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Hybrid Synthesis Method for Narrow Wall Waveguide Arrays
ERIK SILFVERSWÄRD
Department of Electrical Engineering
Chalmers University of Technology

Abstract

A novel design method for waveguide slot array antennas is presented. Through the
use of domain decomposition and mode matching, a methodology for transferring
the simulation problem from full-wave electromagnetic simulations to circuit domain
is presented whilst minimizing the number of complete antenna simulations needed.

The method is based on the assumption that the exterior of the antenna does not
change, allowing for separation of the complete problem into smaller, individually
solvable, problems. The complete solution may then be reconstructed through clever
combination of the individual solutions. The assumption that all slots have the same
field distribution is made. It is shown that this has small influence on the resulting
designs.

Two proofs-of-concept are also presented, implementing the methodology on a linear
uniform array of six elements. The elements consist of narrow wall slots on a single
rectangular waveguide of dimensions 40 mm x 20 mm, excited by irises on either side
of the slots with λwg/2 element spacing. It is shown that the theory in this thesis
can both predict the waves within, and excitations of, a slotted waveguide as well
as optimize a design for a Taylor excitation mask.

Keywords: Waveguide Slot Array Antenna, Domain Decomposition, Mode Match-
ing, Hybrid Antenna Synthesis.
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Nomenclature

EM Electromagnetic.

HFSS High Frequency Electromagnetic Field Simulation (originally High Frequency
Structural Simulator), a full wave electromagnetic solver by ANSYS. Uses an
implementation of the Finite Element Method and adaptive meshing to effi-
ciently finding full field solutions.

MATLAB Matrix Laboratory, a numerical computation software and program-
ming language developed and maintained by Mathworks.

PEC Perfect Electric Conductor, characterized by having an infinite conductivity
and thus no electric field within.

RF Radio Frequency, typically when the wavelength of the signals are on the
same scale as the dimensions of the structures considered.

S-parameters Wave scattering parameters, a method of representing an N-port’s
behaviour at a single frequency point. Relate the wave amplitudes leaving
each port to those incident on each port when all ports are perfectly matched.

T-parameters Transfer parameters, closely related to the S-parameters, however
relate a 2-port’s wave amplitudes at one port of to those at the other. Used
to efficiently calculate the waves along an RF network of cascaded 2-ports.

TE Transverse Electric, a class of electromagnetic wave modes where the electric
field only lies in the plane transverse to the direction of propagation.

Waveguide Structure for guiding electromagnetic waves, typically constructed from
low loss metals. Experiences low loss and has a high power capacity. Very
common method in RF technology to transferring high power signals with
minimal loss and distortion.
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1
Introduction

Array antennas are widely used today in a wide variety of applications, including
but not limited to, radar, telecommunications, and satellite remote imaging. Their
popularity is based mostly in their high level of customizability, simple steering equa-
tions, and lack of moving parts, making them powerful and versatile devices. Array
antennas use the superposition of radiating fields from several elements (typically
identical) to design more advanced far field patterns. By controlling the amplitude
and phase of each element’s radiation, the far field pattern may be controlled with-
out the need to redesign the actual radiating element. However, having multiple
elements leads to complications when designing antennas. Factors such as grating
lobes and coupling between elements must be taken into account, complicating the
design process.

Waveguide slot arrays are especially attractive for use in radar and imaging systems
due their low loss, flat design, and relatively simple and cheap manufacturing pro-
cess. They do however experience fairly high levels of coupling between elements
and additional coupling internally along shared waveguides.

Although the selection of amplitudes and phases of an array’s elements are easily
found [1–4], the design of the elements’ feeding is not. The coupling effects of the
antenna hinders each element to be considered and designed independently. Since
each element’s radiating field excites other elements as well as change their apparent
active admittance, a perturbation of excitation in one element leads to a change in
all other element excitations. These changes in turn further affect other elements,
creating a domino effect. This makes for a complicated linked system where all
elements must be evaluated at the same time. Since array antennas are typically
both electrically large and have finely detailed parts, simulating such a design using
full wave electromagnetic solvers is often expensive both in regard to time and
computational resources [5]. Robust and quick design tools are always desired within
the industry in order to efficiently and accurately evaluate multiple designs iterations
in an optimization process.

This master’s thesis derives and describes a hybrid method which, through the use
of domain decomposition, allows for moving the problem of finding the waves and
excitations in a waveguide array from its full wave electromagnetic expression to
an equivalent RF network circuit problem. This is done under the assumptions
that each slot element’s position is fixed and that the fields within them maintain
the same distribution and only vary in terms of amplitude and phase. Moving the
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1. Introduction

simulation from a full wave solver to an RF circuit problem allows for six orders of
magnitude faster evaluation. This is especially useful in an optimization process as
a large number of iterations are typically required to be evaluated.

The method consists of first splitting the outer and inner domains of the problem
followed by further splitting the inner domain into similar unit cells. If the relations
of the waves in each adjacent domain is known, each domain may be solved inde-
pendently and the solutions combined to yield the full solution. As will be shown
in this thesis, these relations can be constructed similar to the Transfer Parameters
used in RF circuit theory. A suggested implementation of this is to initially solve
the exterior problem and construct a library of solved interior unit cells by full wave
simulations. Then, an antenna consisting of any combination of such unit cells may
be quickly simulated in RF circuit domain by reconstruction of the existing solu-
tions. The building of such a library is costly, but the solutions therein may be
re-used for any antenna evaluation, reducing the repeatable cost considerably.

Through use of the methodology presented in this master’s thesis, each costly full
wave solution in an optimization problem may be replaced by a quicker, equivalent,
RF circuit evaluation. The run-time of such an optimization may then be reduced
to a fraction of its original time as each iteration may be evaluated six orders of
magnitude faster.

The thesis first presents some background theory in regard to electromagnetic waves
in antennas and the necessary mathematical tools. Second, the methodology’s sup-
porting theory is derived for a single mode waveguide and the equations for relating
the waves within, and excitations of the antenna are presented. Third, the prac-
tical work done in this thesis is presented; selection of slot design, verification of
assumptions, and implementation of theory in ANSYS HFSS. Finally, as a proof
of concept, the methodology is implemented in a 1x6 slotted waveguide array us-
ing ANSYS HFSS and MATLAB to show both its validity and utility in antenna
optimization.

1.1 Existing Methods

There exists many examples of methods for solving the complex problem of array
element design such that a specific excitation is achieved. Examples of methods for
reducing computational requirements or complexity include omitting mutual cou-
pling of elements [6], only considering the mutual coupling to the nearest neighbouring
elements [7], or assuming uniform infinite arrays [8].

This master’s thesis focuses on the use of the domain decomposition method to
separate the complex problem of designing slotted waveguide array elements into
smaller, individually solvable, problems. The individual solutions are then such
that they may be recombined to accurately form the full solution to the original
problem without additional simulations and minimal loss of information.

Enjiu et al. [9] presented a method for narrow wall slotted waveguide array element

2



1. Introduction

optimization by initial collection of excitation and admittance values for multiple
element designs. Simulations were performed assuming the full array used identical
elements. The recorded values were then used to select each element design such
that an excitation mask and total admittance were achieved.

The domain decomposition method is a common tool for solving many large prob-
lems in electromagnetic in order to reduce computational resources. Li et al. [10]
present the method’s use for iteratively simulating the electrically large body of
a plane in multiple, smaller, domains such that the full solution is yielded from
the combination of each sub-domain’s solution. Ozgun and Kuzuoglu [11] show how,
through clever use of perfectly mathced layers (PML), the domain decomposition
method may be implemented non-iteratively for certain geometries. This method is
used to reduce the computational requirements for the calculations of large radar
cross sections (RCS).

Similarly, the mode matching method may be used to separate domains when as-
serting that the amplitudes of all (or all significant) modes are equal on either side
of an interface. Kim and Eom [12] presented a method of modelling a single broad
side slot in a waveguide through use of mode matching to separate and individually
solve the slotted waveguide constituents. Expanding the single slot solution to a full
array, ignoring mutual coupling, a full array was evaluated quickly whilst remaining
computationally inexpensive.

The method presented herein uses a semi-analytic non-iterative domain decomposi-
tion method, using mode matching, allowing for separation of and subsequent easily
solved sub-domains. After an initial collection of such solutions, they may be re-
combined for quick and inexpensive evaluations of waveguide array antennas. No
assumptions are made regarding antenna geometry other than that the interfaces
between array section may be expanded in a single mode. When exploring existing
methods, no such hybrid-method which allows for fast and accurate computation
whilst still considering the full coupling effects was found.
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2
Background Theory

The theory presented in this chapter includes a quick presentation of Maxwell’s
equations, their use in waveguide theory, and the additional mathematical tools
which will be used throughout this thesis. Further, the radiation pattern of a general
slot in an infinite ground plane as well as the scattering due to a general slot in a
cylindrical waveguide1 are presented. These simplified cases give insight to the inner
workings in a slotted waveguide antenna and will find analogies in the final theory.

2.1 Maxwell’s Equations

Most electromagnetic phenomena can be described through the use of Maxwell’s
equations, named after James Clerk Maxwell (1831-1879). The equations built upon
the work of Gauss, Ampere and Faraday, discoverers of Gauss’ Law, Ampere’s Law
and Faraday’s Law, respectively. Maxwell collated their work into one grand theory
and connected them by the addition of the electric displacement current, D [13].

Maxwell’s equations can be written in both their differential and integral forms as [1]

Differential Form Integral Form

∇×E = −Mi −
∂B

∂t

˛
δS

E · dl = −
¨
S

Mi · ds− ∂

∂t

¨
S

B · ds (2.1a)

∇×H = Ji −
∂D

∂t

˛
δS

H · dl =
¨
S

Ji · ds+ ∂

∂t

¨
S

D · ds (2.1b)

∇ ·D = qe

‹
S

D · ds =
˚

V

qe (2.1c)

∇ ·B = qm

‹
S

B · ds =
˚

V

qm (2.1d)

where E (V/m) is the electric field intensity, H (A/m) is the magnetic field intensity,
B (Wb/m2) is the magnetic flux density, D (C/m2) is the electric flux density,
Mi (V/m2) is the impressed magnetic current density, Ji (A/m2) is the impressed
electric current density, qe (C/m3) is the electric charge density, and qm (Wb/m3)
is the magnetic charge density.

1A cylindrical waveguide is a waveguide with a general, uniform cross section.
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2. Background Theory

The magnetic current M and magnetic charge qm are fictitious sources with pow-
erful mathematical uses (which will be used in this thesis) but no proven base in
reality. They are typically added to Maxwell’s equation for the sake of completeness.
Maxwell’s equations originally did not include these sources.

The field intensities are related to the corresponding flux densities, which for linear,
isotropic media can be written as [13]

D = εE (2.2a)
H = µB (2.2b)

where ε (F/m) is the permittivity and µ (H/m) is the permeability of the me-
dia. ε and µ may in turn be written in terms of the free space parameters ε0 =
8.854× 10−12 F/m and µ0 = 4π × 10−7 H/m as [13]

ε = εrε0

µ = µrµ0

where in free-space clearly εr = µr = 1. ε and µ are related to the speed of light in
the medium as c = 1√

µε
.

Through combination, equations (2.1a) and (2.1b) can be used to form the wave
equation (Helmholtz Equation). For lossless and source free media it may be stated
as

∇2u = k2∂
2u

∂t2
(2.4)

where k = ω
√
µε is the wave number, ω is the angular frequency of the wave and u

is either E or H [13].

2.1.1 Boundary Conditions

The boundary conditions of Maxwell’s Equations may be derived by considering
either a closed loop or a pillbox on the boundary of two media. By applying equa-
tion (2.1a) or equation (2.1b) on the closed loop and taking the limit when the loop
only lies along the boundary, the boundary conditions for the tangential components
of the E and H-fields can be derived, respectively. Analogously the boundary con-
ditions for the normal components of the E and H-fields can be derived by instead
applying equation (2.1c) or equation (2.1d) on the pillbox and taking the limit when
it lies solely on the interface of the two media. The resulting boundary conditions
are [13]

n̂× (E2 −E1) = −Mi (2.5a)
n̂× (H2 −H1) = Ji (2.5b)
n̂ · (D2 −D1) = qe (2.5c)
n̂ · (B2 −B1) = qm (2.5d)

6



2. Background Theory

2.2 Waves in Rectangular Waveguides

Consider a rectangular PEC waveguide extending along the ẑ-axis. Further assume
it is either infinitely long or perfectly matched at its ends such that only traveling
waves need to be considered. The solution space to the wave equation in such a
structure is expanded by its eigenmodes [14] which come in the two varieties Trans-
verse Electric (TE) and Transverse Magnetic (TM) [2]. They are named as such due
to the electric and magnetic mode fields only containing components transverse to
the direction of propagation, respectively. The TE and TM eigenmodes traveling in
the positive ẑ direction may be written in phasor form as [13]

e(x,y) = [x̂ex(x,y) + ŷey(x,y) + ẑez(x,y)] (2.6a)
h(x,y) = [x̂hx(x,y) + ŷhy(x,y) + ẑhz(x,y)] (2.6b)

where each component can be written as [2]

ex = −ωµnπ
k2
cb

cos mπx
a

sin nπy
b

ey = ωµmπ

k2
ca

sin mπx
a

cos nπy
b

ez = 0

hx = −βmπ
k2
ca

sin mπx
a

cos nπy
b

hy = −βnπ
k2
cb

cos mπx
a

sin nπy
b

hz = j cos mπx
a

cos nπy
b



TEm,n (2.7a)

for TE waves, and similarly

ex = βmπ

k2
ca

cos mπx
a

sin nπy
b

ey = βnπ

k2
cb

sin mπx
a

cos nπy
b

ez = j sin mπx
a

sin nπy
b

hx = −ωεnπ
k2
cb

sin mπx
a

cos nπy
b

hy = ωεmπ

k2
ca

cos mπx
a

sin nπy
b

hz = 0



TMm,n (2.7b)

for TM waves. Here, m and n are the mode numbers, a and b are the wave-
guide dimensions along x̂ and ŷ, β =

√
k2 − k2

c is the propagation constant, and

kc =
√(

mπ
a

)2
+
(
nπ
b

)2
is the cut-off wave number where ±β > 0 for waves traveling

along the ±ẑ direction, respectively [13]. If β is real, the wave propagates along the
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2. Background Theory

waveguide and if it is imaginary, it does not and is called an evanescent wave. Al-
though evanescent waves do not propagate, they still retain reactive electromagnetic
energy in a localized neighborhood and therefore cannot be ignored when consid-
ering the fields in waveguides [13]. Note that there exists infinitely many eigenmode
expansions as any expansion can be recombined or re-scaled to yield another full
expansion of the solution space.

