
Chalmers Publication Library

Block-Diagonal Coding for Distributed Computing With Straggling Servers

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Information Theory Workshop (ITW)

Citation for the published paper:
Severinson, A. ; Graell i Amat, A. ; Rosnes, E. (2017) "Block-Diagonal Coding for
Distributed Computing With Straggling Servers". IEEE Information Theory Workshop
(ITW)

Downloaded from: http://publications.lib.chalmers.se/publication/252124

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/252124

Block-Diagonal Coding for Distributed Computing
With Straggling Servers

Albin Severinson† ‡, Alexandre Graell i Amat†, and Eirik Rosnes‡
†Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

‡Simula@UiB, Bergen, Norway

Abstract—We consider the distributed computing problem of
multiplying a set of vectors with a matrix. For this scenario, Li
et al. recently presented a unified coding framework and showed
a fundamental tradeoff between computational delay and com-
munication load. This coding framework is based on maximum
distance separable (MDS) codes of code length proportional to
the number of rows of the matrix, which can be very large. We
propose a block-diagonal coding scheme consisting of partitioning
the matrix into submatrices and encoding each submatrix using a
shorter MDS code. We show that the assignment of coded matrix
rows to servers to minimize the communication load can be
formulated as an integer program with a nonlinear cost function,
and propose an algorithm to solve it. We further prove that, up
to a level of partitioning, the proposed scheme does not incur
any loss in terms of computational delay (as defined by Li et al.)
and communication load compared to the scheme by Li et al..
We also show numerically that, when the decoding time is also
taken into account, the proposed scheme significantly lowers the
overall computational delay with respect to the scheme by Li et
al.. For heavy partitioning, this is achieved at the expense of a
slight increase in communication load.

I. INTRODUCTION

Distributed computing has emerged as one of the most
effective ways of tackling increasingly complex computation
problems. One of the main application areas is large-scale
machine learning and data analytics. Google routinely per-
forms computations using several thousands of servers in their
MapReduce clusters [1]. Distributed computing systems bring
significant challenges. Among them, the problems of strag-
gling servers and bandwidth scarcity have recently received
significant attention. The straggler problem is a synchro-
nization problem characterized by the fact that a distributed
computing task must wait for the slowest server to complete its
computation. On the other hand, distributed computing tasks
typically require that data is moved between servers during the
computation, the so-called data shuffling, which is a challenge
in bandwidth-constrained networks.

Coding for distributed computing to reduce the computa-
tional delay and the communication load between servers has
recently been considered in [2], [3]. In [2], a structure of
repeated computation tasks across servers was proposed, en-
abling coded multicast opportunities that significantly reduce
the required bandwidth to shuffle the results. In [3], the authors
showed that maximum distance separable (MDS) codes can be

This work was funded by the Swedish Research Council under grant 2016-
04253 and the Research Council of Norway under grant 240985/F20.

applied to a linear computation task (e.g., multiplying a vector
with a matrix) to alleviate the effects of straggling servers
and reduce the computational delay. In [4], a unified coding
framework was presented and a fundamental tradeoff between
computational delay and communication load was identified.
The ideas of [2], [3] can be seen as particular instances of the
framework in [4], corresponding to the minimization of the
communication load or the computational delay.

The distributed computing problem addressed in [4] is a ma-
trix multiplication problem where a set of vectors x1, . . . ,xN
are multiplied by a matrix A. In particular, as in [3], the
authors suggest the use of MDS codes, whose dimension is
equal to the number of rows of A, to generate some redundant
computations. In practice, the size of A can be very large.
For example, Google performs matrix-vector multiplications
with matrices of dimension of the order of 1010 × 1010 when
ranking the importance of websites [5]. Since the decoding
complexity of MDS codes on the packet erasure channel is
quadratic (for Reed-Solomon (RS) codes) in the code length
[6], for very large matrix sizes the decoding complexity may
be prohibitively high.

