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Abstract

The availability of fast and reliable advanced communication systems made it pos-
sible to transfer massive amounts of data over thousands of kilometers. Long-haul
fiber-optical links have a unique role in this achievement by using coherent trans-
mission. Coherent systems encode the data onto both the phase and amplitude of
the optical carrier, making it possible to use higher-order modulation formats and
achieve improved spectral efficiency at the cost of a reduced tolerance against chan-
nel impairments. Digital signal processing methods have been exploited to mitigate
the channel impairments, which can be deterministic or stochastic.

In this work we propose a pilot-aided algorithm to compensate jointly for the
drifts of the carrier phase noise and state of the polarization, accommodating for
an arbitrary modulation format. The algorithm is based on a channel model that
accurately describes fiber propagation and it uses a sequence of known symbols at
the receiver, named pilots, to estimate the channel and recover the carrier phase and
state of polarization. The proposed pilot-aided algorithm originates from a blind al-
gorithm that uses differential encoding. Simulation results compare both algorithms
and show that the proposed algorithm has a better convergence rate and tolerance to
the considered channel impairments, at the cost of a slight overhead. Furthermore,
the state of polarization and phase ambiguities, which the blind algorithm suffers
from, have also been resolved in the pilot-aided algorithm.

Keywords: coherent transmission, phase noise, polarization drift, pilot-aided, joint
tracking, joint processing.
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Acronyms

AWGN additive white Gaussian noise

CS cycle slip

DOF degrees of freedom

DSP digital signal processing

IM-DD intensity-modulation-direct-detection

OOK on-off keying

PM polarization-multiplexed

QAM quadrature-amplitude modulation

QPSK quadrature phase-shift keying

MSE mean squared error

SER symbol error rate

SOP state of polarization

SNR signal-to-noise ratio
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Chapter 1

Introduction

Choosing these days between the variety of information we receive at every moment
is much harder than accessing them. One might say that is due to the availability of
fast and reliable advanced communication systems, which made it possible to access
massive amount of data by just a click. Optical fibers have a unique role in this
achievement by transferring data over thousands of kilometers between continents
or several meters between data-centers in a fast, reliable, and power-efficient manner.
This is possible because of inimitable specification of optical fibers that have both
enormous bandwidth and low power loss compare to all other transmissions media
and make it the unbeatable candidate for long-haul/high-data rate communications.

On the other side, there are ever increasing demands for data and video services
and applications over Internet, i.e., real-time video, online gaming; and even further,
new coming services like Internet of things demands for more Internet traffic globally
[1]. However, optical fibers are the backbone of Internet and have been deployed
almost everywhere, but to be able to satisfy this growing demand, it is a necessity
to aim for higher-performance optical communication systems from all aspects.

1.1 Background and History

We may address back the idea of transferring data over the light to the very past
when the Lord “appeared to him [Moses ] in flames of fire”. But in recent years the
bright idea of Charles Kao and George Hockham in 1966 of using “A dielectric fiber
with a refractive index higher than its surrounding region” to transfer energy at
optical frequencies [2] can be seen as the emerge of era of optical communications.
This followed by laboratory experimenting of <20 dB/km optical fiber loss in 1970
[3].

The commercial deployment of optical fibers happened in the 1980s and 1990s,
meanwhile the first transcontinental optical fiber link named TAT-8 was installed
over Atlantic ocean to connect USA to Europe in 1988 [4]. TAT-8 was a two-fiber-
pair system where each pair could transfer 280 Mb/s [4]. Almost at the same time
[5,6], the invention of erbium-doped fiber amplifiers caused a revolutionary increment
in data rate of optical systems by leveraging wavelength-division multiplexing to
transmit multiple channels over a single fiber each with a different optical carrier.

Until recently, the commercial optical systems were mostly using simple binary

2



modulation format known as on-off keying (OOK). This is a rather spectral in-
efficient modulation, which could transfer up to 10 Gb/s bit rate per wavelength
channel [7, section 7] , but does not require complex transmitter and receiver.

While the demands for higher data rates increase, the optical fiber bandwidth is
considered a limited source, so there is a great interest towards the deployment of
more complex and higher order modulation formats than OOK, which can improve
spectral efficiency and increase data throughput. This purpose has been achieved
by using digital signal processing (DSP) to implement state-of-the-art coherent
transceivers, which can modulate data onto both the in-phase and the quadrature
components of the optical carrier in the transmitter and use coherent detection at
the receiver side [8].

The spectral efficiency can be improved even further by using two orthogonal
polarizations of the light, known as polarization multiplexing. In these systems,
an independent data stream can be sent on each polarization, which makes data
throughput doubled compared to single-polarization transmission. Here, a data
symbol has in-phase and quadrature components in each polarization, which can be
considered as a point in a four-dimensional space rather than two points in a two-
dimensional space, as it is in the case of single-polarization. This inherent four-fold
dimensionality of the light field will permit polarization-multiplexed (PM) systems
to construct optical channels with four degrees of freedom (DOF) [9].

By using coherent detection at the receiver side, PM-binary phase-shift keying
(PM-BPSK), PM-quadrature phase-shift keying (PM-QPSK), and PM-16-quadrature-
amplitude modulation (PM-16-QAM) are commercialized, allowing for 50 Gb/s,
100 Gb/s, and 200 Gb/s, respectively, per channel transmission at a symbol rate
of 25 Gbaud, and it is expected to achieve higher data rates by deploying higher
order modulation formats [7, section 6]. But using higher order modulation imposes
less tolerance against channel impairments. DSP can also be used here to mitigate
these impairments, such as nonlinearities, chromatic dispersion, additive noise, and
laser phase noise. To be able to compensate for these impairments, which can be
deterministic or stochastic, we need to have a channel model for optical fibers to
describe light propagation through, as accurate as possible.

Transmitter Receiver

Fiber-optic Channel

Figure 1.1: Basic schematic of a fiber-optic link

A basic optical fiber link is depicted in Figure 1.1. The transmitter converts the
bits bk to an optical signal to be transmitted over the optical channel. The link
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consists of N spans, each including a fiber span and an optical amplifier to transfer
the optical signal over the desired distance. The receiver decodes the received optical
signal, where the output b̂k will be an estimation of the transmitted bit.

1.2 Coherent Optical Communication Systems

Coherent systems are pioneer technologies that had a great influence on optical com-
munication systems to reach to a better performance. They improved the spectral
efficiency, increased receiver sensitivity, and enabled communications over longer
distances compared to intensity-modulation-direct-detection (IM-DD) techniques
[10,11].

IM-DD systems modulate the data at the transmitter by changing the intensity
of the laser light, where the information is contained. The detection is done at the
receiver by a photo-detector, which generates an electrical current proportional to
the power of the received optical signal [12,13]. IM-DD suffers from limited spectral
efficiency and further, from nonlinearity in the receiver, which makes it hard to
correct linear channel impairments. This nonlinearity comes from the fact that the
generated electrical current by the photo-diode is proportional to the square of the
received signal magnitude (square law principle) [14].

Coherent systems have some considerable advantages over IM-DD techniques.
Besides better sensitivity, which is mainly due to using local oscillator and balanced
photo-detectors in the receiver, they also have better spectral efficiency. Coherent
detection made it possible to use amplitude/phase modulations in both polarizations
of the light. This allows for multilevel modulation formats such as PM-QPSK and
PM-16-QAM, which as a result gives several times better spectral efficiency compare
to IM-DD [15]. Furthermore, contrary to IM-DD, coherent detection is a linear
detection technique, where the generated electrical signal in the photo-detector is
proportional to the electrical field vector of the optical signal. This linearity means
that linear impairments and distortions such as chromatic dispersion or polarization
mode dispersion, can be compensated effectively [16,17].

