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Design of a Robust Mean-square Stabilizing Data-Driven Controller
with implementation to a 2 DoF Inverted Pendulum
Hengyue Liang
Department of Signal and Systems
Chalmers University of Technology

Abstract
Data-Driven (DD) controllers are derived purely from measured input-output (I/O)
data collected from the target plant. Compared with traditional controller design
techniques (such as PID, LQ, MPC), DD controller design bypasses the first principle
modelling of the system. Instead, a model in the subspace which is a simple but
direct implication of the I/O relation is setup to represent the dynamic behavior of
the system.
In this work, a robust mean-square stabilizing data-driven control algorithm is de-
signed for Linear Time Invariant (LTI) systems. For LTI systems, a Vector Auto
Regressive model with eXogenous(VARX) input structured subspace model is cho-
sen as it is easy to identify by a simply linear Least Squares (LS) estimate. Different
from other subspace DD controller design methods, the proposed algorithm in this
work also takes into account the noise corruption in the identification together with
the uncertainties brought by the finite window size of the subspace model. The pro-
posed controller guarantees the stability of the closed-loop system in the Root Mean
Square (RMS) sense based on a manually pre-defined performance output vector.
Furthermore, the performance output vector can be used to tune the closed-loop
dynamics.
Finally, the proposed data-driven control algorithm is tested on a real 2 Degree-
of-Freedom (DoF) inverted pendulum device to show the reliability. By analyzing
the experimental data, the proposed algorithm shows the potential to perform in a
Plug-and-Play manner and to provide a control strategy with improved closed-loop
dynamics and better energy saving performance in practice.

Keywords: data-driven control, subspace control, root mean square stability, in-
verted pendulum, plug-and-play
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1
Introduction

1.1 Background and motivation

To solve a control problem, it normally starts with setting up a first principle model
of the plant. Then a controller is designed to fulfill certain objectives, i.e. aiming
at stabilizing the plant to a certain set point, based on the model.
The difficulties and the most time consuming tasks usually lie in the modelling of
the plant. A model should be as accurate as possible, since it is the foundation
of the following controller design. The model bias from the practical plant results
into the different behaviors from the theoretical designed dynamics to the actual
closed-loop performance. It is usually not surprising to find that a controller will
fail to work if the model is poorly set up.
When it comes to the controller design, tuning the parameters is another challenging
task. Considering the classical PID controllers, the parameters P, I and D are usually
set by carrying out many try-and-error experiments to meet certain requirements
[1]. For other controller design techniques such as LQG or MPC, the tuning usually
involves one more state estimator in addition to the controller itself. Such tuning
tasks are non-trivial as the controller parameters strongly affect the performance
and robustness. Moreover, these tuning parameters usually have influence on each
other and make the tuning process sometimes difficult. The researches of self-tuned
LQG and MPC controller reveal such difficulty [2] [3] in some sense.
For most laboratory sessions in the controller design courses at school, the first prin-
ciple models are usually given by mathematical equations, with pre-defined system
parameters from the lab manual. Students thus mostly work on tuning the con-
trollers, usually through simply try-and-error testing. Furthermore, it is not always
successful to find a controller with a satisfactory behavior with the modelling knowl-
edge from the manual. Thus a question is raised — Is there a way to achieve better
controllers for practical plants using the data collected from such unsatisfactory
initial controllers with an easy process?
The preliminary intention of this master thesis is trying to find a control algorithm
to answer the above question and can solve practical problems. The derivation of the
controller itself should be general. The tuning of the closed-loop dynamics should be
easy and convenient. To validate the design algorithm, the obtained controller will
be tested via a practical experiment, where a 2 DoF inverted pendulum lab device
will be controlled. Such platform is chosen because inverted pendulum systems are
commonly used for testing control algorithms for their open-loop unstable property
and fast dynamics. In addition, such systems also challenge the robustness of the
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1. Introduction

designed controller as they are also highly nonlinear.

1.2 Introduction
As is mentioned in Section 1.1, the accuracy of modelling plays an important role in
the controller design. This inspires the idea that an new identification can be carried
out when an initial controller is running to improve the system modelling. Based
on the improved model, a second controller may be derived with better behavior.
Typically there are two kinds of system identification techniques: gray box [4] and
black box [5] identification. Gray box identification is the method combining a
partial mathematical structure with parameters needed to decide from a collection
of I/O data while a black box is the method without any prior structure.
Indeed, most of the system identification methods existed are of black box identi-
fication form. On the other hand, in order to keep the generality for the proposed
controller design algorithm in this thesis work, black box identification structure is
actually considered. Predictor-Based Subspace IDentification (PBSID) [6] is a well
developed black box identification method for LTI state-space models. PBSID iden-
tifies the state-space model via the existence condition of a stable observer, which
results in a intermediate VARX structured subspace relation of the I/O data (also
called Markov Parameters) and then formulate the state-space model. One advan-
tage for PBSID is that it can be used to consistently estimate a state-space model
without any prior knowledge of the controller, thus it is able to be used in either
open-loop or closed-loop identifications. Fig. 1.1 illustrates the work-flow of the
PBSID method.

A collection of I/O data

An VARX type I/O relation (Markov Parameters)

State-space model construction

Figure 1.1: Flowchart of the PBSID method to identify state-space parameters

The first principle model in the state-space form that PBSID tries to identify takes
the following form (in discrete time):

x(k + 1) = Adx(k) +Bdu(k)
y(k) = Cdx(k) +Ddu(k)

(1.1)

where x is the state vector, u is the input vector, y is the measurement vector, Ad,
Bd, Cd and Dd are matrices with appropriate dimensions.

2



1. Introduction

First of all, the system order (the number of elements in x) is a manually tuning
parameter in PBSID method. Second, it is not surprising that large amount of
data are required to identify all of the parameters in matrices Ad, Bd, Cd and Dd.
On the other hand, the identified parameters are not always accurate[6]. Thus
the controller design based on Eq. (1.1) will be restricted by the accuracy of the
identified parameters. Intuitively, as PBSID goes through an intermediate step
in the subspace representation before it comes to identify the state-space model
parameters, there is one more possibility to introduce errors for the identification
result. In another word, if a new controller can be successfully designed based on the
intermediate subspace representation directly, it is likely to achieve better closed-
loop performance with fewer identification errors. The different processes of the first
principle model based controller design and the subspace based controller design are
shown in Fig. 1.2, where the first principle modeling is bypassed for the subspace
controller design.

I/O Data Subspace Model State-Space Model Controller Design

Controller Design

First Principle Controller Design Method

Subspace Controller Design Method

Figure 1.2: Different controller design processes of first principle model based and
subspace based

However, the subspace representation will still have uncertainties from the identifi-
cation process, i.e. noise corruption and model bias. Thus the problem which will
be studied in this thesis is defined as:

Problem 1 Given an I/O level dynamical model of the system in the subspace,
design an control algorithm directly based on such model and such controller is able
to meet stability and robustness requirements with respect to bias or disturbances.

Current researches have studied various ways of subspace controller design tech-
niques. [9] and [10] have proposed predictive controllers in the subspace for LTI
systems based on open-loop and closed-loop identification respectively. [11] sum-
marizes that both subspace predictive controllers are asymptotically equivalent to
LQG controllers when the length of MP and the prediction horizon to be infinitely
long. [12] and [13] have proposed subspace identification method for Linear Param-
eter Varying(LPV) systems to seek identification solutions to non-linear systems.
In [14], a predictive controller in the subspace for LPV systems is given with an
practical example to control a non-linear DC motor.
However, there are several aspects that we may notice. First, these approaches pre-
assume that the past window size to construct the MP is long enough, so that the

3



1. Introduction

bias caused from the finite length of MP is negligible. Otherwise, significant tracking
error may occur. Second, the computation of the predictive control input involves an
inversion of the Hankel matrix constructed from the identified MP, which indicates
the past horizon cannot be too long in case of a poor condition of the rank.
To overcome the ambiguous choice of the past horizon and to reach a Plug-and-Play
manner subspace controller, an LTI H∞ style data-drive controller in the subspace is
proposed in this paper. The model bias between the subspace and the true system,
together with the bias term and disturbances, are designed to be rejected based on
a pre-defined performance vector, induced in a Root Mean Square(RMS) level. The
noise corruption on the identification of the MP is also considered and is claimed to
have a mean sense stability based on the proposed controller design
The proposed controller design algorithm results in an online structure of static
state feedback controller, which can be easily applied to systems with fast dynam-
ics without any computational burden. The static feedback gain can be computed
offline with a collection of excitation data from the initial controller. The proposed
algorithm is proved capable to design a well functioned controller for the 2 DoF
inverted Pendulum device with a performance improvement from the initial con-
troller through the practical experiments. Few parameters need to tune to adjust
the closed-loop behavior of the proposed controller. This also shows the potential
of such controller to act in the Plug-and-Play manner.