In this paper, we introduce a block-diagonal encoding
scheme for the distributed matrix multiplication problem. The
proposed encoding is equivalent to partitioning the matrix and
applying smaller MDS codes to each submatrix separately. The
storage design for the proposed block-diagonal encoding can
be cast as an integer optimization problem with a nonlinear
objective function, whose computation scales exponentially
with the problem size. We propose a heuristic solver for
efficiently solving the optimization problem, and a branch-
and-bound approach for improving on the resulting solution
iteratively. We exploit a dynamic programming approach to
speed up the branch-and-bound operations. We prove that up
to a certain partitioning level, partitioning does not increase the
computational delay (as defined in [4]) and the communication
load with respect to the scheme in [4]. Interestingly, when
the decoding time is taken into account, the proposed scheme
achieves an overall computational delay significantly lower
than the one of the scheme in [4]. This is due to the fact
that the proposed scheme allows using significantly shorter
MDS codes, hence reducing the decoding complexity and the
decoding time. Also, numerical results show that a high level
of partitioning can be applied at the expense of only a slight
increase in the communication load.

II. SYSTEM MODEL

We consider the problem of multiplying a set of vectors
with a matrix. In particular, given a matrix A ∈ Fm×n and
N vectors x1, . . . ,xN ∈ Fn, where F is some field, we want
to compute the N vectors y1 = Ax1, . . . ,yN = AxN . The
computation is performed in a distributed fashion using K
servers, S1, . . . , SK , where each server stores µm matrix rows,
for some 1

K ≤ µ ≤ 1. Prior to distributing the rows among
the servers, A is encoded by an r ×m encoding matrix Ψ,
resulting in the coded matrix C = ΨA, of size r × n, i.e.,
the rows of A are encoded using an (r,m) linear code with
r ≥ m.

Let q = Km
r , where we assume that r divides Km and

hence q is an integer. The r coded rows of C, c1, . . . , cr,
are divided into

(
K
µq

)
disjoint batches, each containing r/

(
K
µq

)
coded rows. Each batch is assigned to µq servers. Correspond-
ingly, a batch B is labeled by a unique set T ⊂ {S1, . . . , SK},
of size |T | = µq, denoting the subset of servers that store that
batch, and we write BT . Server Sk, k = 1, . . . ,K, stores the
coded rows of BT if and only if Sk ∈ T .

A. Probabilistic Runtime Model

We adopt the probabilistic model of the computation run-
time of [3]. We assume that running a computation on a single
server takes a random amount of time according to the shifted-
exponential cumulative probability distribution

F (t) =

{
1− e−(

t
σ−1), for t ≥ σ

0, otherwise
,

where σ is the number of multiplications and divisions re-
quired to complete the computation. We do not take addition
and subtraction into account as those operations are orders of
magnitude faster [7].

When the computation is split into K parallel subtasks
running on separate servers, we assume that the runtimes
of the subtasks are independent and identically distributed
random variables with distribution F (Kt) [3]. Furthermore,
the runtime of the g-th, g = 1, . . . ,K, fastest server to
complete its subtask is given by the g-th order statistic, F(g),
with expectation [8]

f(σ,K, g) , E
(
F(g)

)
= σ

1 +

K∑
j=K−g+1

1

j

 .

B. Distributed Computing Model

We consider the MapReduce framework described in [4],
where we assume that the input vectors x1, . . . ,xN are known
to all servers. The overall computation then proceeds in three
phases: map, shuffle, and reduce.

1) Map Phase: In the map phase, we compute in a dis-
tributed fashion coded intermediate values, which will be later
used to obtain vectors y1, . . . ,yN . Server S multiplies the
input vectors xj , j = 1, . . . , N , by all the coded rows of
matrix C it stores, i.e., it computes

Z(S)
j , {cxj : c ∈ {BT : S ∈ T }}, j = 1, . . . , N.