Coherent detection technologies have been investigated in the academic area
since the 1980s, mostly due to their better sensitivity than IM-DD for long distance
transmission [18, 19]. However, they were shadowed for a period of 20 years and
remained there mainly for two reasons. First, it was hard to implement such an
phase-locked loop to lock the phase and frequency of the received signal, with avail-
able analog carrier recovery technologies. Second, by the invention of erbium-doped
fiber amplifier and wavelength division multiplexing, which improved the sensitivity
of the receivers considerably [5, 6], the main reasons for using coherent detection
were solved and they became commercially less interesting. But as the genius pre-
diction of John Barry and Edward Lee in 1990, “coherent techniques may someday
revolutionize optical communication.” [20], coherent detection came back to the ta-
ble because of the demands for higher order modulation formats to improve the
spectral efficiency. Furthermore, by technologies development in the field of elec-
tronics, coherent technologies could help to recover phase and frequency and also
to compensate for channel impairments with the availability of powerful DSPs and
high sampling rate analog-to-digital converters implemented in modern application-
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specific integrated circuits [8, 21,22].
The coherent systems are so advantageous that someone may think why it has

not been implemented earlier, actually their advantages come with some expenses.
The coherent transmitter and receiver are much more complex than their identical
blocks in IM-DD techniques; they require powerful DSP and high sampling-rate
analog-to-digital converters, which are components that can limit the transmission
baud rate in the coherent transmitter [10, 14].

1.3 Contributions

In this report, a pilot-aided algorithm for joint tracking of the phase and polarization
has been proposed. The algorithm uses a sequence of known symbols named pilot
packet to estimate and compensate for phase noise and drift of the state of the
polarization. For the first time, without using differential coding, both phase and
polarization ambiguities are removed by using this algorithm, compared to the other
known tracking algorithms, which suffer from at least one of the ambiguities.

1.4 Thesis Organization

The remainder of the report is organized as follows. Chapter 2 gives a brief overview
of the fiber-optic channel and coherent optical fiber transmission. In Chapter 3, the
system model is presented. Chapter 4, first, known algorithms for tracking phase
and polarization are presented and a blind algorithm which jointly tracks phase
and polarization is discussed. Thereafter, the proposed pilot-aided algorithm, as
the extension of the blind algorithm, is proposed. Next, the calculations of the
design parameters of the algorithm are presented and an implementable form of the
algorithm is given. In Chapter 5, the performance of the proposed algorithm are
evaluated and compared to the blind algorithm. Finally, Chapter 6, concludes this
thesis.
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Chapter 2

Coherent Optical Fiber
Transmission

The total reflection phenomenon is the physical concept which optical fiber commu-
nication is perched on. An optical fiber consists of a cylindrical core and a covering
cladding, both usually made of high-quality silica glass. The difference in the re-
fractive index of the core and cladding (which has a smaller refractive index) will
confine the light beam into the core.

There are two main types of optical fibers, multi-mode optical fiber and single-
mode optical fiber, regarding the different optical modes the light can propagate
through the fiber, which are solutions to Maxwell’s equations [23, Ch.2]. A multi-
mode optical fiber uses a larger core than single-mode optical fiber. This allows
more modes to propagate and also the use of cheaper transmitter and receiver com-
ponents. The core of single-mode fiber is smaller, however, it is proper for long-haul
transmission and higher performance links.

In this thesis we are interested in long-haul transmission, where the optical signal
propagation is highly affected by the channel impairments. So, in Section 2.1, we
discuss briefly some of the channel impairments which will be considered in our
channel model and continue with explaining the coherent transceiver structure in
Section 2.2.

2.1 The Optical Fiber Channel

In this thesis we have considered three channel impairments, additive noise, phase
noise, and polarization state drift, each explained briefly in the following without
considering mathematical details.

The optical fiber has a much lower attenuation compared to other mediums
like copper wires, but still when the optical signal propagates through the fiber,
its power attenuates. Due the fact that the receiver requires a minimum signal
power, the attenuation becomes a limiting factor for long distance transmission.
To overcome this problem, as shown in Figure 1.1, the optical signal needs to be
amplified periodically throughout the entire link. The optical amplifiers are the
source of noise which degrade the signal-to-noise ratio (SNR). The accumulation
of noise generated at each amplifier can be modeled as additive white Gaussian
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noise (AWGN) [23, section 7.6].
Coherent systems modulate the optical signals in the phase and amplitude of the

optical field in both polarizations of the light. Two independent lasers, one in the
transmitter and one in the receiver are used in coherent systems to be able to access
both phase and amplitude of the optical signal. The transmitter laser generates the
optical carrier wave and the receiver laser is used as a reference to demodulate the
received optical signal. These lasers are not perfect and synchronized, so they have
an active phase difference, which results in phase noise. This phase noise causes
random rotation of the received PM constellation, which induces disastrous errors
in the detected symbols, if it is not compensated for. The spectral shape of the
practical lasers is wider than a perfect delta function. This imperfection is the
source of the phase noise [24]. We can quantify the phase noise by the linewidth
sum ∆ν of both transmitter and receiver lasers multiplied by the symbol period T .
The dimensionless parameter ∆νT will be a measure for the phase noise sensitivity
of the system.

Similar to radio waves, light is also an oscillating electromagnetic field. This
means the propagation of the light can be characterized as a sinusoidal wave of
the electrical field E, where the orientation of this field is called polarization. The
simplest type of polarization is linear polarization, where the field E oscillates in a
single fixed plane and can be decomposed to two orthogonal components, Ex and
Ey which are also sinusoidal wave forms. The polarization of the field E can change
with time, causing the amplitude and the phase of both Ex and Ey to change. This
phenomenon is called drift of the state of polarization (SOP). Coherent fiber-optic
transmission modulates data independently in both Ex and Ey components, which
are called X and Y polarizations. The changes in the physical environment, which
the fiber goes through, will result in a random drift of the SOP. The SOP drift
can be seen as a 4D rotation of the 4D PM constellation. To compensate for this
stochastic impairment, it is desired to have a mathematical model for it, then design
a special block in the receiver to recover the SOP.

2.2 Coherent Transmission

The schematic of a coherent transmitter is shown in Figure 2.1 [15]. A polarization
beam splitter divides the laser light into two branches corresponding to X and Y
polarizations. Thereafter each branch is split into two branches corresponding to
the In-Phase and Quadrature components. Modulation in each branch is done by a
Mach-Zehnder modulator, then a π/2 polarization rotation is applied to the signal
to form the X-polarization and Y -polarization, respectively. The two X and Y
polarized signals are combined in a polarization beam combiner and then injected
to the fiber.

A block diagram of a coherent receiver is shown in Figure 2.2. The direction of
the arrows show the signal flow from the optical signal to data symbols. The receiver
consists of different blocks that compensate for the impairments and further estima-
tion and detection block. The scope of this thesis includes only three blocks of the
shown figure, SOP tracking, carrier phase recovery and symbol estimation/decoding
blocks.
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Figure 2.1: Schematic of an optical coherent transmitter [15].
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Chapter 3

System Model

This chapter, which is a duplication of the system model described in [25], presents
the channel model used in this thesis to describe analytically the propagation of the
electrical field conveying the optical signal in the presence of additive noise, phase
nose, and drift of the SOP.

The optical signal and its propagation can be represented by three different for-
malisms: Jones formalism, Stokes formalism, and 4D formalism. In Section 3.1, the
Jones formalism has been exploited to mathematically describe the optical signals.
Section 3.2 describes jointly both the phase noise and the SOP drift based on a
channel model proposed in [26].

The following notation conventions will be used through the thesis : column
vectors are denoted by bold lower case (e.g., u) and matrices by bold upper case
(e.g., U), except the Pauli matrices σi and the electrical field Jones vector E, to
be consistent with the literature. The conjugate transpose is written uH, the 2× 2
identity matrix as I2 and the expectation operator as E[·]. The dot operation is
the inner product of two vectors with the same size, except in the cases α · ~σ and
Ĥ−1k · ~σ, which are defined (α1, α2, α3) · (σ1,σ2,σ3) = α1σ1 + α2σ2 + α3σ3 and

Ĥ−1k · (σ1,σ2,σ3) = Ĥ−1k σ1 + Ĥ−1k σ2 + Ĥ−1k σ3, respectively, where ~σ = (σ1,σ2,σ3)
is the tensor of the three Pauli matrices. The absolute value is denoted by |·| and
the Euclidean norm by ‖·‖.