The following contents of this thesis report are organized as:
In Chapter 2, the theoretic derivation of the robust mean-square stabilizing data-
driven controller is presented. Such controller design method is wrapped as an
algorithm and the output is a static feedback control strategy in the subspace.
Chapter 3 introduces the experimental platform where the proposed data-driven
controller will be implemented and tested. In addition, the steps to implement the
proposed controller is briefly described. Chapter 4 illustrates the implementation
result of the proposed controller .

4



2
Robust Mean-square Stabilizing

Data-Driven Controller

This chapter introduces in detail the theoretical formulation of the subspace mean-
square stabilizing data-driven controller. The proposed subspace controller takes
a simple form of a static feedback controller. Such controller design approach is
given as an algorithm, taking the past window size p, a collection of N + p I/O
data and a manually defined performance vector as input and a static feedback gain
in the subspace as the output. The algorithm is formulated as an optimization
problem with Linear Matrix Inequality (LMI) conditions which can be efficiently
solved through existing Semi-Definite Programming (SDP) solvers.
The structure of the subspace model used in the controller design is similar to a
state-space model. To clarify the notation, in what follows of this chapter, system
matrices for state-space models will be denoted in capital block letters (i.e. A) while
matrices related to subspace models will be put in capital calligraphic letters (i.e.
A).
This chapter is organized as follows: Section 2.1 describes the equivalence of the LTI
subspace MP and state-space model in representing the system dynamics, followed
by the identification approach of the MP in the subspace. Section 2.2 illustrates the
uncertainty components in the identified MP. The concept of the proposed data-
driven controller design will be shown in section 2.3, starting with the formulation
of a dynamical state-space structured subspace model, then followed by an introduc-
tion of the controller structure. At the end, the controller design approach aiming
at dealing with the uncertainty component is wrapped up as solving an LMI opti-
mization problem.

2.1 System dynamics from the LTI state-space
model into I/O level subspace

This section is divided into two parts: Section 2.1.1 explains the equivalence in
representing system dynamics of an LTI state-space model and a subspace MP
representation. The identification of the MP can be done through a simple Least
Square(LS) estimate as is shown in Section 2.1.2.

5



2. Robust Mean-square Stabilizing Data-Driven Controller

2.1.1 LTI subspace representation of system dynamics
The validity of an LTI subspace representation lies in the existence of a stable ob-
server of an LTI discrete time state-space model. Consider the following innovation
form discrete time state-space model:

x̂(k + 1) = Ax̂(k) +Bu(k) + Le(k) (2.1)

y(k) = Cx̂(k) + e(k) (2.2)
where k denotes the time instant; e(k) is the innovation signal, assumed to be a
zero-mean, white noise sequence with a non-singular covariance matrix Σe = EET .
The dimensions of the estimated states, measurement and inputs are denoted as
x̂(k) ∈ Rnx , y(k) ∈ Rny and u(k) ∈ Rnu respectively. Furthermore, an assumption
of the stable observer is made:

Assumption 1 The system written in Eq. (2.1) and (2.2) is of minimal order and
its closed-loop observer Φ , A− LC is stable.

Assumption 1 is non-restrictive for a stable observer Φ, as a discrete time delayed
version Kalman Filter is one of the candidate methods to derive the observer gain.
The assumption of observability does not introduce limitations to practical problems
either as the system should be observable (on the states of interest) to have feasible
solutions to the control problems.
Denote a look-back window size p as the past horizon. By letting e(k) = y(k)−Cx̂(k)
and rewriting x̂(k) in Eq. (2.2) with Eq. (2.1) for p times, we will get the following
I/O representation of the system dynamics:

y(k) = Ξz(k) +
b(k)︷ ︸︸ ︷

CΦpx̂(k − p) +e(k)︸ ︷︷ ︸
d(k)

(2.3)

where Ξ ,
[
CB CL · · · CΦp−1B CΦp−1L

]
is the Markov Parameters (MP);

z(k) ,
[
uT (k − 1) yT (k − 1) · · · uT (k − p) yT (k − p)

]T
is a history of p input

and output data; b(k) denotes the bias term caused by the finite window size p from
the "initial" condition x̂(k − p) outside the window; d(k) is used to denote the total
disturbance.
Here we can see that the LTI subspace representation of tje system dynamics in Eq.
(2.3) is equivalent to Eq. (2.1) and (2.2).

2.1.2 LTI subspace identification
If we collect in total N+p input and output data from an experiment of the nominal
system, the following LS problem can be formulated according to Eq. (2.3):

Yk,N = ΞZk,N + CΦpXt−p,N + Ek,N (2.4)

where
Zk,N =

[
z(k +N − 1) z(k +N − 2) · · · z(k)

]
,

6



2. Robust Mean-square Stabilizing Data-Driven Controller

Yk,N =
[
y(k +N − 1) · · · y(k)

]
, Ek,N =

[
e(k +N − 1) · · · e(k)

]
are the history I/O data, measurement and innovation sequence respectively,

Xt−p,N =
[
x̂(k − p+N − 1) · · · x̂(k − p)

]
is a sequence of the initial states outside the look-back window p at each correspond-
ing time instant.
With the help of Eq. (2.4), an estimate of Ξ can be easily obtained by a LS solution:

Ξ̂ , Yk,N · Z†k,N (2.5)

where † is the symbol representing the "pseudo-inverse".

Remark: From section 2.1 we can see that the subspace representation is equivalent
to the discrete time state-space model in the sense of modeling the system dynamics.
The formulation of a subspace model only depends on an implicit, stable observer,
whose significance lies in the fact that the estimate given by the LS solution is valid
for both open-loop and closed-loop identifications without any prior knowledge of
the initial controller used in the identification step. Neither does it matter if the
system is initially open-loop stable or not.

2.2 Markov Parameters with uncertainty compo-
nent

When N →∞, the covariance of Ξ̂ provided by the LS estimate in Eq. (2.5) tends
to be zero . However, as the true Ξ is infinitely long, there is always a biased term
b̂(k) for the estimate result Ξ̂ in Eq. (2.3) caused by the finite window size p in
practice. Furthermore, as N cannot be infinite in practice, Ξ̂ will be inevitably
noise corrupted.
Now, we would like to study such estimated error. Introducing a column vec-
torization operator vec(·), we denote the vectorized MP and its estimate to be
Θ , vec(Ξ) ∈ Rny(ny+nu)p and Θ̂ , vec(Ξ̂) ∈ Rny(ny+nu)p respectively. The estimate
error for the MP can be expressed as:

Θ − Θ̂ = δΘ + Σ1/2
v v (2.6)

Σ1/2
v v denotes the noise corruption in the estimate error, where Σv = [Zk,NZk,N ]−1⊗

(Σe), v ∈ Rnv with nv = nup(ny + nu) is a zero mean random signal with identity
covariance matrix. δΘ denotes the bias component brought by the finite window
size p.

Remark: The bias term δΘ is related to CΦp. As Φ is stable, the bias term can be
negligible when p→∞. However, there are reasons that we would prefer a relatively
short p. First, to obtain a good LS estimate, it is required that N >> p and in

7



2. Robust Mean-square Stabilizing Data-Driven Controller

practice N is sometimes limited. Second, a long p will also result in low variance for
each component in the Markov Parameters which will be crucial for fault estimation
in subspace[23] to inverse the MP matrix. Third, the longer p, the longer time to
initialize zk for any subspace controller where unwilling transient behavior such as
large overshot may occur before the data-driven controller takes its responsibility as
is designed.

2.3 Robust mean-square stabilizing controller syn-
thesis

In this section, we would like to derive a subspace controller that is functional
under a relatively small p and limited size of identification data N . Therefore,
both the estimated bias and the noise corruption in the MP need to be considered.
Furthermore, we wrap up the controller design approach as solving an optimization
problem with only a few tuning parameters. These parameters can be intuitively
adjusted according to the closed-loop dynamics in order to be conveniently applied
by the users.

In 2.3.1, we first build an I/O level subspace model to represent the system dynamics
in a state-space-like structure. With the proposed controller structure shown in
2.3.2, 2.3.3 and 2.3.4 will show in details the stabilizing design over the uncertainty
components and disturbances. Finally, a robust mean-square stabilizing controller
is derived in 2.3.5.

2.3.1 Dynamic I/O model

Given the past window size p, we introduce a new state vector:

χ(k) =
[
yT (k) uT (k − 1) yT (k − 1) · · · uT (k − p+ 1) yT (k − p+ 1)

]T
(2.7)

8



2. Robust Mean-square Stabilizing Data-Driven Controller

where χ(k) ∈ Rnχ with dimension nχ = nu(p − 1) + nyp. With Eq. (2.7), an
state-space structured subspace dynamic model can be built:

y(k + 1)
u(k)
y(k)

u(k − 1)
...

u(k − p+ 2)
y(k − p+ 2)


︸ ︷︷ ︸

χ(k+1)

=



CL CΦB CΦL · · · CΦp−1L
0nuny 0nunu · · · · · · 0nuny
Iny 0nynu · · · · · · 0nyny

0nuny Inu · · · · · · 0nuny
. . .