The map phase terminates when a set of servers G ⊆
{S1, . . . , SK} that collectively store enough values to decode
the output vectors have finished their map computations. We
denote the cardinality of G by g. The (r,m) linear code
proposed in [4] is an MDS code for which y1, . . . ,yN can
be obtained from any subset of q servers, i.e., g = q.

We define the computational delay of the map phase
as its average runtime per source row and vector y, i.e.,
Dmap = 1

mN f(
σmap

K ,K, g). Dmap is referred to simply as the
computational delay in [4]. As all K servers compute µm
inner products, each requiring n multiplications for each of
the N input vectors, we have σmap = KµmnN .

After the map phase, the computation of y1, . . . ,yN pro-
ceeds using only the servers in G. We denote by Q ⊆ G the
set of the first q servers to complete the map phase. Each
of the q servers in Q is responsible to compute N/q of the
vectors y1, . . . ,yN . Let WS be the set containing the indices
of the vectors y1, . . . ,yN server S ∈ Q is responsible for. The
remaining servers in G assist the servers in Q in the shuffle
phase.

2) Shuffle Phase: In the shuffle phase, intermediate values
calculated in the map phase are exchanged between servers in
G until all servers in Q hold enough values to compute the
vectors they are responsible for. As in [4], we allow creating
and multicasting coded messages that are simultaneously use-
ful for multiple servers. For a subset of servers S ⊂ Q and
S ∈ Q\S, we denote the set of intermediate values needed by
server S and known exclusively by the servers in S by V(S)

S .
More formally,

V(S)
S , {cxj : j ∈ WS and c ∈ {BT : T ∩ Q = S}}.

Let αj ,
(q−1
j)(K−qµq−j)
q
K (

K
µq)

and sq , inf (s :
∑µq
l=s αl ≤ 1− µ).

For each j ∈ {µq, µq − 1, . . . , sq}, and every subset S ⊆ Q
of size j + 1, the shuffle phase proceeds as follows.

1) For each S ∈ S, we evenly and arbitrarily split V(S)
S\S

into j disjoint segments V(S)
S\S = {V(S)

S\S,S̃ : S̃ ∈ S \ S},
and associate the segment V(S)

S\S,S̃ with server S̃ ∈ S\S.

2) Server S̃ ∈ S multicasts the bit-wise XOR of all the
segments associated with it in S. More precisely, it
multicasts ⊕S∈S\S̃ V

(S)

S\S,S̃ to the other servers in S \ S̃.

For every pair of servers S, S̃ ∈ S, since server S has
computed locally the segments V(S′)

S\S′,S̃ for all S′ ∈ S\{S̃, S},
it can cancel them from the message sent by server S̃, and
recover the intended segment. We finish the shuffle phase by
either unicasting any remaining needed values until all servers
in Q hold enough intermediate values to decode successfully,
or by repeating the above two steps for j = sq − 1, selecting
the strategy achieving the lower communication load.

Definition 1. The communication load, denoted by L, is the
number of messages per source row and vector y exchanged
during the shuffle phase, i.e., the total number of messages
sent during the shuffle phase divided by mN .

Depending on the strategy, the communication load after
completing the multicast phase is

∑µq
j=sq

αj
j or

∑µq
j=sq−1

αj
j

[4]. For the scheme in [4], the total communication load is

LMDS = min

 µq∑
j=sq

αj
j

+ 1− µ−
µq∑
j=sq

αj ,

µq∑
j=sq−1

αj
j

 . (1)

As in [4], we consider the cost of a multicast message to be
equal to that of a unicast message. In real systems, however,
it may vary depending on the network architecture.

3) Reduce Phase: Finally, in the reduce phase, the vectors
y1, . . . ,yN are computed. More specifically, server S ∈ Q
uses the locally computed sets Z(S)

1 , . . . ,Z(S)
N and the re-

ceived messages to compute the vectors in {yj : j ∈ WS}.
The computational delay of the reduce phase is its average
runtime per source row and output vector y, i.e., Dreduce =
1
mN f(

σreduce

q , q, q), where σreduce is given in Section IV-B.