Modulator Demodulator

Fiber-optic Channel

Figure 3.1: A channel model which considers phase noise, SOP drift and AWGN.
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3.1 Representation and Propagation of Optical

Signals

The coherent optical signal consists of two polarizations, each include two quadrature
parts, and can be described by a Jones vector, as a function of propagation distance
z and time t

E(z, t) =

Ex(z, t)
Ey(z, t)

 . (3.1)

This is a two-dimensional complex-valued vector, where Ex and Ey are baseband
signals denoting the the X and Y field components. Ex and Ey are complex signals
and consist of In-phase and Quadrature parts. E(0, t) is the signal sent into the
transmission medium generated by linearly modulating the information symbols
uk ∈ C2

E(0, t) =
∑
k

ukp(t− kT ), (3.2)

with a real-valued electrical pulse p(t) for the symbol index k ∈ Z, at symbol intervals
T . The transmitted symbols uk are discrete 2× 1 complex vectors drawn uniformly
and independently from a constellation C = {c1, c2 . . . cM} with M finite points.
The average energy of the constellation is the average energy of the symbols ‖uk‖2
and equals

Es =
1

M

M∑
k=1

‖ck‖2. (3.3)

The discrete received symbol at distance L

rk =

∫ ∞
−∞

E(L, t)p(t− kT )dt, (3.4)

is achieved by matched filtering and sampling with period T of the electrical field
E(L, t).

In this thesis we only consider phase noise, SOP drift, and AWGN as the impair-
ments. Therefore, the relation between the propagated symbol rk and the transmit-
ted symbol uk can be described as

rk = Hkuk + nk, (3.5)

where the phase noise and the SOP drift is modeled as complex 2× 2 matrix Hk ∈
C2×2. The additive noise nk ∈ C2 is a complex zero mean Gaussian random variable
with independent components in both X and Y polarizations. The total discrete-
time noise power ‖nk‖2 is finite and equal to N0, i.e., E[nkn

H
k ] = N0I2, resulting

in a noise variance of N0/2 per polarization [9]. This channel model is shown in
Figure 3.1, and can replicate a 2 × 2 multiple-input multiple-output system used
widely in wireless communications [27], even though here the inputs and outputs
are signals from two independent polarizations of light.

10



The so-called Jones matrix Hk is a unitary matrix that does not diminish the
power of input signal during propagation and can be characterized by

HH
kHk = HkH

H
k = I2, (3.6)

detHk = 1. (3.7)

Any unitary matrix Hk can be expressed in the form

Hk =

 a b

−eiθb∗ eiθa∗

 , |a|2 + |b|2 = 1, detHk = eiθ, (3.8)

where a, b, and θ are real numbers. The matrix Hk depends on four parameters
(the phase of a, the phase of b, the relative amplitude between a and b, and the
angle θ), which gives four DOFs. The condition in (3.6) constrains the DOFs to be
four, otherwise in general, a complex 2× 2 matrix has eight DOFs, i.e., the real and
imaginary parts of the four elements.

Structuring Hk like (3.8), will help to define it as a exponential matrix function
H(φ,α) with four parameters, i.e., φ modeling phase noise, and α = (α1, α2, α3)
modeling the SOP drift,

H(φ,α) = exp(−i(α · ~σ + φI2)), (3.9)

where ~σ = (σ1,σ2,σ3) is a tensor of the Pauli spin matrices [28]

σ1 =

1 0

0 −1

 , σ2 =

0 1

1 0

 , σ3 =

0 −i

i 0

 . (3.10)

The vector α can be presented as a unit vector multiplied by its amplitude α =
‖α‖a. For ease of notation we call θ = ‖α‖ and the elements of the unit vector
a = (a1, a2, a3) represent the vectors direction on a unit sphere.

The two phenomena, phase noise φ and SOP drift α modeled by H(φ,α) in (3.9)
can be factorized in two separate exponential terms

H(φ,α) = e−iφ exp(−iα · ~σ), (3.11)

where we define
J(α) = exp(−iα · ~σ) (3.12)

that strictly models the SOP drift. Then, (3.5) can be written like

rk = e−iφkJkuk + nk. (3.13)

Similarly to Hk, Jk is also a unitary matrix, so it can be presented by as a
matrix function J(α). However, it has an extra constraint detJk = 1, this constraint
reduces the number of DOFs to three, i.e., the elements of α.
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The function H(φ,α) and J(α) can be written as

H(φ,α) = (cosφ− i sinφ)(I2 cos θ − ia · ~σ sin θ), (3.14)

J(α) = I2 cos θ − ia · ~σ sin θ, (3.15)

after expanding (3.9) and (3.12) into the Tailor series

expA =
∞∑
k=0

1

k!
Ak, ∀A ∈ Cn×n (3.16)

defined in [29, p. 165] and using (α · ~σ)2 = θ2I2.
Both Hk and Jk being unitary matrices, their inverses can be calculated by

conjugate transposing which in this case, is the same as negating φ and α, so

H(φ,α)−1 = H(φ,α)H = H(−φ,−α), (3.17)

J(α)−1 = J(α)H = J(−α). (3.18)

3.2 Phase and Polarization Drift Channel Model

We model the phase noise φk as a Wiener process [30, 31]

φk = φ̇k + φk−1, (3.19)

where φ̇k is the innovation of φk at each time instance k. The phase innovation φ̇k is
a random variable drawn independently, from a real zero-mean Gaussian distribution

φ̇k ∼ N (0, σ2
ν), (3.20)

with the variance σ2
ν = 2π∆νT , where ∆ν is sum of the linewidths of transmitter

and receiver lasers.
The accumulated phase noise φk at time k is the summation of all φ̇1, . . . , φ̇k

added to the initial phase φ0. The initial phase φ0, which states the initial phase
difference between the transmitter and receiver lasers, can be considered a uniformly
distributed random variable in the interval [0, 2π). Therefore, φk is the summation
of k Gaussian random variable terms that becomes a Gaussian distributed random
variable with mean φ0 and variance kσ2

ν .
The SOP of the received symbol will be different from the transmitted one due

to the possible imperfections along the fiber cable. The SOP is changing over the
time and is a randomly dynamic process. Similar to the phase noise φk, the time
evolution of the SOP drift can be described by a dynamic model. One proposed
model which consider Jk as the sequence of random Jones matrices is [26]

Jk+1 = J(α̇k)Jk, (3.21)

where J(α̇k) defined in (3.12) is the matrix that expresses the innovation of the
SOP (cf. φ̇k in (3.19)).
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The random parameter in J(α̇k) is α̇, which has three elements. These three
elements are drawn independently, at each time instance k, from a real zero-mean
Gaussian distribution

α̇k ∼ N (0, σ2
ρ I3), (3.22)

with variance σ2
ρ = 2π∆ρT , where ∆ρ is defined as the polarization linewidth [26],

which states the speed of the SOP drift, similar to the concept of the laser linewidth
describing the phase noise, cf. (3.20).

The initial state of the J0 = J(α0) is defined in a way to ensure that J0u is dis-
tributed uniformly over all possible SOP for a chosen u [26]. This means, the vector
α0 = θa should be formed from a 4D unit vector such (cos θ, a1 sin θ, a2 sin θ, a3 sin θ)T =
g/‖g‖, where g ∼ N (0, σ2

ρ I4).
The matrix H(φ,α) in (3.14) combines the effects of both phase noise and SOP

drift in one equation. Analogously to (3.21), the update of Hk can be expressed as

Hk+1 = H(φ̇k, α̇k)Hk, (3.23)

where the phase innovation φ̇k and randomly evolving vector α̇k are defined in (3.20)
and (3.22).
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Chapter 4

Polarization and Phase Tracking
Algorithms

In this chapter different algorithms for the recovery of the phase and SOP introduced
in Chapter 3 are discussed. Four available algorithms used to compensate drifts and
estimate the phase noise and SOP drift are the blind phase search algorithm, the
constant modulus algorithm, the multiple modulus algorithm, and the Kabsch algo-
rithm [17,30, 32, 33] . The blind phase search algorithm estimates and compensates
for the phase noise separately in each polarization [30]. This algorithm only consid-
ers the phase noise and the additive noise. The constant modulus algorithm [17] and
the multiple modulus algorithm [32] compensate for the drift of the SOP based on
the same principle. The constant modulus algorithm was designed for constellations
with constant modulus, like phase-shift keying, while a multiple modulus algorithm
is adopted for multiple-modulus constellation. The Kabsch algorithm [33] jointly
tracks the phase and SOP, can be used for arbitrary constellation. This algorithm
and the blind phase search algorithm are blind to the phase ambiguity, therefore
differential coding should be used to remove this ambiguity.

