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A dispatching algorithm with application to fleets of shared autonomous vehicles
Erik Hellsten
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

Fleets of shared autonomous vehicles have been predicted to dominate the transport
sector within a near future. For this to work efficiently—including the handling of
spontaneous requests—the associated routing problems need to be modelled dynam-
ically and solved efficiently. We formulate and model the problem of routing a fleet of
shared autonomous vehicles over a period of time. For each vehicle and each moment
in time, it must be decided which customers to serve and which routes to take. The
resulting model is solved using a rolling horizon optimisation methodology together
with an insertion heuristic for new requests. The optimisation problems result-
ing from the rolling horizon methodology are solved using column generation, where
the subproblems, being elementary shortest path problems with side constraints, are
solved using both a local-search heuristic and a dynamic programming algorithm.
Our computational experiments show that real-world sized problem instances can
be solved to near-optimality within a reasonable computing time.

Keywords: Optimisation, Dynamic routing, Dial-a-Ride, Column Generation, Rolling-
Horizon
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1
Introduction

We live in a time when autonomous vehicles are soon to be released to the public.
For example, do Volvo Cars plan on releasing their first autonomous cars in 2021. In
addition to being a comfortable feature it has been predicted to have drastic impacts
on future transport solutions. The major belief is that fleets of shared autonomous
vehicles, SAVs, will become a dominant way of transportation in the local passenger
transport sector (see [1, 2]). The concept is that instead of people having their
own cars they request a car from the fleet whenever they want to go somewhere,
much like a taxi system. For this to work efficiently, relevant models and customised
algorithms are required, deciding for each car, at each moment, which route to take
and which customers to serve.

The problem is similar to dispatching normal taxi fleets, with the exception that
there are no drivers. This will affect the base cost of using a vehicle as there will be
no salary to pay. It also differs in that such a fleet of SAVs may use so called ”car
sharing”, in which a vehicle may serve multiple customers simultaneously. This has
been shown to greatly reduce the number of vehicles required, (see [3]). Further,
with better communication technology, more data could be sent to and handled by
a central hub, thus increasing the potential for optimisation across the whole fleet.
Additionally, the SAVs could be more adaptive, constantly changing their driving
schedules when new information is revealed, something which might be tiring for
regular human drivers. This results in that, while taxi fleets today tend to use
manual dispatching or simple heuristic solutions, fleets of SAVs are better suited for
more advanced optimisation schemes.

The field of route optimisation has been around for a long time. In 1959, Dantzig
and Ramser [4] first described the vehicle routing problem (VRP) and since then
the topic has been studied widely. The vast majority of the literature regards static
VRPs, in which all information is known before the execution of the vehicle routes.
Assuming that the problem of dispatching a fleet of SAVs could be considered static,
it would be well described as a dial-a-ride problem, as presented by Cordeau [5]. As
customers will request rides with short notice, the problem at hand cannot, however,
be considered static and the literature regarding dynamic dial-a-ride problems is
certainly more scarce.
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1. Introduction

In this thesis, the problem of routing a fleet of SAVs is presented. Due to the dynamic
nature of the problem, it cannot be modelled as a classical optimisation problem.
Instead, it is treated as a simulation model, for which the routes are updated with
regular intervals. The new routes are created using a reoptimisation scheme, which
optimises the routes for all vehicles, based on the currently available information.
Additionally, an insertion heuristic is used to quickly integrate new requests into
the routes. The reoptimisation is performed through solving an optimisation prob-
lem, which represents a routing of the vehicles in the simulation model. It is a
rolling-horizon method, meaning that in each reoptimisation, the simulation is not
optimised over its full time span, but only from the time of the reoptimisation and
for a fixed period ahead. These problems are modelled as variations of static dial-
a-ride problems and are solved using column generation (see [6]), which has been
shown to yield good results for similar problems. The column generation method
subdivides the problem into smaller single-vehicle problems, which are solved using
customised solution methods. Both a local-search heuristic and a so called labelling
algorithm are presented as solution methods for the single-vehicle problems, as well
as a combination of the two.

To the best of our knowledge, this is the first time such a rolling horizon methodology
is used for handling the dynamic aspects of this problem, in conjunction with column
generation. It also differs from earlier work in that the problem is modelled using a
graph representing an actual road network instead of just the start and end nodes
of the customers. This has no real advantages in static vehicle routing problems, but
in dynamic vehicle routing problems, vehicles may start driving towards a node and
then change destination, when new information is revealed. In the classic dial-a-
ride problem, no information is stored about the vehicles whereabouts, in-between
visiting customer nodes. This makes it impossible to model such route changes.
With the modelling employed in this thesis, a vehicle is only constrained to drive
to the next intersection before it can change its route. This makes our formulation
more flexible and adaptive for dynamic problem settings.

It has been developed, as will be presented later, a number of approaches in which
new requests are anticipated, by assuming a random distribution for new requests
or using data from earlier simulations. No such methods will, however, be used in
this thesis. When using column generation, to guarantee the solution to be optimal,
a branch-and-price method is usually utilised. In this work, as not all information
is known and the reoptimisation problem needs to be solved many times, a lower
computational complexity is more important than a guarantee of optimality; hence
branch-and-price has not been implemented.

To test the solution methods proposed, a number of computational experiments are
conducted and the results show that reasonably sized instances can be solved with
good results in manageable computation times.

The remainder of this thesis is organised as follows. Chapter 2 is a literature re-
view on VRPs. Chapter 3 briefly introduces the optimisation theory needed for the

2



1. Introduction

methods used. Chapter 4 presents and formalises the problem of routing the SAVs
and Chapter 5 describes the reoptimisation problems. In Chapter 6 the solution
procedure for solving the problem of routing the fleet of SAVs is described. Chapter
7 presents tests and computational results for the developed solution method. In
chapter 8 the conclusions are presented and then Chapter 9 contains a brief discus-
sion of the results and possible future outlooks.
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2
Previous Work in Vehicle Routing

This chapter presents a brief review of earlier work in the area of vehicle routing
problems. It starts rather broad and then gradually focuses more on literature
relevant for the problem at hand. Necessary nomenclature is presented as it appear.
The aim is to both introduce a less informed reader to the general area and to help
put this work in a context, as to better understand the environment in which it
has been created. This chapter includes the most prominent publications in the
respective areas as perceived by the author.

2.1 Vehicle Routing Problems

The idea of route optimisation is not new. The applications in which it is used range
from train to freight ship routing (see [7, 8]). When it comes to transport problems,
one usually talks about vehicle routing problems (VRP). The original VRP was first
described by Dantzig and Ramser [4] in 1959. In short, it describes the problem in
which a number of vehicles start at a common depot and are to deliver goods to
a set of customers so that the total distance, driven by all the vehicles together, is
minimised. As it is a generalisation of the travelling salesman problem (TSP), it
is NP-hard (non-deterministic polynomial-time hard; see [9]), and so are almost all
versions and variations of it.

As more and more applications of the VRP have arisen, so has different versions
of it. The most common are the capacitated vehicle routing problem (CVRP), the
vehicle routing problem with time windows (VRPTW) and the vehicle routing prob-
lem with pickup and deliveries (VRPPD). In the CVRP the vehicles has a limited
capacity for carrying goods and can hence only deliver to a subset of the customers.
In the VRPTW each delivery has a time window in which the delivery must be
made. Lastly, in VRPPD, instead of delivering goods from the depot, the vehicles
pick up goods at some nodes and then deliver the goods to other nodes. There
are also combinations of these, such as the vehicle routing problem with pickup and
deliveries and time windows (VRPPDTW), which is a VRPPD where the pick-ups
and deliveries have to be made within certain time windows. A thorough descrip-
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2. Previous Work in Vehicle Routing

tion of the field of VRPs can be found in Vehicle routing: problems, methods, and
applications by Toth and Vigo [10].

Further, a CVRPPD in which each vehicle has unit capacity and all goods take up
unit space, such that each vehicle only can deliver one good at a time, is called a
stacker-crane problem (see [11]).

2.2 Pickup and Delivery and Dial-a-Ride Prob-
lems

Pickup and delivery problems (PDPs) and dial-a-ride problems (DARPs) are similar
in their structure. Both aim to route a set of vehicles to deliver goods from their
origins to their destinations. A PDP is generally called a DARP when the goods
to deliver are customers and the problem is concerned with customer satisfaction.
This often means that DARPs have tighter time windows and/or tries to minimise
the travelling and waiting times for the customers.

One of the first approaches to the DARP was made by Psaraftis [12, 13], who
developed exact methods using dynamic programming (see [14]) for the single-vehicle
case. An improved labelling algorithm was later presented by Desrosiers et al. [15].
For the multi-vehicle problems the methods are usually divided into exact solution
methods and heuristic and meta-heuristic approaches. Due to the complexity of
the problem the heuristic approaches are more prominent than the exact ones in
the literature. For the exact approaches there are two main solution procedures,
branch-and-cut and branch-and-price.

The first branch-and-price approach to the DARP was made by Dumas, Desrosiers
and Soumis [16] who used the labelling algorithm by Desrosiers et al. [15]. Savels-
bergh and Sol [17] presented another branch-and-price algorithm which differs sig-
nificantly from the work in [15] in that [17] employed a heuristic solution for the
subproblems. The heuristic contained an initial construction phase followed by a
local-search improvement phase. Further contributions has been made by Xu et al.
[18] and Sigurd, Pisinger and Sig [19]. In [18], a more practical problem, including
for example government laws regulating the drivers working hours, was modelled.
The subproblems were solved using a heuristic based on modifying and merging ear-
lier generated columns. A dynamic programming was further employed to achieve a
lower bound on the heuristic. In [19], a branch-and-price algorithm was applied to
animal transport in Denmark; the model included precedence constraints, stating
that animals cannot be transported in a vehicle, which has earlier transported un-
healthy animals, unless that vehicle is cleaned first. The subproblems were solved
both exactly, with dynamic programming, and using two different heuristics. In later
years, Parragh [20] has presented a hybrid-column generation approach with large-
Neighbourhood search (LNS). They alternated between using column generation and
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LNS to generate new columns.

Branch-and-cut methods was successfully used by Cordeau [21] and Cordeau and
Laporte [22] in 2006 and 2007 respectively. In 2009 the two approaches were used
together in a branch-and-cut-and-price algorithm by Ropke and Cordeau [23].

One of the first heuristic solutions for the multi-vehicle DARP was presented by Jaw
et al. [24] in which they used an insertion heuristic, sequentially deciding for each
customer how to optimally insert that customer into the current schedule. Later,
Toth and Vigo [25, 26] useed local search and tabu-thresholding to solve a real-
life problem in Bologna and in Cordeau and Laporte [27] described a tabu-search
algorithm. Ropke and Pisinger [28] presented an adaptive LNS. It was an remove-
and-reinsert heuristic where the methods used for removing and reinserting requests
were chosen adaptively based on their previous performance.

2.3 Dynamic Dial-a-Ride Problems

Dynamic dial-a-ride problems (DDARPs) are DARPs in which some or all informa-
tion is revealed during the execution of the routes. This means that the solution
needs to be updated during the execution of the routes or ”online”, as it is also
called. The most common category of dynamic dial-a-ride problems is when not all
requests are known at the execution start but are instead revealed gradually. The
literature regarding dynamic dial-a-ride problems is certainly more scarce than for
its static counterpart, but there have still been a number of successful approaches.
A survey over dynamic PDPs was written by Berbeglia, Laporte and Cordeau [11]
in 2010 and a more recent survey over dynamic VRPs was published by Psaraftis
[29] in 2016.

The work by Psaraftis [12, 13], presented in the Section 2.2, also handled dynamic
cases. It first solved the static problem, as described, and then used an insertion
heuristic for new requests during the execution. Also Madsen et al. [30] used an
insertion heuristic to handle new requests.

In some cases, some of the unknown information follows a known statistical distri-
bution, which can then be used to predict unknown information. Such problems
are called stochastic dial-a-ride problems (SDARPs). An example is the work by
Swihart and Papastavrou [31], in which they assumed that incoming requests fol-
lowed a Poisson distribution. When no such distribution exists, one may instead use
information from previous simulations for the same purpose. This has been utilised
by Van Hentenryck and Bent [32] in 2004.

In 2004 Mitrovic-Minic and Laporte [33] presented a dynamic VRPPD which they
solved using a rolling horizon-based algorithm, in which new customers were inserted
using an insertion heuristic and the problem was periodically reoptimised using
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tabu-search. This resembles the methodology developed in this thesis. They also
presented a number of waiting strategies. Mitrovic-Minic [34], later presented a
model with a double horizon objective, where the short horizon objective aimed at
minimising the route length and the long horizon objective aimed at keeping a slack
schedule to avail new requests to be added.

Other types of methods, such as for example genetic algorithms, has also been used
by for example Saez et al. [35], which used a genetic algorithm in combination with
fuzzy clustering to solve a dynamic PDP. Han et al. [36] has further used deep neural
networks to route a virtual taxi fleet in Singapore.

2.4 Fleets of Shared Autonomous Vehicles

In addition to the literature regarding DARPs and PDPs, some interesting literature
connects more directly to the concept of SAVs. Fagnant and Kockelman [37, 38]
has published two studies in which they use transport modelling to estimate the
efficiency of SAVs. Their conclusion was that each SAV can replace around ten
private cars if all private car-commuters would instead use the fleet.

Some publications use the transport simulation software MATSim [39] to implement
different taxi dispatching algorithms. One example is the work by Maciejewski et
al. [40].