Expanding the fields of a general cylindrical waveguide in a set of eigenmodes trav-
eling along the waveguide, the total electric and magnetic fields may be written as

E(x,y,z) =
∞∑
i=0

ei(x,y)(E+
i e
−jβz + E−i e

jβz) (2.8a)

H(x,y,z) =
∞∑
i=0

hi(x,y)(H+
i e
−jβz +H−i e

jβz) (2.8b)

where {ei,hi} are the eigenmodes with index i taken over all m,n for both TE and
TM modes. E±i , H±i are then the respective amplitudes of the forward and backward
traveling waves for each eigenmode.

The transverse components of the electric and magnetic waves are related by the
wave impedance Zwave of the waveguide mode as [13]

H⊥ = 1
Zwave

n̂×E⊥ (2.9)

where n̂ is the direction of travel for the wave. Which for waves E± andH± traveling
in the positive and negative directions

Zwave = E+

H+ = −E
−

H−
(2.10)

respectively. Note that the change in sign means that reflection coefficients change
sign for electric and magnetic waves, or Γ = E+

E−
= −H+

H−
. In a rectangular waveguide

the wave impedance is known analytically as

Zwave =


k

β
η if wave is TEm,n

β

k
η if wave is TMm,n

(2.11)

where η =
√

µ
ε
is the intrinsic impedance of the waveguide medium. [13]

Further, the waves in a waveguide

Ei(x,y,z) = E±i e(x,y)e∓jβz =E±i [x̂ex(x,y) + ŷey(x,y) + ẑez(x,y)] e∓jβz (2.12a)
Hi(x,y,z) = H±i h(x,y)e∓jβz=H±i [x̂hx(x,y) + ŷhy(x,y) + ẑhz(x,y)] e∓jβz (2.12b)

are orthogonal with respect to mode number and type av wave due to the general
orthogonality of integrated sinusoids. This may be written as [2]

¨
S

(Ei ×Hj) · ds =

Si i = j

0 Otherwise
(2.13)

8



2. Background Theory

where Si is the Poynting vector integrated over the waveguide cross-section S for
the mode and i is again taken over all modes of both TE and TM waves. Si can be
interpreted as the rate of energy flow through the cross section of the waveguide.

Furthermore, for a source free region of a general cylindrical waveguide bounded by
the closed surface S ¨

S

(E1 ×H2 −E2 ×H1) · ds = 0 (2.14)

for two electromagnetic fields (E1,H1) and (E2,H2) and is a corollary to the reci-
procity theorem [3].

2.3 Mode Matching

Mode matching is a method which allows for adjacent sections of a waveguide to be
considered separately with the addition a boundary condition on the shared cross-
section. The method builds upon the fact that any field within a waveguide may
be described as a linear expansion of its eigenmodes and may be written according
to equation (2.8). Moreover, the space of eigenmodes is orthogonal according to
equation (2.13), that is [14]

¨
S

ei(x,y) · ej(x,y) dx dy =


¨
S

‖ei‖2 dr if i = j

0 otherwise
(2.15)

where {ei} is the set of eigenmodes, i, j are the mode numbers taken over all modes
of both TE and TM waves, and S is the cross-section of the waveguide.

Consider the two sides of a cross-section, the electric field must remain the same on
both sides if the media is homogeneous in the waveguide. Using equation (2.8), this
can be written as

∞∑
i=0

ei(x,y)(E1+
i ejβz + E1−

i ejβz) =
∞∑
i=0

ei(x,y)(E2+
i ejβz + E2−

i ejβz) (2.16)

where 1 and 2 denotes which side of the cross-section is considered. If the waveguide
is uniform and both eigenmode sets are the same, then due to the orthogonality of
the eigenmodes each mode can be considered independently [14] and equation (2.16)
becomes

E1+
i = E2+

i (2.17a)
E1−
i = E2−

i (2.17b)

or equivalently for the magnetic modes

H1+
i = H2+

i (2.18a)
H1−
i = H2−

i (2.18b)

9



2. Background Theory

for all i.

Thus any uniform section of a waveguide may be split and each side solved inde-
pendently while considering the interface a perfectly matched port. As long as the
boundary conditions in equation (2.17) or equation (2.18) hold, the wave solution
on either side is equivalent to the original wave solution. Note that the use of S-
parameters and T-parameters uses mode matching as they consider only a single
mode where all ports are perfectly matched.

2.4 Surface Equivalence Theorem

Originally introduced by Schelkunoff [15], based on Huygens’s principle, the Surface
Equivalence theorem allows for the replacement of all electromagnetic sources be-
yond a volume of interest with surface current sources on the volume boundary
such that the field inside the volume remains unchanged. The surface equivalence
theorem depends on the uniqueness theorem, stated as [1]
Theorem (Uniqueness Theorem). A field (E,H) in a lossy region V , created by
sources J and M, is unique within V when one of the following is known

1. The tangential component of the electric field E over the entire boundary δV

2. The tangential component of the magnetic field H over the entire boundary δV

3. The tangential component of E over part of the boundary δV and the tangential
component of H over the rest of δV .

Further, the fields in a lossless medium may be considered the limit of the fields in
a lossy medium as the losses tend to zero.

According to the uniqueness theorem, the solution to Maxwell’s equations in a given
region V is unique for a given set of sources within the region and knowledge of the
tangential components of either E or H over all parts of the region boundary δV .
Thus it is possible to separate a problem along an imaginary surface and remove all
sources from one side without perturbing the solution on the other. The requirement
is to ensure that the tangential components of either the electric or magnetic field
remains the same on all points of the surface boundary.

A typical utilization of the surface equivalence theorem is to completely fill a region
of non-interest with PEC and place an equivalent magnetic current distribution on
its boundary. The equivalent magnetic current will ensure that the tangential electric
field remains unperturbed by the addition of the PEC according to equation (2.5).
The solutions within the PEC will however clearly be invalid. The magnetic current
is found from equation (2.5) by selecting E1 as the original electric field and noting
that E2 = 0 inside the PEC, leading to

M = −n̂×E (2.19)

in order to fulfill the boundary condition. Since the tangential electric field is then
unchanged, the uniqueness theorem says that so is the field solution within the

10



2. Background Theory

region of interest. Through the use of the surface equivalence theorem, problems
can often be simplified immensely by cleverly selecting the boundary of the volume
of interest.

Figure 2.1 demonstrates how the surface equivalence theorem may be used to replace
an uninteresting region with a PEC and a magnetic current distribution. Since the
magnetic current distribution is selected such that the tangential fields at the regions’
interface are unaffected, the solution in the region of interest remains unchanged.

2.5 Green’s Function

Green’s functions are the impulse responses to inhomogeneous ordinary differential
equations. Through convolution they allow for quick construction of solutions to
their respective differential equation. This section gives a brief explanation of their
use in electromagnetics as a full description is beyond the scope of this thesis. More-
over, only the Green’s function’s use in R3 will be presented, however its use is valid
in other spaces as well.

For a linear differential operator L = L(r) on a subset of R3, the Green’s function
is defined via

LG(r,rs) = δ(r− rs) (2.20)

for r, rs ∈ R3, where δ is the three dimensional delta function δ(r) = δ(rx)x̂ +
δ(ry)ŷ + δ(rz)ẑ, r = rxx̂+ ryŷ + rzẑ, and δ is the Dirac delta function.

Then for the partial differential equation

Lu = f (2.21)

the solution umay be calculated from the spatial convolution of the Green’s function
and f

u(r) =
˚

G(r,rs)f(rs) drs (2.22)

since

Lu(r) =
˚
LG(r,rs)f(rs) drs =

˚
f(rs)δ(r− rs) drs = f(r), (2.23)

as L is a linear operator acting on a function of r, not of rs. [16] [17]

Green’s functions have a lot of uses in conjunction with the differential form of
Maxwell’s equations (2.1). It is possible to create expressions for Green’s functions
relating different sources to their respective impressed fields. One Green’s function of
certain importance for this thesis is that relating the magnetic current distributions
in a domain V to its impressed magnetic field, denoted as G[m]

V . The corresponding
calculation of the magnetic field is then given by 2.22 as

HV (r) =
˚

V

G
[m]
V (r,rs)M(rs) drs (2.24)

11
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(E1, H1)

(E2, H2)

V1 V2

(a) Actual problem

M = −n̂×E2

J = n̂×H2 = 0

(0, 0)

PEC

(E2, H2)

V1 V2

(b) Equivalent problem

Figure 2.1: Demonstration of how an uninteresting domain (V1) may be replaced
with a PEC and surface magnetic currents without disturbing the solution in the
interesting domain (V2) through use of the surface equivalence theorem.
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2. Background Theory

where HV is the magnetic field in V due to the magnetic current distribution M.
Since this integral will be used repeatably in this thesis, it will be denoted

HV = G
[m]
V |M〉 (2.25)

in order to increase readability.

This thesis will not explicitly derive any Green’s functions. However they will be
used as tools to relate sources and fields in the coming sections. Green’s functions
will help motivate the decomposition of the complex problems and the subsequent
simulations of their parts.

2.6 Reflection From a Single Slot in an Infinite
Wave-Guide

Discontinuities in a waveguide, such as slots or irises, induce scattering in incident
waves. This section will derive the scattering of a general slot in the wall of a
cylindrical waveguide. The result gives an insight into both how a slot is excited
and how it interacts with the traveling waves of a waveguide.

Consider a cylindrical waveguide along the ẑ-direction. The reflections due to a
slot in the waveguide will be shown by considering two waves, one induced by and
traveling away from the slot in both directions, and one auxiliary wave traveling in
a single direction unaffected by the slot. By considering the interaction of these two
waves the scattering will be found.

Therefore, firstly let the waveguide have a slot from z1 to z2, where z2 > z1. As-
suming the electric field in the slot is known, let (E1,H1) be the field induced into
the waveguide by the field in the slot. (E1,H1) will, according to equation (2.8),
consist of a superposition of all eigenmodes traveling in the positive and negative
ẑ-direction for z > z2 and z < z1, respectively. For z1 ≤ z ≤ z2 the eigenmode
expansion remains unknown due to the slot. Let the amplitudes for the forward and
backward traveling waves be Ai and Bi respectively, where i is again a collection of
all mode numbers taken over all m,n for both TE and TM modes.

Then let the auxiliary wave (E2,H2) be a normalized wave consisting only of the
waveguide’s eigenmodes traveling in the positive ẑ-direction. The eigenmode ex-
pansion according to equation (2.8) is valid in the whole waveguide as the auxiliary
wave is unaffected by the slot.

Finally let S be the boundary of a generalized cylindrical section V of the waveguide
which fully includes the slot. S then consists of three parts: two faces intersecting
the waveguide, positioned at z = z3 < z1 (called S−) and z = z4 > z2 (called S+),
and a cylindrical waveguide section which includes the slot (called Swg). Now apply
equation (2.14) to the boundary S = S− + S+ + Swg.

Since E2 has no tangential components at the waveguide walls, (E2 × H1) · n̂ =
H1 · (n̂ × E2) = 0 over all of Swg. Similarly E1 is also perpendicular to all PEC

13



2. Background Theory

surfaces and thus (E1 ×H2) · n̂ = 0 over all of Swg, save the portion over the slot,
Sslot. The integrand over Swg is therefore zero everywhere except over the slot where
only the first part of the integrand remains.

At subsurface S+ all waves are traveling in the same direction. According to the
orthogonality property in equation (2.13) the integral (2.14) is zero unless (E1,H1) =
(E2,H2) in which case the integrand is zero instead. The integral over S+ is therefore
zero.

