP in

the low-density helium gas-fill using a problem particularly

relevant to the ablated hohlraum wall. The importance of

gradients in both average ionisation Z and electron density ne

here could mean the findings could also be important for the

detached divertor scenario.

II. VLASOV-FOKKER-PLANCK MODELING

The evolution of the electron distribution function fe,
assuming small-angle scattering from binary collisions, can

be described by the Vlasov-Fokker-Planck equation46

@fe

@t
þ v � rfe �

e

me

Eþ v� B

c

� �
� @fe

@v
¼ CðfeÞ; (3)

where v is the electron velocity, E and B are the electric and

magnetic fields respectively, and me is the electron mass.

Two of the three VFP codes used here, IMPACT and KIPP,

employ a zero-current constraint,
Ð

fv d3v ¼ 0 to calculate

the electric field, which ensures quasineutrality. The third

VFP code, SPRING, uses a more sophisticated approach

which solves the Poisson and ion continuity equations with

an implicit-moment method.47,48

In this work, we consider only collisions of electrons

with themselves and a single ion species using the standard

Trubnikov-Rosenbluth49,50 form of the Fokker-Planck colli-

sion operator C ¼ Cee þ Cei, where

Cebðfe; fbÞ
Ceb

¼ � @

@vi

me

mb
fe

@

@vi

ð
fb

jv� uj d3u

�

� 1

2

@fe

@vj

@2

@vi@vj

ð
fbjv� uj d3u

�
; (4)

(applying standard Einstein summation over repeated indi-

ces). Here, we have defined

Ceb ¼
4pZ2

e Z2
be4

m2
e

log Keb; (5)

where Zi ¼ Z is the average ionisation and Ze ¼ �1, along

with mi the ion mass. The ion distribution function fi is

assumed by KIPP to be Maxwellian; here, we enforce the ion

temperature to be equal to the electron temperature but this

is not necessary,51 and all other codes and models assume a

cold ion population and neglect terms of order me=mi, sim-

plifying the electron-ion collision operator to

(6)

where dðvÞ is the Dirac delta function and dij is the

Kronecker delta tensor.

For the case where variations only occur along magnetic

field lines, symmetry in the perpendicular direction allows

for elimination of the magnetic field by “gyro-averaging”

(integrating azimuthally around the vk axis, this process is

still valid even in the absence of magnetic fields); this yields

the 1d2v (one-dimensional in space, two-dimensional in

velocity) equation

@hfei
@t
þ vk

@hfei
@sk
�

eEk
me

@hfei
@vk
¼ hCðfeÞi; (7)

where h�i represents a gyro-average (an explicit representa-

tion of hCi can be found in previous work by Xiong et al.52

and Chankin et al.33) and k denotes components of vectors

parallel to the magnetic field.

The KIPP code33 is designed to solve this equation using

Cartesian spatial and velocity grids. The code uses an opera-

tor splitting method suggested by Shoucri and Gagne53,54

that treats the spatial derivative using a second-order explicit

scheme followed by the electric field and collision operator

terms using a first-order (in time, second-order in velocity)

implicit scheme. The velocity grid covers the domain

vk 2 ½�vmax; vmax�; v? 2 ½0; vmax� where vmax is a user-defined

parameter. The distribution function is simply taken to be

zero at the exterior of the grid and reflected along the interior

v? ¼ 0 axis.

A simplified approach is the diffusion approximation,

which consists of expanding the distribution function in

Cartesian tensors and truncating all but the first two terms

(fe ¼ f0ðvÞ þ v � f 1ðvÞ=v). This reduces the number of

velocity-space dimensions to one thereby increasing effi-

ciency and has been observed to correctly predict heat flows

to within 5% for temperature scalelengths LT�10kðBÞei .55 The

IMPACT code46 (two-dimensional in space) employs this

approach and makes a further simplification of ignoring

angular scattering due to electron-electron collisions, valid

in the Lorentz limit. In order to recover the correct local ther-

mal conductivity for lower-Z plasmas, the factor nðZÞ is used

in the electron-ion collision frequency. Our comparisons

between IMPACT and KIPP suggest that these approxima-

tions do not greatly affect the results for the problems studied

in Sec. V A. The equations solved by IMPACT, along with

Ampere and Faraday’s Law, are thus
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@f0

@t
þ v

3
r � f 1 �

eE

3mev2
� @v

2f 1

@v
¼ Cee0 f0½ �; (8)

@f 1

@t
þ vrf0 �

eE

me

@f0
@v
� e B� f 1ð Þ

mec
¼ � �ei

n
f 1; (9)

where

Cee0 f0½ � ¼
4pCee

v2

@

@v

ðv

0

f0u2 duf0

�

þ 1

v

ðv

0

u2

ð1
u

f0w dw du
@f0
@v

�
; (10)

is the isotropic contribution of the electron-electron collision

operator and

�ei ¼
niCei

v3
¼ 4pZnee4 log Kei

m2
ev

3
; (11)

is the velocity-dependent electron-ion collision frequency.

IMPACT is fully implicit and first order in time, and

uses fixed-point/Picard iterations to handle nonlinear

terms. Note that the implicit treatment of the electric field

enforces charge conservation at every iteration. The mag-

netic field and electron inertia (@f 1=@t) terms have not

been included in the simulations appearing in this paper.

The main reason for using IMPACT in Sec. V B is that

KIPP has not yet been extended to spatially varying ionisa-

tion along sk.
Finally, we also include the results previously obtained

with the SPRING47 VFP code, which takes a Cartesian ten-

sor expansion to arbitrary order and does not neglect/approx-

imate anisotropic electron-electron collisions. This code uses

a linearised approach, i.e., the spatial gradient operator r is

replaced by ik, making it advantageous for analysing the

small-amplitude sinusoidal temperature perturbations fea-

tured in Sec. IV, but not problems with large temperature

perturbations.

III. NONLOCAL MODELS

A. Eigenvector integral closure

The first model investigated here was originally pro-

posed by Ji, Held, and Sovinec3 and is directly derived from

simplifications of the VFP equation. Necessarily, the time-

derivative term is neglected to allow the heat flow to be cal-

culated based on input density and temperature profiles only

and not the history of the distribution function; this assump-

tion should be reasonable over “mean” SOL profiles (i.e.,

averaged over time to eliminate fine-scalelength fluctua-

tions), but could break down for transient events with faster

timescales such as filaments and ELMs.

