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Abstract—We propose an information-theoretic private infor-
mation retrieval (PIR) scheme for distributed storage systems
where data is stored using a linear systematic code of rate
R > 1/2. The proposed scheme generalizes the PIR scheme for
data stored using maximum distance separable codes recently
proposed by Tajeddine and El Rouayheb for the scenario of a
single spy node. We further propose an algorithm to optimize the
communication price of privacy (cPoP) using the structure of the
underlying linear code. As an example, we apply the proposed
algorithm to several distributed storage codes, showing that the
cPoP can be significantly reduced by exploiting the structure of
the distributed storage code.

I. INTRODUCTION

In data storage applications, besides resilience against disk
failures and data protection against illegitimate users, the
privacy of the data retrieval query may also be of concern.
For instance, one may be interested in designing a storage
system in which a file can be downloaded without revealing
any information of which file is actually downloaded to the
servers storing it. This form of privacy is usually referred to as
private information retrieval (PIR). PIR is important to, e.g.,
protect users from surveillance and monitoring.

PIR protocols were first studied by Chor et al. in [1], which
introduced the concept of an n-server PIR protocol, where a
binary database is replicated among n non-colluding servers
(referred to as nodes) and the aim is to privately retrieve a
single bit from the database while minimizing the total upload
and download communication cost. The communication cost
in [1] was further reduced in [2] and references therein. Since
then, coded PIR schemes have been introduced, where the
database is encoded (as opposed to simply being replicated)
across several nodes [3]. With the advent of distributed storage
systems (DSSs), where the database is encoded and then
stored on n nodes, there has been an increasing interest in
implementing coded PIR protocols for these systems. PIR
protocols for DSSs, where data is stored using codes from
two explicit linear code constructions (one protocol for each
code construction), were presented in [4], and information-
theoretic lower bounds on the tradeoff between the storage
cost and the retrieval cost were provided in [5]. In [6], the
authors introduced PIR codes which when used in conjunction
with traditional n-server PIR protocols allow to achieve PIR on
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DSSs. These codes achieve high code rates without sacrificing
on the communication cost of an n-server PIR protocol.
Recently, the authors in [7] proposed a coded PIR protocol
for DSSs that use an (n, k) maximum distance separable
(MDS) code for storing data on n storage nodes. The proposed
protocol achieves privacy in the presence of at most n − k
colluding nodes. In addition, when there are no colluding
nodes, the protocol achieves the lowest possible amount of
downloaded data per unit of stored data, referred to as the
communication price of privacy (cPoP).

In the storage community, it is well known that MDS codes
are inefficient in the repair of failed nodes. Repair is essential
to maintain the initial state of reliability of the DSS. To address
efficient repair, Pyramid codes [8] and locally repairable codes
(LRCs) [9], have been proposed. They achieve low locality,
i.e., a low number of nodes need to be contacted to repair a
single failed node.

In this paper, for the scenario with no colluding nodes (i.e.,
a single spy node), we extend the PIR protocol from [7] to
a more general case where data is stored using an arbitrary
systematic linear storage code of rate R > 1/2. We show that
the cPoP can be optimized using the structure of the code, and
we provide an algorithm to search for an optimal (in terms of
the lowest possible cPoP) protocol. We present the optimal
cPoP that can be achieved for various linear codes, including
LRCs and Pyramid codes. Interestingly, our numerical results
show that non-MDS codes can also achieve the lower bound
on the cPoP provided in [5]. Our work bears some similarities
to the parallel work in [10], where a PIR protocol protecting
against multiple colluding nodes for any linear storage code
was presented. However, we show that our extended protocol
achieves better cPoP for the scenario of a single spy node.

II. SYSTEM MODEL

We consider a DSS that stores f files X(1),X(2), . . . ,X(f),
where each file X(m) = [x

(m)
ij ], m = 1, . . . , f , is a β × k

matrix over GF(qα`), with β, k, α, and ` being positive
integers and q some prime number. Each file is divided
into β stripes (blocks) and encoded using a linear code as
follows. Let x

(m)
i = (x

(m)
i,1 , x

(m)
i,2 , . . . , x

(m)
i,k ), i = 1, . . . , β,

be a message vector (corresponding to the i-th row of
X(m)) that is encoded by an (n, k) linear code C over
GF(qα), having subpacketization α, into a length-n code-
word c

(m)
i = (c

(m)
i,1 , c

(m)
i,2 , . . . , c

(m)
i,n ), where c(m)

i,j ∈ GF(qα`).
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Fig. 1. System Model. (a) The colored boxes in each storage node represent
the f coded chunks pertaining to the f files. (b) Coded chunk corresponding to
the 2nd file in the n-th node. It consists of β code symbols, c(2)i,n, i = 1, . . . , β.
(c) The user sends the queries Q(j), j = 1, . . . , n, to the storage nodes and
receives responses rj .