In Section 4.1, an overview of two algorithms that jointly recover both phase and
SOP are presented. Section 4.2 introduces in detail the Blind Joint Polarization
and Phase Tracking Algorithm. This algorithm is presented in [25]. Thereafter,
in Section 4.3, the Pilot-Aided Joint Polarization and Phase Tracking Algorithm is
proposed and discussed in details. This algorithm, which is the main focus of this
thesis, is an extension of the Blind Algorithm [25], using known symbols to recover
the phase and SOP.

4.1 Joint Polarization and Phase Tracking Algo-

rithms

In this section, based on the model proposed in [26], which jointly models the
stochastic behaviour of the phase noise and SOP drift, two model-based algorithms
for jointly recovering these channel impairments are presented in Section 4.2 and
Section 4.3, respectively. The first algorithm discussed in section 4.2, proposed in
[25]. This algorithm compensate jointly for both the phase noise and SOP drift
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using a non-data aided decision-directed architecture, so as referred in the name is
a “Blind” algorithm.

The proposed “pilot-aided” algorithm, which is the main focus of this thesis, is
discussed in Section 4.3. The pilot-aided algorithm uses pilot packets to estimate
the channel matrix. However, tracking the channel along the pilot intervals is done
exactly at the same way in the blind algorithm.

The blind algorithm uses differential coding [34, Sec. 2.6.1] independently in each
polarization. Differential coding, which encodes information in the phase difference
of two consecutive symbols, removes the phase ambiguity, hence prevents disastrous
error caused by cycle slip (CS) or ambiguities. CS is a discontinuity in measuring
phase of the received signal and happens when receiver losses the carrier phase lock.
During a CS, all data symbols afterwards will be erroneous and could not be decoded
correctly. The pilot-aided algorithm does not use differential encoding, so if a CS
occurs during the data packet, it will not be detectable and track of the channel
will be lost until the next pilot packet is received. Applying differential decoding
to the blind algorithm comes at a cost of SNR penalty compared to the pilot-aided
algorithm, which has a lower spectral efficiency due to the overhead imposed by
the pilot symbols. This trade-off between SNR and spectral efficiency has been
investigated in Chapter 5.

The blind algorithm suffers from polarization ambiguities, which means the
transmitted symbol in one polarization, may be received in another polarization
and detected in error on the receiver side. The polarization ambiguity is removed in
the pilot-aided algorithm, by exploiting pilot symbols in each polarization. In this
report, we have intentionally neglected the effect of polarization ambiguity on the
performance of the blind algorithm.

4.2 Blind Joint Polarization and Phase Tracking

Algorithm

It should be noted that this section is essentially identical to [25]. In this algorithm,
it is supposed Hk does not change considerably over a symbol duration, so the
transmitted symbol can be estimated from Ĥ−1k rk based on the previous estimated

of the channel matrix Ĥk using the minimum Euclidean distance criterion [35, section
2.5]

ûk = arg min
c∈C

∥∥∥Ĥ−1k rk − c
∥∥∥2. (4.1)

Thereafter Ĥk is updated as

Ĥk+1 = H(φ̂k, α̂k)Ĥk , (4.2)

where φ̂k and α̂k are the estimates of φ̇k and α̇k. Here, an error function

ek =
∥∥∥(H(φ,α)Ĥk

)−1
rk − ûk

∥∥∥2, (4.3)
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is defined, which is the Euclidean distance between the decoded symbol ûk and the
updated estimation Ĥk+1rk. This error function ek, is minimized with respect to φ
and α, i.e.,

[φ̂k, α̂k] = arg min
φ,α

ek , (4.4)

by applying the gradient descent [36, section 9.3] method only for one iteration to
achieve φ̂k and α̂k, so that

φ̂k = −µφRe
(
∂ ek
∂φ

∣∣∣∣
α=[0,0,0]T
φ=0

)
(4.5)

= −2µφRe
(
i(Ĥ−1k rk − ûk)

HĤ−1k rk
)
, (4.6)

α̂k = −µαRe
(
∇αek

∣∣∣∣
α=[0,0,0]T
φ=0

)
(4.7)

= −2µαRe
(
i(Ĥ−1k rk − ûk)

HĤ−1k · ~σrk
)
. (4.8)

µφ and µα are positive tracking step size of the phase and SOP parameters, respec-
tively, which determine the convergence speed of the algorithm and also the accuracy
of the channel tracking. These parameters have been calculated heuristically [25] as

µφ =

√
∆νTc

Es
, (4.9)

µα =

√
∆ρTc

Es
, (4.10)

where c is a constant dependent on the modulation format. The value of c for
PM-QPSK, PM-16-QAM, PM-64-QAM, and PM-256-QAM, has been given in [25,
Table 1]. The tracking step sizes µφ and µα are chosen to be different values because
their drift time are very different, typically (∼ 1µs) for the phase noise and (∼ 1 ms)
for the SOP.

It should be noted that the partial derivatives in (4.5) and (4.7) are evaluated
at φ = 0, α = [0, 0, 0]T due to zero mean value of the innovation parameters φ̇k and
α̇k, resulting in no preferred direction of φ̂k and α̂k.

4.3 Pilot-Aided Joint Polarization and Phase Track-

ing Algorithm

The pilot-aided algorithm uses a known sequence of symbols at the receiver named
pilots, to estimate the channel matrix. Pilot symbols are inserted at the beginning
of each data packet. The stream of transmitted symbols is shown in Figure 4.1.
The transmitted pilot packet UPi consists of L known symbols, and the transmitted
data packet UDi consists of K symbols, i.e.,

UPi = {uPi,1,uPi,2 . . .uPi,l . . .uPi,L}, (4.11)

UDi = {uDi,1,uDi,2 . . .uDi,k . . .uDi,K}, (4.12)
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where i is the index of ith packet in the symbol stream. Respectively, in the receiver,
the received pilot packet RPi and the received data packet RDi are

RPi = {rPi,1, rPi,2 . . . rPi,l . . . rPi,L} (4.13)

RDi = {rDi,1, rDi,2 . . . rDi,k . . . rDi,K}. (4.14)

Here, we define the parameter pilot rate R = L/K to be used later as the indication
of the spectral efficiency of the algorithm.

At the receiver, the decoding block will check how many pilot symbols in pilot
packet RPi are erroneous, if at least 20% of pilot symbols are in error, we assume
that a CS occurred, and the channel needs to be re-estimated. Otherwise, it will
keep tracking of the channel in the same way explained in Section 4.2, no matter it
is along the pilot or the data packet. It should be noted that at the beginning of
transmission, the channel is completely unknown to the receiver and the first pilot
sequence RP1 is used to estimate the channel matrix.

UP1 UD1 UP2 UD2
. . . . . . UPi UDi

. . . . . .

time
Figure 4.1: The stream of transmitted symbols.