8



3
Linear and Integer Linear
Programming and Column

Generation

This chapter aims to introduce the theory necessary to understand the models and
methods used later in this thesis as well as providing a brief introduction to mixed
integer linear optimisation. Section 3.1 presents linear programming as well as the
simplex method. Section 3.2 introduces the column generation method for linear
programs. Section 3.3 then introduces the integer and mixed integer linear prob-
lems along with different branch-and-bound procedures and meta-heuristics for their
solutions. Lastly, Section 3.4 describes how the column generation methodology can
be used to solve mixed integer problems with, for example, branch-and-price meth-
ods.

3.1 Linear Programming

Linear programming (LP) is a category of linear mathematical optimisation models,
in which the objective and the constraints are all defined by linear functions, and
corresponding solution techniques. Linear optimisation models have proved useful
in modelling a variety of problems, for example in transport and in economics. It
is widely used due to the numerous efficient solution methods developed, one of
which the most common is the simplex method. Linear programs are optimisation
problems which can be formulated as to

minimise
x

cTx, (3.1a)

subject to Ax = b, (3.1b)
x ≥ 0, (3.1c)

where x ∈ Rn are the decision variables and c ∈ Rn, A ∈ Rm×n and b ∈ Rm are
input parameters. For a further introduction to linear optimisation, see [41].

Linear optimisation has some interesting properties such that the solution space
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is a convex polyhedron, which is the intersection of finitely many halfspaces by the
constraints (3.1b)–(3.1c). It can further be shown that if the problem has an optimal
solution, the optimal value will be found in at least one extreme point of the solution
space.

3.1.1 The Simplex Method

The simplex method for LP utilises the fact that the solution can be found in at
least one of the extreme points of the solution space. Theoretically one could just
check the value of the objective in each extreme point and choose the lowest, but
this is usually inefficient due to the vast amount of extreme points. Instead, the
simplex method visits only a limited number of extreme points. For simplicity, for
the rest of this section the feasible set will be assumed to be bounded.

Assume that the matrix A is of rank m. If this is not the case, the constraints
are linearly dependent, which means that some constraints are redundant and can
be removed. An extreme point, x̂ = (x̂1, . . . , x̂n), of the polytope, defined by the
constraints (3.1b)–(3.1c), is an element of the feasible region, such that the subset of
columns of A corresponding to the non-zero elements in x̂ are linearly independent.
Since A is of rank m, x̂ then includes a maximum of m non-zero elements. Let us
call such an extreme point a basic feasible solution (BFS) and the non-zero variables
for the basic variables. The remaining (i.e, zero-valued) variables in x̂ are further
called the non-basic variables.

A BFS can be shown to be non-optimal if that BFS is part of an edge of the convex
polytope and the objective value is strictly decreasing when moving along that edge
away from the BFS. A geometric viewpoint of the method is that it starts at a BFS
and then jumps to adjacent BFSs in the polytope until it can no longer find an edge
along which the objective value decreases.

Now, how is this done in practice? Assume that a BFS, x̂, is known. One can then
partition x̂ into the basic variables x̂B and the non-basic variables x̂N , c into the
corresponding cB and cN and A into the corresponding matrices AB and AN and
rewrite equations (3.1) as:

minimise
xB ,xN

cBxB + cNxN , (3.2a)

subject to ABxB + ANxN = b, (3.2b)
xB,xN ≥ 0, (3.2c)

In order to move from one BFS to an adjacent BFS one could introduce a non-basic
variable into the set of basic variables and move one current basic variable to the set
of non-basic variables. But to find out whether this operation is going to improve the

10
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solution the model first needs to be reformulated in terms of the non-basic variables.
From (3.2b) follows that

xB = A−1
B (b−ANxN) (3.3)

and inserting (3.3) in the objective function (3.2a) yields
cTx = cT

BA−1
B b + (cT

N − cT
BA−1

B AN)xN . (3.4)
Further, clearly

(cT
B − cT

BA−1
B AB)xB = 0 (3.5)

holds, so one can combine (3.5) and (3.4), getting
cTx = cT

BA−1
B b + (cT − cT

BA−1
B A)x. (3.6)

This gives that for a variable xj in the set of non-basic variables, the objective value
will decrease, and hence the solution will improve, when xj is introduced into the
set of basic variables if and only if it holds that

cT
j − cT

BA−1
B Aj < 0. (3.7)

The value cT
j − cT

BA−1
B Aj is called the reduced cost of the variable xj. The variable

moved from the set of basic variables to the set of non-basic varibles is called the
leaving variable. To keep the solution feasible the leaving variable needs to be chosen
according to:

xk ∈ arg min
xi∈xB

(
(A−1

B b)i
(A−1

B (AN)j)i

∣∣∣∣∣ (A−1
B (AN)j)i > 0

)
. (3.8)

Else, if another basic variable xk is chosen as the leaving variable, some basic vari-
ables will possess a negative value after the inclusion of the new non-basic variable,
and the solution renders infeasible. Further, an extreme point in which no variable
has a negative reduced cost is an optimal solution to the problem.

Statement. A BFS in a linear optimisation problem, such that the reduced cost of
each variable is non-negative, is an optimal solution for that problem, i.e. it exists
no other feasible solution with lower objective value.

Proof. Let x∗ be a BFS such that the reduced cost of each variable is non-negative,
i.e.

cT ≥ cT
BA−1

B A (3.9)
holds. The equivalences (3.4) state that the cost of x∗ is cBA−1

B b as xN = 0. Now
let y ∈ Rn be another BFS. As y is feasible, Ay = b and y ≥ 0 hold from (3.1b)
and (3.1c), respectively. This, together with (3.1a) and (3.9), yields that the cost of
y is

cTy ≥ cT
BA−1

B Ay = cT
BA−1

B b = cTx. (3.10)
Hence the cost of any other basic solution is at least as high as the cost for x∗ and
x∗ is an optimal solution.
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For a more detailed introduction to the simplex method, see [42].

3.2 Column Generation

Some integer linear optimisation problems tend to have a huge number of variables.
When, in the simplex method, a new non-basic variable is to be introduced into the
set of basic variables it could be computationally intractable to search through all
non-basic variables. Gilmore and Gomory [43] came up with a procedure in which
new variables (or columns) are generated when they are to be introduced into the set
of basic variables. This is done by solving a so called subproblem. In this section the
Dantzig-Wolfe decomposition method will be introduced which decomposes general
linear optimisation problems, to a form which is often more suitable for column
generation, before it applies the column generation method. Later, in Section 4 the
column generation method will be shown to be useful for solving mixed integer linear
problems as well.

3.2.1 Dantzig-Wolfe Decomposition

Decomposing problems into a sequence of simpler/smaller problems is one of the
classic methods to solve optimisation problems. Dantzig-Wolfe decomposition is
one common technique where the problem is decomposed into a master problem and
one or several sub problems. The idea is to initially only consider a few variables for
the master problem and then through column generation generate more variables
by solving the subproblem. But first the problem is partially reformulated into an
inner representation as is described below. Consider the LP to

minimise
x

cTx, (3.11a)

subject to A1x = b2 (3.11b)
A2x = b2 (3.11c)

x ≥ 0. (3.11d)

Which is a reformulation of the LP (3.1) with A =
[
A1
A2

]
and b =

[
b1
b2

]
. Now this

can be written as

minimise
x

cTx, (3.12a)

subject to A1x = b1 (3.12b)

with the additional constraints

12
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A2x = b2 (3.12c)
x ≥ 0. (3.12d)

(3.12b) are the so called ”complicating” constraints and (3.12c)–(3.12d) are the so
called ”simple” constraints. The set of variables fulfilling the ”simple” constraints
make up a convex polyhedron X = {x ∈ Rn : A2x = b2, x ≥ 0}. By the
representation theorem for convex polyhedra by Minkowski and Weyl [44], any point
x̂ in the polyhedron X can be expressed as convex combination of its extreme points
(ui ∈ Ω) and a positive linear combination of its extreme rays (vj ∈ Λ).

x̂ =
|Ω|∑
i=1

λiui +
|Λ|∑
j=1

µjvj, (3.13a)

|Ω|∑
i=1

λi = 1, (3.13b)

λi ≥ 0, i = 1, . . . , |Ω|, (3.13c)
µj ≥ 0, j = 1, . . . , |Λ|. (3.13d)

Then the LP (3.1) can be rewritten as

minimise
λi,µj

cT

 |Ω|∑
i=1

λiui +
|Λ|∑
j=1

µjvj
 , (3.14a)

subject to A1

 |Ω|∑
i=1

λiui +
|Λ|∑
j=1

µjvj
 = b1 (3.14b)

M∑
i=1

λi = 1 (3.14c)

λi ≥ 0, i = 1, . . . , |Ω| (3.14d)
µj ≥ 0, j = 1, . . . , |Λ|. (3.14e)

If the variables further are separable by the constraints (3.12c)–(3.12d), i.e. the
variables x can be partitioned into p sets such that each of these constraints only
affects variables in one of the sets, the problem can be further decomposed. Then
one can partition x into (x1, . . . ,xp), xk ∈ Rnk , where nk is the dimension of xk,
and write the LP (3.1) as to

minimise
x

p∑
k=1

cT
k xk, (3.15a)

subject to
p∑

k=1
Dkxk = d (3.15b)

Fkxk = bk, k = 1, . . . , p (3.15c)
x1, ..,xp ≥ 0. (3.15d)

13
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Here (3.15b), (3.15c) and (3.15d) are reformulations of (3.11b),(3.11c) and (3.11d),
respectively. The relation between the matrices Dk, Fk and the original matrix A
is illustrated in figure 3.1. Let Ωk and Λk be the extreme points and extreme rays,
respectively, for the polyhedron defined by the constraints (3.15c)–(3.15d), which
affects xk, i.e. Xk = {xk ∈ Rnk : Fkxk = bk,xk ≥ 0}. Then xk can be expressed
as a convex combination of Ωk and a positive linear combination Λk. This finally
yields the LP to

minimise
λki,µkj

p∑
k=1

ck

|Ωk|∑
i=1

λkiuik +
|Λk|∑
j=1

µkjvjk

 (3.16a)

subject to
p∑

k=1
Dk

|Ωk|∑
i=1

λkiuik +
|Λk|∑
j=1

µkjvjk

 = d (3.16b)

|Ωk|∑
i=1

λki = 1, k = 1, . . . , p (3.16c)

λki ≥ 0, i = 1, . . . , |Ωk|, k = 1, . . . , p (3.16d)
µkj ≥ 0, j = 1, . . . , |Λk|, k = 1, . . . , p, (3.16e)

where λki are the weights for uik ∈ Ωk and µkj are the weights for vjk ∈ Λk. Now, with
λki and µkj as the new decision variables, this is the so called inner representation.
There are fewer constraints, in (3.16), than in the original formulation (3.11), but
usually a much larger number of variables. Let us for the remainder of this section
assume that we are working with a bounded LP, meaning that there are no extreme
rays, i.e Λk = ∅, k = 1, . . . , p.

Even though the model (3.16) might have a very large number of variables, usually
only a few are needed for the representation of the optimal solution. This is what is
utilised in the column generation method. Instead of optimising over all variables,
one starts with a subset of the variables and then iteratively adds variables, which
can be proven to improve the current solution, to the problem. The problem (3.16) is
generally called the master problem, and a master problem including only a subset
of the variables is called the restricted master problem. Denote by Ω̃k ⊂ Ωk for
k = 1, . . . , p, subsets of the variable spaces. Then the restricted master problem can
be expressed as to

minimise
λki

p∑
k=1

|Ω̃k|∑
i=1

cT
kuikλki, (3.17a)

subject to
p∑

k=1

|Ω̃k|∑
i=1

Dkuikλki = d (3.17b)

|Ω̃k|∑
i=1

λki = 1, k = 1, . . . , p (3.17c)

λki ≥ 0, i = 1, . . . , |Ω̃k|, k = 1, . . . , p. (3.17d)

14
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Figure 3.1: Structure of the constraint matrix for an LP where the variables are
separable by the ”simple” constraints. The D-matrices represent the ”complicating”
constraints and the F-matrices represent ”simple” constraints.

Clearly, an optimal solution to the reduced master problem does not need to be
optimal for the full master problem. But from the theory of the simplex method it
is known that a new variable would only enter and improve the solution if it has a
negative reduced cost in connection with the current solution of the reduced master
problem. The procedure is then to generate new variables uk ∈ Ωk \ Ω̃k, k = 1, . . . , p
with negative reduced cost and introduce them into the sets Ω̃k.

Let π̄ and γ̄k be the dual variables corresponding to the constraints (3.17b) and
(3.17c) respectively for the optimal dual solution to (3.17). The reduced cost for a
new variable uk will then be (cT

k − πTD)uk − γk. The new variables are generally
generated by solving the so called subproblems to

minimise
uk∈Ωk\Ω̃k

(
cT
k − π̄TD

)
uk − γ̄k. (3.18)

The constraints in the optimisation problem (3.18) comes from that uk must be
included in the set Ωk.

3.3 Integer and Mixed Integer Linear Programs

Integer Linear Programming (ILP) denotes LP where some or all variables also are
restricted to take integer values. Most ILP’s that appear in practice are computa-
tionally infeasible to solve by brute force. Instead more sophisticated approaches has
evolved where the most common exact solution algorithm is the so called branch-and-
bound method. For some large instances, finding and verifying an optimal solution
might be unreasonably time-consuming and one could instead use meta-heuristics
like tabu search or simulated annealing. Meta-heuristics do not guarantee to find
the optimal solution but are in general less time-consuming than exact methods. In
this section the branch-and-bound and tabu search methods are briefly introduced.
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3.3.1 Branch-and-Bound

As searching the full solution space is computationally intractable, branch-and-bound
methods try to prune the search space of solutions which can be proven not to be
optimal. The idea is to split the problem into smaller and smaller sub problems in a
tree structure, called branching, and to remove branches whenever possible, which
constitutes the bounding. The branching works such that a problem is split into
several smaller problems by fixing an integer variable to take only a subset of its
possible values in each sub problem. If no bounding is done the procedure will result
in that all candidates are checked in a bruteforce solution. The bounding works such
that the best value found so far is stored and whenever a branch could be proven
unable to produce a better result than the best solution already found, it does not
need further exploring and can be pruned. This can be done by finding a lower bound
on the optimal value for that branch by, for example, using a continuous relaxation.
For a more thorough introduction to branch-and-bound methods, see [45].