Over the final cylinder face S−, equation (2.13) again requires the two waves to be
the same mode in order to interact, however due to the waves traveling in opposite
directions, the integrand in (2.14) remains non-zero for equal modes and the integral
becomes ∑i−2BiSi, where Si is the Poynting energy flux through S− for mode i.
What is then left of the integral (2.14) is
ˆ
S

(E1 ×H2 −E2 ×H1) · ds =
ˆ
S−

2(E1 ×H2) · ds+
ˆ
slot

(E1 ×H2) · ds = 0

⇔
ˆ
slot

(E1 ×H2) · ds = −2
∑
i

BiSi (2.26a)

which now relates the energy flux through S− to the electric field distribution in the
slot. By instead letting the auxiliary wave (E2,H2) travel in the opposite direction,
the energy flux relation at S+ is calculated analogously asˆ

slot

(E1 ×H2) · ds = −2
∑
i

AiSi (2.26b)

where Ai is the amplitude of forward traveling mode i of field 1.

In order to get a better understanding of the interaction between the wave in the
waveguide and the field in the slot, split the wave components into their ẑ and
û = ẑ× n̂ components. Then evaluate each mode individually and the integrals of
each mode in (2.26) become

2BiSi = −
ˆ
slot

(e1uhiz − e1zhiu)e−jβiz dS (2.27a)

2AiSi = −
ˆ
slot

(e1uhiz + e1zhiu)ejβiz dS (2.27b)

Since J = n̂×H on a PEC surface according to equation (2.5) the magnetic fields
above may be replaced by equivalent electric surface current densities J = n̂ ×H;
−Jiu and Jiz for hiz and hiu respectively. The resulting relation between the slot
field and the waveguide currents is then

2BiSi =
ˆ
slot

(e1uJiu + e1zJiz)e−jβiz dS (2.28a)

2AiSi =
ˆ
slot

(e1uJiu − e1zJiz)ejβiz dS (2.28b)

which may be interpreted such that a mode i will only interact with the slot if its
current lines are clipped. Thus the slot will only induce scattered waves in the modes

14
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which surface currents it cuts. Further, the amplitude of the scattered wave will be
proportional to the amount of cut current lines and amplitude of the slot field.

If the phase components in equations (2.28) are either canceled due to symmetry in
the slot mode or if the slot’s dimensions are small enough that phase effects can be
neglected two interesting cases can occur [2]:

1. If e1u or Jiu is zero over the slot, then Ai = −Bi. This indicates a continuity
in H⊥ and a discontinuity in E⊥ at the slot, representing a series element in
the waveguide for the i-th mode.

2. If e1z or Jiz is zero over the slot, then Ai = Bi. This indicates a continuity in
E⊥ and a discontinuity in H⊥ at the slot, representing a shunt element in the
waveguide for the i-th mode.

An especially interesting case of this is for rectangular slots which only accommodate
the TE10 mode, oriented parallel or perpendicular to the waveguide axis. The field
of such a slot fulfills the required symmetry by being an even function of z. If such
a slot is oriented perpendicular to the waveguide, then e1u = 0 and case (1) above
applies, if however the orientation is parallel, then e1z = 0 and case (2) applies.

For the general case |Ai| 6= |Bi| the slot may instead be represented by the more
general S-parameter matrix for each frequency point.

2.7 Radiation Pattern From an Arbitrary Slot in
an Infinite Ground Plane

Consider an arbitrary slot in an infinite ground plane with the electric field distri-
bution Eslot. Let the ground plane have the normal n̂ = ẑ and be placed at z = 0.
Using the surface equivalence theorem, the slot may be replaced by a PEC with a
magnetic current

Msource = −n̂×Eslot (2.29)

without affecting the radiation pattern of the slot. The infinite ground plane may
then be removed using the imaging method. The imaging method is an implemen-
tation of the surface equivalence principle which here replaces the infinite ground
plane by doubling the amplitude of Msource. Again the radiation pattern of the slot
is unaffected, however one must remember that the field solution for z ≤ 0 is invalid
due to the infinite ground plane.

After applying the Fraunhofer approximation2 the radiation pattern from the single

2Valid when considering a field in the far-field, that is when the distance to the source is
≤ 2D2/λ for D being the largest dimension of the antenna. When calculating amplitudes, the
distance from an observation point r to any point of the antenna rs can then be simplified as
‖r − rs‖ ≈ |r|. When calculating phase, the assumption k‖r − rs‖ ≈ k(‖r‖ − ‖rs‖) is instead
made. [4]
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free space magnetic current source can be described in the far-field as [4]

Erad(r) = e−jkr

r
G(r) = e−jkr

r
IM × r̂ (2.30)

IM = − jk4π

¨
S

2Msource(rs)ejk(rs·r̂) dSs (2.31)

where S is the slot aperture, rs is the reference vector for the integral, r is the point
the radiating field is evaluated at, and r̂ = r

|r| is the direction in which the radiating
field is being considered. The resulting radiation field from an arbitrary slot in an
infinite ground plane is then described as

Erad = jke−jkr

2πr r̂×
¨
S

(Eslot × n̂)ejk(rs·r̂) dSs. (2.32)

Additional slots can be considered by simply letting S and Eslot be over several
slots. The final radiating field will however only represent the radiating field due
to the given electric fields, assuming any interaction and coupling between the slots
already has taken place to yield the given field distributions.

For the simple case of a flat rectangular slot with width w � λ and length l ≈ λ/2 ,
only the dominant TE10 mode will propagate [4]. If the slot is centered at the origin,
aligned along the x̂-axis, and normal to ẑ, its field distribution is described by

Eslot = E0 cos
(
πx

l

)
ŷ (2.33)

where E0 is the amplitude of the slot field. Equation (2.32) then becomes

Erad = jke−jkr

2πr r̂×
¨
S

x̂E0 cos
(
πxs
l

)
ejk(rs·r̂) dSs =

= jkwE0e
−jkr

2πr (r̂× x̂)
ˆ l/2

−l/2
cos

(
πxs
l

)
ejkxs(x̂·r̂) dxs) =

= jkwE0e
−jkr

2πr (r̂× x̂)
2πl cos

(
kl
2 (x̂ · r̂)

)
π2 − (kl(x̂ · r̂))2 (2.34)

For the special case when the slot is exactly half a wavelength wide (l = λ/2), the
substitutions x̂ · r̂ = sin θ cosφ and r̂ × x̂ = sinφθ̂ + cos θ cosφφ̂ can be used to
instead yield

Erad = jwE0e
−jkr

πr

cos
(
π
2 sin θ cosφ

)
1− (sin θ cosφ)2 (sinφθ̂ + cos θ cosφφ̂) (2.35)

Note that the radiating field is still undefined for the space below the ground plane
(z < 0). Since the radiated power of the slot is given by [4]

Prad =
ˆ 2π

0

ˆ π/2

0
|G(θ, φ)|2 sin θ dθ dφ ∝ V 2 (2.36)
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Y1

λ/2

Y2

λ/2

Y3 . . . YN

Figure 2.2: Representation of RF circuit consisting of N shunt elements, separated
by λwg/2.

where V is the voltage gathered by the line integral
´
E· dl along the centerline of the

slot. The radiated power of the slot antenna is therefore quadratically proportional
to the voltage over the slot’s centerline.

Moreover, changing the excitation and depth of the slot slightly, or truncating the
infinite ground plane does not affect the final field much [4].

2.8 Equivalent RF Circuit of a Slotted Waveguide

Section 2.6 showed that certain waveguide slots may be represented by shunts or
series elements, whereas the general slot is represented by its S-parameters. It is
instructive to show how the voltage and current varies along a cascade of such
elements in order to model a full slotted waveguide. This section first shows how to
find equivalent S-parameters for N cascaded shunt elements, spaced λ/2 apart, and
then for a general cascaded network.

2.8.1 Equivalent Circuit of N Cascaded Shunts

Consider N shunt loads on a transmission line equally spaced λ/2 apart as shown
in figure 2.2. In order to find the equivalent load, first consider how loads transform
along a lossless transmission line: [13]

Zin(z) = Z0
ZL + jZ0 tan(kz)
Z0 + jZL tan(kz) (2.37a)

Yin(z) = Y0
YL + jY0 tan(kz)
Y0 + jYL tan(kz) (2.37b)

where Z0 is the transmission line’s intrinsic impedance, ZL is the loads impedance,
k = 2π

λ
is the wavenumber, and z is distance along the transmission line to the

load. Note that Y0 = Z−1
0 and YL = Z−1

L are the admittance counterparts to the
impedances. As this example consists of shunts, only the admittance form will be
used, however the work flow is valid for series elements and impedances as well.

Since the tangent function is periodic in π, Yin is periodic in z = λ/2. Therefore for
the λ/2 of transmission lines between each shunt element may be ignored, resulting
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T1 Tn
E−

in ←
E+

in →
← E−

2

→ E+
2

E−
n ←

E+
n →

← E−
term

→ E+
term

. . .

Γin Γterm

Figure 2.3: Representation of N -component cascaded RF network.

in a simple system of N shunt admittances with no separation. The N shunts may
be replaced with a single equivalent shunt component with admittance [13]

Yequiv =
N∑
i=1

Yi (2.38)

where Yi are the admittances of replaced shunts. The S-parameters for the single
shunt element is [13]

Sequiv = 1
2 + yequiv

[
−yequiv 2

2 −yequiv

]
(2.39)

where yequiv = Yequiv

Y0
is the normalized equivalent shunt admittance. Note however

that the voltage and current along a transmission line are periodic in λ. The off-
diagonal elements of the equivalent S-matrix are therefore negative for odd N . The
equivalent S-matrix for the circuit in figure 2.2 is therefore

Sequiv = 1
2 + yequiv

[
−yequiv 2(−1)N
2(−1)N −yequiv

]
(2.40)

2.8.2 Equivalent Circuit of a General Cascade

For the more general slot the series or shunt representation is insufficient, how-
ever two-port S-parameters can be used to describe any slot at a single frequency
point. This section considers N such slots in a cascaded network. No restriction
is made in regards to the separation of the slots, however the S-parameters refer-
ence planes are chosen such that they coincide for adjacent components. Since each
set of S-parameters are valid for a single frequency and mode, so are the following
calculations.

Assuming N two-ports in cascade, let [Ti] denote the T-parameter3 matrix for the
ith component, as seen from the generator. Figure 2.3 shows a diagram of such a
circuit. Each two-port component has the possibility to introduce a phase shift or
discontinuity in the current and voltage, depending on its scattering parameters.

The termination at the end of the network together with the incident wave are the
boundary conditions which decide the waves at each two-port interface along the

3The T-parameters of a component are easily calculated from its S-parameters, described in
more detail in appendix A.
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transmission line. The termination decides the relative amplitudes of the waves and
the incident wave decides the final magnitudes and phases.

Maintaining the [T]-matrix notation, the termination of the network takes the form

[Tterm] =
[
Γterm

1

]
(2.41)

with forward and backward traveling waves

Eterm =
[
E−term
E+
term

]
= E+

term[Tterm] (2.42)

where Γterm is the electric reflection coefficient of the circuit termination and E±term
are the amplitudes of the electric waves traveling forward and backward, as seen from
the generator, respectively. Typical terminations are short circuit (Γterm = −1) and
open circuit (Γterm = 1), however any termination may be used.

The relation between the forward (E+
i ) and backward (E−i ) traveling waves before

each component may then be calculated through the use of the T-parameters as

Ei =
(

N∏
k=i

[Tk]
)
Eterm = [Ti][Ti+1] . . . [TN ]Eterm (2.43)

allowing for calculation of the relative wave amplitudes between each component
pair.

It now remains to find the absolute magnitude and phase of the wave amplitudes,
due to the incident wave. At the start of the cascade, the waves traveling in either
direction are

Ein = E+
in

[
Γin
1

]
= E+

term

(
N∏
k=1

[Tk]
)

[Tterm] = E+
term[Ttotal] (2.44)

where [Ttotal] contains the boundary condition at the termination, transformed to

the input of the transmission line. If [Ttotal] =
[
T

[1]
total

T
[2]
total

]
, it is clear that

E+
term = E+

in

T
[2]
total

(2.45a)

Γin = T
[1]
total

T
[2]
total

(2.45b)

Thus the wave amplitudes for the electric waves traveling in each direction are known
at all points from equation (2.43) and equation (2.45a), as well as the input reflection
coefficient Γin from equation (2.45b).
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3
Method Derivation

This chapter derives the methodology which allows for relating an RF network to
a slotted waveguide antenna. The resulting equations take on a form similar to
that of scattering parameters. If all the constituents of the equations are known,
it becomes possible to quickly find both the wave amplitudes in the waveguide and
the excitations of the slots. The derivation is performed while considering a general
single mode waveguide slot antenna with constant outer geometry.

3.1 Domain Decomposition

Through the use of the surface equivalence theorem and the uniqueness theorem it
is possible to take a large electromagnetic problem and split it into smaller, more
manageable sub-problems through a so called domain decomposition.