0nuny · · · · · · · · · 0nuny
0ny · · · Iny 0nynu 0nyny


︸ ︷︷ ︸

A



y(k)
u(k − 1)
y(k − 1)
u(k − 2)

...
u(k − p+ 1)
y(k − p+ 1)


︸ ︷︷ ︸

χ(k)

+



CB
Inu

0nynu

...

0nynu


︸ ︷︷ ︸

B2

u(k) +



Iny
0nunu
0nyny

...

0nynu


︸ ︷︷ ︸

B1

d(k)

(2.8)
where I? and 0?? with ? for "nu, ny" represent identity matrix and zero block matrix
with corresponding rows and columns. d(k) ∈ Rny models the total disturbance
including noise component, bias term, etc. d(k) is assumed to have bounded covari-
ance as the only restriction. A ∈ Rnχ×nχ , B1 ∈ Rnχ×ny and B2 ∈ Rnχ×nu are the
subspace model dynamic matrices.
An estimate of Ξ is given as Ξ̂ by solving Eq .(2.5). Thus we can replace the
corresponding components in A and B2 from Ξ by the ones obtained from Ξ̂. Denote
the corresponding estimated system dynamic matrices as Â and B̂2, which will be
later used for the future controller design. From Eq. (2.6), the noise corrupted
uncertainty on Θ̂ is additive and can be estimated by Σ1/2

v v. Thus such an stochastic
uncertainty can be abstracted from the disturbance d(k) into a component wise
uncertainty with respect to the MP in Â, taking the form ∑nv

i=1 Âivi and
∑nv
i=1 B̂2ivi.

Âi can be obtained from the ith column of the covariance matrix Σ1/2
v with the

components with respect to [ĈL ĈΦB · · · ĈΦp−1L] terms in Θ̂; Similarly, B̂2i
can also be obtained from the ith column of the covariance matrix Σ1/2

v with the
components with respect to [ĈB] term in Θ̂; vi is the ith entry from the random
vector v. As v has identity covariance matrix, vi are independent from each other
for i ∈ {1, 2, · · · , nv}.

Therefore, we can re-organize the dynamics in the identification stage in Eq. (2.8)
into the following uncertain state equation:

χ(k + 1) =
(
Â+

nv∑
i=1
Âivi

)
χ(k) +

(
B̂2 +

nv∑
i=1
B̂2ivi

)
u(k) + B1b̂(k) (2.9)

where b̂(k) is the deterministic bias component of d(k). Here the term
(
Â +

9



2. Robust Mean-square Stabilizing Data-Driven Controller

∑nv
i=1 Âivk

)
and

(
B̂2 + ∑nv

i=1 B̂2ivk

)
try to recover the true MP blocks A and B2

in Eq. (2.8) from the identification data.

Finally, we manually define a performance vector as the output of the subspace
system to complete the model:

ζ(k) = Cχ(k) +D2u(k) +D1d(k) (2.10)

where ζ(k) ∈ Rnζ denotes the user-defined performance output vector; C ∈ Rnζ×nχ

andD1,2 ∈ Rnζ×nu are real coefficient matrices. When nζ = ny with C = [Iny 0(nχ−ny)nχ ]
and D1,2 = 0nζnu , ζ(k) is simply the measurement output as y(k) in Eq (2.2).

2.3.2 Controller structure

First, we would like to make to following assumption:

Assumption 2 The open loop state equation defiend in Eq. (2.9) is stabilizable
in mean-square sense with respect to the stochastic component in MP by a χ-state
feedback with static gain κ ∈ Rnu×nχ.

Assumption 2 is a statement of the structure for the proposed controller which is
shown in Fig. 2.1. For simplicity of the controller design, we here consider the zero
stability without reference signal r(k) and the performance vector (output of the
subspace model) does not include direct feed-through from d(k) and u(k).

Z−1

A

B1

κ

C

B2

bc
ζ(k)χ(k)χ(k + 1)d(k)

u(k)

bc

Figure 2.1: Flow chart of the proposed controller

For comparison, Fig. 2.2 illustrates a typical discrete time state-space feedback
system with static feedback gain K:

10
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Z−1 C

A

B
bc

B

Z−1

A

LK

−

C

bcbc

−

bc

Plant

Observer and Controller

x(k + 1) x(k) y(k)u(k)

x̂(k + 1)x̂(k)

Figure 2.2: Flow chart of a typical state-space feedback controller

As is shown in Fig. 2.2, the online part of a state-space static feedback controller
consists of a state estimator and a static feedback gain K. In Fig. 2.1, the proposed
subspace controller with static feedback gain κ in this project works in a similar
way as the state-space controller without the state estimator. With the subspace
formulation, no state estimate will take place and the control input at time k will
be computed simply by u(k) = κχ(k), where χ(k) is defined in (2.7).
On the other hand, if a static feedback system in the original state-space is feasible
(i.e. there exists an stabilizing LQ controller), Assumption 2 will not be restrictive
as well. Since closed-loop identifications usually take place with the help of additive
stochastic excitation signal[20], a controllable plant in the original state-space should
also be controllable in the subspace as they have equivalent dynamic representations.
Now it is time to define the system model that we use to design the proposed
controller:

χ(k + 1) =
(
Â+

nv∑
i=1
Âivi

)
χ(k) +

(
B̂2 +

nv∑
i=1
B̂2ivi

)
u(k) + B1d(k)

ζ(k) = Cχ(k) +D2u(k) +D1d(k)
(2.11)

Remark: We propose to use an offline, batch mode LS identification of the MP.
With the batch mode identification, d(k) in Eq. (2.11) is considered to be re-defined

11



2. Robust Mean-square Stabilizing Data-Driven Controller

as the future disturbance when the proposed controller is implemented, which is
now different from the one that has been used in Eq. (2.8). Therefore, in the
controller design problem, χ(k) and d(k) only contains the data during the online
implementation of the proposed controller. The random vector v, determined by
the noise in the identification experiment, is thus independent from χ(k) and d(k).

2.3.3 Design over the disturbance
One of the objectives of the static feedback gain κ is to deal with the determin-
istic bias of the system, together with unwanted noise and disturbances. To do
so, we would like to introduce the following Root Mean Square (RMS) disturbance
attenuation criterion:

sup
||d||RMS 6=0

||ζ ′||RMS

||d′||RMS

= ||S 1
2GdζS

− 1
2 ||∞ ≤ γ (2.12)

where ζ ′ , S1/2ζ and d , S−1/2d′. ||f ||RMS is defined as the Root Mean Square
value of vector f defined as:

||f ||RMS ,
(

E(fTk fk)
) 1

2
=
(

lim
T→∞

1
T

T∑
k=0

fTk fk

) 1
2
<∞ (2.13)

In Eq. (2.12), S � 0 ∈ Rnζ×nζ is a positive diagonal scaling matrix; γ > 0 is the
attenuation level. Gdζ denotes the transfer function from d to ζ.
[22] has shown that the induced RMS criterion coincides with the component wise
H∞ norm according to matrix S. This indicates a successful design over κ from Eq.
(2.12) will lead to a γ disturbance attenuation weighted H∞ controller of the plant.

2.3.4 Design over the uncertain Markov Parameters
The other objective for the proposed controller is to deal with the stochastic uncer-
tainty from the identified Markov Parameters. We consider to ensure the closed-loop
stability using Lyapunov criteria. Define the following stochastic Lyapunov function:

V (k) = χ(k)TPχ(k) (2.14)

with P = P T � 0 is a symmetrical positive definite matrix.
The following inequality of the performance objective function should hold to ensure
an averaged value dissipation condition in the designed closed-loop system :

Ev{V (k + 1)− V (k)} ≤
− Ev{ζ ′(k)T ζ ′(k)}+ γ2Ev{d′(k)Td′(k)}

(2.15)

Substituting Eq. (2.11), ζ ′ , S1/2ζ and d , S−1/2d′ into Eq. (2.15), the following
matrix inequality form will be derived:

Ev

{ [
χ(k) d(k)

]
[L(P, v)]

[
χ(k)
d(k)

] }
≤ 0 (2.16)

12
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where

L(P, v) =
[
ÃT1 P Ã1 − P + C̃T1 SC̃1 ÃT1 P B̃1 + C̃T1 SD1
B̃T1 P Ã1 +DT1 SC̃1 B̃T1 P B̃1 −DT1 SD1 − γ2S

]
(2.17)

with
Ã1 = Â+ B̂2κ+

nv∑
i=1

(Âi + B̂2iκ)vi

B̃1 = B1

C̃1 = C +D2κ

As v is independent from χ(k) and d(k) (recalling Eq. (2.11)), we only need to apply
the expectation operator to the middle term L(P, v). If Ev{L(P, v)} is negative semi-
definite, the averaged value dissipation condition in Eq. (2.16) will be satisfied. By
taking the expected value, we will have the following matrix inequality condition:

L(P ) =
nv∑
i=1

[
ÃTi P Ãi 0

0 0

]

+
[
ÃTP Ã − P + C̃T1 SC̃1 ÃTP B̃1 + C̃T1 SD1
B̃T1 P Ã+DT1 SC̃1 B̃T1 P B̃1 −DT1 SD1 − γ2S

]
� 0

(2.18)

where
Ã = Â+ B̂2κ

Ãi = Âi + B̂2iκ

Detailed derivation from Eq. (2.17) to Eq. (2.18) can be found in Appendix A.