3.3.2 Tabu Search

Tabu search is a meta-heuristic solution approach to solve integer optimisation prob-
lems. It uses local search methods or neighbourhood search to find new solutions but
keeps a list of solutions, or traits for solutions, which are tabu and hence disallowed
for the search. The tabu list aims to prevent the search to return to solutions that
have been previously visited in order to receive a wider spread of solutions searched.
More information about tabu search and other meta-heuristics can be found in [46].

3.4 Applying Column Generation to Integer Lin-
ear Problems

To use the method column generation, technically, the optimisation problem needs
to be linear, as it relies on LP the simplex method. There are, however, ways to
use column generation to get both approximate and optimal solutions to ILPs as
well. One can for example solve a continuous relaxation of the problem using column
generation and then solve the original problem using only the columns generated
from solving the relaxation. This restricted problem includes significantly fewer
variables than the original one, but there are no guarantees that the restricted
problem will have the same optimal value as the original one. It has been shown to
provide good results and for some problems it can be used to find good solutions
quickly. The bounds of the objective function from Dantzig-Wolfe decomposition
are the same as the dual bounds (see [47]) and better or equal than or equal to the
bounds received from solving a continuous relaxation of the problem. If one wants
to find an optimal solution one could use the solution to the relaxed problem as a
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lower bound in a method similar to a branch-and-bound procedure.

3.4.1 Branch-and-Price

The branch-and-price method is a combination of column generation and branch-
and-bound. It uses column generation, as described in Section 4.2, on the LP-relaxed
master problem until an optimal solution is found. Then, if there are any variables
which are non-integer it branches as in a branch-and-bound method. Several different
branching rules can be used but it is most common, if a Dantzig-Wolfe decomposition
is used, to branch on the variables of the original formulation. The columns created
so far can generally be divided into two sets, one for each branch, so that the column
generation does not need to start from scratch in each new branch. In each node
of the branching tree, new columns are generated. The column generation then
provides a lower bound, which can be used in the bounding part of the branch-and-
bound method. A thorough description of the branch-and-price methodology can be
found in [6].
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4
Problem Formulation and

Modelling

In this chapter the problem of routing a fleet SAVs is presented, and a modelling of
it is proposed. Let us start by naming the problem of routing the fleet of SAVs the
fleet dispatching problem (FDP).

4.1 The Fleet Dispatching Problem

The FDP, which is studied in this thesis, is the problem of a fleet of shared au-
tonomous vehicles trying to serve a set of customers going about on their daily
business. The general idea is that each customer requests a vehicle to pick him/her
up around a given time, to bring him/her from his/her specific origin to his/her
specific destination. As most people do not know long in advance when they wish
to travel, most requests will be presented to the system just a short while before the
journey’s expected start. Further, the vehicles will be assumed to be identical and
each vehicle will have a maximum capacity of simultaneous customers.

The problem is defined over a fixed time period, and practicalities, such as the need
for refuelling and repair, are not taken into account. The vehicles are basically
considered up and running at all times. This is must clearly be addressed before
this model can be used in practice. It does, however, suffice to start understanding
the basic properties of the problem.

The map is modelled as a graph and requests are required to start and end at
nodes in the graph. The customers would in reality probably want to be picked up
and delivered to positions away from those nodes, but this extra distance might be
considered negligible for the larger problem, depending on how close the nodes are
to each other in a particular instance.

The initial positions of the vehicles are usually at one or more common depots. But
under the assumption that the vehicles just keep on running, the vehicles are, in
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our definition of the problem, instead randomly distributed over the nodes, at the
beginning of the time period over which the problem is defined. This distribution
would further probably depend on a variety of factors, but for the scope of this
problem, a uniform distribution will be considered.

Another major decision, when formulating this kind of a problem, is the optimisa-
tion criterion, as well as how to handle customer satisfaction. The most common
approach is to minimise the total distance travelled while picking up and delivering
customers within their respective given time windows, as is done by for example
Cordeau [5]. The problem presented in this thesis differs by not explicitly minimis-
ing vehicle distance, but instead focusing on minimising waiting times and travelling
times for the customers. Further, it will only have one-sided time windows on pick-
ups, since customers cannot be picked up before their journeys’ start time. This
will lead to that some customers might need to wait long times, but will also most
likely lead to a smaller average waiting time.

4.2 Modelling the Fleet Dispatching Problem

The goal of the FDP is to route a fleet K of m autonomous vehicles to serve a set
of customers U , during a time period, T . Let G = (V ,A) be a graph representing a
road network, where each node v ∈ V represents an intersection in the road network.
The intersections will also be the places where customers can start and end their
journeys. Each customer u ∈ U has an origin node ou ∈ V and a destination node
du ∈ V , a time su when it wants to be picked up and a time s′u ≤ su when it alerts
the fleet of its request. Let τi,j be the time it takes for a vehicle to go from node
i ∈ V to node j ∈ V . Let Wu be the waiting time for customer u and let Hu be the
travelling time for customer u. The goal is to route the fleet as to minimise a linear
combination of the waiting times and the travelling times for the customers, i.e to

minimise
Hu,Wu

∑
u∈U

(α1Hu + α2Wu), (4.1)

where α1, α2 > 0. For customers not yet picked up at the end of the time period
(at time T ), Wu is set to T − su, and for customers picked up but not delivered,
Hu is set to T − wu − su. Further, no vehicle can carry more customers than its
capacity C.

As not all information is known beforehand, it is impossible to model and solve the
FDP as a static optimisation problem. Instead, the FDP will be treated more as a
simulation model. It keeps track of the time in the problem and all the customers
and vehicles during the execution of the problem. The vehicle routes are generated
and updated during the execution, in two ways. The first is through a reoptimisation
procedure, in which repeatedly, every Treopt time units, the schedule is reoptimised
for Thorizon time units forward in time, and with all requests received up until then.
The problem, to reoptimise the schedule in this way, is denoted the snapshot fleet
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dispatching problem (SFDP). The second way, to generate vehicle routes, is that
in between the solution of the SFDPs, routes for newly received requests will be
generated using an insertion heuristic. The FDP will, hence, receive routes this
way, during the execution, and execute them.

4.3 The Snapshot Fleet Dispatching Problem

The snapshot fleet dispatching problem (SFDP) is defined as a static problem, i.e.,
it takes into account only requests that are known so-far. It further only optimises
for Thorizon minutes forward in time. As the SFDP is a problem aiming to optimise
the routes for a stage in the FDP, many of the sets and variables are the same. All
vehicles K in the FDP are also in the SFDP and a subset Ũ , of all customers U in the
FDP, are in the SFDP. The graph used in the SFDP, however, differs significantly
from the one used in the FDP. While the nodes of the graph in the FDP represent
intersections in the road network, the nodes in the graph of the SFDP represent,
among other, customers’ origins and destinations, similar to the structure of the one
used in [5]. The graph in the SFDP, is easier to work with, and the nodes included
in that representation is sufficient to model the SFDP, as it is static. The additional
information in the graph for the FDP works better, however, for the dynamic FDP,
as is discussed in Chapter 8.

Let G̃ = {Ṽ , Ã} denote the directed graph used in the SFDP. Let Ṽorig = {1, .., n}
and Ṽdest = {n+1, .., 2n} be ordered sets with the customers’ origin and destination
nodes respectively. Due to that the SFDP is defined as a problem aiming to optimse
a period of time in the FDP, at the start of the SFDP each vehicle will be either
on its way to, or at, a node in G. Let Ṽvehicle = {2n + 1, .., 2n + m} be an ordered
set of nodes in G̃ to be visited next by the repective vehicles in K. Some of the
vehicles will already have picked up customers at the start of the SFDP. Let there be
l already picked up customers and let Ṽinit = {2n+m+1, .., 2n+m+l} be an ordered
set with nodes representing the destinations of those customers. Further, since, in
the SFDP, any vehicle may end its journay at any node, let Ṽend = 2n+m+ l + 1
be a virtual node, reachable in zero time from all other nodes, representing the
end of any vehicle route. Now, Ṽ denotes the union of named nodes, i.e. Ṽ =
Ṽorig∪Ṽdest∪Ṽinit∪Ṽvehicle∪Ṽend. Further, let Ṽ ′ = Ṽorig∪Ṽdest∪Ṽinit. Let the set of
directed edges be Ã = {(i, j)|i ∈ Ṽ \ Ṽend, j ∈ Ṽ \ Ṽvehicle} and let tij be the time it
takes to traverse the edge (i, j), (i, j) ∈ Ã. The values of tij can be calculated from
τij using for example Floyd-Warshall’s algorithm (see [48]).

Let ei be the time when the customer u ∈ Ũ , which origin node is i ∈ Ṽorig, is
available for pick-up. Let βki be a binary variable taking the value 1 if the customer
on its way to node i (at the start time of the SFDP) starts in vehicle k, and 0
otherwise. Let ξk be the time at which vehicle k reaches its first node in Ṽvehicle, and
let ηk be the initial load of vehicle k.
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Now the decision variables are xki,j, yi, Bk
i , Hk

i and Qk
i , where xki,j equals 1 if vehicle

k uses the arc (i, j) in its route and 0 otherwise, yi equals 1 if the customer with
the destination node i ∈ Ṽdest ∪ Ṽinit is not delivered by any vehicle and 0 otherwise,
Bk
i is the arrival time of vehicle k at node i, Hk

i is the ride time for the customer
arriving at its destination at node i in vehicle k and Qk

i is the load of vehicle k
immediately after visiting node i. There is a maximum capacity, C, in each vehicle,
and a maximum route time, Thorizon. The parameter qi denotes the change of load
for each vehicle visiting node i and it will be -1 at the drop-off nodes, Ṽdest and
Ṽinit, and +1 at the pick-up nodes, Ṽorig. Lastly, let di be the cost of not serving the
customer heading to node i. The goal is then to
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Table 4.1: The quantities used in modelling the SFDPs. The waiting (picked-up)
customers have not been picked up (have been picked up but not yet been dropped
off) at the start time of the SFDP.

Ordered sets:
Quantity Description Size
Ṽorig Origin nodes for the waiting customers n
Ṽdest Destination nodes for the waiting customers n
Ṽinit Destination nodes for the picked up customers l
Ṽvehicle Start nodes for the vehicles m
Ṽend End node the the vehicles 1

Parameters:
Quantity Description Size
tij Travel time from node i to j |Ṽ| × |Ṽ|
ηk Initial load of vehicle k m
ξk Arrival time at the start node for vehicle k m
βki 1 if the customer with destination i starts l ×m

in vehicle k; 0 otherwise
qi Load change at node i |Ṽ|
ei Start time for the customer with origin node i n
Thorizon Maximum route length for each vehicle 1
C Vehicle capacity 1

Variables:
Quantity Description Size
Bk
i Service time at node vi by vehicle k |Ṽ| ×m

Qk
i Load of vehicle k just after visiting node i |Ṽ| ×m

Hk
i Travel time for the customer with the (n+ l)×m

destination i in vehicle k
xki,j 1 if vehicle k uses arc (i, j); 0 otherwise |Ṽ| × |Ṽ| ×m
yi 0 if the customer with destination i is delivered; n+ l

1 otherwise
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minimise
Hk

i ,Q
k
i ,B

k
i ,yi,xk

i

α1
∑

i∈Ṽdest∪Ṽinit

m∑
k=1

Hk
i + α2

∑
i∈Ṽorig

m∑
k=1

(Bk
i − ei) +

∑
i∈Ṽdest∪Ṽinit

diyi, (4.2a)

subject to

∑
j∈Ṽ

m∑
k=1

xki,j + yi = 1 i ∈ Ṽdest ∪ Ṽinit (4.2b)

∑
j∈Ṽ\Ṽvehicle

xk2n+l+k,j = 1 k = 1, . . . ,m (4.2c)

∑
j∈Ṽ\Ṽend

xkj,2n+l+m+1 = 1 k = 1, . . . ,m (4.2d)

∑
j∈Ṽ

xkj,i −
∑
j∈Ṽ

xki,j = 0 vi ∈ Ṽ ′, k = 1, . . . ,m (4.2e)

∑
j∈Ṽ

xki,j −
∑
j∈Ṽ

xkn+i,j = 0 i ∈ Ṽorig, k = 1, . . . ,m (4.2f)

βki −
∑
j∈Ṽ

xki,j ≥ 0 i ∈ Ṽinit, k = 1, . . . ,m (4.2g)

Bk
2n+k ≥ ξk k = 1, . . . ,m (4.2h)

Bk
j − ti,j +M(1− xki,j) ≥ Bk

i k = 1, . . . ,m, (4.2i)
i ∈ Ṽ \ Ṽend, vj ∈ Ṽ \ Ṽvehicle

Bk
2n+l+m+1 ≤ Thorizon k = 1, . . . ,m (4.2j)

Bk
i ≥ ei i ∈ Ṽorig, k = 1, . . . ,m (4.2k)

Hk
i = Bk

i −Bk
i−n i ∈ Ṽdest, k = 1, . . . ,m (4.2l)