First the full domain is split into canonical regions, replacing the boundaries of which
with PEC and magnetic current distributions in accordance with equation (2.19).
Since the domains are then separated by PEC and effectively isolated from each
other, they can be considered and solved independently.

Moreover, in order to equate the independent field solutions and that of the original
problem, the boundary conditions in equation (2.5) must be adapted for the mag-
netic current distributions in each domain. The full solution to the original problem
can then be achieved by solving each domain separately and combining the results.

As an instructive example, the following section will apply domain decomposition
to a simplified waveguide antenna. Figure 3.1 shows the cross section of a single
waveguide antenna with three slots spaced λwg/2 apart and fed from both ends.
This section will consider such a design with N slots.

First the problem is split into two canonical domains consisting of the inner and
outer regions of the antenna. Secondly the inner domain is identified as a series of
similar unit cells of λwg/2 length, bounded by the ports of the waveguide. Therefore
three types of domain can be identified in the design as

I The free space beyond the antenna exterior. This domain is bounded to regions
IIi by the slots in the antenna.
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I

IIIin II1 II2 II3 IIIout

H
+

H
−

Figure 3.1: Cross section of a single waveguide antenna with three slots. Three
classes of domains have been identified for decomposition.

IIi Each λwg/2 section of the waveguide interior, centered at each slot. These
domains are cavities with the same cross-section as the original waveguide and
length λwg/2. The domains are bounded to the previous and next sections IIi
(or the ports III) as well as the exterior I.

III+(−) The beginning (end) port of the waveguide. These domains can be seen as
semi-infinite waveguides with the same cross-section as the original waveguide,
bounded by the first (last) domain IIi. These domains also contain the only
sources in the problem; incoming TE10 waves (E,H), which can be considered
to originate from sources infinitely far away.

Using domain decomposition to separate the outer and inner domains, each slot is
covered by a PEC with a magnetic current distribution M in accordance with equa-
tion (2.19). The domains are then split apart and solved individually. Figures 3.2a
and 3.2b show the two separated problems. Note that the signs of the magnetic
currents change due to the normal of the respective planes pointing in opposite di-
rections. Since the PEC perfectly shields each canonical domain, it may be assumed
to fill all but the interesting region without affecting the individual solutions.

Furthermore, by implementing mode matching along the waveguide at the interface
of each λwg/2 section, where the waveguide is simply a uniform rectangular wave-
guide, the problem may be split up further. Figure 3.2c shows one such interior
section where either side is considered a perfectly matched port with incoming and
outgoing waves. The ports must fulfill the boundary conditions in equation (2.18)
in order to not perturb the field solution. This separation effectively isolates each
domain IIi, allowing for individual solving of the field solution within.

The resulting magnetic fields in domains I and IIi due to all sources may then be
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I −M1 −Mi −Mn· · · · · ·

(a) Domain I; the exterior of the antenna.

III+

· · ·

IIi

Mi

· · ·

III−

H
+

H
−

(b) Domains II and III; the interior of the antenna.

I

IIi

Mi

S1 S2

H
+
li

H
−
li

H
+
ri

H
−
ri

(c) Domain IIi; each isolated interior waveguide section.

Figure 3.2: The different domains in figure 3.1 after domain decomposition. Note
that the selection of magnetic current distributions are selected to ensure that the
boundary conditions between each domain is fulfilled.
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calculated using Green’s functions and superposition as

I : HI =−
N∑
i=1

G
[m]
I |Mi〉 (3.1a)

IIi : HIIi =Hli +Hri +G
[m]
IIi |Mi〉 (3.1b)

III+ : HIII+ =Hl1 (3.1c)
III− : HIII− =HrN (3.1d)

for i = 1, . . . ,N . Here G[m]
V is again the Green’s function from magnetic current

to magnetic field for domain V , and Mi is the magnetic current distribution over
the new PEC surface covering the slot in section i. Note that the Green’s function
not only depends on the shape but also the position of Mi in each domain. Hli =
H+
li +H−li and Hri = H+

ri +H−ri are the resulting waves in the waveguide due to the
waves incoming from the left and right port respectively.

3.1.1 Single Mode Analysis

Since the full solution space to the wave equation may be expanded by any of the
infinitely many eigenmode expansions for a given geometry, then equivalently so can
the corresponding magnetic current distributions, written as

M =
∞∑
k=0

V
[m]
k mk (3.2)

where {mk} are the unit eigenmode distributions, V [m]
k are their corresponding am-

plitudes and k is taken over all modes.

Depending on the choice of eigenmode set {mk}, equation (3.2) may be approx-
imated by only considering the first few terms. Further, if the shape of Mi in
equation (3.1) only experiences minor changes for different i, the same sub-set of
eigenmodes may be used to expand all the magnetic currents. Moreover, if the sub-
set of eigenmodes can be reduced to a single eigenmode, many calculations can be
simplified. The magnetic currents in equation (3.1) and figure 3.2 then become

Mi = V
[m]
i mi (3.3)

where mi all have the same distribution save a translation in the geometry.

Under these assumptions equation (2.25) may be rewritten according to

G
[m]
V |M〉 = V [m]G

[m]
V |m〉 (3.4)

where G[m]
V |m〉 is a magnetic field distribution in domain V , due to the magnetic

current at m. Such a field does not change its distribution but only its magnitude
and phase, controlled by the current amplitude V [m]. In turn, equation (3.1) may
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be rewritten as

I : HI =−
N∑
i=0

V
[m]
i G

[m]
I |mi〉 (3.5a)

IIi : HIIi =Hli +Hri + V
[m]
i G

[m]
IIi |m〉 (3.5b)

III+ : HIII+ =Hl1 (3.5c)
III− : HIII− =Hrn (3.5d)

reducing the complexity of the problem immensely.

Furthermore, the incident waves (H+
li ,H

+
ri) can be written in accordance with equa-

tion (2.8) at the edges of the waveguide section, S1, S2. If the same single mode
assumption may be made for these waves at S1 and S2, the calculations can be
simplified further. Assuming only the principal TE10 mode exists, the waves there
may be written as

H(x,y,z) = h10(x,y)(H+e−jβz +H−ejβz) (3.6)

where H± is the wave’s amplitude in each traveling direction and h10(x,y) is the
TE10 field distribution.

3.1.2 Boundary Conditions

In order to fulfill the boundary conditions of the electromagnetic fields, the mag-
netic currents must ensure that the H field’s tangential components are continuous
between each domain in absence of surface currents. This must still be true when
the interfaces between each domain are covered by PEC, which is

n̂×Hj(r) = −n̂×Hk(r) (3.7a)

for all r on the newly created PEC surface between domain j and k. The sign change
is due to the normal vector n̂ changing sign on either side of the surface. If this
boundary condition can be enforced, in accordance with the uniqueness theorem the
solution of each isolated domain will then be equivalent to the original field solution.

To more simply represent this point-wise boundary condition, the field at each slot
may be integrated over. Then by comparing the integrals, the point-wise equivalence
becomes a scalar equivalence. Moreover, by using Galerkin’s method, symmetries
arise which can be used to simplify calculations further. Galerkin’s method is per-
formed by weighting the integral with the unit mode of the slot itself [18]. It may be
expressed as

〈mi|G[m]
V |mj〉 =

˚
Si

mi(r) ·
˚

Sj

G
[m]
V (r,rs)mj(rs) drs dr (3.8)

where mi is the unit field over slot i and Si is the PEC surface replacing slot i. For
linear, isotropic media, the dyadic is symmetric with reference to r and rs as [19]

G[m](r,rs) = G[m](|rs − r|) = G[m](rs,r) (3.9)
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−Mwg
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Figure 3.3: A second domain decomposition of domain IIi in figure 3.2c

and therefore so are the weighted integrals in equation (3.8), leading to the equiva-
lence

〈mi|G[m]
V |mj〉 = 〈mj|G[m]

V |mi〉 (3.10)

This is often referred to as the reciprocity of electromagnetic fields.

When evaluating a field over a surface, Galerkin’s method may again be used, in
this thesis it will be written according to

〈m|H〉 =
¨
S

m ·H dr (3.11)

where S is again the surface upon which m is defined.

The requirement of having a continuous tangential field along at the new PEC
surfaces after the domain decomposition yields the following boundary condition
between the outer domain I and the inner waveguide sections IIi:

−
N∑
j=0

V
[m]
j 〈mi|G[m]

I |mj〉 = V
[m]
i 〈mi|G[m]

IIi
|mi〉+ 〈mi|Hli〉+ 〈mi|Hri〉 (3.12)

which can be simplified by identifying the admittance of port i in domain V as
Y V
i = −〈mi|G[m]

V |mi〉, yielding

V
[m]
i Y I

i −
∑
j 6=i

V
[m]
j 〈mi|G[m]

I |mj〉 = 〈mi|Hli〉+ 〈mi|Hri〉 − V [m]
i Y IIi

i (3.13)

3.2 Coupling Between Ports and Slots

In order to find the relation between the waves in the waveguide and the excitation
of the slot, a second domain decomposition is performed at S1 in figure 3.2c. The
resulting domains are (A) a semi-infinite waveguide and (B) the waveguide section
IIi attached to another semi-infinite waveguide, see figure 3.3. For this section the
index i is dropped temporarily to increase readability.
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3. Method Derivation

The magnetic field in each domain is then

A : HA =H+ − ΓH+ − V [m]
wg G

[m]
A |mwg〉 (3.14a)

B : HB =V [m]
wg G

[m]
B |mwg〉+ V [m]

s G
[m]
B |ms〉 (3.14b)

where Γ = Γ(l) = E
−(l)

E+(l) = −e−2jβl is the electric reflection coefficient of the new PEC
in domain A at distance l along the waveguide [13], andmwg andms are the equivalent
magnetic currents in the waveguide and over the slot, respectively. Furthermore the
single mode assumption has again been made such that G[m]|Mj〉 = V

[m]
j G[m]|mj〉.

The boundary condition, −n̂×HA = n̂×HB ∀ r ∈ S1, of the domain decomposition
may be written as

〈mwg|H+〉 (1− Γ(0))− V [m]
wg 〈mwg|G[m]

A |mwg〉 =
V [m]
wg 〈mwg|G[m]

B |mwg〉+ V [m]
s 〈mwg|G[m]

B |ms〉 (3.15)

where again Galerkin’s method has been used. V [m]
wg may then be found through

reordering as

V [m]
wg = V [m]

s 〈mwg|G[m]
B |ms〉 − 2〈mwg|H+〉
Y A
wg + Y B

wg

(3.16)

where Γ(0) = −1 has been used and the admittances in the different domains have
again been identified.

The field over the new PEC at S1 is then calculated by inserting equation (3.16)
into equation (3.14) and applying Galerkin’s method, yielding

〈mwg|HA〉 = 2〈mwg|H+〉+ V [m]
wg Y

A
wg =

〈mwg|H+〉
2Y B

wg

Y A
wg + Y B

wg

+ V [m]
s

〈mwg|G[m]
B |ms〉Y A

wg

Y A
wg + Y B

wg

(3.17)

which can easily be shown equals 〈mwg|HB〉. The outgoing wave in domain A, that
is everything save the incoming wave H+, evaluated at S1 and weighted by mwg is
then

〈mwg|H−〉 = 〈mwg|HA〉 − 〈mwg|H+〉 =

− 〈mwg|H+〉
Y A
wg + ΓY B

wg

Y A
wg + Y B

wg

+ V [m]
s

〈mwg|G[m]
B |ms〉Y A

wg

Y A
wg + Y B

wg

(3.18)

Analogously the field over the PEC covering the slot can be calculated as

〈ms|HB〉 = V [m]
wg 〈ms|G[m]

B |mwg〉 − V [m]
s Y B

s =

− 〈mwg|H+〉2〈ms|G[m]
B |mwg〉

Y A
wg + Y B

wg

+ V [m]
s

〈ms|G[m]
B |mwg〉2

Y A
wg + Y B

wg

− Y B
s

 (3.19)
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where the reciprocity in equation (3.10) has been used to equate 〈ms|G[m]
B |mwg〉 =

〈mwg|G[m]
B |ms〉.

After describing the magnetic fields at both the covered slot and the covered wave-
guide (S1), finding their respective coupling is only a matter of identification. Here
the notation of S1m and Sm1 is introduced analogously to the scattering parameters.
Defining S1m, the contribution to the field at S1 from Ms, as

S1m = −Zwave
〈mwg|H−〉
V

[m]
s

∣∣∣∣∣
H+=0

= −ZwaveY A
wg

〈mwg|G[m]
B |ms〉

Y A
wg + Y B

wg

(3.20a)

and likewise Sm1, the contribution to the field at the slot from the incoming wave,
as measured at S1, as

Sm1 = 〈ms|HB〉
〈mwg|H+〉

∣∣∣∣∣
V

[m]
s =0

= −2〈ms|G[m]
B |mwg〉

Y A
wg + Y B

wg

(3.20b)

where the multiplication of −Zwave is added such that E−S1 = V [m]
s S1m = −ZwaveH−S1 .