Definition 2. The overall computational delay, D, is the sum
of the map and reduce phase delays, i.e., D = Dmap+Dreduce.

III. BLOCK-DIAGONAL CODING

We introduce a block-diagonal encoding matrix of the form

Ψ =

ψ1

. . .
ψT

 ,
where ψ1, . . . ,ψT are r

T ×
m
T encoding matrices of an (rT ,

m
T)

MDS code, for some integer T that divides m and r. Note that
the encoding given by Ψ amounts to partitioning the rows
of A into T disjoint submatrices A1, . . . ,AT and encoding
each submatrix separately. We refer to an encoding Ψ with
T disjoint submatrices as a T -partitioned scheme, and to
the submatrix of C = ΨA corresponding to ψi as the i-
th partition. We remark that all submatrices can be encoded
using the same encoding matrix, i.e., ψi = ψ, i = 1, . . . , T ,
reducing the storage requirements, and encoding/decoding can
be performed in parallel if many servers are available. We
further remark that the case Ψ = ψ (i.e., the number of
partitions is T = 1) corresponds to the scheme in [4], which
we will sometimes refer to as the unpartitioned scheme.

A. Assignment of Coded Rows to Batches

For a block-diagonal encoding matrix Ψ, we denote by c(t)i ,
t = 1, . . . , T and i = 1, . . . , r/T , the i-th coded row of C
within partition t. For example, c(2)1 denotes the first coded
row of the second partition. As described in Section II, the
coded rows are divided into

(
K
µq

)
disjoint batches. To formally

describe the assignment of coded rows to batches we use a(
K
µq

)
× T integer matrix P = [pi,j], where pi,j describes the

number of rows from partition j that are stored in batch i.
Note that, due to the MDS property, any set of m/T rows of
a partition is sufficient to decode the partition. Thus, without
loss of generality, we consider a sequential assignment of rows
of a partition into batches. For example, for the assignment P

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
5 c

(3)
1 c

(4)
1 c

(5)
1 c

(5)
3

c
(1)
6 c

(3)
2 c

(4)
2 c

(5)
2 c

(5)
4

Server S4

c
(2)
1 c

(3)
3 c

(4)
3 c

(5)
1 c

(5)
5

c
(2)
2 c

(3)
4 c

(4)
4 c

(5)
2 c

(5)
6

Server S5

c
(2)
3 c

(3)
5 c

(4)
5 c

(5)
3 c

(5)
5

c
(2)
4 c

(3)
6 c

(4)
6 c

(5)
4 c

(5)
6

Server S6

Fig. 1. Storage design for m = 20, N = 4, K = 6, q = 4, µ = 1/2, and
T = 5.

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 x3⊕ c(1)3 x2

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
2 x3⊕ c(2)5 x1

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
4 x2⊕ c(2)6 x1

Fig. 2. Multicasting coded values between servers S1, S2, and S3.

in Example 1 (see (2)), rows c(1)1 and c(1)2 are assigned to batch
1, c(1)3 and c(1)4 are assigned to batch 2, and so on. The rows
of P are labeled by the subset of servers the corresponding
batch is stored at, and the columns are labeled by its partition
index. We refer to the pair (Ψ,P) as the storage design. The
assignment matrix P must satisfy the following conditions.

1) The entries of each row of P must sum to the batch
size, i.e.,

∑T
j=1 pi,j = r/

(
K
µq

)
, 1 ≤ i ≤

(
K
µq

)
.

2) The entries of each column of P must sum to the

number of rows per partition, i.e.,
∑(Kµq)
i=1 pi,j =

r
T , 1 ≤

j ≤ T .