Hk
i = Bk

i i ∈ Ṽinit, k = 1, . . . ,m (4.2m)
Hk
i ≥ 0 i ∈ Ṽinit, k = 1, . . . ,m (4.2n)

Qk
2n+l+k = ηk k = 1, . . . ,m (4.2o)

Qk
j − qj +M(1− xki,j) = Qk

i i, j ∈ Ṽ ′, k = 1, . . . ,m (4.2p)
Qk
i ≤ C i ∈ Ṽ , k = 1, . . . ,m (4.2q)

xki,j ∈ {0, 1} i, j ∈ Ṽ , k = 1, . . . ,m (4.2r)
yi ∈ {0, 1} i ∈ Ṽ . (4.2s)

Here, (4.2a) is the objective function aiming to minimise a weighted sum of the total
travel time, the total waiting time and the number of unserved customers, weighted
by the constants α1 > 0, α2 > 0 and di > 0. The constraints (4.2b) state that each
customer is either served or marked as unserved (yi = 1).The constraints (4.2c)–
(4.2e) ensure the flow balance, where (4.2c) is noteworthy as, in contrast to most
other DARPs, each car has its own starting node. The constraints (4.2f) ensure
that each customer who is picked up is also dropped off by the same vehicle. The
constraints (4.2g) say that a vehicle cannot drop off a customer starting in another
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vehicle, which is similar to (4.2f) but for the customers starting in the vehicles,
instead of the ones waiting to be picked up. The constraints (4.2h)–(4.2k) are the
main time constraints stating when each car can start its route, when it has to end,
that no user can be picked up before he/she is ready, as well as ensuring consistency
of the time variables. (4.2l) and (4.2m) define the ride times for the customers
and (4.2n) acts as the precedence constraint, meaning that a vehicle cannot drop
off a customer before that customer has been picked up. The constraints (4.2o)–
(4.2q) ensure consistency of the load variables, state the initial load and impose the
maximum load. Lastly, (4.2r) and (4.2s) says that xki,j and yi must be binary.
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5
The Column Generation Scheme
Applied to the Snapshot Fleet

Dispatching Problems

The SFDPs, as formulated in Chapter 4, can be solved with different ILP methods,
such as for example branch-and-bound. Similar problems have, however, been shown
to be of high computational complexity. We present a reformulation using Dantzig-
Wolfe decomposition together with a column generation method, which has been
shown to be computationally efficient, for similar problems, in several earlier papers
(see Section 2.2).

5.1 The Set Covering Formulation

The Dantzig-Wolfe decomposition, described in Section 3.2, results in a master
problem (MP) and a set of subproblems (SPs). The MP, for the Dantzig-Wolfe
decomposition of the SFDP, is a set-covering problem in which the variables are
routes for the vehicles. The SPs aim to create routes which are feasible with regards
to, for example, time and load. The Dantzig-Wolfe decomposition only works for
linear problems, and the MP is, hence, the Dantzig-Wolfe decomposition of the
continuous relaxation of the SFDP. Let us further introduce the integer master
problem (IMP), which is the MP with reinstated integrality constraints. Clearly
then, the MP will be the continuous relaxation of the IMP.

5.1.1 The Integer Master problem

In this reformulation, some new quantities are introduced. They are presented in
5.1. Let us first introduce the concept of a route. A route, rk, for a vehicle k, is
defined as an ordered set of nodes, which the vehicle k would then visit in order.
Let Rk be the set of feasible routes for vehicle k and let λkr be a binary decision
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Table 5.1: New quantities for the column generation formulation.

Quantity Description Size Type of quantity
Rk All feasible routes for vehicle k Ordered set
R̃k Generated feasible routes for vehicle k Ordered set
aik,r 1 if node vi is in route r ∈ Rk; 0 otherwise Parameter
ckr Cost of using route r ∈ Rk Parameter
di Cost of not delivering the customer to vi n+ l Parameter
λkr 1 if route r ∈ Rk is used; 0 otherwise Variable
πi Dual variable for the master problem n+ l Dual variable
γk Dual variable for the master problem m Dual variable

variable stating if route r ∈ Rk is in the solution or not. Let further ckr be the
corresponding cost of the route rk and let aik,r be equal to 1 if node i is visited in
route r ∈ Rk and 0 otherwise. In our Dantzig-Wolfe decomposition of the problem
(4.2), the constraints (4.2c)–(4.2r) are considered the ”simple” constraints and they
separate over the vehicles, while (4.2b) and (4.2s) are considered the ”complicating”
constraints. A route rk for a vehicle k is said to be feasible if it satisfies the ”simple”
constraints connected to that vehicle. In the IMP, λkr are the decision variables and
it is defined as to

minimise
λk

r ,yi

m∑
k=1

∑
r∈Rk

ckrλ
k
r +

∑
i∈Ṽdest∪Ṽinit

diyi (5.1a)

subject to
m∑
k=1

∑
r∈Rk

aik,rλ
k
r + yi ≥ 1 i ∈ Ṽdest ∪ Ṽinit (5.1b)
∑
r∈Rk

λkr ≤ 1 k = 1, . . . ,m (5.1c)

λkr ∈ {0, 1} r ∈ Rk, k ∈ 1, . . . ,m (5.1d)
yi ∈ {0, 1} i ∈ Ṽdest ∪ Ṽinit, (5.1e)

where (5.1a) is objective function, (5.1b) is equivalent to (4.2b) in the original for-
mulation and (5.1c) states that each vehicle can use at most one route. Lastly,
(5.1d) and (5.1e) states that the decision variables need to be integer. The IMP is
a set-covering problem, and not a set-partitioning problem as the constraint (5.1b)
is formulated with an inequality rather than with an equality, with set-packing con-
straints in (5.1c). Both formulations would be viable; the set-partitioning formula-
tion actually better represents the real life problem, as no customer should be picked
up by multiple vehicles. It is, however, harder to solve, as it is a more restricted
problem, where the chosen routes need to fit together exactly, and hence the set-
covering formulation is chosen and the problem of assigning multiple vehicles to one
customer will be solved by a heuristic, as a post-processing step (see Section 5.4).
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5.1.2 The Integer Restricted Master problem

To use the column generation method we first define the integer restricted master
problem (IRMP). Let R̃k ⊂ Rk, k = 1, . . . ,m, be subsets of all feasible routes for
the vehicles. The RMP is a restriction of the MP, defined only over the routes in
the subsets R̃k. The RMP is defined as to

minimise
λk

r ,yi

m∑
k=1

∑
r∈R̃k

ckrλ
k
r +

∑
i∈Ṽdest∪Ṽinit

diyi, (5.2a)

subject to
m∑
k=1

∑
r∈R̃k

aik,rλ
k
r + yi ≥ 1 i ∈ Ṽdest ∪ Ṽinit (5.2b)

∑
r∈R̃k

λkr ≤ 1 k = 1, . . . ,m (5.2c)

λkr ∈ {0, 1} r ∈ R̃k, k = 1, . . . ,m (5.2d)
yi ∈ {0, 1} i ∈ Ṽdest ∪ Ṽinit (5.2e)

Relaxing the integrality constraints on λkr and yi, yields the restricted master problem
(RMP).

5.1.3 The Dual Restricted Master Problem

To find the reduced cost for new routes generated in the SPs, it is handy to use the
optimal dual variables. Those are achieved by solving the dual restricted master
problem (DRMP). The dual variables πi and γk are associated with the constraints
(5.2b) and (5.2c) respectively. The dual problem is to

maximise
πi,γk

∑
i∈Ṽdest∪Ṽinit

πi +
∑
k

γk, (5.3a)

subject to
∑

i∈Ṽdest∪Ṽinit

aik,rπi + γk ≤ ckr r ∈ R̃k, k = 1, . . . ,m (5.3b)

πi ≤ di i ∈ Ṽdest ∪ Ṽinit (5.3c)
πi ≥ 0 i ∈ Ṽdest ∪ Ṽinit (5.3d)
γk ≤ 0 k = 1, . . . ,m (5.3e)

5.1.4 The Subproblems

The aim of the SPs is to generate new feasible routes for the vehicles which improves
the current solution of the RMP, i.e. with negative reduced cost. For a route to be
feasible it needs to satisfy all the ”simple” constraints not taken into account by
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the MP, i.e. it needs to satisfy the constraints (5.4b)–(5.4q). The reduced cost for
a route is the original cost for that route minus a bonus for each customer served
plus a penalty for the vehicle. Both the bonus and the penalty can be expressed in
terms of the optimal dual variables from the DRMP. The SP for vehicle k is to1

minimise
Hi,Qi,Bi,xi,j

α1
∑

i∈Ṽdest∪Ṽinit

Hi + α2
∑

i∈Ṽorig

(Bi − ei)−
∑

i∈Ṽdest∪Ṽinit

∑
j∈Ṽ

πixi,j − γk, (5.4a)

subject to ∑
j∈Ṽ\Ṽvehicle

x2n+l+k,j = 1 (5.4b)

∑
j∈Ṽ\Ṽend

xj,2n+l+m+1 = 1 (5.4c)

∑
j∈Ṽ

xj,i −
∑
j∈Ṽ

xi,j = 0 i ∈ Ṽ ′ (5.4d)

∑
j∈Ṽ

xi,j −
∑
j∈Ṽ

xn+i,j = 0 i ∈ Ṽorig (5.4e)

βi −
∑
j∈Ṽ

xi,j ≥ 0 i ∈ Ṽinit (5.4f)

B2n+k ≥ ξk (5.4g)
Bj − ti,j +M(1− xi,j) ≥ Bi i ∈ Ṽ \ Ṽend, j ∈ Ṽ \ Ṽvehicle (5.4h)

B2n+l+m+1 ≤ Thorizon (5.4i)
Hi = Bi −Bi−n i ∈ Ṽdest (5.4j)
Hi = Bi i ∈ Ṽinit (5.4k)
Hi ≥ 0 i ∈ Ṽdest ∪ Ṽinit (5.4l)

Q2n+l+k = γk (5.4m)
Qj − qj +M(1− xi,j) ≥ Qi i, j ∈ Ṽ ′ (5.4n)

Qi ≤ C i ∈ Ṽ (5.4o)
Bi ≥ ei i ∈ Ṽorig (5.4p)
xi,j ∈ {0, 1} i, j ∈ Ṽ (5.4q)

The SPs are so called elementary shortest path problems with time windows, re-
source constraints and pickup and delivery (ESPPTWRCPD). The most successful
approach, yet, to solve such problems to optimality is using so called labelling algo-
rithms, which has been done by, for example, Ropke and Cordeau (see [23]).

1the index k has been removed wherever possible for clarity
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5.2 Solving the Snapshot Problem

In this thesis, the set-covering formulation of the SFDP is solved by a column gen-
eration method which is presented here. The first step is to create an initial set R̃k,
of routes, for each vehicle k ∈ {1, . . . ,m}. Then, let ckred denote the reduced cost
for vehicle k’s latest generated route and set ckred = 0, k = 1, . . . ,m. With R̃k, the
DRMP is solved, yielding the optimal dual variables π̄i and γ̄k. The dual variables
are then used to solve m SPs, one for each vehicle, generating m routes rk, which
is then added to the sets of routes, R̃k. Let the reduced costs, for the new routes
rk, be denoted crk

red, and they are used to update ckred. The DRMP is then solved
again using the updated R̃k, and so on. This is done until all vehicles latest routes’
reduced costs, ckred, are non-negative. The generated routes are used to formulate the
IRMP, which is then solved. The complete algorithm is presented in Algorithm 1.

Algorithm 1 Solving the snapshot problem
1: generate the initial sets of routes, R̃k, k = 1, . . . ,m
2: for k = 1, . . . ,m do
3: ckred = 0
4: solve the DRMP over ⋃mk=1 R̃k, yielding π̄i and γ̄k
5: for k ∈ K do
6: solve the SP (5.4) for k with π̄i and γ̄k, yielding rk
7: add rk to the set R̃k

8: ckred ← crk
red

9: if min{r|r ∈ reduced_costs} < 0 then
10: goto 2
11: solve the IRMP over ⋃mk=1 R̃k

If the SPs are solved to optimality, then, when no SP yields a negative reduced cost,
the solution to the resulting RMP is also optimal to the MP. Hence, the objective
value for the solution to the RMP, over all the generated columns, is a lower bound
for the objective value of the IMP. Further, the solution to the IRMP must be
equal or worse than the optimal solution to the IMP. This means that the optimal
objective value for the IMP is bounded between the achieved objective values for
the RMP and the IRMP respectively.

5.2.1 Generating an Initial Set of Routes

There are several ways to generate an initial set of routes. In this thesis, two ways
are used. The first is to initialise with a minimal route for each vehicle, i.e. in which
no customers are served. This means that each vehicle visits its starting node, as it
has to, and then goes directly to the end node.
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Going into the SFDP, each vehicle has already an assigned route from the previous
SFDP, possibly modified by the insertion heuristic. As these routes are likely to be
rather good they are used as initial routes in the new SFDP. This is called a ”warm
start” and is used to speed up the solution procedure as generally fewer columns
need to be generated with a better initial column pool.

5.2.2 Solving the Integer Restricted Master Problem and
the Dual Restricted Master Problem

Given a set of routes, solving the IRMP could be done with, for example, a branch-
and-bound method and solving the DRMP could, for example, be done with the
simplex method. It is, however, also possible to solve them using one of the modern
solvers, such as CPLEX [49] or CBC [50], which is done in this thesis. As the major
part of the computation time is used to solve the SPs, the solution method used
to solve the IRMP and DRMP has a little impact on the computation time for the
SFDP.