When α = 1, the code C is referred to as a scalar code.
Otherwise, the code is called a vector code [11]. The βf
generated codewords c

(m)
i are then arranged in the array

C = ((c
(1)
1 )>| . . . |(c(1)β )>|(c(2)1 )>| . . . |(c(f)β )>)> of dimen-

sion βf×n, where (·)> denotes the transpose of its argument
and (v1| . . . |vβf ) denotes the concatenation of column vectors
v1, . . . ,vβf . For a given column j of C, we denote the vector
(c

(m)
1,j , c

(m)
2,j , . . . , c

(m)
β,j ) as a coded chunk pertaining to file m.

Then the f coded chunks in column j are stored on the j-th
node as shown in Fig. 1(a). We also assume that the (n, k) code
C is systematic and that the first k code symbols of c

(m)
i are

message symbols. Accordingly, we say that the first k nodes
are systematic nodes and the remaining nodes are parity nodes.

A. Privacy Model

We consider a DSS where any single node may act as a spy
node. Let s ∈ {1, . . . , n} denote the spy node in the DSS. The
role of the spy node is to determine which file, m, is accessed
by the user. We assume that the user does not know s, since
otherwise it can trivially achieve PIR by avoiding contacting
the spy node. In addition, the remaining non-spy nodes do not
collaborate with the spy node. To retrieve file X(m) from the
DSS, the user sends a d×βf matrix query Q(j) = [q

(j)
il ] over

GF(qα) ⊆ GF(qα`) to the j-th node for all j ∈ {1, . . . , n}.
Depending on the queries, node j sends the column vector

rj = (rj,1, . . . , rj,d)
> = Q(j)(c

(1)
1,j , c

(1)
2,j , . . . , c

(1)
β,j , . . . , c

(f)
β,j)
>,
(1)

referred to as the response vector, back to the user as illustrated
in Fig. 1(c). The following definition shows how such a
scheme can achieve perfect information-theoretic PIR.

Definition 1. Consider a DSS with n nodes storing f files
in which a node s ∈ {1, . . . , n} acts as a spy. A user who
wishes to retrieve the m-th file sends the queries Q(j), j =
1, . . . , n, to all storage nodes, which return the responses rj .

This scheme achieves perfect information-theoretic PIR if and
only if

Privacy : H(m|Q(s)) = H(m) (2a)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0, (2b)

where H(·) denotes the entropy function.

Queries satisfying (2a) ensure that the spy node is not able
to determine which file is being downloaded by the user. The
recovery constraint in (2b) ensures that the user is able to
recover the requested file from the responses sent by the DSS.

The efficiency of a PIR scheme is defined as the total
amount of downloaded data per unit of retrieved data, since it
is assumed that the content of the retrieved file dominates the
total communication cost, i.e., ` is much larger than f [7].

Definition 2. The cPoP of a PIR scheme, denoted by θ, is the
total amount of downloaded data per unit of retrieved data,

θ =
nd

βk
.

It was shown in [5, Th. 3] that the cPoP for a DSS with a
single spy node is lowerbounded by 1

1−R for a special kind of
linear retrieval schemes, where R is the rate of the linear code
used to store the data in the DSS. In the case of more than
one spy node, an explicit lower bound is currently unknown.

III. CONSTRUCTION

In this section, we present a PIR scheme for a DSS where
any node may be a spy node. The DSS uses an (n, k)
systematic linear code over GF(qα), of rate R = k/n > 1/2
and subpacketization α. The code is defined by its parity-check
matrix, H , of size (n − k) × n, and its minimum distance
is denoted by dmin. Since the code is systematic, H can be
written as H = (P |I), where I is an (n − k) × (n − k)
identity matrix and P is an (n − k) × k parity matrix. In
the following, let d̃min denote the minimum distance of the
(ñ = k, k̃ ≥ 2k − n) code, denoted by C̃, defined by the
parity-check matrix H̃ = P . We choose d = k and design
the n queries as

Q(l) =

{
U + V (l), if l = 1, . . . , k

U , if l = k + 1, . . . , n
, (3)

where U = [uij ] is a k × βf matrix whose elements uij are
chosen independently and uniformly at random from GF(qα),
and V (l) = [v

(l)
ij ] is a k×βf deterministic binary matrix over

GF(qα). Note that each k × βf query matrix Q(l) represents
k subqueries, where each subquery corresponds to a row of
Q(l), and where v(l)ij = 1 means that the j-th symbol in node
l is accessed by the i-th subquery of Q(l).