The distribution function is expressed as fe ¼ f ð0Þ þ df ,

where df is a perturbation to an initial, Maxwellian, guess

f ð0Þ. Assuming the perturbation df is small, the nonlinear col-

lision and electric field terms in the gyro-averaged VFP

equation are linearised, which yields

@hdf i
@sk

� hCLðdf Þi
vk

¼
eEk
mevk

h@f ð0Þi
@vk

� @hf
ð0Þi

@sk
; (12)

where

CLðdf Þ ¼ Ceeðf ð0Þ; df Þ þ Ceeðdf ; f ð0ÞÞ þ Ceiðdf ; nidðvÞÞ;
(13)

is the linearised collision operator.

The next step is to attempt a separation of variables into

sk and v=vT, where v is made up of parallel and perpendicu-

lar components vk and v?, by expressing

hdf i ¼
X

n

AnðskÞwnðv=vTÞ such that
hCLðwnÞi

vk
¼ wn

kn
; (14)

where wn are eigenfunctions of the operator hCLi=vk, which

depends only on v=vT, and kn the inverse of their eigenvalue

with dimensions of length. Substituting (14) into (12) and

assuming that the dependence of wn on space through vT is

negligible (only valid when relative temperature perturba-

tions are small globally) yields

(15)

By similarly decomposing the right-hand side into

(orthogonal) eigenfunction contributions, a set of indepen-

dent first-order ordinary differential equation’s (ODE’s) for

An is formed that can be solved efficiently. Consequently, df
can be reconstructed and the nonlocal correction to the heat

flux computed through an integral in vk (hence the nomencla-

ture Eigenvector Integral Closure or EIC).

The advantage of this approach is that it circumvents the

need to solve in velocity-space at every timestep (as a VFP

code must). The main challenge is identifying a discrete

description of the eigenfunctions wn that converges rapidly

for use in a numerical scheme. In practice, this is done by

using an orthonormal polynomial moment-basis to express

wn as a vector and the operator CL=vk as a matrix. Ji et al.3

proposed a Legendre-Laguerre (LL) basis in pitch angle and

total speed. This converges rapidly in the hydrodynamic

limit but slowly in the collisionless limit. As an alternative,

Omotani et al.5 proposed a Hermite-Laguerre (HL) basis,

decoupling parallel and perpendicular velocity components,

which allows for easier implementation of sheath boundary

conditions.

B. Non-Fourier Landau-fluid

While there are a lot of computational benefits to the EIC

model over a full VFP code, a large number of eigenfunctions

(at least 120 according to Omotani et al.5) are needed for con-

vergence. The NFLF model6,7 provides a cheaper approach,

potentially solving as few as three second-order ODE’s, but

without a direct link to the VFP equation.

The popular Landau-fluid approach initially proposed

by Hammett and Perkins43,56,57 provides a closure for the

nonlocal heat flux ~Q in Fourier space. This recovers the cor-

rect damping rate of a sinusoidal temperature perturbation in

both the collisional and collisionless limits (where the
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wavelength is much longer/shorter than the thermal mfp).

However, the Fourier transforms involved are inconvenient

for complex SOL geometries and large temperature and den-

sity variations.

The innovation by Dimits, Joseph, and Umansky6 was

to enable direct calculation of the nonlocal parallel heat flux

in configuration space by approximating the closure as a sum

of Lorentzians

~Q �
~Q
ðBÞ

1þ ajkjkðBÞei

�
XN

j¼1

aj
~Q
ðBÞ

b2
j þ ðakkðBÞei Þ

2
�
XN

j¼1

~qj; (16)

where ~Q
ðBÞ

is the (parallel) Braginskii heat flow in reciprocal

space, a parametrises the behaviour in the collisionless limit

and is determined analytically, k is the wavenumber of the

Fourier mode, N is the number of Lorentzians chosen by the

user for the fit, and aj; bj are fit parameters.

Equating the contribution from each Lorentzian to a

dummy contribution qj, rearranging and taking the inverse

Fourier transform gives a set of N second-order ODE’s for

each spatial direction of interest that can be used to recover

the nonlocal heat flow

ðb2
j þ ðakkðBÞei Þ

2Þ~qj ! b2
j � a2kðBÞ2ei r2

� �
qj ¼ ajQ

ðBÞ: (17)

This approach also conveniently avoids the issue of

defining the mean free path in reciprocal space.

C. Multigroup diffusion (SNB)

The final model being investigated is the multigroup dif-

fusion or “SNB” model named after the original authors

Schurtz, Nicola€ı, and Busquet.8 It is widely used in inertial

fusion codes such as Lawrence Livermore National

Laboratory’s HYDRA,1 CELIA laboratory’s CHIC,58 and the

University of Rochester Laboratory for Laser Energetics’

(LLE) DRACO;12 and it is applicable in multiple spatial

dimensions.

The SNB model is best explained starting from the dif-

fusion approximation of the kinetic equations [see Eqs. (8)

and (9) above], along with neglecting time-derivatives for

similar reasons as the EIC model. The isotropic part of the

distribution function f0 is then split into a Maxwell-

Boltzmann distribution f
ðmbÞ
0 ¼ ne exp ð�v2=2v2

TÞ=ð2pvTÞ3=2

and a deviation df0 ¼ f0 � f
ðmbÞ
0 . The anisotropic part f 1 is

similarly split, but the “Maxwellian” part f
ðmbÞ
1 , obtained

from substituting f
ðmbÞ
0 into Eq. (9), is replaced by an alterna-

tive, g
ðmbÞ
1

f
ðmbÞ
1 ¼ �k	ei

mev2

2kBTe

� 4

� �
f
ðmbÞ
0

rTe

Te

;

! g
ðmbÞ
1 ¼ �k	eif

ðmbÞ
0

rTe

Te

:

(18)

This modification achieves positive-definiteness without

affecting the integral used to calculate the heat flow, and is

argued to be compensated by other approximations of the

model.8 Here, we have defined k	ei ¼ nkei ¼ nv=�ei. Note that

the factor of 3 difference from the original paper in f
ðmbÞ
1 is

simply due to the use of spherical harmonics by Schurtz

et al. while we use a Cartesian tensor expansion.