Using this notation, note that the field over the slot due to the incoming field H+

in the original problem (before domain decomposition) is then

〈ms|H+〉 = Sm1〈mwg|H+〉 (3.21)

Analogously, by performing the domain decomposition at S2 instead, leads to the
coupling coefficients S2m and Sm2. However the signs of the terms in equation (3.20)
change as the magnetic waves change direction.

3.2.1 Proof of Reciprocity

Due to the reciprocity of electromagnetic fields in linear isotropic media [1] it is
expected that S1m = Sm1. This equality will be shown under the assumption that
the fields at S1 exist solely in the TE10 mode. Since 〈mwg|G[m]

B |ms〉 = 〈ms|G[m]
B |mwg〉

due to equation (3.10), it remains to show that ZwaveY A
wg = 2.

From equation (2.7) the electric and magnetic modes of the TE10 mode are

e10(x,y) = C10
ωµa

π
sin πx

a
ŷ (3.22a)

h10(x,y) = C10

(
−βa
π

sin πx
a
x̂+ j cos πx

a
ẑ

)
(3.22b)

where C10 is a proportionality constant here chosen such that the power propagated
through the waveguide by the wave is normalized. For the TE10 mode it is

C10 = 2π√
a3bβµω

(3.23)
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which gives the time average power propagating through the waveguide

1
2

ˆ a

0

ˆ b

0
e10 × h∗10 dy dx = sgn β (3.24)

as expected. Note that the tangential components of h10 change sign when traveling
backwards while e10 maintains its sign for backward propagating waves.

The magnetic current distribution mwg in domain A then has the distribution
mwg

Cs
= −n̂× e10 = ẑ× e10 = Zwave (h10 − (h10 · ẑ)ẑ) (3.25)

where equation (2.10) has been used. Cs is another proportionality constant, here
chosen such that the 〈mwg|mwg〉 = 1. This can be written out as

〈mwg|mwg〉 =
(
CsC10Zwave

βa

π

)2 ˆ a

0

ˆ b

0
sin2 πx

a
dy dx = 1 (3.26)

yielding

Cs =
√

2
ab

π

aβZwaveC10
= 1√

2Zwave
(3.27)

The dyadic Green’s function in a semi-infinite waveguide stretching from z = −∞
to z = 0 with a magnetic current distribution at z = 0 is [20]

G
[m]
A (r, rs) = 1

2
∑
i

h−i (r)
[
h+
i (rs)− h−i (rs)

]
(3.28)

for z < 0 where the sum is over all modes in the waveguide, h±i are the modes
traveling in each respective direction. These become for the TE10 mode: h±i=TE10 =
±h10e

∓jβz in either direction. A dyadic Green’s function on the form AB acts on a
vector C as

(AB)C = A(B ·C) (3.29)
Furthermore, due to the orthogonality of the modes and the fact that mwg and h10
have the same shape in the transverse plane, leads to the only non-zero component
of the sum being i = TE10.

The magnetic field in domain A when H+ = 0 is then

HA(r) = G
[m]
A |mwg〉 =

˚
S1

G
[m]
A (r,rs)m(rs) drs =

− CsZwaveh10(x,y)ejβz
ˆ a

0

ˆ b

0
h10(xs,ys) · (h10(xs,ys)− (h10(xs,ys) · ẑ)ẑ) dys dxs =

− CsZwave
(
C10

βa

π

)2

h10(x,y)ejβz
ˆ a

0

ˆ b

0
sin2 πxs

a
dys dxs =

− CsZwave
(
C10

βa

π

)2
ab

2 h10(x,y)ejβz = −2Csh10(x,y)ejβz (3.30)
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which when evaluated on the short end of the semi-infinite waveguide, weighted by
mwg becomes

〈mwg|HA〉 = 〈mwg|G[m]
A |mwg〉 = −Y A

wg =
˚

S1

mwg(r) ·HA(r) dr =

− 2C2
sZwave

ˆ a

0

ˆ b

0
(h10(x,y)− (h10(x,y) · ẑ)ẑ) · h10(x,y) dy dx =

− 2C2
sZwave

(
C10

βa

π

)2 ˆ a

0

ˆ b

0
sin2 πx

a
dy dx =

− 2C2
sZwave

(
C10

βa

π

)2
ab

2 = −2
Zwave

(3.31)

and thus it is shown that ZwaveY A
wg = 2 or S1m = Sm1.

Analogously the coupling coefficients S2m and Sm2 are also reciprocal. Moreover
this can be shown more generally using the reaction theorem [1]

Theorem (Reaction Theorem). For fields (E1,H1) produced by current sources
(J1,M1), and fields (E2,H2) produced by current sources (J2,M2) in a linear, isotropic
medium, however not necessarily homogeneous, the reaction of the fields on the cur-
rents is reciprocal according to

˚
V

(E1 · J2 −H1 ·M2) dV =
˚

V

(E2 · J1 −H2 ·M1) dV (3.32)

That is, the magnetic field in the waveguide (due to some source) couples with the
magnetic current in the slot in the same manner as the magnetic wave due to the
current in the slot would couple to the source of the mode in the waveguide.

Finally, if the cross-section of S1 and S2 are the same and domain B is symmetric
in regards to the ports, S1m = S2m = Sm2 = Sm1, the proof of which is left as an
exercise for the reader.

3.3 Scattering Parameters of a Single Waveguide
Section

With the knowledge of the coupling between all ports and sources of a closed wave-
guide section, parameters relating wave amplitudes can be derived. Further it will
be seen that these parameters may be constructed and used similar to S-parameters.

Consider a single section IIi from figure 3.2c, yielded through both domain decom-
position and mode matching. The sources of the problem are partly the magnetic
current Mi, and partly the waves Hli, Hri which exist in the whole waveguide and
can be considered originating from sources infinitely far to the left and right, respec-
tively. Select two waveguide cross-sections, here called ports S1 and S2, on either
side of the slot, far enough away from the slot that the fields may be considered to
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consist of only the TE10 mode. At these interfaces the total field may be written
according to equation (3.6) as

HS1 = HIIi
(r), r ∈ S1

HS2 = HIIi
(r), r ∈ S2

HS1 = H+
1 h10e

−jβz +H−1 h10e
jβz (3.33)

HS2 = H−2 h10e
−jβz +H+

2 h10e
jβz (3.34)

whereH±k is the amplitude of the TE10 waves traveling in to and out of the waveguide
section at port Sk, respectively. Through the superposition of electromagnetic fields,
the amplitudes of the waves may be seen as combinations of contributions from the
three sources. The wave amplitudes at each port then become

HS1 = (H+
1l +H+

1r +H+
1m)h10e

−jβz + (H−1l +H−1r +H−1m)h10e
jβz (3.35a)

HS2 = (H−2l +H−2r +H−2m)h10e
−jβz + (H+

2l +H+
2r +H+

2m)h10e
jβz (3.35b)

where H±il , H±ir , H±im are the contributions to the amplitude of the incoming and
outgoing waves originating from the left source, right source, and magnetic current
source respectively. Since a source can only give rise to outgoing waves, not incoming
waves, it is clear that

H+
1r = H+

1m = H+
2l = H+

2m = 0 (3.36)
leading to

HS1 = H+
1lh10e

−jβz + (H−1l +H−1r +H−1m)h10e
jβz (3.37a)

HS2 = (H−2l +H−2r +H−2m)h10e
−jβz +H+

2rh10e
jβz (3.37b)

Then by using their definition, the scattering parameters in the waveguide when
V [m]
u = 0 can be identified as

H−1l = −Sclosed11 H+
1l , H−1r = Sclosed12 H+

2r

H−2l = Sclosed21 H+
1l , H−2r = −Sclosed22 H+

2r
(3.38)

which is simply the S-parameters that would be measured when simulating a wave-
guide section with its slot covered (with null amplitude magnetic current) and ref-
erence planes at S1 and S2.

It then remains to calculate the contributions H−1m, H−2m, which are known from
section 3.2 and equation (3.20) as

H−1m =− V [m]
i

S1m

Zwave
(3.39a)

H−2m = V
[m]
i

S2m

Zwave
(3.39b)

.

Then by combining equations (3.38) and (3.39) the outgoing magnetic wave am-
plitudes H−S1 = H−1l + H−1r + H−1m and H−S2 = H−2l + H−2r + H−2m can be written as
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H−S1 = −Sclosed11 H+
S1 + Sclosed12 H+

S2 − V
[m]
i

S1m

Zwave
(3.40a)

H−S2 = Sclosed21 H+
S1 − S

closed
22 H+

S2 + V
[m]
i

S2m

Zwave
(3.40b)

or by using equation (2.10) to instead find the electric wave relations as

E−S1 = Sclosed11 E+
S1 + Sclosed12 E+

S2 + V
[m]
i S1m (3.41a)

E−S2 = Sclosed21 E+
S1 + Sclosed22 E+

S2 + V
[m]
i S2m (3.41b)

or simply [
E−S1

E−S2

]
= [Sclosed]

[
E+
S1

E+
S2

]
+ V

[m]
i

[
S1m
S2m

]
(3.42)

which is similar to the traditional S-parameter form with an additional contribution
from the magnetic current.

The value of V [m]
i due to the sources in domains I and IIi can be solved from the

boundary condition in equation (3.13) yielding

V
[m]
i =

〈mi|Hli〉+ 〈mi|Hri〉+∑
j 6=i V

[m]
j 〈mi|G[m]

I |mj〉
Y I
i + Y IIi

i

(3.43)

. Further, from the definition of Sm1 and Sm2 in section 3.2 the substitutions

〈mi|Hli〉 = Sm1H
+
S1 = Sm1

Zwave
E+
S1 (3.44a)

〈mi|Hri〉 = −Sm2H
+
S2 = Sm2

Zwave
E+
S2 (3.44b)

can be made, yielding

V
[m]
i =

E+
S1

Zwave
+ E+

S2
Zwave

+∑
j 6=i V

[m]
j 〈mi|G[m]

I |mj〉
Y I
i + Y IIi

i

(3.45)

which relates the incoming waves of the waveguide to the excitation of the slot. Then
by inserting the solved V [m] from equation (3.45) into equation (3.41) and collecting
all sources, yet another form similar to the traditional scattering parameters is found
as

E−S1 =
Sclosed11 + S1mSm1

Zwave
(
Y I
i + Y IIi

i

)
E+

S1 +
Sclosed12 + S1mSm2

Zwave
(
Y I
i + Y IIi

i

)
E+

S2

+ S1m

Y I
i + Y IIi

i

∑
j 6=i

V
[m]
j 〈mi|G[m]

I |mj〉 (3.46a)

E−S2 =
Sclosed21 + S2mSm1

Zwave
(
Y I
i + Y IIi

i

)
E+

S1 +
Sclosed22 + S2mSm2

Zwave
(
Y I
i + Y IIi

i

)
E+

S2

+ S2m

Y I
i + Y IIi

i

∑
j 6=i

V
[m]
j 〈mi|G[m]

I |mj〉 (3.46b)
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or[
E−S1

E−S2

]
=
[Sclosed] + 1

Zwave
(
Y I
i + Y IIi

i

) [S1mSm1 S1mSm2
S2mSm1 S2mSm2

][E+
S1

E+
S2

]

+
∑
j 6=i V

[m]
j 〈mi|G[m]

I |mj〉
Y I
i + Y IIi

i

[
S1m
S2m

]
(3.46c)

Thus if it is possible to calculate

• the S-parameters of the closed waveguide section without the magnetic current,
[Sclosed],

• the coupling between the slot and the ports, S1m = Sm1 and S2m = Sm2,

• the total slot admittance, Y I
i + Y IIi

i ,

• the outer coupling of the slots, 〈mi|G[m]
I |mj〉

the original EM-problem of finding the slot excitations and waves within the wave-
guide may be constructed as an RF circuit problem. Using equations (3.45) and (3.46)
it is possible to describe such an RF problem in a similar manner to working with
S-parameters. Note that the only approximation made when replacing the full wave
solution with the RF solution is the single mode assumption.

3.3.1 Transmission Parameters from Scattering Parameters

The generalized S-parameters in equation (3.46) give a good description of the wave
relations within the waveguide section. However when trying to find the wave rela-
tions in a cascade of waveguide sections, T-parameters would be more useful. In ac-
cordance with appendix A.3 the generalized scattering parameters in equation (3.46)
can be re-written as[

E−S1

E+
S1

]
= [T]

[
E+
S2

E−S2

]
+A =

[
T11 T12
T21 T22

] [
E+
S2

E−S2

]
+
[
A1
A2

]
(3.47)

where

T11 = 2Sclosed12 Sm1Sm2 − Sclosed11 S2
m2 − Sclosed22 S2

m1 − Y Zwave det([Sclosed])
Sm1Sm2 + Y ZwaveSclosed12

(3.48a)

T12 = S2
m1 + Y ZwaveS

closed
11

Sm1Sm2 + Y ZwaveSclosed12
(3.48b)

T21 = − S2
m2 + Y ZwaveS

closed
22

Sm1Sm2 + Y ZwaveSclosed12
(3.48c)

T22 = Y Zwave
Sm1Sm2 + Y ZwaveSclosed12

(3.48d)

A = −
Zwave

∑
j 6=i V

[m]
j 〈mi|G[m]

I |mj〉
Sm1Sm2 + Y ZwaveSclosed12

[
Sclosed11 Sm2 − Sclosed12 Sm1

Sm2

]
(3.48e)
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using Y = Y I
i +Y IIi

i as well as the reciprocities S12 = S21 and Sim = Smi. Further, if
domain IIi is symmetric with regards to its two ports, then S11 = S22 and S1m = S2m,
reducing the number of unknowns and simplifying the equations.