Let E = [eij ] be a k × k binary matrix, where eij = 1
represents the i-th subquery of the j-th query accessing a
message symbol. The design of V (l) depends on the structure
of E, which must satisfy the following conditions.

1) The user should be able to recover β unique symbols of
the requested file X(m) from the i-th subquery of all k
queries, i.e., each row of E should have exactly β ones.



2) The user should be able to recover β unique symbols of
the requested file X(m) from each query (consisting of k
subqueries), i.e., each column in E should have β ones.

3) The user should be able to recover all βk symbols of
the requested file X(m). This means that all rows of E
(considered here as length-k erasure patterns, with a one
indicating an erasure) should be correctable by a maximum
likelihood (ML) decoder for the (ñ = k, k̃ ≥ 2k−n) code
C̃ on the binary erasure channel (BEC), i.e., the rows of E
considered as erasure patterns are ML-correctable by C̃.

From conditions 1) and 2) it follows that E is a regular
matrix with β ones in each row and column. Condition 3)
ensures the recovery condition (see (2b)). Details are given
in the proof of Theorem 1. Given E, V (l) has the following
structure

V (l) =
(
0k×(m−1)β | ∆l | 0k×(f−m)β

)
,

where 0i×j denotes the i×j all-zero matrix and ∆l is a k×β
binary matrix. For l = 1, . . . , k,

∆l =
(
ω>
π(j

(l)
1 )

| ω>
π(j

(l)
2 )

| . . . | ω>
π(j

(l)
k )

)>
, (4)

where π : {0, . . . , β} → {0, . . . , β} is an arbitrary permutation
of size β + 1 with a fixed point at zero, i.e., π(0) = 0, ωt,
t = 1, . . . , β, is the t-th β-dimensional unit vector, i.e., a
length-β weight-1 binary vector with a single 1 at the t-th
position, ω0 is the all-zero vector of length β, and

j
(l)
i =

{
z
(l)
i , if eil = 1

0, otherwise
,

where z
(l)
i ∈ {1, . . . , β} and z

(l)
i 6= z

(l)
i′ for i 6= i′,

i, i′ = 1, . . . , k. In the following lemma, we show that
such a construction of the queries ensures that the privacy
condition (2a) is satisfied.

Lemma 1. Consider a DSS that uses an (n, k) linear code
with subpacketization α to store f files, each divided into β
stripes, and assume the privacy model with a single spy node.
Then, the queries Q(j), j = 1, . . . , n, designed as in (3) satisfy
H(m|Q(s)) = H(m), where s ∈ {1, . . . , n} is the spy node.

Proof: The queries Q(j), j = 1, . . . , k, are a sum of
a random matrix U and a deterministic matrix V (j). The
resulting queries have elements that are independently and
uniformly distributed at random from GF(qα). The same holds
for the remaining queries as they are equal to U . Hence, any
Q(j) obtained by the spy node is statistically independent of
m. This ensures that H(m|Q(s)) = H(m).

In order to show that the proposed PIR protocol achieves
perfect information-theoretic PIR, it remains to be proved that
from the responses rj in (1), sent by the nodes back to the user,
one can recover the requested file, i.e., that the constructed PIR
scheme satisfies the recovery condition in (2b). We call each
symbol of the response rj a subresponse symbol generated
from the corresponding subquery.

Theorem 1. Consider a DSS that uses an (n, k) linear code
with subpacketization α to store f files, each divided into β
stripes. In order to retrieve the file X(m), m = 1, . . . , f ,
from the DSS, the user sends the queries Q(j), j = 1, . . . , n,
in (3) to the n storage nodes. Then, for the responses rj in (1)
received by the user, H(X(m)|r1, r2, . . . , rn) = 0.