4.3.1 Channel Estimation Using Pilot Packet UPi

To estimate the channel over the received pilot packet RPi, we need to define an
average error function, which is minimized by applying the gradient descent method
for n = 0, 1, . . . iterations [36, section 9.3]. At the nth iteration, the average error
function is

e
(n)
Pi =

1

L

L∑
l=1

∥∥∥(H(φ,α)Ĥ
(n)
Pi

)−1
rPi,l − uPi,l

∥∥∥2, (4.15)

for i = 1, 2, . . . and l = 1, 2, . . . , L ,where rPi,l is the received pilot symbol corre-
sponding to uPi,l. Here, we do not want to estimate the real channel matrix HPi,l

corresponding to each pilot symbol uPi,l, but instead, define Ĥ
(n)
Pi as an overall esti-

mation of the channel matrix over the entire packet. The estimate Ĥ
(n)
Pi is calculated,

such that the average error function e
(n)
Pi is minimized with respect to φ and α, i.e.,

[φ̂
(n)
Pi , α̂

(n)
Pi ] = arg min

φ,α
e
(n)
Pi . (4.16)
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Therefore, after applying the gradient descent method, e
(n)
Pi is minimized by

φ̂
(n)
Pi = −µP

(
∂ e

(n)
Pi

∂φ

∣∣∣∣∣
α=[0,0,0]T
φ=0

)
(4.17)

= −2
µp

L

L∑
l=1

Re
(
j
(
(Ĥ

(n)
Pi )−1rPi,l − uPi,l

)H
(Ĥ

(n)
Pi )−1rPi,l

)
, (4.18)

α̂
(n)
Pi = −µP

(
∇α e

(n)
Pi

∣∣∣∣∣
α=[0,0,0]T
φ=0

)
(4.19)

= −2
µp

L

L∑
l=1

Re
(
i
(
(Ĥ

(n)
Pi )−1rPi,l − uPi,l

)H
(Ĥ

(n)
Pi )−1~σrPi,l

)
. (4.20)

The estimate of the channel matrix is updated as

Ĥ
(n+1)
Pi = H(φ̂

(n)
Pi , α̂

(n)
Pi )Ĥ

(n)
Pi . (4.21)

The parameters φ̂
(n)
Pi and α̂

(n)
Pi in (4.18) and (4.20) have been evaluated at φ = 0,

α = [0, 0, 0]T for each iteration of the gradient descent method. The derivations of
(4.18) and (4.20) are given in the Appendix. In the next section, it is explained how

Ĥ
(n)
Pi will be used for tracking the channel during the data packet UDi.

The parameter µP, similar to µφ and µα, is the positive tracking step size, which
determines the convergence speed and the accuracy of the algorithm to reach to
the minimum value of e

(n)
Pi . In contrast with Section 4.2, for both noise and SOP

parameters in (4.18) and (4.20), the step size is µP, to maintain the simplicity of
the algorithm by including less parameters. The value of µP, which gives the fastest
convergence rate, is calculated by simulations in Chapter 5.

The behaviour of the average error function e
(n)
Pi in (4.15) is unknown. Therefore,

to calculate the number of iterations n, we need to define a stopping criterion when
applying the gradient descent method. The stopping criterion can be defined based
one the difference in the value of e

(n)
Pi after each iteration of the gradient descent

method {(
e
(n−m)
Pi − e(n−m−1)Pi

)
< t
∣∣m ∈ {0, 1, . . .M

}}
. (4.22)

Parameters M and t are two fixed parameters in the algorithm to ensure the decre-
ment of e

(n)
Pi after one iteration, has not been accidental and is small enough to

stop further iteration. This allows us to use a flexible number of iteration n in the
algorithm instead of a fixed number, which will be tested in Chapter 5.

It should be noted that in the pilot-aided algorithm, we did not consider the
evolution of the matrix channel H(φ,α) during the pilot packet. However, we will
investigate the influence of the fast evolving channel H(φ,α) during the pilot packet
on the algorithm performance in Chapter 5.
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4.3.2 Channel Tracking

In the case that less than 20% of the decoded pilot symbols in the pilot packet UPi

are in error, we suppose the channel does not require to be re-estimated. Therefore,
the channel matrix during the received pilot packet UPi or the received data packet
UDi will be updated exactly as described in Section 4.2. In this case, we use Ĥk as
the estimation of both matrices, for ease of notation.

The proposed algorithm is explained in an implementable way in Section 4.3.6.

4.3.3 Steady State Behaviour

If the pilot-aided algorithm proposed in Section 4.3.1, always re-estimates the chan-
nel matrix at every received pilot packet RPi, it can affect the performance of the
algorithm in the steady state regime. It means, if the channel is being tracked prop-
erly along the data packet RD(i−1), using the pilot packet RPi to re-estimate the
channel for the next data packet RDi, will disturb the performance. The distur-
bance can be seen as a jump in the symbol error rate (SER), at the beginning of
the received data packet RDi. To remove this effect, as mentioned previously, the
number of erroneous received pilot symbols rPi,l should be checked, e.g., if 20% of
the received pilot symbols are in error, it can be decided that the track of channel
is lost. Therefore, the channel re-estimation needs to be done based on (4.15) to
(4.21), otherwise the channel tracking can be continued like (4.3) to (4.8).

The disturbing effect and the proposed treatment are investigated in Chapter 5.

4.3.4 Length of The Pilot Packet

It is ideal to have the shortest possible pilot packet, which in this case is two symbols.
As explained in Section 3.1, H(φ,α) has four DOFs, therefore to resolve it uniquely,
at least it is needed to form a linear matrix equation like[

rPi,1, rPi,2
]

= H(φ,α)
[
uPi,1,uPi,2

]
, rPi,l,uPi,l ∈ C2, (4.23)

to give four independent equations, where obviously

uPi,1 6= γuPi,2, γ ∈ C, (4.24)

and suppose H(φ,α) does not change over a symbol duration.

The matrix Ĥ
(n)
Pi is the estimation of H(φ,α), and can be achieved by minimizing

e
(n)
Pi as explained in (4.15) to (4.21), even with two pilot symbols (4.23). However,

this estimation would be highly affected by the additive noise, when the pilot packet
length L is rather small. Let’s consider propagation equation (3.5) along the pilot
packet in the form of

RPi = H(φ,α)UPi + NPi, (4.25)

where
RPi =

[
rPi,1, rPi,2, . . . , rPi,L

]
,

UPi =
[
uPi,1,uPi,2, . . . ,uPi,L

]
,

NPi =
[
nPi,1,nPi,2, . . . ,nPi,L

]
,

(4.26)
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and suppose H(φ,α) is constant during these L symbols. Then, the minimum-
variance unbiased estimator for linear model [37, Ch. 4] will be

Ĥ
(n)
Pi = (UPiU

H
Pi)
−1UPiR

H
Pi, (4.27)

assuming UUH is invertible, hence the covariance matrix will be

C
Ĥ

(n)
Pi

=
N0

L
I2. (4.28)

The smaller covariance matrix means the more accurate estimation, so as seen in
(4.28) by increasing the length of the pilot packet L, the estimation becomes more
accurate. However, it will be more affected by the phase noise and the SOP drift due
to the evolution of the channel matrix H(φ,α) over the interval of L pilot symbols
(LT ). The proper pilot length L will be investigated in Chapter 5.

It should be mentioned that the minimized average error function e
(n)
Pi (4.15),

is not a proper indication of the accuracy of the estimated channel matrix Ĥ
(n)
Pi in

(4.21). In fact, in the algorithm explained in (4.15) to (4.21), φ̂ and α̂ are found in

such a way that minimize e
(n)
Pi , but e

(n)
Pi is blind against the ambiguity that happens

due to not resolving Ĥ
(n)
Pi uniquely. Therefore, minimizing e

(n)
Pi , does not mean that

the mean squared error (MSE) between Ĥ
(n)
Pi and H(φ,α)

eMSE = E
{∥∥H(φ,α)− Ĥ

(n)
Pi )
∥∥2
F

}
= tr{HdifH

H
dif},

(4.29)

is also minimized, where Hdif = H(φ,α)− Ĥ
(n)
Pi , and ‖ · ‖F is the Frobenius matrix

norm. In Chapter 5, we will check the MSE of the channel estimation Ĥ
(n)
Pi , because

it offers a better perspective about the proper length of the pilot packet L.

4.3.5 Choosing The Pilot Symbols

The symbols in the constellation diagram with the highest energy level, are the
proper candidates to be chosen as the pilot symbol uPi,l. These symbols are located
at the corners of the constellations diagrams in X and Y polarizations, which have
the lowest probability to be received incorrectly among all other symbols in the
constellation diagrams. The pilot packet UPi with length L, is constructed from a
combination of these symbols.