Electric field terms in Eq. (8) are neglected and instead

incorporated phenomenologically by defining a limited mfp

1

kðEÞei

¼ 1

k	ei

þ
���� eE

1=2mev2

����; (19)

where the local form for E ¼ kBTeðr log ne þ cr log TeÞ is

used, with c ¼ 1þ 3ðZ þ 0:477Þ=2ðZ þ 2:15Þ. Substituting

f 1 ¼ g
ðmbÞ
1 þ kðEÞei rdf0 into equation, the stationary form of

(8) obtains

Cee0 df0½ �
v

þr � k
ðEÞ
ei

3
rdf0 ¼

r � gðmbÞ
1

3
: (20)

This can be solved to compute the deviation from the local

heat flow

dQ ¼ 2pme

3

ð1
0

df 1v
5 dv ¼ � 2pme

3

ð1
0

v5kðEÞei rdf0 dv: (21)

The main computational advantage of this approach is

through the use of efficient model collision operators that

are local in velocity-space. This allows for a more effective

discretisation into velocity/energy groups and removes the

need to store the entire distribution function in memory.

The original authors suggested using a velocity-dependent

Krook (BGK) operator due to its simplicity, but Del Sorbo

et al.10 have also employed a more realistic operator sug-

gested by Albritton, Williams, Bernstein, and Swartz

(AWBS)59

CBGK
ee0 �½ � ¼ �r

�ei

Z
� � ; CAWBS

ee0 �½ � ¼
�ei

Z
v
@

@v
�½ �; (22)

where we have introduced the dimensionless number r to

account for variation in SNB model implementations/

description across publications: The original authors8 halved

the geometrically averaged mfp ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zk	eikei

p
[see Eq. (23)

of Schurtz et al.8 and also Sec. III C of Del Sorbo et al.10)

which is equivalent to setting r¼ 4 (except for the treatment

of electric field). However, in a later section of the original

paper8 (III F) as well as Sec. II of a later publication,9 this

technicality is not restated when demonstrating a link to the

kinetic equations, from which a value of r¼ 1 could be

interpreted.

Furthermore, our attempts to replicate previous compari-

sons between SNB and VFP45 suggest that Marocchino et al.
used r¼ 16. Using this value for r in the SNB model along

with neglecting corrections to angular scattering from electron-

electron collisions (i.e., n is set to one) happens to give a good

agreement with VFP codes for Z¼ 1. However, this agreement

is observed to get progressively worse as Z increases. In this

paper, we show that using the BGK collision operator with a

different value (r¼ 2) and n ¼ ðZ þ 0:24Þ=ðZ þ 4:2Þ gives a

very good agreement of SNB with VFP across a wide range of

problems (and values of Z).

Note that, despite the differential form of the AWBS

operator, its use does not actually require a significant

092309-5 Brodrick et al. Phys. Plasmas 24, 092309 (2017)



increase in computational time unless an attempt to parallelise

over energy groups is being made. This is because the

velocity-space first-order differential equation is simply

closed from above with the boundary condition df0ðv ¼ 1Þ
¼ 0. In a finite difference scheme, this could simply be imple-

mented by enforcing the highest energy group to be zero and

solving for the next highest group first. (Bear in mind that dis-

cretisation in velocity-space need not be uniform.) However,

we identify other issues with the AWBS operator in Sec. IV A

that limit its usefulness and the SNB model using this opera-

tor is therefore not explored further.

IV. DECAY OF A SMALL-AMPLITUDE, SINUSOIDAL
TEMPERATURE PERTURBATION

First we consider the damping of a small-amplitude tem-

perature perturbation Te ¼ T0 þ dT cos ðkxÞ (often referred to

as the Epperlein-Short15 test) with a constant uniform back-

ground density and ionisation. Due to nonlocal effects as the

wavelength is reduced, the dimensionless thermal conductiv-

ity j decreases from that predicted in the local limit, jðBÞ. In

this section, we first detail the methodology used in setting up

simulations of this problem and assessing the respective con-

ductivity reductions before briefly commenting on the agree-

ment between the EIC model and VFP results. Analysis of the

long-wavelength limit will then be presented in Sec. IV A so

as to motivate a suitable choice for the SNB model parameter

r. Finally, a new fit function for the conductivity reduction as

a function of kkðBÞei is derived in Sec. IV B by connecting the

collisional and collisionless regimes, and is used to calculate

fit coefficients for the NFLF model.

A sinusoidal perturbation with a relative amplitude of

dT=T0 ¼ 10�3 was initialised for the KIPP simulations. We

used a uniform spatial grid of 127 cells over a half-wavelength

with a non-uniform Cartesian velocity grid extending to vmax ¼
7vT (with parameters mmax ¼ 256;EPS ¼ 1:01 as defined by

Chankin et al.33). The two methods employed by Marocchino

et al.45 were used to calculate the conductivity reduction

j=jðBÞ: (1) directly from the peak heat flow divided by the pre-

dicted local heat flow (j=jðBÞ ¼ ~Q= ~Q
ðBÞ

) and (2) inferred

from the exponential decay rate q of the temperature perturba-

tion (j=jðBÞ ¼ q=qðBÞ, where qðBÞ ¼ 2jðBÞk2vTkðBÞei =3).

The thermal conductivity obtained by both these meth-

ods fluctuated in time initially (due to initialising as a

Maxwellian) and was tracked until both methods approached

constant values. Due to incomplete convergence in timestep,

these values were slightly different and an average was then

taken between the two final conductivity reductions. In order

to improve accuracy without using unnecessary amounts of

computational time due to a tiny timestep (KIPP is only first-

order accurate in time), extrapolation to zero timestep was

performed by fitting a straight line of conductivity reduction

against timestep. Such complications were unnecessary

when using the inherently stationary models: Instead of

evolving in time, it was possible to calculate heat flow (and

thus conductivity reduction) from a single profile with a

lower relative amplitude of 10�5 for each wavelength.

Results obtained for thermal conductivity reduction

j=jðBÞ as a function of nonlocality parameter kkðBÞei are

shown in Figs. 1 and 2 for an ionisation of Z¼ 1. The choice

of two separate figures for the case of Z¼ 1 is to allow for

clear identification of features at both high and low collision-

ality and to avoid an excessive number of comparisons on a

single figure. Kinetic results from the linearised VFP code

SPRING calculated by Epperlein47 and provided numerically

by Bychenkov et al.60 are also shown in Fig. 2 for compari-

son against the nonlocal models.