The proof is given in the extended version of the paper
[12]. Theorem 1 generalizes [7, Th. 1] to any linear code
with rate R > 1/2. We remark that for the theorem to hold
there is an implicit assumption that the three requirements
for the matrix E mentioned above are all satisfied (E is
used in the construction of the queries Q(j)). Thus, the
parameter β (which is not explicitly mentioned in the theorem)
has to be carefully selected such that a β-regular matrix
E (satisfying the third requirement) actually exists. In the
following corollary, we provide such a particular value of β.

Corollary 1. For β = d̃min − 1, it holds that

H(X(m)|r1, r2, . . . , rn) = 0, (5)

and the cPoP becomes θ = n
β = n

d̃min−1
.

Proof: (5) follows directly from Theorem 1, since all
erasure patterns of weight less than d̃min are ML-correctable,
and θ = n

d̃min−1
follows also from d = k.

In [10], a PIR protocol achieving a cPoP of θ̄ ≥ n
dmin−1 ,

with equality when dmin−1 is a divisor of k, was given. Note
that dmin ≤ d̃min, and thus θ ≤ θ̄ for our construction.

Example 1. Consider a DSS that uses a (5, 3) scalar (α = 1)
binary linear code to store a single file by dividing it into β
stripes. The code is defined by the parity-check matrix

H = (P |I) =

(
1 1 0 1 0
0 1 1 0 1

)
.

To determine the value of the parameter β, we compute the
minimum distance d̃min of the (ñ = 3, k̃ = 1) linear code with
parity-check matrix H̃ = P . From H̃ it follows that d̃min = 3.
Hence, from Corollary 1, β = d̃min − 1 = 2. Let the file to be
stored be denoted by the 2 × 3 matrix X = [xij ], where the
message symbols xij ∈ GF(2`) for a positive integer `. Then,

C =

(
x11 x12 x13 x11 + x12 x12 + x13
x21 x22 x23 x21 + x22 x22 + x23

)
.

The user wants to download the file X from the DSS and
sends a query Q(j), j = 1, . . . , 5, to the j-th storage node.
The queries take the form shown in (3). For l = 1, . . . , 3, we
construct the matrix V (l) = ∆l by choosing an appropriate
E. The only condition in the choice of E is that it is β-regular.
We choose

E =

1 0 1
1 1 0
0 1 1


and construct ∆1 according to (4). Focusing on the first
column of E, we can see that the first two rows have a one
in the first position. Thus, we choose j(1)1 = 2, j(1)2 = 1, and



j
(1)
3 = 0, since e11 = 1, e21 = 1, and e31 = 0, and take the

permutation 0→ 0, 1→ 2, and 2→ 1 as π to get

∆1 =

ωπ(2)
ωπ(1)
ωπ(0)

 =

1 0
0 1
0 0

 .

In a similar fashion, we construct

∆2 =

0 0
1 0
0 1

 and ∆3 =

0 1
0 0
1 0

 .

The queries Q(j) are sent to the respective nodes and the
responses

r1 =
( u11x11+u12x21+x11
u21x11+u22x21+x21
u31x11+u32x21

)
=

(
I1+x11

I4+x21

I7

)
,

r2 =
( u11x12+u12x22
u21x12+u22x22+x12
u31x12+u32x22+x22

)
=

(
I2

I5+x12

I8+x22

)
,

r3 =
( u11x13+u12x23+x23

u21x13+u22x23
u31x13+u32x23+x13

)
=

(
I3+x23

I6
I9+x13

)
,

r4 =
(
u11 u12
u21 u22
u31 u32

) (
x11+x12
x21+x22

)
=

(
I1+I2
I4+I5
I7+I8

)
,

r5 =
(
u11 u12
u21 u22
u31 u32

) (
x12+x13
x22+x23

)
=

(
I2+I3
I5+I6
I8+I9

)
,

where Ii =
∑2
j=1 utjxjs and i = 3(t − 1) + s, with

s, t = 1, . . . , 3, are collected by the user. Notice that each
storage node sends back k = 3 symbols. The user obtains the
requested file as follows. Knowing I2, the user obtains I1 and
I3 from the first components of r4 and r5. This allows the
user to obtain x11 and x23. In a similar fashion, knowing I6
the user gets I5 from the second component of r5, then uses
this to obtain I4 from the second component of r4. This allows
the user to obtain x21 and x12. Similarly, knowing I7 allows
the user to get I8 from the third component of r4. Knowing
I8 allows the user to obtain I9 from the third component of
r5, which then allows to recover the symbols x22 and x13. In
this way, the user recovers all symbols of the file and hence
recovers X . Note that θ = 5·3

2·3 = 2.5, which is equal to the
lower bound 1/(1−R).