Now we have successfully formulated two key criteria, Eq. (2.12) and (2.18), for the
controller design. In what follows, we will formulate an optimization problem with
Linear Matrix Inequality(LMI) condition by re-organizing Eq. (2.18) in to a single
block matrix. This will enable the static gain κ to be computed by a Semi-definite
programming solver while trying to minimize γ.

Pre- and post- multiplying
[
P−1 0

0 Inζ

]T
and

[
P−1 0

0 Inζ

]
respectively on the left side

of Eq. (2.18) will not change the negative definite condition:

nv∑
i=1

[
ÂiP−1 + B̂2iκP

−1 0
0 0

]T [
P 0
0 S

] [
ÂiP−1 + B̂2iκP

−1 0
0 0

]
︸ ︷︷ ︸

Ai,c

−
[
P−1 0

0 γ2S

]

+
[
ÂP−1 + B̂2κP

−1 B1

ĈP−1 + D̂2κP
−1 D1

]T [
P 0
0 S

] [
ÂP−1 + B̂2κP

−1 B1

ĈP−1 + D̂2κP
−1 D1

]
︸ ︷︷ ︸

Ac

� 0
(2.19)

The following lemma is useful to formulate a LMI block matrix:

13
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Lemma 1 Shur Complement Suppose matrices A ∈ Rp×p, B ∈ Rp×q, C ∈
Rq×p, D ∈ Rq×q, and D is invertable. A block matrix M takes the form M =[
A B
C D

]
, then the Schur complement of the block matrix D of M is: M/D , A −

BD−1C. Furthermore, if M is a positive definite, D is also positive definite.

According to Lemma 1, the negative definite property remains if we keep applying
the Shur Complement block matrix on the left hand side of Eq. (2.19).
Thus the final negative definite block matrix from Eq. (2.19) can be drawn as:

L(Q) ,

−Qγ ATc ÃTc
Ac −QS 0
Ãc 0 −Qd

 � 0 (2.20)

With the following blocks in Eq. 2.20 defined as:

Q , P−1

Qγ , diag(Q, γ2S), QS , diag(Q, S−1), Qd , diag(QS, · · · ,QS︸ ︷︷ ︸
nv

)

Ac ,
[
ÂQ+ B̂2Y B1

ĈQ+ D̂2Y D1

]
, Ai,c ,

[
ÂiQ+ B̂2iY 0

0 0

]
Ãc ,

[
A1,c · · · Anv ,c

]
, Y = κQ

2.3.5 Robust mean-square stabilizing data-driven controller
Now it is ready to compute the subspace static feedback gain κ.
Theorem 1 A static χ state feedback controller stabilizes the uncertain system de-
fined by Eq. (2.9) and (2.10) in the mean-square sense with the induced RMS crite-
rion, if the following optimization problem is feasible:

min
Y,Q,S

γ (2.21)

s.t. L(Q) � 0
Q � 0
S � 0
γ > 0

Proof: Proof is omitted as it is clear to observe from the above equations that
Eq. (2.20) is a sufficient condition to satisfy averaged value dissipation Lyapunoc
condition in Eq. (2.15).

Remark: The optimization problem provided in Theorem 1 can be slightly tuned
in order to be solved efficiently by a Semi-Definite programming solver. Instead of
using the form as shown in Eq. (2.21), one can solve the LMI optimization problem
given as:

min
Y,Q,S,Sγ

Sγ (2.22)
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s.t. L(Q) � 0
Q � 0
S � 0
Sr � 0

where Sγ is a diagonal positive matrix used to approximate γ2S and block Qγ in
L(Q) in (2.22) is changed to Qγ , diag(Q, Sγ).

Finally, by solving the optimization problem, the static feedback gain κ can be given
as κ = YQ−1.

2.3.6 Summary of the proposed data-driven controller de-
sign

With the discussions above, the procedures to derive the robust mean-square stabi-
lizing data-driven controller given in Theorem 1 can be summarized as:

1. Do an identification experiment of the plant at a chosen equilibrium. If the
system is unstable, do a closed-loop experiment with an empirical, initial sta-
bilizing controller.

2. Collect a set of N I/O data from the identification experiment.
3. Select past window size p, preferably covering most dynamics of the system.
4. Compute the Markov Parameters through the LS formulation of the I/O data

according to Eq. (2.5)
5. Define the performance vector ζ.
6. Solve the problem defined in Eq. (2.21) and derive the feedback gain κ.
7. Apply the derived controller as is shown in Fig. 2.1.

Remark: There are two tuning parameters in the proposed controller design, i.e.
p and ζ. The choice of p only requires taking into account the major dynamic
behavior of the system. In fact, as the dynamics of the subspace representation
is closely related to the state-space estimator through Φ, a rough estimate on the
length of p can be guided by the estimator design if there is an initial controller in the
identification step. ζ is used in Eq. 2.12, explicitly related to the expected control
behavior. Thus the controller is easily tuned, i.e. to be aggressive or moderate by
the choice of ζ. The proposed controller can be computationally intensive. However,
only step 7 needs to be carried out online. Most of the computation can be conducted
offline and the online part does not require any more resources than a LQ controller,
which has the ability to act in a plug-and-play style.
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3
Introduction of the Experiment —

Platform and Process

This chapter briefly introduces the information of the experiment — where and how
the proposed data-driven controller is implemented. In section 3.1, the configuration
of the 2 DoF inverted pendulum is briefly described. Section 3.2 describes the steps
to implement the proposed data-driven controller on this device.

3.1 Introduction of the 2 DoF inverted pendulum
lab device

Figure 3.1: Experiment setup, Quanser 2 DOF Inverted Pendulum [15]

An inverted pendulum is a special pendulum with its center of mass above its pivot.
Usually it contains a rigid rod mounting on a small manipulator. The physical
structure of an inverted pendulum system is typically non-linear and unstable. The
laboratory device used for this thesis work is a 2 DoF inverted pendulum system
where the rod can turn in 2 orthogonal directions as is shown in Fig. 3.1. The
control task is to balance and keep the rod upright by moving the manipulator. For

17
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this specific system, the pivot position is controlled by two robot arm manipulators
driven by two DC motors.
A detailed configuration of the lab device can be seen in Fig. 3.2 and its home
position is defined as Fig. 3.3.

Figure 3.2: Detailed configuration of the 2 DoF Inverted Pendulum

Figure 3.3: Home position of the 2 DoF Inverted Pendulum

As can be seen from Fig. 3.2, within a small region around the home position and
with some approximation, the servo motor x (on the left hand side) controls the
pendulum dynamics of direction x while the servo motor y controls the dynamics
in direction y. The tilt of the rod can thus be split into plane x and y respectively.
The links that are connected to the servo motors are two rotary arms. According to
Fig. 3.2, the following parameters in Table 3.1 are defined.
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Table 3.1: Parameters of the Inverted Pendulum (1)

θx The rotation angle of the servo motor x
θy The rotation angle of the servo motor y
αx The tilt angle of the pendulum in plan x
αy The tilt angle of the pendulum in plan y

Indeed, parameters provided in Table 3.1 are able to measure in the experiment.
However, these parameters are insufficient to set-up the first principle model of the
2 DoF inverted pendulum system and more states need to be estimated through an
observer. Detailed modeling steps of the pendulum set-up can be seen in Appendix
B.
As Fig. 3.3 illustrates the geometry of the home position and the zero point for
the rotary arms, the rotation angles θx, θy and the tilt angles αx and αy increase in
Counter-ClockWise(CCW) direction. The servo motors are designed to have positive
voltage input when turning the rotary arms CCW [15].

3.2 Experiment Process
To successfully implement the proposed data-driven controller on the 2 DoF inverted
pendulum system, there are three steps that need to follow:

1. Derive an initial controller based on some knowledge of the first principle
model. Do a closed-loop experiment an the initial controller with additional
excitation signal. Collect I/O data and compute the Markov Parameters. De-
tailed information on deriving the initial controller can be found in Appendix
B.