Both the LL3 and the HL5 bases for the EIC model were

investigated using 40,40 moments to achieve convergence to

within 1% for kkðBÞei < 1. Figure 1 shows that both bases

agree well with KIPP (within 5% and 10%, respectively) in

this limit. For higher kkðBÞei (see Fig. 2), the SPRING VFP

results begin to deviate from both the EIC and KIPP results

for a number of reasons: First, the onset of electron inertia

effects at high kkðBÞei , ignored by the EIC model, introduces a

phase shift between the heat flow and temperature perturba-

tion in frequency space (i.e., the perturbation goes from

FIG. 1. Reduction of thermal conductivity due to nonlocality over a range of

collisionalities for a small-amplitude temperature sinusoid with Z¼ 1. The

fit function given in Eq. (25) is depicted in addition to the results using the

nonlocal models and VFP codes.

FIG. 2. Reduction of thermal conductivity due to nonlocality extending to

lower collisionality for a small-amplitude temperature sinusoid with Z¼ 1.

SPRING data are reproduced with permission from Bychenkov et al.,
Phys. Rev. E 52, 6759 (1995). Copyrighted by the American Physical

Society.60
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being critically damped to possessing an oscillatory compo-

nent) making evaluation of the decay rate difficult with KIPP

(the linearised formulation of the SPRING code makes this

easier, and likely more accurate; note that it is the modulus

of the complex thermal conductivity that has been provided

in this case).

Additionally, while the HL basis only requires two

Laguerre modes in the collisionless limit due to the parallel-

perpendicular decoupling, we found that even 160 HL modes

were insufficent to achieve convergence to within 10% for

kkðBÞei > 2. The LL basis, however, manages to converge to

within 1% for kkðBÞei < 50 using 20, 20 modes. The collision-

less limit predicted by Chang and Callen61 is approached as

the total number of LL modes is increased (see below and

also Figs. 2 and 3 of Ji et al.3 whose results we have success-

fully replicated); this is about a factor of 1.8 less than the

true collisionless heat flow predicted analytically and by the

SPRING code (see Sec. IV B).

Results for an ionisation of Z¼ 8 are shown in Fig. 3.

Here, 50, 50 moments in the LL basis were required to

achieve convergence at high kkðBÞei with the EIC. The diffu-

sion approximation made by IMPACT is shown to break

down around kkðBÞei � 0:3. Note that the thermal conductivity

reduction at which the SNB begins to deviate from kinetic

results is about the same (j=jðBÞ � 0:2) for both Z¼ 1 and 8;

the lower nonlocality parameter kkðBÞei at which this occurs is

due to the reduced importance of electron-electron collisions

at higher ionisations.

A. Hydrodynamic limit (kk
ðBÞ
ei 
 1)

Bychenkov et al.60 have shown that for long wavelength

perturbations (i.e., in the hydrodynamic limit)

~Q � ~Q
ðBÞð1� bZk2kðBÞ2ei Þ; (23)

to second-order in kkðBÞei , where b � 264 in the Lorentz limit

(Z ¼ 1). As the assumptions of the EIC model are valid in

this linear and collisional limit (except for neglection of

electron inertia which would only introduce a time-

dependent component into the heat flow), and convergence

of the LL basis is relatively rapid (only 2 Legendre modes

are theoretically needed), we have used it to calculate the

value of b for various Z (while the KIPP prediction for Z¼ 1

was within 4% of the EIC, this was considered less accurate

due to insufficient extension/resolution of the velocity grid).

This was done by fitting a straight line on a graph of heat

flow against Zk2kðBÞ2ei for kkðBÞei < 10�3=
ffiffiffi
Z
p

(the lower range

of kkðBÞei extended below 2� 10�4=
ffiffiffi
Z
p

and there were typi-

cally at least six points on the graph).

Results using the EIC model are summarised in Table I

and Fig. 4, which also includes numerical results14 and ratio-

nal approximations15,62 for the low-Z conductivity correction

jðBÞðZÞ=jðBÞð1Þ. We find that the approximation bðZÞ=
bð1Þ ¼ Z=ðZ þ 11=2Þ fits numerical results to within 7%,

whereas simply using n overestimates b by as much as 43%

at Z¼ 1. However, the implications of this for the validity of

using n in IMPACT and the SNB model are not as serious as

they seem because b only quantifies the initial deviation

from the local limit, and the total heat flux is not very sensi-

tive to marginal errors in b in the hydrodynamic limit.

Table II outlines the values of b predicted by the SNB

model depending on the model collision operator and choice of

source term. This has been derived in the low-amplitude and

continuum-velocity limit as detailed in Appendix A. Using the

AWBS operator and the kinetic source term r � f ðmbÞ
1 on the

right-hand side of Eq. (16) gives a priori the closest value of

b ¼ 316:9n (top right) to within 20% of that predicted analyti-

cally in the Lorentz limit (Table I).

The ability of the AWBS collision operator to predict

the deviation in the hydrodynamic limit fairly accurately

FIG. 3. Reduction of thermal conductivity due to nonlocality over a range of

collisionalities for a temperature sinusoid with Z¼ 8. SPRING data are

reproduced with the permission from Bychenkov et al., Phys. Rev. E 50,

5134 (1994); ibid. 52, 6759 (1995). Copyrighted by the American Physical

Society.60

TABLE I. Values for the parameter b, as appearing in Eq. (23), characteris-

ing lowest-order deviation from hydrodynamic limit for various values of Z
obtained with the EIC model. At least 4, 40 moments were used in the LL

basis.

Z 1 2 3 4 6 8 10 12 14 20 30 500 1

b 43.5 73.6 96.0 113 139 157 170 180 189 206 222 261 264

FIG. 4. Comparison of the Z-dependence of the local thermal conductivity

jðBÞ and the parameter b in Eq. (23), which characterizes the nonlocal devia-

tion from the local limit.
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might suggest that it provides an improvement to the original

SNB model; however, we find that coupling it with the origi-

nal source term leads to negative values of the thermal con-

ductivities at kkðBÞei > 0:124=
ffiffiffiffiffiffi
nZ
p

due to it not being

positive-definite (see Appendix B). This should never occur

in the linearised problem considered here (i.e., decay of a

small-amplitude temperature perturbation) as it would result

in instabilities at these wavelengths. However, this issue

does not necessarily imply that the AWBS operator is an

inappropriate choice for other nonlocal models. For exam-

ple, the M1 model presented by Del Sorbo et al.10,11 does

not appear to exhibit this issue of positive-definitiveness; we

leave a detailed analysis of this model for future work.