To find the proper combination of the pilot symbols, we shall consider a minimum
mean squared error estimator, which estimates a channel optimally when the pilot
symbols are orthogonal [38]. Even though in the channel estimation method in
Section 4.3.1 we do not use minimum mean squared estimator, but still exerting
the summation in (4.15) implies that we try to find Ĥ

(n)
Pi by averaging over the

pilot packet. Therefore, it can have a positive influence on the accuracy of the
estimation, if we can choose pilot symbols to be orthogonal. The fact that the
constellation diagrams in X and Y polarizations provide only 4 independent bases
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means, it can not exist more than 4 orthogonal pilot symbols in the pilot packet.
Therefore, we construct the pilot packet UPi in (4.26) with length L > 4, such as

UPi =
[
uPi,1,uPi,2, . . . ,uPi,L

]
, (4.30)

where
uPi,l+1 = uPi,(l mod 4)+1, l = 0, . . . , L− 1 (4.31)

and

uPi,l .u
H
Pi,q = 0,

{
l, q ∈ {1, 2, 3, 4}
l 6= q

(4.32)

e.g., for L = 7

UPi =
[
uPi,1,uPi,2,uPi,3,uPi,4,uPi,5,uPi,6,uPi,7

]
.


uPi,1 = uPi,5

uPi,2 = uPi,6

uPi,3 = uPi,7

In this part, similar to the average energy of the constellation Es in (3.3), we
need to define the average energy of the pilot packet UPi, i.e.,

EP =
1

L

L∑
l=1

‖uPi,l‖2, (4.33)

which is used in Chapter 5, where we calculate the step size µP.
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4.3.6 Algorithmic Summary

Algorithm 1: Proposed Pilot-Aided algorithm

1 Ĥ−11 := I2 // initialize the channel

2 i := 1 // the ith packet, see Fig.(4.1)

3 wait for UPi // the ith pilot packet

4 for k = 1 to L+K do // symbol index in the ith packet

5 wait for ri,k =

{
rPi,k if k ≤ L

rDi,k−L if k > L

6 Output: ûi,k := arg min
c∈C

∥∥∥Ĥ−1k ri,k − c
∥∥∥2 // detect the symbol

7 if k = L and
∑L

l=1 I
(
ûi,l 6= uPi,l

)
≥ b0.2Lc then

// check end of pilot packet and check channel re-estimation

8 e
(0)
Pi := 0

9 (H
(0)
Pi )
−1 := I2

10 a := 0
11 n := 0
12 while a < M do
13 n := n + 1

14 φ̂
(n)
Pi // from (4.18)

15 α̂
(n)
Pi // from (4.20)

16 (H
(n)
Pi )−1 := (H

(n−1)
Pi )−1H(−φ̂(n)

Pi ,−α̂
(n)
Pi ) // channel re-estimation

17 a := a+ sgn
(
t−
(
e
(n)
Pi − e

(n−1)
Pi

))
// from (4.22)

18 end

19 Ĥ−1k := (H
(n)
Pi )−1 // re-estimated channel

20 else

21 φ̂k // from (4.6)

22 α̂k // from (4.8)

23 Ĥ−1k+1 := Ĥ−1k H(−φ̂k,−α̂k) // updated channel

24 end

25 end

26 Ĥ−11 := Ĥ−1L+K+1 // initial channel estimation for the (i+ 1)th packet

27 i := i+ 1
28 goto 3

The proposed pilot-aided algorithm in Section 4.3, is presented in an easily im-
plementable way in this section, without considering the detailed calculations.

The algorithm is summarized in Algorithm 1, by using more relaxed notations
than Section 4.3. In fact, for the implementation of the algorithm with the simu-
lation tools, e.g., MATLAB, we do not need to use the precise notation, while for
the mathematical rendering of the algorithm, exploiting the very accurate notation
is a necessity to avoid any ambiguity. However, in this section whenever the no-
tations are different with the formulas in Section 4.3, it is denoted and clarified.
The algorithm uses several constant parameters during its execution, for ease of
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Table 4.1: List of constant parameters in Algorithm 1

Parameter L K M t µφ µα µP

Equation (4.11) (4.12) (4.22) (4.22) (4.5) (4.7) (4.17)

implementation these parameters have been listed in Table 4.1.
The decoded symbol ûi,k is the regularly output of the algorithm. The algorithm

is initialized for the first time with setting the channel matrix to be Ĥ−11 = I2, then
the loop in the algorithm starts. The loop, represented by counter i, which is a
representation of the transmitted symbol stream shown in Figure 4.1. The following
steps in the algorithm are taken for every received packet i, which consists of the
received pilot packet RPi and the received data packet RDi in (4.13) and (4.14),
respectively. The receiver does not discriminate between a received pilot symbol
rPi,l or a received data symbol rDi,k, when deciding the estimated symbol ûi,k.
Therefore, we can consider the symbol index k as a number between 1 < k < L+K
to be used as the common index for both pilot and data symbols. This, also allows
us to use ri,k instead of rPi,k (for k ≤ L) and rDi,k−L (for k > L). However, the
receiver is aware of the pilot symbols uPi,l inside the pilot packet UPi, and at the
end of each received pilot packet, where k = L, it will check the number of erroneous
received pilot symbols. If the number of erroneous received pilot symbols is more
than a threshold, decided to be 20% of the length of pilot packet L, the receiver will
detect that the track of channel is lost, and needs to be re-estimated based on the
formulas (4.15) to (4.22). In the Algorithm 1, the indicator function I(x) has been
exploited for this purpose.

Every time the channel requires to be re-estimated, the receiver needs to initialize
some parameters, which are e

(0)
Pi , (H

(0)
Pi )
−1, n, and a. The initial state for the average

error function in (4.15) is e
(0)
Pi = 0, and (H

(0)
Pi )
−1 = I2 is the initial inverse estimation

of the channel matrix, during the pilot packet UPi in (4.21). n = 0, where n is the
number of iterations of the gradient descent method defined as a flexible number.
This means, the gradient descent method will be applied to minimize the average
error function e

(n)
Pi in (4.15) until the condition in (4.22) is satisfied. The condition

is satisfied when for M continuous iterations of the gradient descent method, the
decrement in the average error function e

(n)
Pi becomes less than the threshold t, where

M and t are designing parameters. To implement this condition in the Algorithm 1,
a parameter a and the sign function sgn(x) are used. The inverse estimation of the

channel matrix (H
(n)
Pi )−1 achieved by minimizing average error function e

(n)
Pi , is used

as the inverse channel estimation H−1k = (H
(n)
Pi )−1 for the first symbol in the data

packet, where the symbol index is k = L+ 1.
In the case that the number of erroneous received pilots are less than 20% of the

length of the pilot packet L, there is no need to re-estimate the channel, and the
channel tracking is done as stated in formulas (4.2) to (4.8).

It should be noted that the algorithmic summery of the blind algorithm has been
presented in [25].
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Chapter 5

Analysis and Results

In this chapter, in Section 5.1, the parameters of the pilot packet UPi exploited in
the pilot-aided algorithm in Section 4.3, are investigated. Thereafter, in Section 5.2,
we will investigate the performance of the algorithm and compare it with the blind
tracking algorithm described in Section 4.2. The simulations have been done for
PM-QPSK, PM-16-QAM, PM-64-QAM, and PM-256-QAM modulation formats at
the symbol rate of 28 Gbaud.

5.1 Pilot Packet Parameters

In this section the parameters, which are used to estimate the overall channel matrix
Ĥ

(n)
Pi during the pilot packet are investigated by simulations. These parameters are

the step size µP, the number of iterations n, and the length of the pilot packet L.

5.1.1 Step Size and Number of Iterations

In Figure 5.1, we examined the value of e
(n)
Pi in (4.15) after n = {5, 20, 60} iterations

of the gradient descent method as explained in Section 4.3.1, for a range of 0.002 <
µP < 2, for two different levels of the phase noise and the SOP drift. Moreover, as
explained in Section 4.3, instead of considering a fixed number of iterations, we also
consider n to be flexible so that satisfies the criterion given in (4.22), for t = 10−5

and M = 5. The estimated channel Ĥ
(n)
Pi acquired after n iterations of the gradient

descent method, is considered as the initial channel estimation for the the data
packet RDi. In these simulations, the initial estimate of the channel during the pilot
packet, is considered Ĥ

(0)
Pi = I2.