2. Compute the subspace static feedback gain κ as is shown in Chapter 2 and
formulate the robust mean-square stabilizing data-driven controller according
to Fig. 2.1.

3. Start a new experiment with the new data-driven controller around the equi-
librium.

The reason why a closed-loop identification is carried out in step 1 is that the 2 DoF
inverted pendulum system is open-loop unstable. The initial controller used in this
thesis is an LQ controller as is shown in Appendix B. Also note that step 2 can be
done offline completely with the collected I/O data from step 1. Only step 3 is done
online for the data-driven controller, which can act in a plug-and-play manner by a
simple switch from the initial LQ controller.

At the end of this chapter, it is worthy to point out again that the 2 DoF inverted
pendulum system can be approximately decoupled as two same 1 DoF inverted
pendulum subsystems around the home position as is shown in Fig. 3.3. Detailed
explanations can also be found in Appendix B. Due to this fact, it is sufficient in the
following chapter to observe only two measurements and one input from a 1 DoF
subsystem during the experiment.
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4
Experimental Result

The proposed robust mean-square stabilizing data-driven controller in Chapter 2 is
implemented on a 2 DoF inverted pendulum lab device as is introduced in Chapter
3. In this chapter, the experimental results of the implementation will be presented.
The experiments were carried out on a PC running Windows 10 system, using MAT-
LAB®version R2015a and Quanser®driver version v2.5.1431.0. The optimization
problem is solved using Sedumi 1.3 under yalmip[26] in the MATLAB®environment.

4.1 Identification Data
Among the testing experiments of the 2 DoF inverted pendulum system, a subspace
model identified from a set of only 300 samples is already sufficient to formulate
a well-functioned data-driven controller proposed in this thesis. However, there
is a requirement on the identification data which is important for the controller
design — excitation around the equilibrium. Fig. 4.1 shows two different output
measurement data sets from two individual identification experiments, one on the
left two plots and the other on the right. The sampling time is Ts = 0.2 s and each
data set contains 300 samples. On the left side of Fig. 4.1, it is clear that the first
measurement is biased from the equilibrium.
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Figure 4.1: Two set of identification I/O data. Solid line - measurement, dashed
line - equilibrium
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In the further experiments, using the data set on the left side cannot formulate any
functional data-driven controllers no matter how the past window size p and the
performance vector ζ are tuned. However, the right side data successfully leads to
stabilizing data-driven controllers.

4.2 Markov Parameters Estimate
As a property of linear Least Square estimate, the result will converge to the true
value as the number of samples is sufficiently large. In order to illustrate the estimate
of the MP clearer, in Fig. 4.2 and 4.3, the estimated MP illustrated are computed
from 10, 000 samples to alleviate the influence of noise and disturbance.
Recall that the MP takes the following form:

Ξ ,
[
CB CL · · · CΦp−1B CΦp−1L

]
(4.1)

and according to the identification equation Eq. (2.4), the Markov Parameters can
be divided into mainly two groups: Group CΦkB whose components are multiplied
with the input signal u and Group CΦkL whose components are multiplied with the
output signal y. As in Eq. (2.4), the bias term CΦpX can be interpreted as an index
of how good the MP estimate is. Since x in the experiment is closely related to the
measurement y in state-space model, Fig. 4.2 illustrated || ˆCΦkL|| for different past
window size p so that a rough estimate of ||CΦpX|| can be approximated for each
case respectively. The solid line is a computed reference from the information of the
initial controller design as is shown in Appendix B. Need to note that such reference
does not necessarily be the "true value". However, it is still useful to get an idea on
how ||Φk|| decays.
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Figure 4.2: Norm of || ˆCΦkL|| for different p
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In Fig. 4.2, we can see that as p increases, ||CΦkL|| tends to converge to the "actual"
shape (monotonically decreasing) as ||Φ|| < 1. However in the real experiment, when
p = 8, a functional data-driven controller as proposed in this thesis can already be
formulated. One possible reason is that it is already sufficient to capture the major
dynamics with p = 8 and the bias term left is small enough. And the first component,
k = 1 in the curve ||CΦpL||, of p = 8 is much closer to p = 50 comparing with the
cases of p < 8. This may suggest that the MP provided with p = 8 has reached
certain accuracy to be used to do the proposed controller design.

Fig. 4.3 illustrates the MP related to ||CΦkB||. Similarly, the solid line is a com-
puted reference. However, the reference has a point CΦkB = 0.3114 when k = 2.
Fig. 4.3 does not include such point as it is too large to see the other results clearly.
However, the reference is kept in Fig.4.3 as it is still useful to illustrate how ||Φk||
decays.

0 10 20 30 40 50 60 70 80

k

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

|C
Φ

k
B

|

MP with respect to input

p=4

p=6

p=8

p=15

p=50

Reference

Figure 4.3: Norm of || ˆCΦkB|| for different p

We can see that the estimated results for the Markov Parameters with respect to
the input keeps a similar shape to the calculated reference. However, they seem
to have a different order magnitude. This may be caused by the difference in the
amplitudes of the measurement and input from in the identification experiment. As
is shown in Fig. 4.1, measurement 1 has the order of 10−2 and 10−3 for measurement
2. However, the input is mostly between −1 to 1 as is shown in Fig. 4.4.
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Figure 4.4: Input signal from the same identification experiment as Fig. 4.1

However, putting Fig. 4.2 and 4.3 together, Fig. 4.5 illustrates the curves of√
||CΦkB||2 + ||CΦkL||2 for different choice of p.
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Figure 4.5: Norm of Markov Parameters

From Fig. 4.5 we can see that even if there may exist scaling problem for the
MP estimate considering the output and input components respectively, the overall
MP estimate does not diverge from the computed reference too much. Since it is
uncertain whether the reference MP is the best representation of the real system,
the difference of the identified MP from the reference may also be an improvement
of the dynamic model.
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4.3 Selection of the past window size

The reason has been mentioned in the previous sections why a relatively short p is
preferred. From Fig. 4.5, one can also observe that the curve for p = 50 has the
risk of over-fitting the noise by a large p as the tail of such curve starts to oscillate.
Though pmin = 8 is found as the minimal past window size for a functional proposed
data-driven controller design in this particular experiment by empirical tests, it is
still unclear how to determine the exact way to do the selection.
Apart from an estimate from Φ in the initial controller design and simulation, Fig.
4.6 may also provide an alternative way to give an rough guide. Recall the subspace
dynamic model equation (2.8), Fig. 4.6 illustrates the sigma plot of such model, by
substituting each MP component with its estimate for different past window sizes
p.

10
-3

10
-2

10
-1

10
0

10
1

10
2

-100

-50

0

50

100

150

p=4

p=6

p=8

p=15

p=25

p=50

Sigma Plot

Frequency (rad/s)

S
in

g
u

la
r 

V
a

lu
e

s
 (

d
B

)

Figure 4.6: Sigma Plots for the estimated subspace dynamic model (without un-
certainty component)

From p = 3 to p = 50, the level of the sigma curves first goes down and then rises
up which may be useful to set a threshold for the low-frequency amplitude for p
selection. It is also noted that for p = 8, 15, 25, the sigma curves are very similar in
shape. As p = 8 is the minimal past window size in this experiment, this similarity in
the sigma plot may also provide a rough range of p selection for the implementation
and thus can be used to estimate the minimal p.
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4.4 Closed-loop Performance
During the implementation, the minimum past window size is p = 8 which is able
to lead to successful robust mean-square stabilizing data-driven controller designs.
Fig. 4.7 shows an example of the closed-loop behavior of a successful design with
p = 8. The identification of the MP uses 300 samples as is shown on the right
hand side of Fig. 4.1 and Fig. 4.4. Recall that in the controller design algorithm
in section 2.3.6, the performance vector ζ is a tuning parameter. In this case,

ζ =
[
10 0 0 · · · 0
0 200 0 · · · 0

]
is defined, interpreted as different penalizing weights on

the actual measurement of the system. In Fig. 4.7, the closed-loop performance of
the initial LQ controller is also illustrated(data collected from a separate experiment,
without the additional random noise for identification purposes). Both results has
a total of 10, 000 samples collected.
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Figure 4.7: Closed-loop behavior for 10, 000 samples. Solid line – proposed data-
driven controller; dashed line – initial LQ controller without additional noise signal

We can see in Fig. 4.7 that the proposed data-driven controller achieves a better
stationary closed-loop behavior by having smaller oscillations both for the measure-
ments and the input signal. The cause of the steady-state tracking error for the
proposed data-driven controller is probably the non-linearity of the real system, as
the formulation in this experiment does not include an integrator. In order to com-
pare the results better, we take the Discrete Fourier transform for both closed-loop
dynamics in Fig. 4.7. The result of the amplitude spectrum is shown in Fig. 4.8
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Figure 4.8: Amplitude spectrum of Fig. 4.7. Solid line – proposed data-driven
controller; dashed line – initial LQ controller.