Setting r¼ 2 exactly in the original implementation of

the SNB model (BGK collision operator with the source

term r � gðmbÞ
1 ) remarkably gives the same value of b ¼

316:9n as with the AWBS operator and the source term r �
f
ðmbÞ
1 (compare bottom left and top right entries of Table II)

and in fact the entire distribution function in this limit (see

Appendix A). However, to match the kinetic results for b, a

value of r¼ 2.4 is required in the Lorentz limit and r¼ 3 for

Z¼ 1. We suggest that matching coefficients to such accu-

racy is not necessary and that using r¼ 2 achieves much bet-

ter agreement for problems involving large temperature

variations (see below). Results using both r¼ 2 and r¼ 3 for

Z¼ 1 have been provided in figures to enable the reader to

compare.

Faithfulness to kinetic results for b can be guaranteed

with the NFLF model by modifying the analytical Fourier

closure and constraining the fit coefficients appropriately as

described in Sec. IV B.

B. Collisionless limit (kk
ðBÞ
ei � 1)

With decreasing wavelength, the heat flow is predicted

to slowly approach a constant value. By fitting to the results

of both the EIC and SPRING models (we were unable to

obtain meaningful KIPP results at low enough collisionalities

due to issues mentioned above), we find that

~Q � 3

2

ffiffiffi
2
p

v1
~Qfs 1� c1

k�

� �
dT

T0

; (24)

where ~Qfs is antiparallel to the wave-vector and v1, c1, and �
are dimensionless fit parameters, is a reasonable description

for the asymptotic behaviour in this limit for low-Z plasmas

[i.e., a graph of ~Q against log ðkÞ resembles a straight line].

The form of this fit function was taken from work by

Bychenkov et al.60 The extra factor 3=2 compared to the for-

malism of Hammett and Perkins43 (which inspired previous

implementations of the NFLF model6,7) was found to be

necessary due to the isotropic definition of the electron tem-

perature used here.47,60

Again, the LL basis was used, this time due to the noncon-

vergence of the HL basis explained above; however, at least

40, 40 moments were needed to achieve convergence above

kkðBÞei � 1. As found by the original developers of the model,3

the value of v1 ¼ 1:2=
ffiffiffi
p
p

agreed with the value predicted by

Chang and Callen;61 this is exactly 40% less than the value

predicted by Hammett and Perkins43 (v1 ¼ 2=
ffiffiffi
p
p

) because of

the quasi-stationary assumption. We have also calculated that

an alternative value of v1 ¼ 1:225 can be obtained by numeri-

cally solving for zeroes of the response function.

Calculated values of � and c1, as well as the c1 referred

to below, are summarised in Table III for Z ¼ 1; 2; 4; 6; 8.

Simulations with EIC at higher Z require a prohibitive num-

ber of moments for convergence at high kkðBÞei . Both the

index � and the coefficient c1 vary weakly with Z and have

similar orders of magnitude to those predicted by Bychenkov

et al.60 The values obtained here should be slightly closer to

reality as Bychenkov et al. assume complete stationarity (all

time derivatives neglected) in their calculations, but there

are large uncertainties in our numerical fit (approximately

10% for the EIC data). The limited numerical results avail-

able from the assumingly exact SPRING code47,60 infer a

value for � at Z¼ 1 within 0.5% of the EIC prediction, but

the value for c1 (¼1.36) is larger by a factor of 2.2.

Due to the combination of stationarity and diffusion

approximations, the SNB model without the phenomenologi-

cal mfp limitation to include electric fields predicts the colli-

sionless heat flow to decrease as �1=k to zero as the

wavelength decreases8 (the thermal conductivity correspond-

ingly decreases as 1=k2). Incorporating the mfp limitation

resolves the issue of insufficiently damping temperature per-

turbations of finite amplitude (such that kkeidT � 1). This

improves numerical stability, but introduces an amplitude-

dependence of v1 that is not observed in VFP simulations.

While the NFLF will also always predict a �1=k decay

of the heat flow for high enough kkðBÞei , increasing the number

of Lorentzians used to improve the fit can progressively

extend the validity into lower collisionality regimes. The fit-

ting function we used interpolates behaviour in both the

hydrodynamic and collisionless limits with a similar but

slightly more robust method than used by Bychenkov et al.60

j

jðBÞ
¼ 1þ 1

bZk2kðBÞ2ei

þ 3=2
ffiffiffi
2
p

v1=j
ðBÞ

kkðBÞei ð1þ c1=k�Þ

 !�1
0
@

1
A
�1

; (25)

TABLE II. Predictions for b by the SNB model, depending on choice of col-

lision operator (columns) and source term (rows).

RHS CBGK
ee0 CAWBS

ee0

r � f ðmbÞ
1 3169n=r 316:9n

r � gðmbÞ
1 633:8n=r 63:38n

TABLE III. Values for parameters appearing in Eqs. (24) and (25) obtained

with EIC model (using at least 40,40 LL moments) and available SPRING

data from Ref. 60 (in parentheses), the latter is presumed to be more

accurate.

Z 1 2 4 6 8

� 0.32 (0.32) 0.28 0.23 0.22 0.20 (0.19)

c1 0.6 (1.4) 0.7 0.7 0.75 0.75 (1.5)

c1 1.9 (1.5) 2.2 2.7 3.1 3.4 (3.0)
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where c1 differs from c1 by optimising the fit for kkðBÞei � 1.

Using the parameters as defined in Table III for Z¼ 1, Eq.

(25) fits the KIPP and SPRING results to within 6% and

10%, respectively, for kkei � 1 and up to 26=20% above

this; altering the value of c1 to 1.5 reduces the maximum dis-

crepancy with SPRING results to 11%.

This new fit is depicted in Fig. 1 with the simpler

fit 1=ð1þ akkðBÞei Þ obtained by Hammett and Perkins43

previously used in the NFLF model,6 (a can be related

to v1 by a ¼ 2jðBÞ=3
ffiffiffi
2
p

v1), which overestimates the

thermal conductivity at moderate collisionalities around

kkðBÞei � 0:5 by over 25%. Note that we have observed a

recent closure in configuration space (thus convenient

for convolution models) suggested by Ji and Held63 to

closer fit the EIC results with one more fitting parameter

(if the a used by Ji and Held is not considered a free

parameter)—tuning of these parameters could probably

also achieve an improved fit to the VFP results. We

would also like to highlight a recent paper by Joseph

and Dimits who have performed a detailed analysis of

closures for the response function that connects the col-

lisionless and collisional regime.64

Three Lorentzians [i.e., N¼ 3 in Eq. (16)] can approxi-

mate our new fit to within 2.5% up to kkðBÞei � 1:6; using six

Lorentzians allows this to be extended up to kkðBÞei � 30. The

coefficients used are given in Table IV and were obtained

using the variable projection method,65 constrained such that

Eq. (23) is obeyed to second-order in kkðBÞei .