The settings for this experiment for PM-QPSK, PM-16-QAM, PM-64-QAM,
and PM-256-QAM, respectively, are as follows: SNR, which is the quantification of
AWGN, is set to {13.86, 21.19, 27, 43, 33.52} dB, such that a SER = 10−3 will be
achievable by this SNR in the AWGN scenario. The accumulated laser linewidth
∆ν is chosen such that ∆ν · T = {3.6 · 10−5, 0.36 · 10−5, 0.18 · 10−5, 0.04 · 10−5}
(corresponding to ∆ν = {1000, 100, 50, 10} kHz at 28 Gbaud) and the polarization
linewidth ∆ρ is set such that ∆ρ · T = {3.57 · 10−8} (corresponding to ∆ρ = 1 kHz
at 28 Gbaud). The length of the pilot packet is L = 10, and the results are obtained
by averaging over 5 · 103 transmissions of the pilot packets.
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The figure shows that by increasing n, e
(n)
Pi tends to its minimum value for a wider

range of µP. However, it is obvious that the flexible n defined in (4.22), behaves as
effective as the case, where n is fixed and equal to 60, but for a narrower range of
µP. It must be mentioned, even if n is increased by several orders, however with
smaller amount of µP, e

(n)
Pi is minimized, but still there will be an error floor, which

by a very low tolerance is the same as seen in Figure 5.1. The level of this error
floor is dependent to the AWGN noise and the level of the phase and polarization
noise, as shown in continuous and dashed lines in the figure.

From practical point of view, converging to the minimum value of e
(n)
Pi by fewer

number of iterations is desirable, considering the amount of processing required in
DSP. Therefore, in Figure 5.2, where the settings are the same as in Figure 5.1,
respectively, we examine the average amount of the required iterations n in the
flexible case to converge to the error floor in Figure 5.1 when µP = {0.4, 0.6, 0.8},
for PM-QPSK, PM-16-QAM, PM-64-QAM, and PM-256-QAM. The dashed lines
in the figure show the average number of required iterations n; when µP = 0.6, on
average with n = 9 iterations the in (4.22) can be satisfied, for all constellations.
This is a significant reduction in the number of required iterations n to minimize
e
(n)
Pi . As n will be the smallest when µP = 0.6, this is offering us to choose it as

the proper step size, which shall be normalized to µP = 0.6/EP, where EP is the
average energy of the pilot packet, defined in (4.33).
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Figure 5.1: For different number of iterations of the gradient descent method, and also for

flexible number of iterations, the achievable level of e
(n)
Pi is shown for different step sizes µP. Dashed

lines correspond to the case that both ∆ν ·T and ∆ρ ·T are 100 times higher than the continuous

lines, to evaluate the effect of those impairments on the achievable level of e
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Pi .
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5.1.2 Length of Pilot Packet

In this section, we investigate the proper length of the pilot packet, by looking at
both e

(n)
Pi and MSE between Ĥ

(n)
Pi and H(φ,α). As explained in Section 4.3.4, MSE

is a better than e
(n)
Pi , for choosing the proper length of the pilot packet.

In Figure 5.3, ∆ν · T , ∆ρ · T , and SNR settings, as well as the number of
realizations of pilot packets are the same as in Figure 5.1. e

(n)
Pi and MSE are drawn

for different pilot packet lengths L. Both curves in Figure 5.3 (left), show when

L = 2, e
(n)
Pi gets its lowest amount. Here, the channel estimation is achieved by

using two pilot symbols, which makes the estimation more affected by AWGN noise,
than the case that the pilot packet length is larger. The influence of the AWGN
noise on the channel estimation is seen better in Figure 5.3 (right), where for L = 2,
MSE gets its highest value in the red curve. This is coincident with what explained
in (4.28), which for low or non-varying channel matrix H(φ,α) over the interval of
L pilot symbols( AWGN scenario), increasing the length of the pilot packet makes

the the estimation of the channel matrix Ĥ
(n)
Pi more accurate.

The blue curves in Figure 5.3, show the case that both phase noise and SOP
drift of the channel are 100 times higher than the red curves. It can be seen from
the blue curves that by increasing the length of the pilot packet, both e

(n)
Pi and

MSE increase. This can be explained by the fact that the channel matrix H(φ,α)
changes significantly from the pilot symbol one to the pilot symbol L = 100, due
to rather high phase noise and SOP drift. Therefore, if the channel state changes
considerably during the L pilot symbols, the channel estimation will be inaccurate.
Later in Section 5.2.1, the consequences of choosing different pilot packet length L
on the performance of algorithm will be examined.

In Figure 5.4, we investigate the influence of choosing a very long pilot packet
on the SER, by averaging over 105 transmissions. In the red curve, the length of the
pilot packet L = 200, and the channel matrix H(φ,α) is not varying during the pilot

packet. Hence, the channel estimate Ĥ
(n)
Pi is very close to the real channel matrix,

resulting in no penalty on the SER at the very beginning of the data packet. In
the blue and green curves, where L = 200 and L = 500, respectively, the phase and
polarization noise are considered in the channel matrix. It is obvious from the curves
that there is a penalty in theSER at the beginning of the data packet, although it
converges very fast to SER = 10−3 due to the ability of the algorithm to track the
channel matrix. This test is done only to give a better understating of how the
averaged channel estimation Ĥ

(n)
Pi works, and how it is affected by the length of the

pilot packet L, and the considered channel impairments. In the real implementation
of the algorithm, surely such long pilot packets are not interesting.
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Figure 5.3: The figure shows the behaviour of both e
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Pi (left) and MSE (right) when the pilot

length increases, for two different scenarios of the phase and polarization noise. The parameter L,
which minimizes the MSE, is the proper length of the pilot packet.
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aided algorithm is shown for two scenarios, in the presence of the phase and polarization noise,
and when the channel matrix is constant during the pilot packet.
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5.2 Performance of Proposed Algorithm

In this section, the performance of the pilot-aided algorithm in Section 4.3 is com-
pared with the blind algorithm in Section 4.2. In Section 5.2.1 the convergence of
the pilot-aided algorithm is evaluated, in Section 5.2.2 the performance of the pilot-
aided algorithm in the steady state regime is discussed. Section 5.2.3 investigates the
tolerance of the pilot-aided algorithm against the phase and polarization noise, and
further examines the occurrence of CS for different pilot rate R and pilot length L.
Section 5.2.4 considers the sensitivity of the algorithm against the additive Gaussian
noise.

5.2.1 Convergence

In Figure 5.5, the SNR is set such that SER = 10−3 is achieved in the steady state
regime. The SER is obtained by averaging over 105 transmissions of pilot and data
packets, and the initial state of the estimated channel matrix is set to be Ĥ

(0)
P = I2.

The convergence rate of the pilot-aided algorithm for pilot packets with different
length, is investigated. As can be seen in the figure, when L increases, due to the
better estimation of the channel matrix at the beginning of the data packet, the
algorithm converges faster. Furthermore, this also can be seen that for the higher
order modulations, the convergence rate is less dependent to the length of the pilot
packet L, due to employing the higher SNR.

Even though, it not is shown here, but it should be mentioned that the blind
tracking algorithm using differential encoding, shows a very slower convergence rate
compared to the pilot-aided algorithm. This is quite expected, as the data trans-
mission starts when there is no information about the initial channel state H0, and
the algorithm should track the channel in the way explained in Section 4.2. This
can take several thousand symbols to converge to SER = 10−3. The convergence
rate of the blind algorithm has been investigated in [25].

5.2.2 Steady State Performance

In Figure 5.6, the performance of the pilot-aided algorithm in the steady state
regime, is investigated, the settings are the same as in Section 5.2.1. The length of
the pilot packet is L = 10, and the length of the data packet is K = 400, which
implies that at the beginning of each 400 received data symbols, there is a packet
of 10 pilot symbols. The total number of received data symbols is 1200.