5.3 Solving the Sub Problems

Solving the SPs aims to generate new feasible routes with negative reduced cost,
which can then be added to the set of routes in the RMP. A route being feasible
means that is satisfies the constraints (5.4b)–(5.4q). The solution of the SPs are
usually the most time consuming part of a column generation method, since they
retain the integrality constraints. Hence it is often a good idea to use customised
solution methods, exploiting the structure of the given SP, in an efficient way.

The SPs in the set-covering formulation of the SFDP, as described in Section 5.1.4,
are ESPPTWCPDs, which are most often solved using so called labelling algorithms.
They use dynamic programming to gradually build up feasible routes and utilises
dominance rules to remove partial solutions, which can be proven not to be part of
the optimal solution.

Another possibility is to use a heuristic to solve the SPs, as it suffices to find solutions
to the SPs with negative reduced costs to improve the solution to the RMP. If a
heuristic is used to solve the SPs, however, it is no longer true that when no further
solution can be found with a negative reduced cost, then the solution to the RMP is
optimal also for the MP. This follows from the fact that there might be solutions to
the SPs with negative reduced cost which are just not found by the heuristic.

In this thesis both a labelling algorithm and a local-search heuristic is implemented.
A combination of the two is further proposed.
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5.3.1 A Local Search Heuristic

As seen in Section 2.2, a variety of heuristics has been used to solve the SPs. In
the decision of what heuristic to use, both the type of problem and the expected
instances of the problem are relevant. For a larger instance, generally, a more
advanced heuristic is necessary to yield good results. One of the prominent features
of the expected instances of the SFDPs is that the planning horizon is rather short,
especially in comparison to static DARPs, for which the planning horizon covers the
full problem length. On the other hand, the SFDP is solved multiple times during
the execution of the routes and in practice they need to be solved and applied in real
time. Hence, keeping the computational complexity to a minimum is of the essence.
Both the short planning horizons and the need for low computational complexity
motivates a quick, rather than a complex, heuristic.

The heuristic used in this thesis consists of two phases. The first phase is a greedy
insertion heuristic, starting with a minimal route and then iteratively adding the
requests that result in the lowest reduced cost, while keeping the route feasible.
There are two types of possible requests to add. The first concerns customers which
are already in the vehicle at the start of the SFDP. For such a request only the des-
tination node for the customer is inserted into the route. The second type concerns
customers which has not yet been picked up. For those requests both the origin and
the destination nodes are inserted. Each time a node is inserted, it is done such that
the resulting reduced cost is minimised while keeping the route feasible. Requests
are added until no customer can be inserted such that the reduced cost is improved,
i.e. decreased.

As the requests are added in one by one, only taking into account which requests
is best to insert at the moment, there is no guarantee that the resulting order is
optimal. Hence, to increase the quality of the solution, in a second phase, each
request, one by one, is removed from the route and then reinserted optimally. This
does not guarantee optimal ordering but it is a quick way to improve the solution.
This second phase makes it a local-search heuristic.

Before describing the algorithm in more detail, some notation needs to be introduced.
Solving the SP for vehicle k, given π̄i and γ̄k from the last solution of the DRMP, let
rk denote the route to create. From (5.4b) and (5.4c) we know that the first (last)
element of rk need to be the start node (end node) for vehicle k. Let us denote them
vk ∈ Ṽvehicle and vend ∈ Ṽend, respectively. As they have to be in the route for it
to be feasible we initialise rk as rk := {vk, vend}. Now let us denote the customers
starting in vehicle k by Ũk and the customers waiting to be picked up by Ũwaiting.
Let further both Ũk and Ũwaiting be ordered sets. Given a route rk and a customer
ui ∈ Ũk, the end node of ui can be inserted into rk at |rk| − 1 different positions.
Let rk ∧ ui denote an ordered set of routes resulting from all feasible insertions of
the end node of ui into rk. Further, given a route rk and a node uj ∈ Ũwaiting, there
are |rk|(|rk| − 1)/2 ways to insert the start and end nodes of uj into rk (such that
the start node is inserted prior, in the set, to the end node). Let rk ∧ uj denote an
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ordered set of routes resulting from inserting the start and end node, of customer
uj, into the route rk such that the resulting route is feasible. Lastly, let crk

red be the
reduced cost of route rk as defined in (5.4a). Now, the algorithm is summarised in
Algorithm 2.

Algorithm 2 A local search heuristic to solve the SP for vehicle k
input :πi, γk

1: initialise the route r as the ordered set {vk, vend}
2: initialise Ũk and Ũwaiting

/* phase 1: insertion */
3: rbest ← rk
4: cbest ← crk

5: for ui ∈ Ũk ∪ Ũwaiting do
6: for r ∈ rk ∧ ui do
7: if cr < cbest then
8: cbest = cr
9: rbest = r

10: if cbest < crk
then

11: rk = r
12: goto : 3

/* phase 2: reinsertion */
13: for ui ∈ {u ∈ Ũ : end node of u ∈ rk} do
14: if ui ∈ Ũk then
15: Remove end node of ui from rk
16: else if ui ∈ Ũwaiting then
17: Remove start node and end node of ui from rk
18: rbest ← rk
19: cbest ← crk

20: for r ∈ rk ∧ ui do
21: if cr < cbest then
22: cbest = cr
23: rbest = r

24: if cbest < crk
then

25: rk ← rbest

output :rk

5.3.2 A Dynamic Programming Approach to Solve the Sub-
problem

The second solution method used in this thesis, to solve the SPs, is a dynamic pro-
gramming approach. It is a so called labelling algorithm as described by Desrosiers
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et al. [16]. The idea is to build up new routes, node by node, and to use arc elimi-
nation as well as dominance criterion to remove routes, which are infeasible or can
be proven not to lead to the optimal solution. The labelling algorithms are exact
methods which are guaranteed to find an optimal solution eventually.

As presented above, a route is an ordered set of nodes, and a route rk for a vehicle
k is considered feasible if it satisfies the constraints (5.4b)–(5.4q). Let a partial
route pk, for a vehicle k, be an ordered set of nodes for the vehicle k to visit in the
given order. Let further a partial route be considered feasible if it satisfies the route
constraints (5.4b)–(5.4q) except for (5.4c) and (5.4e), i.e. it does not have to be
complete. This means that a feasible partial route is a partial route which becomes
a feasible route if one adds the destination nodes of the picked up customers as
well as the end node. There is a possibility, however, that for a partial route, it is
impossible to add the destination nodes of the picked up customers while satisfying
the time constraints (5.4h)–(5.4i). Such a partial route is an exception from the
definition of feasible partial routes above and is considered infeasible.

Let us further define the ”labels” associated with the feasible partial routes. A label
Lpk

is an object containing certain information about the partial route pk. A label
is defined as:

Lpk
= {ipk

, cpk
, qpk

, spk
,Ωpk

waiting,Ωpk
open,Ωpk

passenger,Ω
pk
served,Opk

,Lpk
parent}, (5.5)

where ipk
is the last node of pk, cpk

is the reduced cost of pk as defined by (5.4a), and
spk

and qpk
are the time and the load of vehicle k after it visits ipk

. Ωpk
waiting (Ωpk

open)
denotes the set of origin nodes for the customers waiting to be picked up (having
been picked up) after visiting the node ipk

. Ωpk
passenger is the set of destination nodes

for the customers, which started as well as remain in the vehicle, and Ωpk
served is the set

of origin nodes for the customers, which have been delivered to their destinations.
Opk

is an ordered set containing the pick-up times for the picked up customers,
Opk

= {oi : i ∈ Ωpk
open}. The label Lpk

parent is described below.

We also define the concept of extending a label Lpk
to a new node j, which means

to create a new label Lp̃k
associated with the partial route p̃k = pk ∪ j. The Lpk

parent
element of a label Lpk

is a pointer to the label from which Lpk
was created. This

enables recreation of the partial route pk from the label Lpk
without having to store

the whole route. An extension of a label Lpk
to a node j is said to be feasible if the

resulting partial route associated with the new label is feasible.

For a label Lpk
, there are four groups of possible nodes to extend to. The first is the

origin nodes for the waiting customers, Ωpk
waiting, the second is the destination nodes

of the picked up customers in the vehicle k, {i + n | i ∈ Ωpk
open}, the third is the

destination nodes of the customers, which started and still remain in the vehicle k,
Ωpk

passenger and the last group consists of just the end node, {2n + m + l + 1}. The
procedure of extending Lpk

to node j varies depending on which group j belongs to.
Further, the conditions for the extension to be feasible also depend on the group of
j. The new label Lp̃k

is defined as
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case 1: j ∈ Ωpk
waiting

ip̃k
= j (5.6a)

sp̃k
= spk

+ tipk
,j (5.6b)

qp̃k
= qpk

+ 1 (5.6c)
cp̃k

= cpk
+ α2(sp̃k

− ej) (5.6d)
Ωp̃k

waiting = Ωpk
waiting \ {j} (5.6e)

Ωp̃k
open = Ωpk

open ∪ {j} (5.6f)
Ωp̃k

passenger = Ωpk
passenger (5.6g)

Ωp̃k
served = Ωpk

served (5.6h)
Lp̃k

parent = Lpk
(5.6i)

case 2: j ∈ {i+ n | i ∈ Ωpk
open}

ip̃k
= j (5.7a)

sp̃k
= spk

+ tipk
,j (5.7b)

qp̃k
= qpk

− 1 (5.7c)
cp̃k

= cpk
+ α1(sp̃k

− oj−n)− πj (5.7d)
Ωp̃k

waiting = Ωpk
waiting (5.7e)

Ωp̃k
open = Ωpk

open (5.7f)
Ωp̃k

passenger = Ωpk
passenger (5.7g)

Ωp̃k
served = Ωpk

served ∪ {j} (5.7h)
Lp̃k

parent = Lpk
(5.7i)

case 3: j ∈ Ωpk
passenger

ip̃k
= j (5.8a)

sp̃k
= spk

+ tipk
,j (5.8b)

qp̃k
= qpk

− 1 (5.8c)
cp̃k

= cpk
+ α1sp̃k

− πj (5.8d)
Ωp̃k

waiting = Ωpk
waiting (5.8e)

Ωp̃k
open = Ωpk

open (5.8f)
Ωp̃k

passenger = Ωpk
passenger \ {j} (5.8g)

Ωp̃k
served = Ωpk

served ∪ {j} (5.8h)
Lp̃k

parent = Lpk
(5.8i)
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case 4: j = 2n+m+ l + 1

ip̃k
= j (5.9a)

sp̃k
= spk

(5.9b)
qp̃k

= qpk
(5.9c)

cp̃k
= cpk

− γk (5.9d)
Ωp̃k

open = Ωpk
open (5.9e)

Ωp̃k
served = Ωpk

served (5.9f)
Ωp̃k

passenger = Ωpk
passenger (5.9g)

Ωp̃k
served = Ωpk

served (5.9h)
Lp̃k

parent = Lpk
(5.9i)

For an extension Lp̃k
to be feasible, the following constraints needs to be satisfied:

sp̃k
≤ Thorizon (5.10)

qp̃k
≤ C (5.11)

and additionally, if ip̃k
= 2n+m+ l + 1, then

Ωopen = ∅, (5.12)

which makes the associated partial route satisfy the constraints (5.4c) and (5.4e). To
further reduce the number branches, one can check if it is at all possible to deliver
all picked up customers. This means adding the constraint, if ip̃k

∈ Ωpk
waiting, then:

sp̃k
+ η(ip̃k

,Ωp̃k
open) ≤ Thorizon, (5.13)

where η(ip̃k
,Ωp̃k

open) is the smallest possible time it takes to visit all nodes in Ωp̃k
open,

starting at ip̃k
.

Additionally, before describing the algorithm in detail, let us define the concept of
dominating labels. A label Lp′

k
is said to dominate another label Lpk

if it holds that

ip′
k

= ipk
(5.14a)

sp′
k
≤ spk

(5.14b)
qp′

k
= qpk

(5.14c)
cp′

k
≤ cpk

(5.14d)

Ωp′
k

waiting = Ωpk
waiting (5.14e)

Ωp′
k

served = Ωp′
k

served (5.14f)

Ωp′
kopen = Ωp′

kopen (5.14g)

Statement. If a label Lp′
k
is dominating another label Lpk

, and the travelling times
ti,j satisfies the triangle inequality, i.e. ti,j + tj,w ≥ ti,w, i, j, w ∈ V , then the solution
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achieved by extending Lp′
k
optimally is at least as good as by extending Lpk

opti-
mally. Hence the label Lpk

is unnecessary and can be removed from the solution
procedure.

Proof. It is enough to prove that if Lp′
k
dominates Lpk

, then both Lp′
k
and Lpk

can
be extended to the same set of nodes Ωextension, and for each node j in Ωextension, the
extension from Lp′

k
to j will dominate the extension from Lpk

to j. Then for every
chain of extensions from Lpk

leading to the end node, the same chain of extensions
can be made for Lp′

k
. The resulting label from starting at the label Lp′

k
will dominate

the resulting label from starting at the label Lpk
and will have a lower or equal cost

and, hence, represent an equal or better solution.

Let Lp′
k
dominate Lpk

and let Lp̃′
k
and Lp̃k

be their respective extensions to node
j. We need to prove that the criterion (5.14) hold for Lp̃′

k
and Lp̃k

. We know that
(5.14) hold for Lp′

k
and Lpk

and that ipk
= ip′

k
. Then, according to the extension

rules (5.6)–(5.9), for each element in the labels, the change of that element from
Lp′

k
to Lp̃′

k
is equivalent to the change of that element from Lpk

to Lp̃k
. And as the

constraints holds for Lp′
k
and Lpk

and the changes in the labels are identical for the
two labels, the constraints must also hold true for the new labels, Lp̃′

k
and Lp̃k

.