From Fig. 4.8, we can conclude that the proposed data-driven controller outperforms
the initial LQ controller in a way of flattening the high frequency amplitude for
both measurement signal and input. This is intuitively understandable. As in the
proposed data-driven controller design, the state χ is augmented to be a history of
I/O data. Having more states usually means having more freedom to control. The
computation of the controller is in some sense similar to a p size FIR filter moving
with time on the I/O data. Furthermore, the data-driven controller does not involve
speed estimate, and speed information is likely to bring high frequency component.
In addition, if we compute the total energy of the inputs and outputs for both
controllers through Parseval Theorem:

E =
∫ ∞
−∞
|X(f)|2df =

∫ ∞
−∞
|x(t)|2dx (4.2)

where E is the total energy of an arbitrary signal x. We will have the following
result for this case:

Table 4.1: Total energy for the closed-loop control behaviors in Fig. 4.8

E(θ) E(α) E(u)
Initial LQ Controller 0.01826 0.000783 0.27076
Data-driven Controller 0.14877 0.000841 0.07859

Due to the steady-state tracking error, the data-driven controller has larger energy
for both measurements θ and α within the illustrated 10, 000 samples. However, the
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4. Experimental Result

total energy of the control move computed by the proposed data-driven controller
is significantly smaller than the one computed by the initial LQ controller to keep
the pendulum upright. This suggests that the proposed data-driven controller can
have very good ability to achieve energy saving performance in practical fixed-point
stabilizing tasks.

4.5 Tuning of the Closed-loop Dynamics
Given a feasible past window size p, the only tuning parameter left is the performance
vector ζ. For convenience, we can always define ζ to correspond to the actual
measurement of the real system with different penalizing weights respectively. For
the 2 DoF inverted pendulum system in this thesis, the performance vector takes
the following form:

ζ =
[
W1 0 0 · · · 0
0 W2 0 · · · 0

]
χ(k)

as there are two outputs for each decoupled 1 DoF inverted pendulum subsystem. W1
and W2 are manually defined penalizing weights on each measurement respectively.
Fig. 4.9 shows 10, 000 samples of the closed-loop responses of two data-driven con-
troller with different W1 and W2. In the figure, such weights are denoted as [W1 W2]
in the legend. Apart from the weights, both controller share the same identification
data and the past window size p = 8.
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Figure 4.9: Closed-loop data-driven responses. Solid line – with W1 = 10, W2 =
200 in ζ; dashed line – with W1 = 10, W2 = 100 in ζ.

Neglecting the steady-state tracking error in Fig. 4.9 as the initial condition differs in
the real experiment and is hard to control, more weights on ζ design, less oscillation
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will occur in the real implementation.
Similar to Eq. (4.2), the total energy of the input signal E(u) is calculated for both
case:

Table 4.2: Total input energy for the closed-loop control behaviors in Fig. 4.9

E(u)
W1 = 10, W2 = 100 0.18936
W1 = 10, W2 = 200 0.07508

As a matter of smaller output oscillations with larger penalizing weights, such a data-
driven controller also achieves better energy saving behavior for the input signal.

4.6 Summary
The identification of the LTI I/O level subspace model used in the proposed data-
driven controller design algorithm is relatively convenient and easy. The simple LS
estimate enables the identification of the system dynamics with only a small number
of I/O samples.
The proposed data-driven control algorithm aims at providing a robust mean-square
stabilizing subspace controller with a short past horizon size p. Though how to give
the minimum p explicitly in practice remains a question to solve, there is a way
to make an estimate. If the system identification is done in a closed-loop style, the
first principle model and the state estimator information used in the initial controller
design can be a useful guide to compute Φ and simulate the data-driven controller
under different choice of p.
Once p is found, the only tuning parameter for the proposed control algorithm is the
performance vector ζ, which in general can be selected as the actual system output
of interest with penalizing weights. The closed-loop control behavior can thus be
tuned by addressing such weights. In the 2 DoF inverted pendulum experiment,
a better equilibrium stabilizing behavior can be achieved with larger penalizing
weights. However, very large weights will lead to too aggressive static feedback gain
κ which, on the other hand, will cause instability of the system.
The proposed data-driven controller can be very good at equilibrium stabilizing
tasks. In the experiment, it shows good ability at flatting the control moves and re-
ducing control efforts to stabilize the system, while maintaining good control perfor-
mances. Therefore, this indicates the potential application of such kind of controllers
in real life with energy saving respect.
One possible way to eliminate the steady-state tracking error is to augment state
the χ(k) with the integral of the measurements. Due to time limit of this project,
this work and experimental tests will remain as a future work.
As the data-driven controller design algorithm in this thesis is based on an closed-
loop identification with additional input noise in the identification experiment, the
derived data-driven controller therefore is able to be robust against the input noise
of the same type and level. However, it risks failing to work if the initial condition
of the pendulum is too far away from the designed equilibrium (home position).
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4. Experimental Result

Comparing with the initial LQ controller, the proposed data-driven controller is
better in terms of the stabilizing dynamic behavior, but worse in tolerating position
bias from the designed equilibrium. This fact may be due to the highly non-linear
property of the inverted pendulum system which causes the local I/O level model
fail to represent the system dynamics.
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A
Derivation of the Matrix
Inequality Condition

Recall L(P, v) defined in Eq. (2.17):

L(P, v) =
[
ÃT1 P Ã1 − P + C̃T1 SC̃1 ÃT1 P B̃1 + C̃T1 SD1
B̃T1 P Ã1 +DT1 SC̃1 B̃T1 P B̃1 −DT1 SD1 − γ2S

]
(A.1)

with
Ã1 = Â+ B̂2κ+

nv∑
i=1

(Âi + B̂2iκ)vi

B̃1 = B1

C̃1 = C +D2κ

Operator Ev{L(P, v)} takes the expected value with respect to v, thus we only need
to consider the expected value of the terms that contain Ã1 as the others will be
treated as constants.
Denote Ã , Â + B̂2κ and Ãi , (Âi + B̂2iκ) for i ∈ {1, 2, · · · , nv}, then we have
Ã1 = Ã+∑nv

i=1 Ãivi. Consider the following:

Ev{ÃT1 P Ã1} = Ev{(Ã+
nv∑
i=1
Ãivi)TP (Ã+

nv∑
i=1
Ãivi)} (A.2)

As vi is zero-mean, the expected value of the first order term with respect to vi is
zero after expanding Eq. (A.2). Thus we will have:

Ev{ÃT1 P Ã1} = Ev{ÃTP Ã}+ Ev{(
nv∑
i=1
Ãivi)TP (

nv∑
i=1
Ãivi)} (A.3)

Since v is a zero mean random signal with identity covariance matrix and vi is
the ith entry from the random vector v for i ∈ {1, 2, · · · , nv}, vi are zero-mean and
independent from each other. Furthermore, E{v2

i } = 1. Eq. (A.3) will thus become:

Ev{ÃT1 P Ã1} = Ev{ÃTP Ã}+
nv∑
i=1

Ev{(Ãivi)TP (Ãivi)}

= ÃTP Ã+
nv∑
i=1
ÃTi P Ãi

(A.4)

Similarly to Ev{ÃT1 P Ã1}, we can have:

Ev{ÃT1 P B̃1} = ÃTP B̃1 (A.5)
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A. Derivation of the Matrix Inequality Condition

Ev{B̃T1 P Ã1} = B̃T1 P Ã (A.6)

Therefore, Ev{L(P, v)} =[
ÃTP Ã+∑nv

i=1 ÃTi P Ãi − P + C̃T1 SC̃1 ÃTP B̃1 + C̃T1 SD1
B̃T1 P Ã+DT1 SC̃1 B̃T1 P B̃1 −DT1 SD1 − γ2S

]

which is the L(P ) given in Eq. (2.18).
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B
First Principle Modeling of the
Inverted Pendulum and Initial

Controller Design

In this section, a discrete time LTI state-space model will be derived for the 2
DoF inverted pendulum as is used to design the initial controller. We will first
write down the system dynamic equations based on the physical principles of the
pendulum. With the dynamical equations, a continuous LTI state-space model is
derived by linearizing the equations at the home position. Then the continuous LTI
state-space model will be discretized. Finally the state observer and the initial LQ
controller will be designed based on such discretized state-space model.