V. COMPARISON FOR LARGE TEMPERATURE
VARIATIONS

A. Homogeneous density and ionisation

We now investigate the accuracy of the EIC, NFLF, and

SNB models in calculating the heat flow in the case where

we have a large relative temperature variation. We consider

the case of an initial temperature profile consisting of a ramp

connecting two large hot and cold regions (“baths”). This

has the advantages of allowing simple reflective boundary

conditions and not requiring any external heating/cooling

mechanisms that would also need to be carefully calibrated

between codes. Results and initial conditions are here pre-

sented in terms of reference quantities encouraging the trans-

lation of the problem to both ICF and MCF relevant

situations.

The hot and cold baths had temperatures of T0 and

0:15T0; these were connected by a cubic ramp given by

Te=T0 ¼

1 n0c � �75

0:575� 0:85

300
n0c 3� n0c

75

� �2
 !

n0c 2 �75; 75½ �

0:15 n0c 
 75;

8>>><
>>>:

(26)

where n0c 2 ½�154; 100� is the cell number counting from the

centre of the temperature ramp. Cell size in mfp’s was varied

between simulations to scan a range of collisionalities. The

initial temperature profile is illustrated in Fig. 5 for the

smallest cell-size used. For these simulations the electron

density, Coulomb logarithm and ionisation (Z¼ 1) were all

kept constant and uniform.

KIPP simulations showed an evolution of the heat flow

from the local (due to initialising as a Maxwellian) to the

nonlocal, with a reduced peak, over an initial transient phase

(over which the temperature ramp flattened somewhat). The

transient phase was considered over when the ratio of the

KIPP heat flow to the expected local heat flow stopped

decreasing. After the transient phase, this ratio begins to

slowly increase as the thermal conduction flattens the tem-

perature ramp and the ratio of the scalelength to mfp

increases (i.e., the thermal transport slowly becomes more

local). We then took the temperature profile from KIPP and

used our implementation of the various nonlocal models to

calculate the heat flow they would predict given this profile.

Figure 5 shows that the EIC and NFLF models agree

well with each other (to within 10% almost everywhere for

the snapshot shown). However, agreement with KIPP is not

nearly as good; the models overestimate the peak heat flux by

30%–35% and do not predict the observed preheat into the

cold region. The SNB model is shown to perform much better

here, predicting the peak heat flux to within 6% as well as the

existence of preheat (although this is overestimated).

The wide range of heat flow profiles predicted with dif-

ferent flux-limiters between 0.05 and 0.7 are also shown in

Fig. 5. These were obtained using the formula 1=Qfl

¼ 1=QðBÞ þ 1=fLQfs. We find that a flux-limiter of �0:25

best matches the peak kinetic heat flow, but in this case the

peak is shifted towards the hot rather than the cold bath (the

latter is observed in the KIPP simulation). Similar results are

observed at all temperature ramp scalelengths investigated as

illustrated in Fig. 6, which depicts the reduction in the peak

heat flow compared to the local Braginskii prediction.

B. Spatially varying density and ionisation

While comparisons between the SNB model and VFP

codes have previously been performed,8,45 none have

included spatially inhomogeneous ionisation. As inertial

fusion experiments involve steep ionisation and density gra-

dients (for example, at the interface between the helium gas-

fill and the ablated gold plasma), it is critical that the SNB

model be tested in such an environment. Variations in ionisa-

tion may also be important in the “detached” divertor sce-

nario where a moderate-Z gas is injected in front of the

divertor to radiate excess heat; an investigation of this sce-

nario is left as further work. For evaluating this, the

TABLE IV. NFLF fit parameters for N¼ 3, 6 (Z¼ 1).

N 3

a 2:176� 10�3 0.06316 1.6823

b 0.1020 0.3513 2.4554

N 6

a 1:575� 10�4 0.01206 0.07960 0.5086 3.5041 49.3331

b 0.06195 0.17684 0.5064 1.7432 7.0442 44.4953
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IMPACT46 VFP code was used due to its ability to simulate

inhomogeneous ionisation profiles.

We performed a HYDRA simulation in 1D spherical

geometry of a laser-heated gadolinium hohlraum containing

a typical helium gas-fill. A leak source was implemented

with an area equal to the laser entrance hole to reproduce the

energy balance. Electron temperature (Te), density (ne), and

ionisation (Z) profiles (shown in Fig. 7) at 20 ns were

extracted and used as the initial conditions (along with the

assumption that the electron distribution function is initially

Maxwellian everywhere) for the IMPACT simulation (which

was performed instead in planar geometry). At this point,

very steep gradients in all three variables were set up with

a change from Te ¼ 2:5 keV; ne ¼ 5� 1020 cm�3; Z ¼ 2 to

Te ¼ 0:3 keV; ne ¼ 5� 1021 cm�3; Z ¼ 39 across approxi-

mately 100 lm at the helium-gadolinium interface.

Spline interpolation was used to increase the spatial res-

olution near the steep interface for the IMPACT simulations,

helping both numerical stability and runtime due to needing

a reduced number of nonlinear iterations. For simplicity, the

Coulomb logarithm was treated as a constant log Kei

¼ log Kee ¼ 2:1484. Note that in reality the plasma is only

strongly coupled in the colder region of the gadolinium bub-

ble beyond � 1.7 mm and log Kei � 8 up to � 1.6 mm in the

hotter corona. Reflective boundary conditions were used

here as in Sec. V A and IMPACT used a timestep of 1.334

fs. The ne and Z profiles did not evolve in the IMPACT simu-

lation due to the treatment of the electric field discussed in

Sec. II that ensures quasineutrality and the neglection of ion

motion and ionisation models.

As with the KIPP simulations in Sec. V A, there is an

initial transient phase where the IMPACT heat flux gradually

reduces from the Braginskii prediction as the distribution

function rapidly moves away from Maxwellian. Once again,

this transient phase is considered to be over when the ratio of

the peak heat flow to the Braginskii prediction stops reduc-

ing. This ratio is not observed to change by more than 5%

after the first 5 ps of our 15.7 ps simulation. Therefore, we

conclude that it is safe to assume the transient phase is over

after 5 ps, at which point the temperature front has advanced

by approximately 8 lm leading to a maximum temperature

change of 41% as shown in Fig. 7.