Example 1 (m = 20, N = 4, K = 6, q = 4, µ = 1/2,
T = 5). For these parameters, there are r/T = 6 coded rows
per partition, of which m/T = 4 are sufficient for decoding,
and

(
K
µq

)
= 15 batches, each containing r/

(
K
µq

)
= 2 coded

rows. We construct the storage design shown in Fig. 1 with
assignment matrix

P =

1 2 3 4 5

(S1, S2) 2 0 0 0 0
(S1, S3) 2 0 0 0 0
(S1, S4) 2 0 0 0 0
(S1, S5) 0 2 0 0 0

...
...

(S4, S6) 0 0 0 0 2
(S5, S6) 0 0 0 0 2

, (2)

where rows are labeled by the subset of servers the batch is
stored at, and columns are labeled by the partition index. For
this storage design, any g = 4 servers collectively store at least
4 coded rows from each partition. However, some servers store
more rows than needed to decode some partitions, suggesting
that this storage design is suboptimal.

Assume G = {S1, S2, S3, S4} is the set of g = 4
servers that finish their map computations first. Also, assign
vector yi to server Si, i = 1, 2, 3, 4. We illustrate the
coded shuffling scheme for S = {S1, S2, S3} in Fig. 2.
S1 multicasts c(1)1 x3⊕ c(1)3 x2 to S2 and S3. Since S2 and
S3 can cancel c(1)1 x3 and c(1)3 x2, respectively, both servers
receive one needed intermediate value. Similarly, S2 multicasts
c
(1)
2 x3⊕ c(2)5 x1, while S3 multicasts c(1)4 x2⊕ c(2)6 x1. This

process is repeated for S = {S2, S3, S4}, S = {S1, S3, S4},

and S = {S1, S2, S4}. After the shuffle phase, we have sent
12 multicast messages and 30 unicast messages, resulting in
a communication load of (12 + 30)/20/4 = 0.525, a 50%
increase from the load of the unpartitioned scheme (0.35,
given by (1)). In this case, S1 received additional intermediate
values from partition 2, despite already storing enough, further
indicating that the assignment in (2) is suboptimal.

IV. PERFORMANCE OF THE BLOCK-DIAGONAL CODING

In this section, we analyze the performance impact of
partitioning. We have the following theorem.

Theorem 1. For T ≤ r/
(
K
µq

)
there exists an assignment matrix

P such that the communication load and computational delay
of the map phase are equal to those of the unpartitioned
scheme.

A. Communication Load

For the unpartitioned scheme of [4], G = Q, and the
number of remaining values that need to be unicasted after
the multicast phase is constant, regardless which subset Q of
servers finish first their map computations. However, for the
block-diagonal (partitioned) coding scheme, both g and the
number of remaining unicasts may vary.

For a given assignment P and a specific Q, we denote
by U

(S)
Q (P) the number of remaining values needed after

the multicast phase by server S ∈ Q, and by UQ(P) ,∑
S∈Q U

(S)
Q (P) the total number of remaining values needed

by the servers in Q. Let Qq denote the superset of all sets Q
and define LQ , 1

mN
1
|Qq|

∑
Q∈Qq UQ(P). Then, for a given

storage design (Ψ,P), the communication load of the block-
diagonal coding scheme is given by

LBDC(Ψ,P) = min

 µq∑
j=sq

αj
j

+ LQ,

µq∑
j=sq−1

αj
j

+ LQ

 , (3)

where LQ depends on the shuffling scheme (see Section II-B2)
and is different in the first and second term of the minimization
in (3). To evaluate U

(S)
Q , we count the total number of

intermediate values that need to be unicasted to server S until
it holds m/T intermediate values from each partition.

For a given Ψ, the assignment of rows into batches can be
formulated as an optimization problem, where one would like
to minimize LBDC over all assignments P . More precisely, the
optimization problem is minP∈P LBDC(Ψ,P), where P is the
set of all assignments P , and where the dependence of LBDC
on P is nonlinear. This is a computationally complex problem
since both the complexity of evaluating the performance of
a given assignment and the number of assignments scale
exponentially in the problem size.