Therefore if all the constituents of [T] and A are known, it is possible to find all the
wave amplitudes and slot excitations quickly in a waveguide with constant exterior
geometry using a work-flow similar to that in described in section 2.8.2.
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4
Practical work

The previous chapters of this master’s thesis have focused on the theoretical deriva-
tion of a methodology for finding the waves within, and excitations of, a slotted
waveguide antenna through RF circuit theory. The resulting equations are based on
a few, simple, assumptions which need to be verified for a certain geometry before
the methodology may be implemented using said design.

This section therefore explores how the excitation of slotted rectangular waveguides
are controlled and presents the design used for the practical work of this master’s
thesis. Once a design is selected, the assumptions made, namely the single mode
assumption, are verified in order to show the validity of the theory for the design in
question.

4.1 Slot Excitation

There are many ways of exciting a slot in a waveguide. In section 2.6 it is shown
that the level of excitation of a slot in a waveguide wall is dependent on to which
degree the slot cuts a mode’s surface currents. Thus by controlling the amount of
surface current clipped one can control the level of excitation within a slot. This
is typically done by either changing the slot’s rotation, offset or by perturbing the
fields within the waveguide along with its surface currents. This thesis focuses on
narrow wall slots, however first we will explore the general slot in a rectangular TE10
waveguide.

Assume one wishes to excite a slot in a rectangular waveguide which only allows for
propagation of the fundamental TE10 mode, oriented along the ẑ-axis with broad
wall 0 ≤ x ≤ a and narrow wall 0 ≤ y ≤ b. The slot may be placed either on the
broad wall, the narrow wall or a combination of both, figure 4.1 shows a few such
slots. The surface currents of the PEC waveguide are

J = n̂×H (4.1)

which can be derived from equation (2.5). For the principal TE10 mode the surface
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1
2

3

4

Figure 4.1: Different ways of exciting a slot in a rectangular waveguide. Note that
the vertical narrow wall slot (1) requires inner perturbations to the wave environment
in order to steer the TE10 modes electric surface currents over the slot.

currents are therefore

J ∝


±
(
j cos

(
xπ

a

)
x̂+ βa

π
sin

(
xπ

a

)
ẑ

)
e−jβz on broad walls

−je−jβzŷ on narrow walls
(4.2a)

where the ± is positive on the lower wall (y = 0) and negative on the upper (y = b).
Note that all currents are proportional to e−jβz, meaning that to have slots radiating
in phase, their required spacing needs to be λwg. However if it is possible to flip the
phase of every second slot by 180°, the spacing only needs to be λwg/2.

The surface currents of the broad wall allow a slot to have its excitation level con-
trolled by either varying its offset from the center-line (along x̂) or by changing its
rotation. The surface currents of the narrow wall are however all constant along ŷ,
making it impossible to control the excitation by offsetting the slot, it can however
still be controlled by changing the slot’s rotation.

Another approach to controlling the slot excitation is to perturb the interior of the
waveguide, changing the surface currents such that they cross the slot in an increased
or decreased fashion. Such a perturbation can take many forms, for this master’s
thesis however it will consist of rectangular irises set on either side of the slot, see
figure 4.2. The excitation may then be controlled by varying the iris design. Deriving
a full model of the effect of the iris on the slot excitation is beyond the scope of this
thesis. However, an examination of which design parameters are most significant
for excitation control is performed. This allows for a simple parameterization of the
slot excitation as a function of those parameters.

From this point in this master’s thesis and onward, the waveguides considered will be
rectangular with cross-section dimensions 40 mm by 20 mm. The frequency which
will be examined is 5 GHz, meaning that the waveguide will only allow the TE10
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Figure 4.2: Single waveguide slot with pair of rectangular irises with see-through
window cut out.

mode to propagate with all higher order modes below their respective cut-off fre-
quencies.

4.1.1 Slot Geometry

A slot may take many forms, however often the slot has a rectangular shape with
length l ≈ λ/2 and width w � λ such that only the TE10 mode may propagate [4].
If the narrow wall is too small to accommodate a slot of length λ/2, the slot may
be extended to also cover a bit of the broad side walls, see slot (1) in figure 4.1.

Since the focus of this master’s thesis is on slotted waveguide antennas with constant
outer geometries, the design of all slots will be fixed as rectangular TE10 slots. Such
slots have the added benefit of experiencing high levels of linear polarization with
low cross-polarization. From this point and onward of the master’s thesis, the slots
considered will be along the narrow wall extending into the broadwall. The slots
have a width of 3 mm and a length of 30 mm when measured along the inside of the
waveguide. Furthermore the slot spacing will be λwg/2 ≈ 45.28 mm.

4.1.2 Selecting Iris Parameters

For this master’s thesis two design-parameters will be used to control the excitation
of the narrow wall slot. The available design parameters for the rectangular irises are
width, height, thickness, and offset from the slot. The choice of control parameters
is done by firstly examining the change in S-parameters whilst varying the design
parameters of the iris. The two parameters which then cover the largest swath of
S-parameters in the Smith-chart are chosen as they will yield the most control over
the inner electromagnetic environment of the waveguide.

Figure 4.3 shows the S-parameters when varying the height and widths for fixed
offsets and thicknesses of the irises. The magnitude of the S-parameters scales well
with the height of the irises while the phase scales with the width. Figure 4.4 shows
the S-parameters when varying the offset and thickness for fixed heights and widths
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Table 4.1: Fixed dimensions of the rectangular waveguides under consideration in
this master’s thesis.

Waveguide width (a) 40 mm
Waveguide height (b) 20 mm

Waveguide wall thickness 1 mm
Frequency (f) 5 GHz
Slot spacing λwg/2

Slot length (inner) 30 mm
Slot width 3 mm

Iris design parameters hiris, wiris
Iris offset (edge-to-edge) 2.5 mm

Iris thickness 1 mm

of irises. The offset seems to control both magnitude and phase, while the thickness
allows for less control.

The width and height give the best control as they control the phase and magnitude
mostly independently. Further, they cover a large section of the smithchart and
are therefore selected as iris parameters for controlling the slots’ excitations. From
this point and forward, the term iris parameters will therefore be in reference to the
variable height and width of each iris pair. The thickness and offset of the irises
will be held fixed at 1 mm and 2.5 mm respectively. All fixed dimensions of the
rectangular slotted waveguides under consideration are summarized in table 4.1.

4.2 Verifying Assumptions

In order to use the methodology in chapter 3, the assumptions made must be verified
for the chosen waveguide and slot designs. All assumptions made are in regards
to the modal expansion of the fields. The first requires that all slot elements have
similar electromagnetic field distributions such that they may be expanded in a single
mode without large loss of information. The second requires that a similar single
mode assumption can be made for the electromagnetic fields within the waveguide
at the interface between each λwg/2 section. This section proves these assumptions
for the antenna described in table 4.1.

4.2.1 Single Mode at Slot Interface

The most significant assumption made in the methodology in chapter 3 is that
the fields in the slot may be described by a single mode. Typically any field (and
therefore also its equivalent current distribution) within a geometry can be described
as an infinite weighted sum of eigenmodes. This assumption reduces the linear
combination to only a single term, making all subsequent calculations easier in the
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Width sweep
Height sweep

(a) S11 when the iris offset is 1 mm and the iris thickness is 1 mm.

Width sweep
Height sweep

(b) S12 when the iris offset is 1 mm and the iris thickness is 1 mm.
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Width sweep
Height sweep

(c) S11 when the iris offset is 4 mm and the iris thickness is 3 mm.

Width sweep
Height sweep

(d) S12 when the iris offset is 4 mm and the iris thickness is 3 mm.
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Width sweep
Height sweep

(e) S11 when the iris offset is 7 mm and the iris thickness is 5 mm.

Width sweep
Height sweep

(f) S12 when the iris offset is 7 mm and the iris thickness is 5 mm.

Figure 4.3: S11 and S12 when sweeping the height and width of the irises for several
variations of iris offset and thickness. Note that neither S22 nor S21 are presented
due to the symmetries of the irises; S11 = S22 and S12 = S21.
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Thickness sweep
Offset sweep

(a) S11 when the iris width is 5 mm and the iris height is 8 mm.

Thickness sweep
Offset sweep

(b) S12 when the iris width is 5 mm and the iris height is 8 mm.
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Thickness sweep
Offset sweep

(c) S11 when the iris width is 8 mm and the iris height is 11 mm.

Thickness sweep
Offset sweep

(d) S12 when the iris width is 8 mm and the iris height is 11 mm.
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Thickness sweep
Offset sweep

(e) S11 when the iris width is 11 mm and the iris height is 14 mm.

Thickness sweep
Offset sweep

(f) S12 when the iris width is 11 mm and the iris height is 14 mm.

Figure 4.4: S11 and S12 when sweeping the offset and thickness of the irises for sev-
eral variations of iris height and width. Note that neither S22 nor S21 are presented
due to the symmetries of the irises; S11 = S22 and S12 = S21.
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process. Thus it is important to compare the field within the slot in a large variety
of settings to see if it is sufficient to only use a single eigenmode to describe it and
what error such an assumption would entail. The waveguides in this section are
placed along the x̂-axis, with the normal of the slotted narrow wall being along the
ẑ-axis.

In order to best visualize the 3-dimensional shape of the slot cover, its geometry
slot will be mapped to a 2-dimensional shape. This is simply done by folding up the
sides of the slots such that the cover is a rectangle. Further, if all or most of the
field lies along a single direction, the field distribution can instead be represented by
integration lines along that direction. Since it is expected that a distribution similar
to the TE10 mode to exist in the slot, the field is expected to lie mostly along the
x̂-axis.

There are several factors which may affect how the slot is excited. Obviously incident
waves from both the outer and inner regions will excite the slot, perhaps with
different eigenmode expansions making the single mode assumption invalid. Other
factors exist as well; by changing the inner or outer electric environment, the active
impedance of the slot changes and so does also the way incoming waves interact
with it, perhaps changing the modal distribution again. By simulating a single
slot in an isolated environment, an infinite array environment, and a truncated
array environment whilst also varying the iris design-parameters all the mentioned
interactions with the slot can be explored. The single mode assumption will be
evaluated by both evaluating in which direction the electric field is oriented, as well
as the voltage achieved when integrating the electric slot field along the dominant
axis.

4.2.1.1 Inner Excitation

Often the largest contributor to the field in the slot will be from within the waveguide
itself. This section explores the cases of a single slot, excited from within, when

1. it is the only slot in a finite antenna and the iris parameters are varied,

2. it is a slot in an infinite array structure and the inner iris parameters are
varied,

3. it is a slot in an infinite array structure and the relative phase of adjacent cells
are varied,

4. it is the center slot in a truncated 3x3 array and it is the only radiating element,

5. it is the center slot in a truncated 3x3 array where only one other slot is open
and only the center element radiates,

6. it is the only element in a truncated 3x3 array where its position in the array
is varied.

Together, these cases represent a radiating slot when its interior geometry is changed,
when its exterior geometry is changed, and when the surrounding electromagnetic
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Table 4.2: Proportion of the field of the center slot which does not lie along the
x̂-axis for the cases listed in section 4.2.1.1 according to equation (4.3).

Case γ
[dB]

1 −17.75
2 −16.93
3 −15.49
4 −16.87
5 −17.76
6 −14.74

environment is changed, therefore covering most possible scenarios for a radiating
slot in an array antenna. Table 4.2 shows the proportion of the field of the center
slot which does not lie along the x̂-axis as

γ = 10 log10

(˝
|Ey|2 dr+

˝
|Ez|2 dr˝

|Ex|2 dr

)
= 10 log10

(
Py + Pz
Px

)
(4.3)

for each case above. Note that most of the energy in the slot lies along the x̂-axis
and thus the electric field distribution may instead be represented by the voltage
across the the slot width. Figure 4.5 shows the voltage achieved by the line integral

V =
ˆ w

0
E(x,y,z) · x̂ dx (4.4)

taken on a straight line across the slot width for points along the length of the slot
for case (1). Similarly, figures 4.6 to 4.10 show the integrated voltages for cases (2)-
(6). Note how, when normalized1, the voltage distribution along the slot is fairly
constant.

4.2.1.2 Exterior Excitation

It is sometimes possible that the excitation due to coupling from exterior sources
is larger than that from the interior. This section explores the cases when a slot is
only excited from neighboring slots in two cases

1. when the slot is in a truncated 3x3 array where only a single radiating slot is
present,

2. when the slot is in a truncated 3x3 array where all 9 slots are present but only
the center slot is radiating.

These cases represent both a single and a more complex coupling case for slots
at different positions. Similarly to section 4.2.1.1, most of the power lies along

1The voltages are normalized such that the integral of the squared voltage along the slot´
|V (l)|2 dl = 1.
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(a) Voltage across the slot width.
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(b) Voltage across the slot width, normalized.