FIG. 6. Ratio of peak heat flow to that predicted classically for each snap-

shot against inverse scalelength kei=LT (calculated at the location of maxi-

mum heat flow predicted by each model) for the nonlinear temperature ramp

using different initial gradients.

FIG. 7. Temperature, density, and ionisation profiles after 20 ns simulated

laser heating with HYDRA (marks). Curves show interpolated profiles used

to initialise IMPACT simulations, as well as the temperature profile after a

further 5 ps.

FIG. 5. Initial temperature profile (shaded grey) and heat flow as ratio of

free-streaming limit Qfs ¼ nekBTevT (for electrons with energy kBT0) after

2.7 collision times. NFLF used 6 Lorentzians, and EIC used 16,4 HL

moments.

FIG. 8. Comparison of heat flow predictions with the SNB model using geo-

metrically averaged or separated mfp’s based on temperature profile after 5

ps IMPACT simulation. The maximum local heat flow is 2:2� 1015 W/cm2.
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In comparing the IMPACT and SNB heat flow profiles,

we encountered an important subtlety concerning the imple-

mentation of the model. While more recent publications con-

cerning the SNB model9,10 use a formulation similar to that

used here in Sec. III C with separate electron-ion and

electron-electron mfp’s or collision frequencies, the original

paper8 used a geometrically averaged mfp ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zk	eikei

p
.

However, this averaging process is only valid for the case of

homogeneous ionisation, and Fig. 8 shows the large effect

this has on the heat flow when the ionisation varies. While

using separated mfp’s provides a very good prediction of the

preheat into the hohlraum, the peak heat flow to within 16%

and an improved estimate of the thermal conduction in the

gas-fill region, the latter is still too large by a factor of �2.

This discrepancy could potentially lead to an overestimate of

hohlraum temperatures and thus causing the issues similar to

those arising with using an overly restrictive flux limiter.1

VI. DISCUSSION AND FURTHER WORK

The capability of the NFLF to closely match the results

of EIC for the case of homogeneous density and ionisation is

fairly impressive, considering that only 6 Lorentzians were

needed for convergence compared to EIC’s 64 moments (16,

4 in the HL basis, chosen instead of LL as convergence is

faster for this problem). This implies that the NFLF is about 5

times faster (assuming the NFLF’s second-order ODE’s take

approximately twice the time to solve as EIC’s first-order).

However, this result should not be too surprising as both mod-

els are based on some kind of linearisation procedure, causing

them to fail in almost exactly the same way for a nonlinear

problem. For example, the lack of preheat or spatial shift in

peak location predicted by the models are both features

observed in the linear problem studied in Sec. IV. The SNB

model requires 25 groups for convergence resulting in an only

slightly faster computation time than the EIC model.

Improving performance of the models for large tempera-

ture variations would require approaches that did not affect

the desirable agreement in the linearised limit. For EIC, a

simple method is nonlinear iteration; i.e., updating the right-

hand side of Eq. (15) by adding on nonlinear terms such as
eEk
me

@df
@vk
�
P

n An
@wn

@sk
from the initial calculation and repeating

until convergence. However, the computational time to apply

the differential operators and separate into eigenvector com-

ponents would probably increase the computational time by

an undesirably large factor on the order of the number of

moments used.

Conversely, a correct approach for improving the NFLF

model is not immediately apparent and probably requires

deeper analysis of the link between the model and the VFP

equation. However, it is conceivable that this could be done

without additional computational expense; for example,

replacing the a2k2
eir2 term in Eq. (17) with a2ðkeirÞ � ðkeirÞ

would affect only nonlinear behaviour.

It is important to investigate the sensitivity of divertor tem-

perature to the errors in these models to confirm whether an

accurate treatment of nonlocal transport can reconcile simula-

tion and experiment. Furthermore, the discrepancies observed

with the SNB model when ionisation gradients are steep could

potentially have critical knock-on effects for integrated ICF

modeling; it needs to be determined whether further improve-

ments to the SNB model are necessary to avoid this.

One key neglection in this work is the effect of electron-

electron collisions on the anisotropic part of the distribution

function f 1 for the case of spatially varying ionisation. It was

shown in Sec. IV A that inclusion of this in KIPP and EIC

predicts a noticeably different nonlocal deviation (consider,

for example, the value b) than would be predicted by using

the phenomenological collision fix n [which incorrectly pre-

dicts bðZÞ=bð1Þ ¼ jðBÞðZÞ=jðBÞð1Þ ¼ n as depicted in Fig.

4]. But this did not seem to be the case for the more physi-

cally realistic large temperature variation studied in Sec.

V A, as using the value r¼ 2 in the SNB model, derived in

the linearised and Lorentz limits, seemed to be preferable to

r¼ 3. Nevertheless, the use of n in IMPACT as an ad-hoc

substitution for a more complete approach to anisotropic

electron-electron collisions could still potentially lead to

inaccuracies in the heat flow predictions depicted in Sec.

V B, and this should be further investigated.

Less critical to our findings are the inaccuracies experi-

enced by VFP codes in strongly coupled plasmas. While this

could play a role in the cooler part of the hohlraum wall stud-

ied in Sec. V B where the Coulomb logarithm drops to �2

(theoretically rendering the effect of collisions in this region

only accurate to �50%), it does not affect the conclusion that

the separated SNB model predicts the same heat flow into the

wall as IMPACT while overpredicting that in the corona as

both use the same treatment of log K. We have simply shown

quantitatively that reduced models can be an effective step-

ping stone between hydrodynamic and VFP approaches.

However, this does act as a reminder that even a highly

sophisticated VFP code could be faced with challenging inac-

curacies in certain regions of the plasma (though it would

surely still be an improvement to a purely hydrodynamic

approach which would experience the same difficulties with

strongly coupled plasmas); a potential method in overcoming

this and incorporating large-angle collisions in a continuum

code could be a Monte Carlo based approach.66 Similar points

can be made for other deficiencies, such as collisions with

neutrals and Fermi degeneracy, although these are probably

slightly easier to address and incorporate into models.32,37

Following on from these basic test problems and sensi-

tivity tests, there are still important questions on predictive

modeling of fusion plasma heat flows that could be answered

using VFP codes. First, the distribution function predicted by

the SNB model should be compared to that of a fully kinetic

code to assess the former’s viability in predicting other trans-

port coefficients or parameteric instabilities.67 Further modi-

fications of the distribution function to a Dum-Langdon-

Matte type super-Gaussian68–70 due to inverse bremsstrah-

lung by laser heating in inertial fusion could also signifi-

cantly alter the transport processes.71 Furthermore, kinetic

effects can still affect perpendicular transport (both heat flow

and magnetic field advection rates) for moderate magnetisa-

tions;72,73 this could be relevant to the recent interest in mag-

netised hohlraums74,75 or magnetic islands in tokamaks;76

and while a few reduced models have been suggested to
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capture some of these aspects9,11 they still need to be prop-

erly validated with kinetic codes.