We are now ready to describe the labelling algorithm. Let Γiuntreated (Γitreated) denote
the sets of untreated (treated) labels at node i. At the start of the algorithm, all sets
Γiuntreated and Γitreated are empty, except for Γ2n+k

untreated which contains the element

{2n+k, 0, γk, ξk, {1, . . . , n},∅, {i ∈ {2n+m+1, . . . , 2n+m+ l} | βki = 1},∅,∅,∅}.
(5.15)

The label given by (5.15) represents a partial route for vehicle k, only including the
vehicle’s starting node.

Let us further expand the definition of extending a label, not only to create a new
label, but also to insert it into the set Γiuntreated, where i is the node to which
the label is extended. Then, while there are still ’untreated’ labels: For each set
Γiuntreated, remove any label, in that set, which is dominated by another label, in
that set. Then extend every remaining label in that set to every node possible such
that the extension is feasible, and move the extended labels from the set Γiuntreated
to the set Γitreated. This procedure ends when there are no longer any untreated
labels to extend, at which point the optimal feasible route corresponds to the label
with the lowest cost in the Γ2n+m+l+1

treated . The actual route can be extracted using the
parent-label elements. The full algorithm is presented in Algorithm 3.
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Algorithm 3 A labelling algorithm to solve the sub problem for vehicle k
input :πi, γk

1: for i ∈ 1, . . . , 2n+m+ l + 1 do
2: Γiuntreated ← ∅
3: Γitreated ← ∅
4: Γ2n+k

treated ← {2n+ k, 0, γk, ξk, {1, . . . , n},∅,
{i ∈ {2n+m+ 1, . . . , 2n+m+ l} | βki = 1},∅,∅,∅}

5: while ⋃2n+m+l+1
i=1 Γiuntreated 6= ∅ do

6: for i ∈ 1, . . . , 2n+m+ l + 1 do
7: for L ∈ Γiuntreated do
8: for L′ ∈ Γiuntreated do
9: if L dominates L′ then

10: remove L′ from Γiuntreated
11: else if L′ dominates L then
12: remove L from Γiuntreated

13: for L ∈ Γiuntreated do
14: for j ∈ Ωwaiting do
15: extend L to j if the extension is feasible
16: for j ∈ {x+ n | x ∈ Ωopen} do
17: extend L to j if the extension is feasible
18: for j ∈ Ωpassenger do
19: extend L to j if the extension is feasible
20: if Ωopen = ∅ then
21: extend L to 2n+m+ l + 1
22: move L from Γiuntreated to Γitreated

23: L* ← the label in Γ2n+m+l+1
treated with the smallest cost

24: generate route rk from L*
output :rk
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Problems

5.3.3 A combination of the Local-Search Heuristic and the
Labelling Algorithm

The local-search heuristic solves the SPs fast, while the labelling algorithm solves
them optimally. A way to combine these two traits, is to first generate columns
using the local-search heuristic for the SPs and then, when no more columns with
negative reduced cost can be generated, the SPs are instead solved using the labelling
algorithm until no more columns with negative reduced cost can be generated. This
way, most of the columns will be generated by the local-search heuristic while the
labelling algorithm still guarantees that the generated columns suffice to make the
solution to the RMP optimal for the MP. As the local-search heuristic is faster than
the labelling algorithm, this will most likely speed up the solution of the SFDP. This
is what is referenced as the combination of the two methods or the combination
algorithm.

5.4 Post-Processing

As the SFDP is modelled as a set-covering problem and not a set-partitioning problem
(see Section 5.1.1), a post-processing step is needed. In the set-covering problem
formulation, it is allowed for a customer to be served by multiple vehicles, so when
the SFDP is solved, each such customer, has to be removed from all but one route.
In this thesis a simple, post-processing procedure has been implemented, looping
through the cars, and for each car removing every customer which has been served
by a car earlier in the loop.

40



6
Solving the Fleet Dispatching

Problem

The FDP aims at optimising a fleet of vehicles to pick up and deliver customers
during a period of time. As described in Chapter 4, we do not treat the FDP as a
proper optimisation problem but rather as a framework or as a transport simulation
model. The actual optimisation is done by the reoptimisation scheme as well as
by the insertion heuristic. The solution procedure works such that the FDP is
run as a simulation, starting at time 1 and ending at time T . Every Treopt in
the simulation, an SFDP is solved, based on the FDP’s current state. The old
routes in the simulation are then removed and replaced by the routes created by
the SFDP. The SFDP optimises for a time period Thorizon forward. Both Treopt and
Thorizon are parameters affecting the quality of the solutions to the FDP but also the
computational complexity. The lower Treopt, is and the higher Thorizon is, the better
the solutions are, but also the higher the computational complexity. The reason is
that, if the FDP is reoptimsed more frequently, it is more responsive to new requests
and a longer horizon let it plan further ahead. More frequent reoptimisations means
that the SFDP needs to be solved more often and longer planning horizons makes
for larger instances of the SFDP, both which increases the computation time. These
effects will be seen in Chapter 7.

If the difference between the time, su, when a customer wants to be picked up, and
the time, s′u, that he/she alerts the fleet of his/her request, is small in comparison
to Treopt, only using the reoptimisation scheme might yield poor results. Let us
illustrate this by an example: Assume that the FDP is reoptimised at time 1 but by
then there are no customers so no routes are generated. Then, at time 2, a customer
alerts the fleet of her journey and that she wants to be picked up immediately. At
this stage all cars are free but no car will be assigned to pick her up until the next
reoptimisation step. This means that she will need to wait for Treopt − 1 seconds
before even being noticed by the system. An approach to reduce this waiting time,
resulting from new requests not being ”noticed”, an insertion heuristic is used,
immediately inserting new requests into one of the current routes. This is done such
that the increase in waiting and travelling times is minimised, out of all possible
ways to insert the new request in the current schedule.
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6. Solving the Fleet Dispatching Problem

6.1 A Solution Algorithm for the Fleet Dispatch-
ing Problem

The FDP is initialised with a graph G = (V ,A) representing the road network, an
ordered set K of m vehicles starting at a set of random nodes in the graph, and a
set U of N customers. Each customer u ∈ U has a start node iuorig, an end node
iudest, a time, su, when his/her journey starts, and a time, s′u, when the model is
alerted of his/her request, as well as a time supick (sudrop), when he/she is picked up
(dropped off). An ordered set Uunserved stores all customers known to the model that
has not yet been picked up. The time in the model is treated as discrete so that
the model iterate over it. The FDP loops through the time indices t = 1, . . . , T ,
moving the vehicles along their routes and making the vehicles pick up and drop off
the right customer at the right node. Each vehicle has, at each time, a route rk, a
last-visited node ik, and a number of customers it is currently serving, in the two
sets Ukpick (customers to pick up) and Ukdrop (customers to drop off). At each time
step t, each customer u, with s′u = t, is added to the set Uunserved, and the insertion
heuristic is utilised to insert his/her start and end nodes into one of the routes as
well as him/her into the Ukpick for the vehicle driving that route.

If it holds that
t mod Treopt = 1,

then all vehicles, all customers currently in the vehicles and all customers currently
in Uunserved are included in formulating an SFDP. The SFDP uses a graph where the
customers origins and destinations make up the nodes and the graph of the FDP
uses nodes representing intersections in the road network. Hence, before the SFDP
can be solved the graph for the SFDP needs to be created based on the graph for
the FDP. Once the SFDP is solved, the solution is translated back to the framework
of the FDP and the routes and customers are assigned to the vehicles.

To move the vehicles, a queue-based system is used, as in [37]. So when a vehicle
leaves a node, the time of its arrival to its next node is saved. To this purpose,
a number of ordered sets Ktnode, t = 1, . . . , T , are utilised, keeping track of which
vehicles are visiting a node (any node) at time t. When a vehicle k is leaving a
node i, driving towards the node j, it is added to the set Kt+d(i,j)

node , where d(i, j)
denotes the number of time units it takes to drive from node i to node j. Which
node a vehicle arrives to is instead derived from its path. It is called queue-based
as the vehicles have no position in between nodes. The algorithm is presented in
Algorithm 4.
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Algorithm 4 Solving the FDP
input :V ,U , d,m

1: Uunserved ← ∅
2: for k ∈ {1, . . . ,m} do
3: Ukpick ← ∅
4: Ukdrop ← ∅
5: rk ← ∅
6: ik ← random node i ∈ V
7: K1

node ← K
8: for t ∈ {2, . . . , T} do
9: Ktnode ← ∅

10: for t ∈ {1, . . . , T} do
11: Uunserved ← {u ∈ U : s′u = t}
12: for k ∈ Ktnode do
13: for u ∈ Ukpick do
14: if iuorig = ik then
15: Ukpick ← Ukpick \ u
16: Ukdrop ← Ukdrop

⋃
u

17: supick ← t

18: for u ∈ Ukdrop do
19: if iudest = ik then
20: Ukdrop ← Ukdrop \ u
21: sudrop ← t

22: if rk = {i, j, . . .} then
23: Kt+d(i,j)

node ← Kt+d(i,j)
node

⋃
k

24: rk ← rk \ i
25: ik ← j
26: else if rk = {i} then
27: Kt+1

node ← Kt+1
node

⋃
k

28: rk ← rk \ i
29: else if rk = ∅ then
30: Kt+1

node ← Kt+1
node

⋃
k

31: if t mod Treopt = 1 then
32: solve the SFDP and update rk and Ukpick for k ∈ K
33: else
34: for u ∈ U : s′u = t do
35: Apply the insertion heuristic (Algorithm 5) for u
36: calculate the objective value (4.2a) from supick and sudrop
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6.2 The Insertion Heuristic

The insertion heuristic (Algorithm 5) is a tool to quickly integrate new customers
into the current schedule. It checks all possible ways to insert a new customer into
the current schedule and chooses the cheapest one. Let u be the new customer and
let iuorig and iudest be the start and end nodes for the customer u. Let the cost, as
defined in (5.4a), for a route rk and a vehicle k, be denoted crk

. The algortihm is
then presented in Algorithm 5.

Algorithm 5 The insertion heuristic
input :K, u, rk (k ∈ K)

1: cbest ←∞
2: for k ∈ K do
3: for i = 1, . . . , |rk| − 1 do
4: for j = i+ 1, . . . , |rk| − 1 do
5: r̃k ← rk
6: insert uorig between i and i+ 1 in r̃k
7: insert udest between j and j + 1 in r̃k
8: if cr̃k

− crk
< cbest then

9: cbest ← cr̃k
− crk

10: kbest ← k
11: rbest ← r̃k
12: rkbest ← rbest
13: Ukbest

pick ← U
kbest
pick

⋃
u

output :rkbest ,Ukbest
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7
Computational Experiments

To estimate the efficiency of the solution algorithms presented in Chapter 5 and
Chapter 6, a number of tests have been run. The tests, as well as the results, are
presented here. The tests are divided into two categories, concerning the FDP and
the SFDP, respectively. All tests are implemented in Python 3.4, using CBC [50] as
LP-solver and pulp [51] as solver interface. The tests were run on an Intel i5-6600
3.3GHz, 16Gb RAM computer using Windows 10.

7.1 Testing the Snapshot Fleet Dispatching Prob-
lem

We have generated a set of test instances for the SFDP. The different solution
methods (see Chapter 5) are then tested and compared on each of those instances.
A test instance is made up by a set U of waiting customers, a set of vehicles K, the
maximum route length T , the vehicle capacity C and, for each vehicle k ∈ K, set
Uk, of the customers starting in vehicle k. The start and end node of each customer
u ∈ U , the start node of each vehicle k ∈ K and the end node of each passenger
u ∈ ⋃k∈K Uk are randomly generated points within an area of [0, 100]× [0, 100] area
units, each following a uniform distribution. The arc length for an arc between two
nodes is the euclidean distance between those nodes. The units are such that it
takes one time unit to travel one distance unit. Lastly, the customers, starting in
the vehicles, will one by one be randomly distributed among the cars, following a
uniform distribution with the exception that if assigning a customer to a vehicle
would make that vehicle exceed its capacity, another vehicle is chosen in the same
fashion.

The different methods used to solve the SPs are the local-search heuristic (Algorithm
2) and the labelling algorithm (Algorithm 3), as well as a combination of the two.

As no branch-and-price algorithm has been implemented there are no guarantees
that the presented algorithms will find an optimal solution to the IMP. When using
the labelling algorithm or the combination of the labelling algorithm and the local-
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search heuristic (see Section 5.3.3) for the SPs, however, the solution to the RMP,
when no more columns with negative reduced cost can be generated, is optimal to
the MP and is a lower bound to the optimal objective value of the IMP. If, further,
that lower bound equals the objective value of the IRMP, then that solution to the
IRMP is optimal also to the IMP.

Solving the SPs using the labelling algorithm, is computationally more demanding
than using the local-search heurisitc, and the number of customers and the maximum
route length are the two most critical parameters. The tests for the SFDP are divided
into two parts. The first part consists of small instances, solvable using the labelling
algorithm for the SPs. Those solutions to the SFDP can be directly compared with
their respective lower bounds. The second part consists of larger instances, which
take too long to solve using the labelling algorithm. These are used to investigate
which instance sizes that can be solved in reasonable computing times. For those
instances, no proper lower bound is achieved but the objective value for the RMP
still provides some information about the objective value of the IMP. At least it can
be said that if the objective value for the IRMP and the objective value for the RMP
differs a lot, it would probably be a good idea to use a branch-and-price algorithm.

Each test instance is created randomly based on some input parameters. These are
the number of vehicles, m, the number of customers, n, the number of passengers,
l, the capacity, C and the maximum route length, T . The cost of not delivering a
customer, di, to its destination, will be equal to T , and both α1 and α2 will be set
equal to 1. Further, the starting times for the customers are set to 0 but the starting
times for the vehicles are uniformly distributed in the interval [0, T/4]. Those values
are chosen as to mimic circumstances from when it is used in the tests for the FDP.