Figure 4.5: The voltage from equation (4.4) for the case of a single slot in a finite
waveguide, whilst sweeping the iris parameters (1). The orientation of the slot is
un-folded such that it lies in a single plane where the dashed lines denote to folding
creases. Both an absolute voltage plot and a normalized voltage plot are presented.
The slot is excited by a single 1 W wave from its interior waveguide.
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(b) Voltage across the slot width, normalized.

Figure 4.6: The voltage from equation (4.4) for the case of a slot in an infinite
waveguide, whilst sweeping the iris parameters (2). The orientation of the slot is
un-folded such that it lies in a single plane where the dashed lines denote to folding
creases. Both an absolute voltage plot and a normalized voltage plot are presented.
The slot is excited by a single 1 W wave from its interior waveguide.
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(b) Voltage across the slot width, normalized.

Figure 4.7: The voltage from equation (4.4) for the case of a slot in an infinite
waveguide, whilst sweeping the phase of the array cells (3). The orientation of the
slot is un-folded such that it lies in a single plane where the dashed lines denote
to folding creases. Both an absolute voltage plot and a normalized voltage plot are
presented. The slot is excited by a single 1 W wave from its interior waveguide.
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Figure 4.8: The voltage from equation (4.4) for the case of a truncated 3x3 array
where only the center slot is excited (4). The orientation of the slot is un-folded
such that it lies in a single plane where the dashed lines denote to folding creases.
Both an absolute voltage plot and a normalized voltage plot are presented. The slot
is excited by a single 1 W wave from its interior waveguide.
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Figure 4.9: The voltage from equation (4.4) for the case of a truncated 3x3 array
with only two slots open where only the center slot is excited (5). Each simulated
pair shares the same color. The orientation of the slot is un-folded such that it lies
in a single plane where the dashed lines denote to folding creases. Both an absolute
voltage plot and a normalized voltage plot are presented. The slot is excited by a
single 1 W wave from its interior waveguide.
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Figure 4.10: The voltage from equation (4.4) for the case of a truncated 3x3 array
with only a single element, for each possible position (6). The orientation of the
slot is un-folded such that it lies in a single plane where the dashed lines denote
to folding creases. Both an absolute voltage plot and a normalized voltage plot are
presented. The slot is excited by a single 1 W wave from its interior waveguide.
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the x̂-axis, applying equation (4.3) on all slots in both cases yields γ = 14.15 dB.
Figures 4.8 and 4.9 show the integrated voltages along the slot for the two cases,
respectively.

Finally, after showing that the field distribution varies little in each case, a com-
parison of all cases remains to validate the single mode assumption. Figure 4.11a
shows the normalized integrated voltage along the slot from figures 4.6 to 4.10. Fig-
ure 4.11b shows the maximum error of the voltages in figure 4.11a when compared
to the average for each point along the slot. This shows not only that each slot field
can be expanded in a single mode, but also that it is the same mode for all simula-
tions. Note that the error at most passes slightly above 5 % error when compared
to the average of all lines. It is therefore clear that the single mode assumption can
be made without too much error.

4.2.2 Single mode in WG between each III domain

The single mode assumption is also made for the waves propagating in the waveguide.
Although the waveguide is constructed such that it only allows for propagation of
the TE10 mode, much of the energy near the irises and slot is stored in higher order,
evanescent modes. The propagation constant γmn for a rectangular waveguide may
be calculated as [13]

γmn = α + jβ =
√
kc − k = π

√√√√(m
a

)2
+
(
n

b

)2
−
(

2f
c0

)2

(4.5)

where α (Np/m) is the attenuation factor, β (rad/m) is the phase factor. Table 4.3
shows the attenuation of the first ten modes within the waveguide and the amount of
attenuation expected after 19.14 mm of propagation, the distance from the iris to the
unit cell edge. The first higher order mode experiences 19.5 dB of attenuation, which
can be considered sufficient to verify the single mode assumption. Furthermore, since
the slots and irises are placed at the center of the unit cell, any higher order mode
will actually be attenuated at least 38.9 dB before interacting with the next slot and
irises.
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Figure 4.11: The normalized voltages from all simulations presented in figures 4.6
to 4.10 as well as the maximum error from the average at each point along the slot.
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Table 4.3: Attenuation factor and attenuation after traveling half a unit cell for
the first ten modes in the waveguide used in this master thesis.

(m,n) α α · 19.14 mm
[dB/mm] [dB]

(1, 0) − −
(0, 1) 1.02 19.46
(2, 0) 1.02 19.46
(1, 1) 1.22 23.43
(2, 1) 1.70 32.57
(3, 0) 1.83 35.09
(3, 1) 2.29 43.74
(0, 2) 2.57 49.24
(4, 0) 2.57 49.24
(1, 2) 2.66 50.94
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5
Implementation

After selecting an antenna design and verifying the assumptions of the theory, it
is possible to implement the methodology described in chapter 3. This chapter
therefore first suggests an implementation such that any antenna may be quickly
modeled and simulated from a library of previously collected unit cells. This may in
turn be used with existing optimization schemes to quickly optimize the iris designs
of an antenna to yield a certain voltage mask. Then a suggested method for building
such a library by calculating all the required components of equation (3.48) through
the use of ANSYS HFSS is presented. Finally a simple modification is suggested
reducing the number of necessary simulations.

5.1 Suggested Implementation of Theory

The main advantage of splitting a problem into several smaller, independent, prob-
lems is that all parts are not forced to be evaluated simultaneously. For the case
of an antenna with constant outer geometry, where only small parts of each λwg/2
interior section is changed, all outer effects may be solved once and for all. Then,
by building a library of solutions for different variations of the interior λwg/2 build-
ing blocks, it is possible to construct the full solution for any combination of such
building blocks and the exterior quickly by combining their solutions.

Consider equations (3.45) and (3.46) which relate the excitation of the slot and waves
of the ports of an interior subsection IIi. If a library of the equation components
may be collected a priori for any viable iris design, it is possible to create the
corresponding T-matrix in equation (3.47). Then by the work flow presented in
section 2.8.2 it is easy to find the wave relations and excitations for each slotted
waveguide of the antenna.

Section 3.3 considers a certain waveguide section at a certain position i. However,
due to the domain decomposition each section’s position in the outer geometry and
its interior design may be considered independently. Therefore instead consider
a waveguide section IIk with interior design setup k at outer position i. The slot
admittance, consisting of an outer and an inner contribution, may then be re-written
as Y I

i + Y IIk by dropping the dependence of position i from the interior term.

The components of the T-matrix can then be divided into two sets; those which
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relate to the section’s interior ([Sclosed], S1m, S2m, and Y IIk), and those which relate
to the antenna’s exterior (Y I

i and 〈mi|G[m]
I |mj〉).

Then by first building a library of the interior components and finding the exterior
components for each position i it is possible to create the T-matrix in equation (3.47)
for any iris design k at any position i. This initial calculation of components are
related to costly calculations in terms of both time and resources, however it is
only required once. In an optimization method which requires the solution to many
design variations, this cost may be spread over all evaluations whereas a full wave
electromagnetic simulator would be required to perform the full simulation for each
variation. Further, any subsequent optimization of an antenna with the same ele-
ments may re-use the library of interior components.

5.1.1 Calculating Equation Components in HFSS

In order to find all the required constituents of equation (3.48) such that the afore-
mentioned implementation can be performed, a method for calculating the compo-
nents for each iris setup k and position i, preferably independently, must be used.
Many commercial EM simulators do not offer the explicit solving of slot self-coupling
(called admittance above), mutual coupling, or the use of custom magnetic current
sources. However, as the full field solution is typically available and thus intrinsi-
cally contains these values, they may be extracted through clever calculations and
comparisons of different simulations.

Herein I present a suggested method to calculate all the necessary components
through the use of ANSYS HFSS. The interior components are extracted by sim-
ulating and comparing each IIk section with the slot both open and covered. The
exterior components are extracted by simulating the slots both separately and in
pairs at each position i of the exterior antenna.

5.1.1.1 Interior Components

[Sclosed] are easily simulated by performing a modal HFSS simulation for each domain
IIk with its slot covered. Since no magnetic current is present, the measured S-
parameters are simply [Sclosed], as mentioned in section 3.3.

Consider now another simulation of domain IIk, at position i of the antenna, with
its slot uncovered when all other slots remain covered. The electric field in the slot
will have a distribution corresponding to the theoretical V [m]

i as

− n̂×Eslot = Mi = V
[m]
i m (5.1)

meaning that V [m]
i may be measured from HFSS’s field solution. S1m and S2m may

then be found by considering the V [m]
i of the field solution when E+

1 6= E+
2 = 0.
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Noting from equation (3.42) that

E−S1 = Sclosed11 E+
S1 + Sclosed12 E+

S2 + V
[m]
i S1m (5.2a)

E−S2 = Sclosed21 E+
S1 + Sclosed22 E+

S2 + V
[m]
i S2m (5.2b)

and using the S-parameter definition, the measured S11 and S21 of the aforemen-
tioned case can be written as

Sopen11 =
Sclosed11 E+

S1

E+
S1

+ V
[m]
i

S1m

E+
S1

∣∣∣∣∣
E+

1 6=E
+
2 =0

(5.3a)

Sopen21 =
Sclosed21 E+

S1

E+
S1

+ V
[m]
i

S2m

E+
S1

∣∣∣∣∣
E+

1 6=E
+
2 =0

(5.3b)

where Sopenij are the measured S-parameters from a modal HFSS analysis. Since
[Sclosed] are known, it is possible to calculate the S1m and S2m by re-arranging equa-
tion (5.3) as

S1m = E+
S1

Sopen11 − Sclosed11

V
[m]
i

∣∣∣∣∣
E+

1 6=E
+
2 =0

(5.4a)

S2m = E+
S1

Sopen21 − Sclosed21

V
[m]
i

∣∣∣∣∣
E+

1 6=E
+
2 =0

(5.4b)

where V [m]
i is extracted from the field solution when E+

1 6= E+
2 = 0. Sm1 and Sm2

are then also known due to the reciprocity of the coupling between the waves in the
waveguide and the field in the slot.

5.1.1.2 Exterior Components

The total slot admittance Y I
i + Y IIk can also be extracted from the field solution

for the single open slot case used to extract S1m and S2m. Consider equation (3.45)
which for such a case (ES2 = Vj 6=i = 0) simplifies as

V
[m]
i =

E+
S1S1m

Zwave (Y I
i + Y IIk)

∣∣∣∣∣
E+

1 6=E
+
2 =Vj 6=i=0

(5.5)

where Zwave is known analytically from equation (2.11). The admittance Y I
i + Y IIk

is then easily calculated as all other factors are known.

It then remains to find the mutual coupling 〈mi|G[m]
I |mj〉 in order to construct

both the T-matrix and A-vector in equation (3.48). Consider therefore an HFSS
simulation where two slots, i and j, are open and all other are closed. By measuring
V

[m]
i and V

[m]
j from the field solution when only exciting slot j from within its

interior, the mutual coupling may be calculated by re-writing equation (3.45) as

〈mi|G[m]
I |mj〉 =

(
Y I
i + Y IIk

) V [m]
i

V
[m]
j

∣∣∣∣∣∣
V

[m]
n/∈{i,j}=0

(5.6)
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since at port i E+
S1 = E+

S2 = 0. Further, due to the reciprocity in equation (3.10)
only the coupling in one direction needs to be calculated, resulting in (N2 − N)/2
simulations for N slot positions.

5.1.2 Reducing Simulation Requirements

In order to find all the necessary equation components for each section IIk and
position i using the method described, there need to be two simulations for each
pair (i, k). One of only the inner domain IIk and one of the full antenna when
section IIk is at position i of the antenna. For N slot positions and K domains
IIk in the library, K simulations of only the interior of a single waveguide section
and KN + (N2 − N)/2 simulations of the full antenna environment are therefore
required.

The full antenna simulations are much larger and therefore more resource expensive
than the interior single IIk simulations. Any possibility of reducing the number of
simulations needed of the full antenna model is therefore very valuable in terms of
both time and computational costs.

Consider therefore the admittance of slot k at position i

Y (i,k) = Y I
i + Y IIk (5.7)

and note that it is separable with regard to i and k. If it is possible to find the parts
individually, the number of full antenna simulations may be reduced.

Further, consider the admittance Ỹ of interior domain IIk positioned in a much
smaller, single slot, antenna. Such an admittance is much cheaper to calculate.
Since it has no dependence of i, denote it as

Ỹ (k) = Y simple + Y IIk (5.8)

where Y simple is the outer admittance of the slot in the simple antenna environment
and Y IIk is still the interior admittance of the slot.