B. Computational Delay

We consider the delay incurred by both the map and reduce
phases (see Definition 2). Note that in [4] only Dmap is
considered, i.e., D = Dmap. However, one should not neglect
the computational delay incurred by the reduce phase. Thus,
one should consider D = Dmap +Dreduce. The reduce phase
consists of decoding the N output vectors and hence the delay

it incurs depends on the code and decoding algorithm. We
assume that each partition is encoded using an RS code and is
decoded using the Berlekamp-Massey algorithm. We measure
the decoding complexity by its associated shifted-exponential
parameter σ (see Section II-A).

The number of field multiplications required to decode an
(r/T,m/T) RS code is (r/T)2ξ [7], where ξ is the fraction
of erased symbols. With ξ upperbounded by 1− q

K (the map
phase terminates when a fraction of at least q

K symbols from
each partition is available) the complexity of decoding the T
partitions for all N output vectors is at most

σreduce =
r2(1− q

K)N

T
. (4)

The decoding complexity of the scheme in [4] is given by
evaluating (4) for T = 1. By choosing T close to r, we can
thus significantly reduce the delay of the reduce phase.

V. ASSIGNMENT SOLVERS

We propose two solvers for the problem of assigning rows
into batches: a heuristic solver that is fast even for large
problem instances, and a hybrid solver combining the heuristic
solver with a branch-and-bound solver. The branch-and-bound
solver produces an optimal assignment but is significantly
slower, hence it can be used as stand-alone only for small
problem instances. We use a dynamic programming approach
to speed up the branch-and-bound solver by caching U (S)

Q for
all Q ∈ Qq , indexed by the batches each U

(S)
Q is computed

from. This way we only need to update the affected U (S)
Q when

assigning a row to a batch. For all solvers, we first label the
batches lexiographically and then optimize LBDC in (3). The
solvers are available under the Apache 2.0 license [9].

A. Heuristic Solver
The heuristic solver creates an assignment matrix P in two

steps. We first set each entry of P to γ ,
⌊
r/
((

K
µq

)
· T
)⌋

,

thus assigning the first
(
K
µq

)
γ rows of each partition to batches

such that each batch is assigned γT rows. Let d = r/
(
K
µq

)
−γT

be the number of rows that still need to be assigned to each
batch. The r/T−

(
K
µq

)
γ rows per partition not assigned yet are

assigned in the second step as given in the algorithm below.

Input : P , d, K, T , and µq
for 0 ≤ a < d

(
K
µq

)
do

i← ba/dc+ 1
j ← (a mod T) + 1
pi,j ← pi,j + 1

end
return P

B. Branch-and-Bound Solver
The branch-and-bound solver finds an optimal solution by

recursively branching at each batch for which there is more
than one possible assignment and considering all options. For
each branch, we lowerbound the value of the objective function
of any assignment in that branch and only investigate branches
with possibly better assignments.

1.00

1.05

1.10

1.15
L

Heuristic
Hybrid
Random

100 101 102 103 104

T

0.6
0.7
0.8
0.9
1.0
1.1
1.2

D

Fig. 3. The tradeoff between partitioning and performance for m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3.

1) Branch: For the first row of P with remaining assign-
ments, branch on every available assignment for that row.

2) Bound: We keep a record of all nonzero U
(S)
Q for all

Q and S, and index them by the batches they are computed
from. An assignment to a batch can at most reduce LBDC by
1/ (mN |Qq|) for each nonzero U

(S)
Q indexed by that batch,

and we lowerbound LBDC for a subtree by assuming that no
U

(S)
Q will drop to zero for any subsequent assignment.

C. Hybrid Solver

We first find a candidate solution using the heuristic solver
and then iteratively improve it using the branch-and-bound
solver. In particular, we decrement by 1 a random set of
elements of P and then use the branch-and-bound solver to
reassign the corresponding rows optimally. We repeat this
process until the average improvement between iterations
drops below some threshold.