B.1 Mathematical Equations of the System Dy-
namics

In Fig. 3.3, within a close neighbour of the home position, a 2 DoF inverted pen-
dulum system is decoupled in x and y plane. The dynamics can be considered as a
combination of 2 independent 1 DoF inverted pendulum subsystems. Thus for sim-
plicity, we approximate the entire system by two same set of 1 DoF system dynamic
equations.
The parameters of the lab device shown in Table B.1 are available in [15]:

Table B.1: Parameters of the Inverted Pendulum (2)

Mp Pendulum mass 0.1270kg
Lr Length of rotary arm 0.1270m
Lp Length of the pendulum 0.3111m
Jr Equivalent inertia with the 4-bar linkage 0.0083kg ∗m2

Jp Pendulum inertia around CoG 0.0012kg ∗m2

Dr Arm viscous damping coefficient 0.0690N ∗m ∗ s/rad
Co Voltage convert coefficient 0.1285N ∗m ∗ s/rad
g Gravitational constant 0.981 kg*s2

If we neglect the contribution of the friction, the following nonlinear equations of
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motion can be built for the decoupled 1 DoF inverted pendulum system:

θ̇(t) = dθ
dt , f1(t) (B.1)

α̇(t) = dα
dt , f2(t) (B.2)

θ̈(t) = dθ̇(t)
dt , f3(t) (B.3)

θ̈(t) = dα̇(t)
dt , f4(t) (B.4)

where

f3(t) =
−1

2((4MpL
2
pα(t)θ̇(t)α̇(t)− 8CoVm(t) + 8Drθ̇(t))Jp +M2

pL
4
pα(t)θ̇(t)α̇(t))

((4Jr + 4MpL2
r)Jp +MpL2

pJr)

−
−1

2((M2
pL

3
pLrθ̇

2(t) + 20M2
pL

2
pLrg)α(t)− 2MpL

2
pDrθ̇(t) + 2MpL

2
pCoVm(t))

((4Jr + 4MpL2
r)Jp +MpL2

pJr)
(B.5)

f4(t) =
((M2

pL
2
pL

2
r +MpL

2
pJr)θ̇2(t) + 20JrMpLpg + 20M2

pL
2
rLpg)α(t)

((4Jr + 4MpL2
r)Jp +MpL2

pJr)

+
2MpLrLpCoVm(t)− 2MpLrLpDrθ̇(t)−M2

pL
3
pLrα(t)θ̇(t)α̇(t)

((4Jr + 4MpL2
r)Jp +MpL2

pJr)

(B.6)

Vm(t) is the control input to the servo motor (in voltage). θx(t), θy(t), αx(t) and
αy(t) can be found in Table 3.1.

B.2 LTI State-Space Model of the Inverted Pen-
dulum System

B.2.1 LTI State-Space Model
In modern control theory [16], LTI state-space model is a standard model form
to simulate the system dynamics and to solve controller design problems. An LTI
state-space model takes the following form:

ẋ(t) = Ax(t) +Bu(t) (B.7)

y(t) = Cx(t) +Du(t) (B.8)
t ≥ 0, where x(t) ∈ Rnx denotes the state vector containing all the nx states
necessary to represent the system dynamics, u(t) ∈ Rnu is the input vector and
y(t) ∈ Rny is the output vector. Each entry in matrices A ∈ Rnx×nx , B ∈ Rnx×nu ,
C ∈ Rny×nx , D ∈ Rny×nu are restricted to be a static scalar for LTI systems.
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B.2.2 Linearization of the Non-linear Dynamic Equations
Eq. (B.1), (B.2), (B.3) and (B.4) reveal the fact that each of the decoupled 1 DoF
inverted pendulums is also a non-linear system. If we would like to take advantage
of the LTI state-space model to design the controller, we can linearize Eq. (B.1),
(B.2), (B.3) and (B.4) at the home position to derive a linear model taking the form
as Eq. (B.7) and (B.8).
By observing Eq. (B.1), (B.2), (B.3) and (B.4), the state vector:

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
=
[
δθ(t) δα(t) δ ˙θ(t) δ ˙α(t)

]T
(B.9)

and input:

u(t) = δVm(t)
can be chosen to build the state-space model of the 1 DoF inverted pendulum subsys-
tem. δ here is used to denote the small neighbour around the home position. With
the same δ, denote the LTI state-space model representation within the neighbour:

ẋ(t) = Aδx(t) +Bδu(t) (B.10)

y(t) = Cδx(t) +Dδu(t) (B.11)
where y(t) is the measurement output.
The linearized matrix Aδ and Bδ can be obtained by calculating the Jacobian at the
home position :

Aδ =


∂f1
∂x1

· · · ∂f1
∂x4... . . . ...

∂f4
∂x1

· · · ∂f4
∂x4


∣∣∣∣∣∣
(θ=α=θ̇=α̇=0)

(B.12)

Bδ =


∂f1
∂u1...
∂f4
∂u1


∣∣∣∣∣∣
(θ=α=θ̇=α̇=0)

(B.13)

where f1(t), f2(t), f3(t), f4(t), x1(t), x2(t), x3(t), x4(t) and u(t) are defined in Eq.
(B.1), (B.2), (B.3), (B.4), (B.9) and (B.10)
According to the lab device manual [15], the 2 DoF inverted pendulum device only
has measurement on two angles θ and α, thus Cδ and Dδ are defined as:

Cδ =
[
1 0 0 0
0 1 0 0

]
, Dδ =

[
0
0

]
(B.14)

Plug in the parameters from Table B.1 into Eq. (B.12) and Eq. (B.13), the contin-
uous LTI state-space model for the 1 DoF inverted pendulum is derived:

Aδ =


0 0 1 0
0 0 0 1
0 12.8209 −7.7744 0
0 52.8828 −4.5648 0

 (B.15)
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Bδ =


0
0

14.4784
8.5012

 (B.16)

B.2.3 Discrete LTI State-Space Model
There are two reasons that the continuous state-space model should be discretized
before we move on to the controller design. First, it is common to use digital
controllers today which run in discrete time. Second and more importantly, the pro-
posed subspace controller in this paper is based on the assumption of the existence
of a discrete LTI state-space model.
A discrete LTI state-space model takes the following form:

x(k + 1) = Adx(k) +Bdu(k) (B.17)

y(k) = Cdx(k) +Ddu(k) (B.18)
where k ∈ N, k ≥ 0, Ad, Bd, Cd and Dd are with the same dimension as Aδ, Bδ, Cδ
and Dδ respectively.
With the help of a continuous LTI state-space system model in Eq. (B.10), a discrete
LTI state-space model in Eq. (B.17) can be obtained by discretizing Eq. (B.10) with
a certain sampling time Ts and a certain integral approximation method.
To select an appropriate sampling frequency, observing the frequency response of
the continuous LTI state-space model is helpful. Fig. B.1 illustrates the amplitude
of the sigma plot for system showed in Eq. (B.10) and (B.11).

Figure B.1: The Amplitude of the sigma plot for the 1 DoF inverted pendulum
model

From Fig. B.1, we can observe that for frequency ωc = 20rad/s, the corresponding
amplitude in dB is zero. This frequency ωc is called the "crossover frequency".
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Although Nyquist–Shannon sampling theorem [17] suggests the minimal sampling
frequency to be 2ωc, it is practical in engineering problems to select the minimal
sampling frequency to be ω∗s = 10ωc to guarantee a good dynamic approximations
of the discretized system and to provide convenience for further controller design.
Hence, we can compute the minimal sampling frequency f ∗s (in Hz) from the follow-
ing equation:

f ∗s = ω∗s
2π = 10ωc

2π ≈ 31.84 Hz (B.19)

which gives the maximal sampling time to be:

T ∗s = 1
fs
≈ 0.03 s

In the following project, the actual sampling time used is:

Ts = 0.02 s (B.20)

Choosing the zero-order-hold (ZOH) approximation method, the following discrete
state-space model for the 1 DoF inverted pendulum can be yield:

Ad =


1 0.0024 0.0185 0
0 1.0105 −0.0009 0.0201
0 0.2383 0.8559 0.0024
0 1.0502 −0.0849 1.0105

 (B.21)

Bd =


0.0028
0.0016
0.2683
0.1580

 (B.22)

Cd =
[
1 0 0 0
0 1 0 0

]
, Dd =

[
0
0

]
(B.23)

with states:

x(k) =
[
x1(k) x2(k) x3(k) x4(k)

]T
=
[
θ(k) α(k) ˙θ(k) ˙α(k)

]T
(B.24)

and input:

u(k) = δVm(k)

B.3 State Estimate — Kalman Filter Design
In the manual[15], it is mentioned that only angles θx, θy, αx and αy are measured
by embedded encoders. This fact indicates that in each 1 DoF inverted pendulum
state-space model, only two of all four states needed for the state-space model in Eq.
(B.24) can be measured. Thus a state estimator is necessary to reconstruct state
θ̇(k) and α̇(k). Kalman Filter is a good candidate estimator as is able to provide
an unbiased estimate for linear systems. Detailed information about Kalman filter
is given in [18]. Here only a brief introduction of the discrete Kalman Filter that is
used in this project is presented.
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B.3.1 Observability of the Discrete State-Space Model
Before any observer of the system is setup, the observability needs to be checked
first. For a discrete LTI state-space model, the observability matrix Ob is defined
as:

Ob =


Cd
CdAd

...
CdA

nx−1
d

 (B.25)

where nx is the dimension of the state vector of the model. If Rank(Ob) = nx, the
discrete state-space system is said to be observable.
For the specific 1 DoF inverted pendulum model in this project, plug in the result
from Eq. (B.21) and (B.23), the rank of the observability matrix is 4, which indicates
the linearized inverted pendulum system is observable.