Moreover, if each array position i of the full antenna was simulated only once for a
given iris design (say k = 1) then the admittance of any slot and iris combination
Y (i,k) could be calculated as

Y (i,1) + Ỹ (k)− Ỹ (1) =
Y I
i + Y II1 + Y simple + Y IIk −

(
Y simple + Y II1

)
=

Y I
i + Y IIk = Y (i,k) (5.9)

Therefore if Y (i,1) is calculated for each i and Ỹ (k) is calculated for each k, any
Y (i,k) can be calculated with a reduced number of full antenna simulations. This
separation has the added benefit of enabling the Ỹ (k) to be re-used when simulating
an antenna with a new exterior.
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5. Implementation

Then, for an antenna with N slot positions and K possible inner domains IIk there
needs to be a total of (N2 + N)/2 simulations of the full antenna, K simulations
of the simplified domain, and the same K simulations of the closed domains IIk to
find all the necessary components. This method therefore reduces the number of
full antenna simulations from KN to N with the additional K simulations in the
simpler domain. Note that the simpler domain can be made very small, reducing
the simulation cost drastically when compared to the full antenna simulation.
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6
Proof-of-Concept

In order to show the viability of the methodology presented in chapter 3, two separate
proofs-of-concept will be presented using the suggested implementation in chapter 5
and the design selected in section 4.1. Section 4.2 verifies the necessary assumptions
for the design. The library of interior components built for the proof-of-concept
contains 48 pairs of iris heights and widths between 8 mm and 15 mm, and 5 mm
and 10 mm, respectively. The 48 pairs are then used to create splines in order to
accurately interpolate any value within the range. The implementation is performed
in MATLAB.

The first proof-of-concept shows the methodology’s ability to predict the waves
within, and excitations of a slotted waveguide antenna. To show this, a 1x6 slot-
ted waveguide antenna with randomly selected irises is evaluated using the theory
presented herein and compared to a corresponding simulation in ANSYS HFSS. Ta-
ble 6.1 shows the heights and widths of the randomized antenna. Figure 6.1 shows
the ANSYS HFSS model of the 1x6 antenna. The implementation follows a work-
flow similar to that in section 2.8.2 using a convergent algorithm for finding the slot
excitations.

Figure 6.2 shows the slot excitation amplitudes and phases as predicted by the theory
in this thesis as well as their corresponding results from ANSYS HFSS. Figure 6.3
shows the error between the full wave simulation in ANSYS HFSS and the theory
implemented in MATLAB as

Error = |V
MATLAB
i − V HFSS

i |
max
i
|V HFSS
i |

(6.1)

for each slot number i. Note that the maximum error is less than 9 %. Further, from
equation (2.45b), the reflection coefficient into the antenna is Γin = 0.57 4.18° and
Γin = 0.59 6.66° as predicted by MATLAB and HFSS, respectively. The execution
time for the HFSS simulation to reach an accuracy of ∆|S| ≤ 0.0005 took approxi-
mately 3 hours and 36 minutes whereas MATLAB implementation was executed in
approximately 0.1 seconds on the same machine.

The second proof-of-concept shows how the quick evaluation of the method can
be utilized to efficiently optimize antenna design for a certain voltage mask. To
show this, the design of a 1x6 slotted waveguide antenna is optimized for a Taylor
distribution mask [21], presented in table 6.2. The optimization was performed by
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6. Proof-of-Concept

Table 6.1: The randomized iris dimensions for the first proof-of-concept.

Slot # hiris wiris
[mm] [mm]

1 11.4 6.6
2 10.6 5.6
3 9.3 5.1
4 8.7 8.5
5 13.3 8.8
6 8.5 7.9

Figure 6.1: The ANSYS HFSS design of the 1x6 slotted waveguide antenna used
in the proofs-of-concept.
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6. Proof-of-Concept
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Figure 6.2: The slot excitation amplitudes and phases as predicted by this thesis
and their corresponding results from ANSYS HFSS.
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Figure 6.3: The error in slot excitation when comparing those predicted by this
thesis and their corresponding results from ANSYS HFSS.

implementing the method from the first proof-of-concept in a particle swarm opti-
mization (PSO) algorithm [22]. The execution time for the PSO using 20 particles
and 500 iterations, with a total of 104 antenna evaluations, was approximately 2.5
minutes. Table 6.3 shows the heights and widths of the resulting antenna design.
Figure 6.4 shows the Taylor excitations, the predicted excitations and the simulated
excitations of the resulting antenna design. Figure 6.5 shows the error of the theory
prediction implemented in MATLAB and the corresponding full wave simulation in
ANSYS HFSS as compared to the voltage mask as

Error = |V
HFSS|MATLAB
i − V TAY LOR

i |
max
i
|V TAY LOR
i |

(6.2)

for each slot number i. Note that the maximum error is less than 4 %.

These two proofs-of-concept show both the validity of the methodology presented
in this master’s thesis and its possible use in design optimizations. Its main advan-
tage over full wave solvers is the immense reduction in execution time and required
resources without large loss of accuracy.

Further, the savings in time and resources increase with the size of the antenna.
Figure 6.6 shows that the code execution time for array antennas with less than
104 elements scales linearly1. An implementation with more waveguides would not

1However, as the number of coupling slots increase as N2 the code is expected to scale quadrat-
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6. Proof-of-Concept

Table 6.2: The relative voltage distribution for a Taylor excitation mask.

Slot # V TAY LOR

1 0.1025
2 0.1777
3 0.2198
4 0.2198
5 0.1777
6 0.1025

Table 6.3: The resulting iris dimensions for the second proof-of-concept.

Slot # hiris wiris
[mm] [mm]

1 9.2521 9.3198
2 12.1612 9.3337
3 11.0295 8.6770
4 10.7682 8.6853
5 11.5901 9.5986
6 8.6272 9.9775

increase scaling of the code as each additional waveguide would be calculated sep-
arately, increasing execution time linearly. In comparison, FEM methods without
adaptive meshing scale as 1

f4 , where the frequency f is inversely proportional to the
dimensions of the simulated domain2 [18].

ically for very large number of elements N .
2Note however that most commercial FEM solvers use adaptive meshing techniques and that

the problem does not scale equally in all three dimensions when increasing the number of elements.
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Figure 6.4: The slot excitation amplitudes and phases for the Taylor mask, pre-
dicted in MATLAB and simulated in HFSS, respectively.
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Figure 6.5: The error in slot excitation when comparing those predicted by this
thesis in MATLAB and their corresponding results from ANSYS HFSS with the
actual Taylor voltage mask.
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Figure 6.6: Analysis of how the code used in the proof-of-concept scales with
the number of slots. Each data point is averaged over 2× 104 evaluations of ran-
dom antennas. The angle of the curve, and therefore the scaling of the code, is
approximately 1.05.
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7
Conclusion

This master’s thesis has derived and presented a new methodology for calculating
the waves within, and the excitations of, a slotted waveguide array antenna using
simple RF circuit methods. The methodology requires an initial set of costly full
wave simulations to build a library of unit cells after which it is possible to efficiently
and accurately evaluate any array design without the need for further full wave sim-
ulations. The possibility of quickly and accurately evaluating many designs makes
the methodology especially attractive for implementation in antenna optimization.

The two proofs-of-concept in chapter 6 show both the methodology’s validity and
power when used in optimization schemes, reducing evaluation times by six orders
of magnitude for a simple 1x6 array. Further, it is shown that the implementation
scales linearly with the number of elements and thus the time gained will be larger
for larger antennas. One of the most probable sources of inaccuracy is the calculation
of the components in equations (3.45) and (3.46) as HFSS does not enable finding
these properties easily. If the components may be calculated more accurately using
other full electromagnetic domain solvers, the accuracy of the methodology may
be further increased. Furthermore, if the single mode assumptions made can be
adapted to include more modes, the accuracy would increase further.

It is important to note that although the methodology and implementations pre-
sented in this thesis have focused on narrow wall slotted rectangular arrays, it is
not limited to only this design. The only assumptions made regarding the slotted
waveguide array’s design are those relating to the single mode expansions in the
slots and between each unit cell as well as the assumption that the outer geometry
remains constant. Therefore there are no further restrictions of the interior or ex-
terior design. However to most efficiently use the methodology, all unit cells should
share the same slot and port dimensions and positions.

Future work for this master’s thesis should include analyzing the theory presented
herein in order to find which equation components have the largest effect on the
method accuracy. Such work could be used to find possible approximations, i.e. us-
ing the same outer admittance for similar array elements or ignoring coupling effects
from faraway elements, reducing the costs of the initial simulations. Furthermore,
implementing this thesis’s methodology in an optimization toolbox, including pro-
cedural simulation of additional unit cells as needed, optimization implementation,
and evaluation of final result in a full wave simulator, would increase its usability.
Finally, an expansion of the theory to include more modes in both the slots and
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7. Conclusion

within the waveguide would allow the accuracy of the method to be increased for
designs where the single mode assumption is not valid.
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A
Scattering Parameters

Scattering parameters (S-parameters) are a very powerful tool to find the ”black
box” model of a device by relating the waves into and out of its ports. Moreover, S-
parameters are fairly straight-forward to measure of a device, making it very easy to
relate theory with practice. This section first presents the typical S-parameters and
their cascade counter-part, the T-parameters, followed by their generalized counter-
parts used in this master’s thesis.

A.1 S-Parameters

The ordinary S-parameters relate the waves entering the device to the waves leaving.
The S-parameters are presented in an S-matrix where the elements are defined as

Sij = E−i
E+
j

∣∣∣∣∣
E+

k
=0 for k 6=j

∈ C. (A.1)

Here E+(−)
i is the amplitude of the electric wave traveling into (out of) port i.

Figure A.1a shows the signal flow graph for two-port S-parameters. The amplitudes
of the waves leaving the device’s ports are calculated as

E− = [S]E+ (A.2)
where E± are vectors containing all the wave amplitudes into and out of each port.
Note that due to equation (2.10), magnetic waves relate to the scattering parameters
as

H− =
[
−1 0
0 1

]
[S]
[
1 0
0 −1

]
H+ (A.3)

that is, the magnetic field gains a negative sign when reflected whereas the electric
field does not.

If the network related to the S-parameters is reciprocal, the S-matrix will be sym-
metric [13], i.e.

[S] = [S]ᵀ (A.4)
and if the network is lossless, the S-matrix is unitary [13], i.e.

[S][S]† = I (A.5)
where † denotes the conjugate transpose.
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Figure A.1: Signal flow graphs of the two types of scattering parameters.

A.2 T-Parameters

The transmission parameters (T-parameters) are similar to the S-parameters and are
typically only defined for two-ports. Whereas the S-parameters relate the incident
waves to the waves leaving the ports, the T-parameters relate the waves at one
port to those at the other port. The T-parameters is less descriptive regarding the
power flow of a component, but has the advantage of simply calculating the result
of a network of cascaded components. The T-parameters are also represented by a
matrix, the two-port T-matrix defined as[

E−1
E+

1

]
= [T]

[
E+

2
E−2

]
(A.6a)[

H−1
H+

1

]
=
[
−1 0
0 1

]
[T]

[
−1 0
0 1

] [
H+

2
H−2

]
(A.6b)

Figure A.1b shows the signal flow graph for two-port T-parameters. Note that if
two two-ports were cascaded, E±2 of the first network would equal E∓1 of the second.
The equivalent T-matrix for two cascaded components with T-matrices Ta and Tb
respectively is therefore given as

Tequiv = TaTb (A.7)

which obviously holds for longer cascade chains as well.

In order to find the T-parameters from two-port S-parameters, simply re-arrange
equation (A.2), collect the terms and identify the T-parameters. The S-parameters
can be found from the T-parameters analogously. The resulting conversion is then

S11 = T12

T22
T11 = −det([S])

S21
(A.8a)

S12 = det([T])
T22

T12 = S11

S21
(A.8b)

S21 = 1
T22

T21 = −S22

S21
(A.8c)

S22 = −T21

T22
T22 = 1

S21
(A.8d)
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A. Scattering Parameters

Then through identification, it follows that the T-matrix of a reciprocal 2-port has
det([T]) = 1 and that for a lossless 2-port the following holds

T12 = det([T])T ∗21 (A.9a)
|T11| = |T22| (A.9b)
|T12| = |T21| (A.9c)
|T11|2 = |T12|2 + 1 (A.9d)

| det([T])| = 1 (A.9e)

Note how for reciprocal lossless two-ports T12 = T ∗21 which corresponds well with
the idea that the diagonal components correspond to the transmission through the
two-port.

A.3 Generalized S- and T-Parameters

This thesis uses a relation between waves at the ports of a network similar to the
S-parameters, however also taking into account sources within the network indepen-
dent of the ports. These parameters are on the form[

E−1
E−2

]
= [S]

[
E+

1
E+

2

]
+A =

[
S11 S12
S21 S22

] [
E+

1
E+

2

]
+
[
A1
A2

]
(A.10)

where A represents the independent interior sources. These parameters may also be
related to a form of generalized T-parameters on the form[

E−1
E+

1

]
= [T]

[
E+

2
E−2

]
+B =

[
T11 T12
T21 T22

] [
E+

2
E−2

]
+
[
B1
B2

]
(A.11)

where, using the same method as before, [T] and B can be calculated from [S] and
A as

[T] =


−det([S])

S21

S11

S21

−S22

S21

1
S21

 (A.12a)

B =
[
1 −T12
0 −T22

]
A (A.12b)
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