The initial channel state at the beginning of each data packet is re-estimated
by using the pilot packets, then during the data packets, the channel is tracked,
the result shown in Figure 5.6 (left). The figure shows average SER versus data
symbol k. It is obvious that there is an increase in the SER at the beginning of each
data packet, which is not a desirable result. Inserting a pilot packet between the
data packets should not influence the performance of the system in the steady state
regime. However, this effect is unavoidable for the first data packet, where there is
no information about the initial channel matrix. As proposed in Section 4.3.3, the
track of the channel matrix during the pilot packet should be kept at the same way
done during the data packet. If the number of erroneous received pilot symbols is
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less then 20% of the pilot packet length, it can be supposed that a CS did not occur
in the previous data packet, and the current estimation of the channel is accurate
enough to continue with. Otherwise, the channel needs to be re-estimated by using
the pilot packet. By applying this assumption to the pilot-aided algorithm, the
problem is solved as can be seen in Figure 5.6 (right).
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Figure 5.5: The convergence rate of the pilot-aided algorithms is shown for different pilot
lengths L.
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Figure 5.6: The behaviour of the algorithm is shown when using every received pilot packet to
re-estimate the channel matrix (left), and when re-estimates the channel matrix only if more than
20% of the received pilot symbols in a pilot packet are erroneous (right).
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5.2.3 Noise Tolerance and CS Probability

An important feature of tracking algorithm is the tolerance to the phase and po-
larization noise. In this section, we will test the ability of the algorithm to track
the phase noise and the SOP drift simultaneously, for pilot lengths L = {5, 10, 50},
and pilot rates R = {0.01, 0.001}, and also compare them with the blind algorithm.
In Figure 5.7, SER is obtained by averaging over 105 realizations, where at each
realization the initial channel matrix is randomly generated. In this simulation, we
suppose the initial channel matrix H0 is known to the receiver, i.e., Ĥ0 = H0 for
the blind algorithm, while for the pilot-aided algorithm Ĥ

(n)
Pi ≈ H0, for the n that

satisfies the stopping criterion defined in (4.22). The SNR is set to achieve a SER
= 10−3 in an AWGN scenario for the blind algorithm.

As the results show in Figure 5.7, for lower order modulations, the pilot-aided al-
gorithm shows a better tolerance against lower amount of the phase and polarization
noise, compared to the blind algorithm. However, for the higher order modulations,
there is not a considerable difference between two algorithms, due to employing a
higher SNR. But when the phase and polarization noise are increased, the blind
algorithm shows a better tolerance against those impairments than the pilot-aided
algorithm for all considered modulation formats. This behaviour is expected, be-
cause in the blind algorithm, in which differential encoding has been implemented,
the CS is mitigated, so it is less sensitive to the higher amount of the phase noise
and the SOP drift.

It is also understood from the figure that in the pilot-aided algorithm, the tol-
erance against the phase and polarization noise decreases by increasing the data
packet length K, where K = L/R.

The length of the pilot interval K, or in the other words, the data packet length
has a direct relation with the occurance of a CS, this is investigated in Figure 5.8.
The settings in the figure are the same as in Figure 5.7. The probability of a CS
occurrence over 105 transmissions is calculated for the given range of the phase
noise and the SOP drift. As can be seen in the figure, this probability increases by
increasing the data packet length K = L/R.

35



10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-QPSK
SNR = 14.28 dB
R = 0.01

SE
R

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-QPSK
SNR = 14.28 dB
R = 0.001

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-16-QAM
SNR = 21.28 dB
R = 0.01

SE
R

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-16-QAM
SNR = 21.28 dB
R = 0.001

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-64-QAM
SNR = 27.48 dB
R = 0.01

SE
R

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-64-QAM
SNR = 27.48 dB
R = 0.001

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-256-QAM
SNR = 33.55 dB
R = 0.01

∆ν · T , ∆ρ · T

SE
R

10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−3

10−2

10−1

100

PM-256-QAM
SNR = 33.55 dB
R = 0.001

∆ν · T , ∆ρ · T

BlindAlg. L = 5 L = 10 L = 50

Figure 5.7: Tolerance of the blind and pilot-aided algorithms against the phase and polarization
noise is shown for different pilot lengths L, and for two different pilot rates R. The figure shows
by increasing the data packet length K = L/R, the tolerance against the phase and polarization
noise drops down. This can be seen also that the pilot-aided algorithm is more sensitive to the
high phase and polarization noise than the blind algorithm, which uses differential encoding.
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Figure 5.8: The CS probability in 105 transmissions of one pilot and one data packet is shown
for two different pilot rates R, and different pilot lengths L, for the given range of the phase and
polarization noise.
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5.2.4 Additive-Noise Sensitivity

Figure 5.9 shows the SER as a function of SNR. It can be seen in the figure that the
blind algorithm compared to the pilot-aided algorithm, has a penalty on the SNR
at SER = 10−3, induced by differential encoding. For the pilot-aided algorithm, the
average symbol energy Es is adjusted for the pilot rates R = {0.01, 0.001}, so that

SNR = SNRk − 10 log10 (1−R), (5.1)

where SNRk implies the dedicated energy to the data symbols. The figure also
shows for the given pilot length L = 5, for both R = {0.01, 0.001}, the additive-
noise sensitivity is homogeneous. Even though, it is not examined in this report, but
it can be expected that for the bigger pilot rates R, we would observe a deterioration
in the SER compared to those shown in Figure 5.9. For comparison, in Figure 5.9,
the AWGN scenario is drawn, it can be seen for the higher order modulations the
performance of both blind and pilot aided-algorithm is almost the same as the
AWGN only scenario.
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Chapter 6

Conclusions

This work presents a pilot-aided joint phase and polarization tracking algorithm.
This algorithm uses pilot packets inserted between data packets with the rate R =
L/K. The pilot packet detects if the track of channel is lost, and re-estimate the
channel matrix for the next data packet, using the gradient descent method. The
proposed pilot-aided algorithm is based on the blind joint phase and polarization
tracking algorithm in [25], so a part of this thesis is to compare the performance of
both algorithms.

The pilot-aided algorithm has some advantages over the blind one listed below.

• By choosing the proper pilot packet length L, the convergence rate of the pilot-
aided algorithm tends to zero, while in the blind one, after several thousands
symbols the algorithm converges.

• The SNR penalty induced due to employing differential coding in the blind
algorithm, is eliminated in the pilot-aided one.

• The blind algorithm suffers from the polarization ambiguity, while it is removed
in the pilot-aided. The polarization rotation is detected by the pilot packet.

• The pilot-aided algorithm has a better tolerance against the phase noise and
the SOP drift when they are rather low.

The main drawback of the pilot-aided algorithm is its complexity compared to the
blind one, which is a simple and easily implementable algorithm. Even though the
hardware complexity of the pilot-aided algorithm is not calculated in this thesis,
but this algorithm demands more settings and operations than the blind algorithm.
The other drawback of the pilot-aided algorithm is the reduced spectral efficiency
by the factor 1/(1 +R), compared to the blind algorithm.
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Appendix A

Appendix

In this appendix, we derive the gradient of the average error function (4.15) with
respect to φ and α. This derivation is independent of the number of iterations n
and the packet index i, so for ease of notation

e
(n)
Pi =

1

L

L∑
l=1

∥∥∥(H(φ,α)Ĥ
(n)
Pi

)−1
rPi,l − uPi,l

∥∥∥2, (A.1)

is used instead of (4.15) in this derivation.
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2Re

(((
Ĥ
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H(−φ,−α)rPi,l − uPi,l

)H(
Ĥ

(n)
Pi

)−1
· ∇αH(−φ,−α)rPi,l

)
, (A.4)

The equation (A.4) stands because, ∇x‖y‖2 = ∇x(yHy) = 2Re(yH∇Xy) for any
y ∈ Cn and x ∈ Rm. The partial derivatives of H(−φ,−α) = eiφJ(−α) from (3.14)
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with respect to φ and −α are,

∂ H(−φ,−α)

∂φ
= ieiφJ(−α), (A.5)

∂ H(−φ,−α)

∂αi
= eiφ

∂ J(−α)

∂αi
(A.6)

= eiφ
∂ (I2 cos θ + ia .~σ sin θ)

∂αi
(A.7)

= eiφ
(
− I2αi sin θ + i

(σi
θ
− αi

θ
a · ~σ

)
sin θ

+ ia · ~σ αi cos θ

)
, (A.8)

where (A.8) stands because ∂θ/∂αi = αi/‖α‖ = αi. The derivatives in (A.5) and
(A.8) should be evaluated at φ = 0 and α = [0, 0, 0]T, respectively which results in

∂ H(−φ,−α)

∂φ
= iI2,

∂ H(−φ,−α)

∂αi
= iσi . (A.9)

By substituting (A.9) in (A.4), the expression for ∇α e
(n)
Pi is acquired which is sub-

stituted in (4.17) and (4.19) to obtain (4.18) and (4.20), respectively. It should be
noted that this appendix is a duplication of the appendix of [25] justified for the
summation case.
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