7.1.1 Results for the Small Instances of the Snapshot Fleet
Dispatching Problem

For the small instances of the SFDP, we solve the problem using the labelling al-
gorithm, the local-search heuristic and the combination for the SPs. Let z denote
the lower bound, to the MPs, from solving the RMPs, using the labelling algorithm
for the SPs, and let z denote the best objective values found for the IMPs, for the
different instances. The results for the small instances are illustrated in figure 7.1,
where the quotient between z and z is plotted against the computation time for
the different problems instances and solvers. The numbers are further presented in
the table A.1 in appendix A. When, for an instance, z = z, that solution to the
IMP is optimal. We see that when using the labelling algorithm, or the combina-
tion algorithm, for the SPs, the solutions acquired are optimal for most of the test
instances. The combination seems to give similar objective values but to be faster.
Using the local-search heuristic for the SPs is faster than the two others but gives
slightly worse results.
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Figure 7.1: Objective values for the solutions to the IMPs, divided by their lower
bounds, from solving the respective MPs, plotted against the logarithm of the com-
putation times, for the different SFDP instances. Each instance is solved using three
different methods for the SPs; the blue circles represent solutions using the insertion
heuristic, the red triangles represent solutions using the labelling algorithm and the
green squares represent the combination of the two. The numbers used and the
parameters for the different instances are presented in Table A.1 in Appendix A.

7.1.2 Results for the Large Instances of the Snapshot Prob-
lem

The large instances of the snapshot problem would take too long to solve using
the labelling algorithm and have, as such, only been solved using the local-search
heuristic for the SPs. The results for the solutions to the large instances are shown
Figure 7.2. The numbers are also presented in Table A.2 in the appendix. As the
different parameter settings are differentiated by colour and shape, we see that the
solution method performs similarly on instances with the same parameters. It also
performs worse, in terms of objective value, for the instances with fewer cars and
customers but with longer time horizon T (the magenta stars in the figure).

7.2 Testing the Fleet Dispatching Problem

To test the algorithms developed in this thesis, to solve the FDP, a number of
test instances of the FDP are created and solved. Each test instance contains a
graph, a set of n customers U , a set of m vehicles K and a maximum route length
T . Additionally it contains the parameters Treopt and Thorizon, which determine
how often and how far into the future to reoptimise. The maps are incomplete
connected graphs, consisting of p nodes, each with a random location in the area
[0, 100] × [0, 100], and a number of edges connecting them. The arcs in the graphs
are created using a Delaunay triangulation (see [52]) over the nodes. An example
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Figure 7.2: Objective values for the solutions to the IMPs, divided by the objective
values for the solutions to the respective MPs, plotted against the logarithm of the
computation times, for the different SFDP instances. The IMPs and the MPs has
been solved using the insertion heuristic for the SPs. The instances of the SFDP
solved can be divided into six groups of five instances each, where each instance in
a group are created using the same parameters. The different colours and marker
shapes represent the different groups. The numbers and the input parameters are
presented in Table A.2 in Appendix A.

of such a graph is shown in Figure 7.3. The time it takes to drive along a whole
edge to the other is the euclidean length of that edge. Each customer u ∈ U has an
origin and a destination node on the map. He/she further has a starting time su
when he/she wants to be picked up. In all tests, the customers want to be picked
up immediately after alerting the problem, i.e., s′u = su. The starting time of each
customer is randomised uniformly in the interval [0, T/2]. Moreover, as in the tests
for the SFDPs, the coefficients α1 = α2 = 1, and the price, di, for not delivering
a customer u to his/her destination, is T − eu, where eu is the starting time for
u. Each vehicle k ∈ K has a random starting node in the graph and a maximum
capacity, C.

Each test instance is solved using a variety of solution methods developed in this
thesis, such that the solution methods can be compared. The different methods for
the FDP that will be studied are

• The reoptimisation scheme

• The reoptimisation scheme combined with the insertion heuristic

• The insertion heuristic for new customers.

These methods are used together with the following methods for the SPs

• The labelling algorithm
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Figure 7.3: Example of a graph used for testing the FDP. The nodes are randomly
generated and the edges are created through Delaunay Triangulation.

• The local-search heuristic

• The combination of the labelling algorithm and the local-search heuristic.

First the different methods for the FDP are tested using the labelling algorithm for
the SPs. Then the different methods for SPs are tested using the reoptimisation
scheme combined with the insertion heuristic.

For very small instances of the FDP, a static version of the problem, where all
incoming requests are known in advance, can be solved using the labelling algorithm
for the SPs. The solutions to the static problem are not necessarily optimal as no
branch-and-price is used. From the tests of the SFDP, for this size of instances, we
have shown that the solutions seem to be very close to optimal (see Section 7.1.1).
For these instances, the solution to the FDP can be compared to the optimal solution
for the corresponding static version of the problem. Note, however, that the objective
values of the static versions are not lower bounds. As more information is known
in the static versions of the problem it is virtually impossible to receive the same
objective values for the dynamic versions.

7.2.1 Results for the Fleet Dispatching Problem

The test instances for the FDP are divided into two sets, small and large. The static
version of the problem is solved for the small, but not for the large, instances. We
solve the small instances both as static and dynamic problems using the labelling
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Figure 7.4: Results for the set of small instances from two different solution meth-
ods, the reoptimisation scheme (red circles) and the reoptimisation scheme combined
with the insertion heuristic for new customers (blue triangles), for the dynamic ver-
sion of the instances. Results for the corresponding static version of the instances
are presented as well (green diamonds). The upper figure shows the best objective
values found, and the lower figure shows the computation times, for the different
instances. The numbers on the x-axis are the different parameter settings, in the
order they are presented in Table A.3 in Appendix A.

algorithm for the SPs. The dynamic version of the problems are further solved with
and without using the insertion heuristic. The objective values and computation
times, for the solutions to these instances, with the different solution methods, are
presented in Figure 7.4. The objective values, computation times and parameters for
these instances are further presented in A.3 in Appendix A. The objective values for
the static versions of the problems are lower for all instances, but the computation
times are in general much longer. For the dynamic version, using the insertion
heuristic yields better results, both in terms of objective value and computation
time for most of these instances.

To investigate the effect of the parameter Treopt on the solutions, 150 random in-
stances with the same parameters, except for different values of Treopt, were solved.
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The averages of the objective values and the corresponding computation times are
shown in Figure 7.5. As expected, a lower value of Treopt resulted in a lower objec-
tive value but also a longer computation time. When the insertion heuristic is not
used the results are rather straight forward, but with the insertion heuristic we get
effects from how the heuristic interacts with the reoptimisation scheme, which might
explain that the average objective value is higher for Treopt = 40 than for Treopt = 30.
In any case, it is better both in terms of objective value and computation time to
use the insertion heuristic for new requests instead of just lowering the Treopt. Addi-
tionally, using only the insertion heuristic for the same set of 150 instances, without
the reoptimisation, yields an average objective value of 1492. That is better (lower)
than the average objective value achieved by using only the reoptimisation scheme
with values of Treopt ≥ 20, but worse (higher) than the achieved average optimisation
when the combination, for all tested values of Treopt.

In the Figures 7.6 and 7.7 we see the objective values and computation times for the
solutions to the set of large instances, for different solution methods. For the large
instances a solution time cap of 300 seconds has been used to solve an instance.
For each of the large instances, the graphs has been created with 30 nodes and the
vehicles have a capacity of C = 2.

For the results in Figure 7.6 the instances has been solved using the reoptimisation
scheme as well as using the reoptimisation scheme in combination with the insertion
heuristic. In both cases the SPs has been solved using the local-search heuristic. For
all those instances the combination produces better solutions in terms of objective
value and in all but one case it is also faster. The objective values and computa-
tion times, as well as the parameters for the instances are shown in Table A.4 in
Appendix A.

In Figure 7.7 the same set of instances has been solved, now using the combination
of the reoptimisation scheme and the insertion heuristics but with the three different
methods to solve the SPs. As we have seen in the tests for the SFDP (see Section
7.1), the labelling algorithm and the combination of the two algorithms seem to
provide better results for the SFDP than the local-search heuristic. Mostly, that
seem to be the case for those instances of the FDP as well. For these instances,
using the local-search heuristic for the SPs results in a faster method than using
the other two and using the combination seem to be faster than using the labelling
algorithm. The objective values and computation times, as well as the parameters
for the instances, are presented in Table A.5 in Appendix A.
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(a) Average objective values for differ-
ent Treopt when not using the insertion
heuristic.

(b) Average computation times for
different Treopt when not using the in-
sertion heuristic.

(c) Average objective values for dif-
ferent Treopt when using the insertion
heuristic.

(d) Average computation times for
different Treopt when using the inser-
tion heuristic.

Figure 7.5: Average objective values and computation times for different values
for Treopt when using the reoptimisation scheme with and without the insertion
heuristic and using the labelling algorithm for the SPs. For each value of Treopt
tested, 150 different random instances has been solved with the two methods and
the average objective values and computation times are shown in the graphs. The
instances is made with m = 5 vehicles, n = 15 customers, 20 nodes in the graph,
a vehicle capacity of C = 2, a simulation time T = 200 and a planning horizon of
Thorizon = 200.
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Figure 7.6: Results for the set of large instances. Each instance has been solved
using the reoptimisation scheme (red circles) as well as the combination of the re-
optimisation and the insertion heuristic (blue triangles). For both of them, the
local-search heuristic was used for the SPs. The upper figure shows objective values
for the different instances, and the lower shows the computation times. The numbers
along the x-axis denotes the different parameter settings in the order they appear
in Table A.4 in Appendix A.
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Figure 7.7: Results for the set of large instances of the FDP, each solved using
the reoptimisation scheme and the insertion heuristic for new requests and with the
labelling algorithm (red circles), the local-search heuristic (blue triangles) and the
combination (green diamonds) for the SPs. The upper figure shows the objective
values for the different instances and the lower shows the computation times. A
time cap of 300 seconds was used for the solutions and the missing data is where the
methods failed to reach the stopping criteria within that time limit. The numbers
along the x-axis denotes the different parameter settings in the order they appear
in Table A.5 in Appendix A.
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8
Conclusion

In this thesis, a problem of routing shared autonomous vehicles dynamically has been
presented and translated into a mathematical model. A number of solution methods
are proposed, and computational experiments has been run to test their efficiency.
The solution methods use a rolling horizon reoptimisation scheme, as well as an
insertion heuristic to handle the dynamic nature of the problem. Further, a column
generation method has been created to solve the static snapshot fleet dispatching
problems within the reoptimisation scheme.

Utilising a rolling horizon to handle the dynamics of pickup-and-delivery problems
has been used before by Mitrovic-Minic and Laporte [33], but in most other aspects
their modelling and solution methods differs from what is presented here. First of
all, in this thesis, contrary to the classic dial-a-ride problem, the fleet dispatching
is modelled over a graph which represents an actual road network. This means
that a vehicle, which has started a journey, can, if new information is revealed,
change its path at the next intersection instead of at its next customer node (which
would be its next node in the dial-a-ride problem formulation). This makes our
problem formulation more realistic and more flexible. Further, we present a column
generation scheme in conjunction with the rolling horizon algorithm, which, to the
best of the authors knowledge, is the first of its kind. Also, it presents a labelling
algorithm for the snapshot fleet dispatching problems, which differs from earlier
problems solved by labelling algorithms both in terms of constraints and objective
function.

The computational experiments shows that for small instances of the snapshot fleet
dispatching problem, the presented column generation scheme generates close to opti-
mal solutions, both when using the labelling algorithm and the local-search heuristic
to solve the subproblems. For those instances the difference between the objective
value for the integer restricted master problem and its lower bound is very small,
especially for the labelling algorithm, which indicates that for such small problems,
a branch-and-price method would be unnecessary. For the large instances of the
snapshot fleet dispatching problem, the difference between the objective value of the
integer restricted master problem and the restricted master problem increases, es-
pecially for instances with large values of T . This is less of a problem though, as
the snapshot fleet dispatching problem is supposed to be used in conjunction with
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8. Conclusion

the fleet dispatching problem where the reoptimisation horizon does not need to be
that long. It has also been shown that the local-search heuristic and the labelling
algorithm can be used together successfully, yielding better results in terms of both
objective value and computation time, in comparison to only using the labelling
algorithm.

The computational experiments for the fleet dispatching problem shows that the
insertion heuristic for new requests improves the objective values significantly, es-
pecially for high values of Treopt but also seem to improve the computation times.
Due to the random nature of dynamic problems, it is hard to judge the impact of
the solution to the snapshot fleet dispatching problems on the solution to the fleet
dispatching problems.
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9
Reflections and Outlook

The problem formulated and the solution methods presented in this thesis are not
quite yet at a stage where they could be directly implemented in practice. It is an
interesting approach, however, that with some tweaks and a somewhat more ad-
vanced model, better describing reality, might be useful. In reality, for example, the
travelling times along roads are never fixed and cannot be known in advance. The
problem formulation presented in this thesis is, however, well suited to handle such
difficulties as the estimate of travelling times can be updated before each reoptimi-
sation step. Nor will other changes, such as customers changing their destinations
during their rides, be difficult to handle, as the formulation with the reoptimisation
method is very flexible.

9.1 The MATSim Heritage

The masters project reported in this thesis was initially planned to create an op-
timisation tool for a fleet of SAVs in the transport model software MATSim (see
[39]). Since the MATSim interface was not in a state where such a project could be
carried out with a satisfactory result, however, the project took a turn towards a
more mathematical problem formulation. This is noteworthy though, as some of the
model decisions remain optimised for the MATSim framework. Examples of such
decisions are the complete focus on travelling and waiting times, the lack of tight
time windows and the very short time gaps between when the customers notify the
system and when they want to start their journeys.