B.3.1.1 Discrete Time Delayed Kalman Filter

A discrete time "delayed" Kalman Filter is implemented in this project. Indeed,
discrete time delayed Kalman Filters are widely used for discrete time controller
design problems.
To model the dynamics of the inverted pendulum system, consider the following LTI
discrete state-space representation with additional noise components:

x(k + 1) = Adx(k) +Bdu(k) +Nv(k) (B.26)

with measurement:
y(k) = Cdx(k) +Ddu(k) + w(k) (B.27)

where
v(k) =

[
v1(k) · · · v4(k)

]T
is a white noise signal vector for the process noise with its covariance denoted as
Rv. Matrix

N =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (B.28)

is the noise-to-state channel and

w(k) =
[
w1(k) w2(k)

]
(B.29)

is also a white noise signal vector for the measurement noise with its covariance
denoted as Rw. A delayed discrete time Kalman Filter takes the following form:

x̂(k + 1) = Adx̂(k) +Bdu(k) + L̄(y(k)− Cx̂(k)) (B.30)

where x̂(k) denotes the estimate of state in Eq. (B.24). Kalman gain L̄ can be give
by the following equation:

L̄ = AP̄CT (Rw + CP̄CT )−1 (B.31)
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where P̄ is a positive definite matrix calculated by:

P̄ = AP̄AT +NRvN − AP̄CT (Rw + CP̄CT )−1CP̄AT (B.32)

In practice, covariance matrix Rv and Rw act as tuning parameters to set the "trust
level" between the model prediction and the measurement correction. By setting
Rv larger than Rw, the calculated L̄ will lead to the state estimate closer to the
prediction made from the state-space model and vice versa.

B.4 LQ Controller Design
In this section, an LQ controller is designed for the discrete time state-space model
to act as the initial controller for the closed-loop indentification of the Markov
Parameters of the inverted pendulum system.

B.4.1 Controllability of the Discrete State-Space Model
Similar to the observability, before a controller is designed, we need to check if the
system is controllable. The controllability matrix for the discrete time state-space
model is defined as:

C =
[
Bd AdBd · · · AdB

nx−1
d

]
(B.33)

where nx is the dimension of the state vector. A discrete time state-space model is
said to be controllable if the rank of the controllability matrix is equal to nx.
Plug in the result from Eq. (B.21) and (B.22), the rank of the controllability matrix
is 4, which indicates the linearized inverted pendulum system is controllable.

B.4.2 Design of the Linear Quadratic (LQ) Controller
In [19], detailed information of the LQ controller design can be found. In this
section, only a brief introduction of a discrete time LQ controller design which is
implemented on the inverted pendulum system is introduced.
In order to ensure the excitation for the identification experiment to be carried out
around the exact home position, an additional integrator is used in designing the
initial LQ controller.
This is done through augmenting the state shown in Eq. (B.9) to be:

xaug(t) =
[
δθ(t) δα(t) δ ˙θ(t) δ ˙α(t)

∫
δθ(t)

]T
(B.34)

and thus the corresponding continuous augmented state-space model matrices will
become:

Aaug =


0 0 1 0 0
0 0 0 1 0
0 12.8209 −7.7744 0 0
0 52.8828 −4.5648 0 0
1 0 0 0 0

 (B.35)
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Baug =


0
0

14.4784
8.5012

0

 (B.36)

Caug =
[
1 0 0 0 0
0 1 0 0 0

]
, Daug =

[
0
0

]
(B.37)

This continuous state-space model with integration of the state θ will then be dis-
cretized with the same process as is shown in section B.2.3.
Having the augmented discrete state-space model, an LQ controller considers the
following infinite horizon performance index function:

J = 1
2

∞∑
j=0

(xTaug(j)Qxxaug(j) + uT (j)Quu(j)) (B.38)

while in J , u(j) is the decision variable (input to be designed). Qx and Qu are
positive definite matrices acting as the penalty weights on x(j) and u(j) respectively.
Qx and Qu are tuning parameters for the LQ controller design. In the experiment,
the following values are used:

Qx =


900 0 0 0 0
0 900 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Qu = 3.5

If Qx and Qu are set, a positive semi-definite matrix P can be calculated based on
the following Discrete-time Algebraic Riccati Equation (DARE):

ATPA− P − ATPB(Qu +BTPB)−1BPA+Qx = 0 (B.39)

To clarify, A and B in Eq. (B.39) denotes the corresponding discrete time state-
space model matrices derived by discretizing the augmented continuous state-space
model in section B.4.2. This re-definition also applies to Eq. (B.40) and (B.41).
And the optimal LQ gain K̄ can be obtained by:

K̄ = (BTPB +Qu)−1BTPA (B.40)

In this project, the reference signal for the control problem will be a zero vector as
the home position is set as the equilibrium point. Thus the closed-loop discrete time
state-space model for the decoupled 1 DoF inverted pendulum system under the LQ
gain can be derived by setting u(k) = −K̄x(k) in Eq. (B.17):

xaug(k + 1) = (A−BK̄)xaug(k) (B.41)

This closed-loop state-space model is used as the initial controller in this project.
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C
A brief introduction on Linear

Matrix Inequality

Definition 1 Linear Matrix Inequality is a matrix inequality takes the form:

F (x) , F0 +
m∑
i=1

xiFi � 0 (C.1)

where x = [x1, · · · , xm]T ∈ Rm is vector variables, Fi = F T
i ∈ Rn×n for i = 1, · · · ,m

are given, symmetric matrices.

The set {x|F (x) � 0} is convex and does not necessarily have smooth boundaries.
Strict inequality ’�’ (positive definite) is used mostly for convenience while inequal-
ities of form F (x) � 0 can also be handled.

Multiple LMIs can be expressed as a single LMI. For example, LMIs as F1(x) �
0, · · · , Fn(x) � 0 is equivalent to diag(F1(x), · · · , Fn(x)) � 0 where diag is the
operator to formulate a diagonal matrix.

For nonlinear (convex) matrix inequalities, it is also possible to create an equivalent
LMI form using Shur Complements as stated in Lemma 1, section 2.3.4. The idea
is as follows: An LMI of form:

F (x) =
[
Q(x) S(x)
ST (x) R(x)

]
� 0 (C.2)

where Q(x) = QT (x), R(x) = RT (x) and S(x) is an affine function of x, is equivalent
to:

R(x) � 0, Q(x)− S(x)R(x)−1S(x)T � 0 (C.3)

It is also possible to treat problems with matrices as the variables in the problem.
Under this circumstance, it is not necessary to write explicitly in the form "F (x) �
0". Instead, one can simply make clear which matrices are the variables. One of the
related example can be the following Lyapunov quadratic inequality:

ATP + PA+ PBR−1BTP +Q ≺ 0 (C.4)
where A,B,Q = QT ,R = RT � 0 are given matrices of appropriate sizes; P = P T is
the variable. Eq. (C.4) can be expressed as the LMI term:[

−ATP − PA−Q PB
BTP R

]
� 0 (C.5)
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A bonus of Eq. (C.5) is that it reveals the quadratic inequality (C.4) is convex in P.

There are several convex and quasi-convex problems that can be efficiently solved
by using LMI. One of such problems is the generalized eigenvalue problem (GEVP).
The following example is an equivalent alternative form for a GEVP is:

minimize λ

subject to A(x, λ) > 0
(C.6)

where A(x, λ) is affine in x for fixed λ and affine in λ for fixed x. This alternative
form of GEVP is indeed the problem structure used in the proposed data-driven
controller design in Chapter 2.
The advantage of using LMI to solve such GEVP problem is the tractability, in the
sense that:

• The necessary and sufficient optimality condition can be immediately written
down.

• There is a well-developed duality theory.
• LMI problems can be solved in polynomial time.

To solve LMI problems, there are efficient and powerful algorithms. Such algorithms
can prove that the global optimum has been obtained within some pre-specified
accuracy, or report the problem is infeasible. Algorithms such as ellipsoid algorithm
and interior point methods are commonly used in solving LMI problems in practice
[25].
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