VI. NUMERICAL RESULTS

In Figs. 3 and 4, we plot the performance of the proposed
block-diagonal coding scheme with assignment P given by
the heuristic and the hybrid solvers. We normalize the per-
formance by that of the unpartitioned scheme of [4]. We also
give the average performance over 100 random assignments.

In Fig. 3, we plot the normalized communication load (L)
and overall computational delay (D) as a function of the
number of partitions T . The system parameters are m = 6000,
n = 6000, K = 9, q = 6, N = 6, and µ = 1/3. For up
to r/

(
K
µq

)
= 250 partitions, the proposed scheme does not

incur any loss in Dmap and communication load with respect
to the unpartitioned scheme. However, the proposed scheme
yields a significantly lower D compared to the scheme in [4]
(about 40% speedup for T > 50). For heavy partitioning
(around T = 800) a tradeoff between partitioning level,
communication load, and map phase delay is observed. With
3000 partitions (the maximum possible), there is about a 10%
increase in communication load. Note that the gain in overall
computational delay saturates with the partitioning level, thus
there is no reason to partition beyond a given level.

In Fig. 4, we plot the normalized performance for a constant
µq = 2, n = 10000, µm = 2000, m/T = 10 rows per

0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06

L

Heuristic
Random

100 101 102 103

K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D

Fig. 4. Performance dependence on system size for µq = 2, n = 10000,
µm = 2000, m/T = 10 rows per partition, and code rate m/r = 2/3.

partition, and code rate m/r = 2/3 as a function of the number
of servers, K. The results shown are averages over 1000
randomly generated realizations of G as it is computationally
unfeasible to evaluate the performance exhaustively in this
case. The heuristic solver outperforms the random assignments
for small K, but as K grows the performance of both solvers
converge. The delay is an order of magnitude lower than that
of the scheme in [4] for the largest system considered.

VII. CONCLUSION

We introduced a block-diagonal coding scheme for dis-
tributed matrix multiplication based on partitioning the ma-
trix into smaller submatrices. Compared to earlier (MDS)
schemes, the proposed scheme yields a significantly lower
computational delay with no increase in communication load
up to a level of partitioning. For instance, for a square matrix
with 6000 rows and columns, the proposed scheme reduces
the computational delay by about 40% when the number of
partitions T > 50. We have also considered fountain codes,
and will present the results in an extension of this paper.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proc. 6th Symp. Operating Systems Design &
Implementation, San Francisco, CA, Dec. 2004, pp. 137–149.

[2] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in Proc. Annual Allerton Conf. Commun., Control, and Computing,
Monticello, IL, Sep./Oct. 2015, pp. 964–971.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proc. IEEE
Int. Symp. Inf. Theory, Barcelona, Spain, Jul. 2016, pp. 1143–1147.

[4] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
Workshop Network Coding and Appl., Washington, DC, Dec. 2016.

[5] H. Ishii and R. Tempo, “The PageRank problem, multiagent consensus,
and web aggregation: A systems and control viewpoint,” IEEE Control
Systems, vol. 34, no. 3, pp. 34–53, Jun. 2014.

[6] G. Garrammone, “On decoding complexity of Reed-Solomon codes on
the packet erasure channel,” IEEE Commun. Lett., vol. 17, no. 4, pp.
773–776, Apr. 2013.

[7] Z. Li, J. Higgins, and M. Clement, “Performance of finite field arithmetic
in an elliptic curve cryptosystem,” in Proc. Int. Symp. Model. Anal. Simul.
Comput. Telecommun. Syst., Cincinnati, OH, Aug. 2001, pp. 249–256.

[8] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in
Order Statistics, 2nd ed. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2008.

[9] A. Severinson, “Coded Computing Tools in Python,” Aug. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.844866