VII. CONCLUSIONS

In conclusion, we have compared three nonlocal models

from ICF and MCF. We have demonstrated their optimal

implementations, revealing potential subtleties in the descrip-

tion of the models. We have demonstrated that the SNB

model—using the original BGK operator, but scaled accord-

ing to an analysis of small-amplitude temperature sinusoids

(r¼ 2), along with the modified source term r � gðmbÞ
1 appear-

ing on the right-hand side of Eq. (20)—performs better than

NFLF and EIC for the problems investigated with large tem-

perature variations. Ensuring that the electron-electron and

electron-ion collisionalities appear separately in this equation

further improves agreement with VFP for a problem with spa-

tially varying ionisation. However, the problems studied with

large temperature variation only reach a nonlocality parameter

of �15%, suggesting that SNB is most likely suitable for

modeling hohlraum energetics problems (with the current

exception of gas-fill heat flow, which is overestimated by a

factor of �2) and mean SOL profiles but could break down at

the even shorter scalelengths relevant to transient events.

The NFLF and EIC models have been found to perform

favourably against KIPP when predicting the rate of decay

of a small-amplitude temperature perturbation over a wider

range of collisionalities than the SNB. However, these mod-

els overestimate the peak heat flux by up to 35% in the case

of a large temperature variation, as well as failing to predict

preheat. Additionally, a new analytic fit to kinetic results for

temperature sinusoids has been presented in Eq. (25) that

could be useful in traditional Landau-fluid implementations.
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APPENDIX A: SNB IN THE HYDRODYNAMIC LIMIT

For long wavelength perturbations, the diffusion term in

Eq. (20) can be ignored, and thus, the distribution function

and nonlocal heat flow easily computed in this limit. An out-

line of the derivation is given here; note that using the BGK

collision operator and g
ðmbÞ
1 in the source term gives the same

df0 as when using the AWBS operator with f
ðmbÞ
1 in the source

term if r¼ 2. The different consequences of choosing each

source term g
ðmbÞ
1 ; f

ðmbÞ
1 are distinguished by the terms, on the

left and right respectively, inside the curly brackets �; �f g.
Note that integration by parts is employed for the AWBS cal-

culation and a change of variables to u ¼ v=
ffiffiffi
2
p

vT is used.

Additionally, we define and use a further two dimensionless

variables X ¼ nZk2keiðvÞ2 which is velocity-dependent and

XðBÞ ¼ nZk2kðBÞ2ei which is independent of velocity. Numerical

results of these calculations are summarised in Table II.

BGK AWBS

df0 ¼ �
iZkkðBÞei

r

g
ðmbÞ
1 ; f

ðmbÞ
1

n o
3

df0 ¼
ðv

1
dv

iZkkeiðvÞ
v

g
ðmbÞ
1 ; f

ðmbÞ
1

n o
3

dQ ¼ � 2pme

3

ð1
0

dv
X

r

v5 g
ðmbÞ
1 ; f

ðmbÞ
1

n o
3

dQ ¼ � 2pme

3

ð1
0

dv
X

10

v5 g
ðmbÞ
1 ; f

ðmbÞ
1

n o
3

¼ � 32

9p

ð1
0

du
u17f1; u2 � 4ge�u2

36

XðBÞ

r
QðBÞ� ¼ � 32

9p

ð1
0

du
u17f1; u2 � 4ge�u2

360
XðBÞQðBÞ:

APPENDIX B: LINEARISED SNB FOR ARBITRARY
COLLISIONALITY

A similar analysis can be performed with slightly greater

difficulty at arbitrary collisionality. Integration by parts must be

used again for the AWBS derivation, along with some mathe-

matical identities. Recall that the electric field correction made

by the SNB model is a nonlinear correction and does not come

into play if the amplitude of the perturbation is infinitesimal
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BGK AWBS

df0 ¼ �
iZkkðBÞei

3r

g
ðmbÞ
1 ; f

ðmbÞ
1

n o
1þ X=3r

df0 ¼ eX=24
Ð v
1 dve�X=24 iZkkeiðvÞ

v

g
ðmbÞ
1 ; f

ðmbÞ
1

n o
3

dQ ¼ 2pme

3

ð1
0

dv
v5 g

ðmbÞ
1 ; f

ðmbÞ
1

n o
1þ X=3r

dQ ¼ � 2pme

3

ð1
0

dv
c

5

4
;
�X

24

� �
e�X=24v5 g

ðmbÞ
1 ; f

ðmbÞ
1

n o
ð�X=24Þ1=4

Q

QðBÞ
¼
ð1

0

du
u9f1; u2 � 4ge�u2

=12

1þ 32XðBÞu8=27pr
:

Q

QðBÞ
¼
ð1

0

du
c

1

4
;
�4XðBÞu8

27p

� �
e�4XðBÞu8=27pu9 1; u2 � 4

� 	
e�u2

12ð�4XðBÞu8=27pÞ1=4
;

where c is the incomplete gamma function. Computing

the definite integral numerically with Mathematica

shows that the AWBS heat flow can become negative for

XðBÞ > 0:0154, which corresponds to kkðBÞei > 0:124=
ffiffiffiffiffiffi
nZ
p

.

1M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan,

R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter et al., High

Energy Density Phys. 7, 180 (2011).
2B. D. Dudson, M. V. Umansky, X. Q. Xu, P. B. Snyder, and H. R. Wilson,

Comput. Phys. Commun. 180, 1467 (2009).
3J. Y. Ji, E. D. Held, and C. R. Sovinec, Phys. Plasmas 16, 022312 (2009).
4J. T. Omotani and B. D. Dudson, Plasma Phys. Controlled Fusion 55,

055009 (2013).
5J. T. Omotani, B. D. Dudson, E. Havl�ıčkov�a, and M. Umansky, J. Nucl.
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