If the solution procedures presented in this thesis are to be used in practice, those
things need to be changed. The change in objective function and notification times
are no major changes and they could rather easily be implemented in the presented
solution methods. The change to tight time windows would, however, be more
difficult, especially if the time windows are hard, as there is no way to guarantee
the solution to be feasible due to the problem’s dynamic nature.

57



9. Reflections and Outlook

9.2 Outlook

In addition to changes in the modelling, as discussed above, there are three areas
of the solution procedure on which it would be possible to improve upon. The
first area is the solution of the SPs. Both stronger dominance and arc elimination
criterion could speed up the solution procedure for the labelling algorithm. For the
heuristics, it would be interesting to test a tabu search algorithm to try to find better
solutions than those found by the local-search heuristic, and faster than the labelling
algorithm. The second area would be to implement a branch-and-price algorithm.
Even though much points towards it being superfluous, it would be interesting to
see how it would affect the computation times and the objective values, especially
for instances with longer maximum route length. The last area is the insertion
heuristic. If many customers notify the system within a short time frame, those
customers could, for example, be inserted together, yielding better results than if
they were inserted one at a time.

In addition to these changes, which could be considered as tweaks to the presented
solution procedure, there are a lot of other possible improvements. Especially, in
practice it is likely that one has some kind of information that makes it possible
to predict future requests. Such information could be utilised to relocate empty
vehicles, use waiting strategies, and so on, to try to improve the solutions.

It is highly likely that when the fleets of SAVs arrive they will mostly consist of
electric vehicles. It would hence be of great interest to including recharging stations
in the road network and to apply charge state constraints on the vehicles in future
models.
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A. Appendix

Table A.1: Results for the small instances of the SFDP when the SPs are solved
using the labelling algorithm, the local-search heuristic and the combination of the
two for the SPs. z and zLP denote, respectively, the objective values of the solutions
of the RMP; for the labelling algorithm and the combination algorithm, these values
are lower bounds for objective values of the corresponding MPs, while, when using
the local-search heuristic, they are not. z denote the objective values for the solutions
to the IMPs. t denotes the computation time.

Labelling Insertion Combination
# z z/z t [s] zLP /z z/z t [s] z/z t [s]

m: 2 1 3032.6 1 1.7 1.0083 1.012 0.3 1 1.1
n: 10 2 2678.7 1 5.7 1 1 0.7 1 1.6
l: 3 3 2721.9 1 9 1.0059 1.0061 0.7 1 8.3

C: 2 4 2582.2 1 13.7 1.0122 1.0122 0.8 1 7.3
T: 300 5 2420.1 1 5.5 1.0011 1.0011 0.7 1 3.7

m: 5 1 3316.9 1.008 27.5 1.0075 1.0075 1.9 1.0075 8.9
n: 20 2 3647.0 1 19.6 1.004 1.004 1.5 1 10.4
l: 5 3 3774.2 1.001 5.1 1.0063 1.0063 0.8 1.0001 5.2

C: 2 4 3862.2 1 4.4 1.0044 1.0044 0.7 1 4
T: 200 5 3516.1 1 25.8 1.0067 1.0067 0.9 1.0002 12.3

m: 5 1 2853.7 1 268 1.018 1.0336 2 1 182
n: 15 2 3361.4 1 10.6 1 1 0.9 1 7.5
l: 10 3 3415.8 1 71.5 1.0061 1.0061 1.5 1 51.1

C: 4 4 3135.1 1 74.5 1.0047 1.0048 1.7 1 32.6
T: 200 5 2983.8 1 131.1 1.0237 1.025 2.2 1 74.9

m: 20 1 5462.4 1 7 1.0027 1.0027 3.6 1.0004 6.2
n: 5 2 5660.3 1 6.9 1 1 3.9 1 6.3
l: 50 3 5135.4 1 10.7 1.0072 1.0072 3.3 1 8

C: 4 4 5488.9 1 4.1 1.0002 1.0002 3.5 1 5.8
T: 200 5 5702.3 1 15 1.001 1.001 3 1 7.3

m: 5 1 3557.9 1 43 1.0027 1.0027 1.9 1 17.8
n: 20 2 3939.5 1 43.3 1.0024 1.0024 1.7 1 17
l: 5 3 4046.6 1.001 17.5 1.0015 1.0015 1.3 1.0015 9.5

C: 4 4 4150.2 1 9.7 1.0021 1.0021 1.2 1 7.8
T: 225 5 3721.0 1.004 81.2 1.0152 1.0152 1.6 1.0042 53.3
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Table A.2: Results for the large instances of the SFDPs solved using the local-
search heuristic for the SPs. z denote the objective values of the IRMPs and zLP
denote the objective values of the RMPs. t denotes the computation times.

Local-Search Heuristic
instance # zLP z/zLP t [s]
m: 20 1 13 376.3 1.025 453.2
n: 80 2 11 759.8 1.026 578.3
l: 0 3 11 369.4 1.04 708.3
C: 2 4 11 981.3 1.032 650.7
T: 400 5 12 606.1 1.038 796.4

m: 15 1 16 685.3 1.05 1361
n: 100 2 17 670.1 1.039 570.6
l: 0 3 18 552.5 1.029 431.7
C: 2 4 18 010.5 1.047 569.9
T: 300 5 18 007.5 1.032 366.8

m: 20 1 19 352.7 1.025 402.9
n: 60 2 18 409.8 1.019 320
l: 60 3 18 908.9 1.023 415.3
C: 4 4 18 219.0 1.021 431.8
T: 350 5 17 152.4 1.027 422.3

m: 5 1 20 148.2 1.131 259.2
n: 60 2 20 782.3 1.105 262.8
l: 0 3 20 164.8 1.132 315.4
C: 2 4 19 281.5 1.154 219
T: 600 5 19 230.9 1.123 261.9

m: 20 1 13 152.5 1.013 48.7
n: 80 2 13 174.0 1.005 45
l: 20 3 14 521.3 1.002 22.5
C: 2 4 13 033.4 1.011 49.6
T: 200 5 13 818.1 1.007 47.1

m: 60 1 8745.9 1.001 164.1
n: 60 2 8018.3 1.001 230.6
l: 30 3 8325.7 1.001 199.8
C: 2 4 8694.8 1.002 166.8
T: 300 5 7998.2 1.001 243.7
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Table A.3: Results for the set of small instances solved as dynamic and static
problems. The dynamic versions are solved using two methods, the reoptimisation
scheme as well as the reoptimisation scheme combined with the insertion heuristic
for new customers In all solutions the labelling algorithm was used for the SPs. z
denotes the best objective values found and t the computation times. For each of
the instances, a vehicle capacity of 2, graphs with 30 nodes and a Thorizon of 200 has
been used.

Reoptimisation
with the insertion

Reoptimisation heuristic Static
instance # z t [s] z t [s] z t [s]
m : 5 1 1670.0 1.0 1564.0 0.9 1233.0 3.9
n : 15 2 1856.0 1.1 1743.0 0.9 1583.0 1.7
T : 200 3 1697.0 1.2 1292.0 0.8 1189.0 13.9

Treopt : 50 4 1808.0 1.3 1765.0 1.5 1475.0 5.4
5 1856.0 1.5 1728.0 1.3 1398.0 3.7

m : 5 1 1811.0 2.8 1466.0 2.6 1269.0 124.9
n : 15 2 1672.0 1.9 1559.0 1.6 1167.0 56.5
T : 250 3 1633.0 3.1 1325.0 1.5 1076.0 2671.6

Treopt : 50 4 1670.0 3.2 1674.0 2.6 1290.0 44.9
5 1689.0 2.1 1513.0 1.2 1264.0 163.2

m : 10 1 2100.0 2.5 1799.0 1.0 1421.0 286.3
n : 20 2 2035.0 3.7 1588.0 1.2 1344.0 421.5
T : 200 3 1920.0 1.9 1531.0 0.9 1190.0 109.9

Treopt : 50 4 2064.0 2.7 1641.0 1.2 1250.0 408.5
5 1874.0 19.5 1327.0 1.5 1132.0 2582.8

m : 5 1 1759.0 2.9 1819.0 3.2 1510.0 2.1
n : 15 2 1517.0 3.0 1453.0 3.2 1346.0 20.2
T : 200 3 1324.0 2.5 1324.0 2.4 1089.0 9.9

Treopt : 20 4 1405.0 2.8 1252.0 2.5 1078.0 47.8
5 1561.0 3.1 1538.0 2.6 1319.0 26.7

m : 5 1 1498.0 6.8 1549.0 7.0 1305.0 34.5
n : 15 2 1171.0 5.4 1111.0 4.8 945.0 49.2
T : 200 3 1394.0 5.6 1380.0 5.6 1179.0 10.3

Treopt : 10 4 1469.0 5.2 1388.0 4.8 1234.0 19.9
5 1592.0 5.9 1562.0 5.6 1400.0 2.7

IV



A. Appendix

Table A.4: Results for the set of large instances. Each instance has been solved
using the reoptimisation scheme as well as the combination of the reoptimisation
and the insertion heuristic. For both of them, the local-search heuristic was used for
the SPs. These results clearly indicates that the combination is a better algorithm,
in terms of both objective value and computation time. For each of the instances, a
vehicle capacity of 2 and graphs with 30 nodes has been used.

Reoptimisation reopt + insert
instance # z t [s] z t [s]
m : 5 1 13 207.0 12.6 11 926.0 10.7
n : 60 2 12 946.0 16.0 11 989.0 15.8
T : 800 3 9415.0 14.3 8372.0 11.5

Treopt : 50 4 10 822.0 17.3 9904.0 12.8
Thorizon : 200 5 10 815.0 14.7 9733.0 15.0

m : 5 1 10 472.0 11.6 9147.0 9.7
n : 60 2 11 188.0 11.9 10 438.0 11.1
T : 1000 3 8588.0 13.5 7590.0 11.5

Treopt : 50 4 10 317.0 14.3 9276.0 10.5
Thorizon : 200 5 9225.0 13.1 8688.0 10.6

m : 10 1 9991.0 27.2 8454.0 15.6
n : 80 2 11 512.0 38.3 9330.0 21.9
T : 800 3 9734.0 38.1 7861.0 18.1

Treopt : 50 4 9122.0 27.3 7331.0 13.6
Thorizon : 300 5 9272.0 24.7 7906.0 15.2

m : 5 1 6953.0 8.0 5348.0 6.3
n : 40 2 6021.0 7.0 5515.0 6.6
T : 600 3 7208.0 7.6 6028.0 7.0

Treopt : 50 4 7368.0 8.9 6501.0 6.3
Thorizon : 200 5 6669.0 8.0 6383.0 7.3

m : 10 1 9027.0 23.6 7943.0 17.7
n : 80 2 11 426.0 28.5 10 006.0 26.2
T : 800 3 11 113.0 24.9 10 197.0 20.5

Treopt : 30 4 8970.0 28.0 7918.0 19.4
Thorizon : 200 5 9764.0 24.2 9642.0 22.6
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Table A.5: Results for a set of large instances of the FDP, each solved using the
reoptimisation scheme and the insertion heuristic for new requests and with the
labelling algorithm, the local-search heuristic and the combination for the SPs. z
denotes the best objective values found and t the computation times. A solution
time cap of 300 seconds has been used and fields for instances which did not reach
its stopping criteria in that time are marked as empty. For each of the instances, a
vehicle capacity of 2 and graphs with 30 nodes has been used.

Labelling Heuristic Combination
instance # z t [s] z t [s] z t [s]
m : 5 1 11 871.0 69.8 11 926.0 10.4 11 775.0 40.8
n : 60 2 11 408.0 224.9 11 989.0 15.5 11 408.0 116.2
T : 800 3 8372.0 11.3 8465.0 148.1

Treopt : 50 4 9676.0 106.2 9904.0 12.5 9170.0 31.3
Thorizon : 200 5 9688.0 118.5 9733.0 14.8 9688.0 76.7

m : 5 1 9058.0 14.0 9147.0 9.3 8999.0 16.9
n : 60 2 10 091.0 28.9 10 438.0 10.7 10 091.0 20.1
T : 1000 3 7186.0 29.5 7590.0 11.1 7966.0 21.7

Treopt : 50 4 8679.0 33.3 9276.0 10.1 8659.0 25.0
Thorizon : 200 5 7871.0 20.1 8688.0 10.2 7871.0 17.5

m : 10 1 8452.0 15.1
n : 80 2 9330.0 21.6
T : 800 3 7861.0 17.9

Treopt : 50 4 7331.0 13.4 7458.0 192.0
Thorizon : 300 5 7906.0 15.0

m : 5 1 5384.0 12.6 5348.0 6.1 5384.0 10.1
n : 40 2 5346.0 8.0 5515.0 6.3 5501.0 8.2
T : 600 3 5999.0 11.7 6028.0 6.8 6061.0 8.4

Treopt : 50 4 6291.0 11.2 6501.0 6.1 6338.0 12.2
Thorizon : 200 5 6224.0 10.6 6383.0 7.0 6224.0 9.5

m : 10 1 7834.0 47.5 7943.0 17.3 7870.0 25.8
n : 80 2 10 006.0 25.6
T : 800 3 10 199.0 71.6 10 197.0 19.8 10 013.0 47.4

Treopt : 30 4 7676.0 97.0 7918.0 18.6 7707.0 55.7
Thorizon : 200 5 8772.0 43.5 9642.0 22.2 8872.0 32.3
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