IV. OPTIMIZING THE COMMUNICATION PRICE OF
PRIVACY

In the previous section, we provided a construction of a
PIR scheme for DSSs that use an arbitrary linear systematic
code to store data and showed that a cPoP of n/(d̃min − 1) is
achievable while maintaining information-theoretic PIR (see
Theorem 1 and Corollary 1). In this section, we provide an
algorithm (based on Theorem 1) to further lower the cPoP
taking the structure of the underlying code into consideration.
The algorithm is outlined in Algorithm 1.

The main issues that need to be addressed are the ef-
ficient enumeration of the set of erasure patterns of a
given weight β that can be corrected under ML decod-
ing of C̃, and the efficient computation of the matrix E.
Such ML-correctable erasure patterns are binary vectors

Algorithm 1: Optimizing the cPoP
Input : Distributed storage code C of length n
Output: Optimized matrix Eopt and largest possible β

1 β ← d̃min − 1
2 Eopt ← ∅, βopt ← β

3 while β ≤ ñ− k̃ do
4 L ← ComputeErasurePatternList(C̃, β)
5 if L 6= ∅ then
6 E ← ComputeMatrix(L)
7 if E 6= ∅ then
8 Eopt ← E, βopt ← β
9 else

10 return (Eopt, βopt)
11 end
12 end
13 β ← β + 1
14 end
15 return (Eopt, βopt)

(of length ñ = k) which can be ML-decoded on the
BEC when the positions corresponding to the 1-entries are
erased by the channel. These issues are addressed by the
subprocedures ComputeErasurePatternList(C̃, β) and
ComputeMatrix(L), in Lines 4 and 6, respectively, of
Algorithm 1, and discussed below in Sections IV-A and IV-B.

We remark that the algorithm will always return Eopt 6= ∅,
since initially β = d̃min − 1. Then, in the first iteration of the
main loop, the list L will contain all length-k binary vectors
of weight β = d̃min−1 < d̃min. Thus, any vector that is shift-
variant (i.e., the k cyclic shifts are all different) can be chosen
for the first row of E. The remaining rows of E are obtained
by cyclically shifting the first row (the i-th row is obtained
by cyclically shifting the first row i times). In the particular
case of C being an MDS code, dmin = d̃min = n − k + 1,
the algorithm will do exactly one iteration of the main loop,
and the overall PIR scheme reduces to the one described in
[7, Sec. IV].

A. ComputeErasurePatternList(C̃, β)
Computing a list of erasure patterns that are correctable

under ML decoding for a given short code can be done using
any ML decoding algorithm. For small codes C̃, all length-
k binary vectors of weight β that are ML-correctable can be
found using an exhaustive search, while for longer codes a ran-
dom search can be performed, in the sense of picking length-
k binary vectors of weight β at random, and then verifying
whether or not they are ML-correctable. Alternatively, one can
apply a random permutation π to the columns of H̃ , apply the
Gauss-Jordan algorithm on the resulting matrix to transform it
into row echelon form, collect a subset of size β of the column
indices of leading-one-columns, and finally apply the inverse
permutation of π to this subset of column indices. The leading-
one-columns are the columns containing a leading one, where
the first nonzero entry in each matrix row of a matrix in row
echelon form is called a leading one. This will give the support



set of an ML-correctable erasure pattern of weight β that can
be added to L. Finally, one can check whether all cyclic shifts
of the added erasure pattern are ML-correctable or not and
add the ML-correctable cyclic shifts to L.

B. ComputeMatrix(L)

Given the list L of erasure patterns that are correctable under
ML decoding, we construct a |L|×k matrix, denoted by Ψ =
[ψij ], in which each row is one of these patterns. The problem
is now to find a k × k submatrix of constant column weight
β (and constant row weight β). This can be formulated as an
integer program (in the integer variables η1, η2, . . . , η|L|) in
the following way,

maximize
∑|L|
i=1 ηi

s. t.
∑|L|
i=1 ηiψij = β, ∀j ∈ {1, . . . , k},

ηi ∈ {0, 1}, ∀i ∈ {1, . . . , |L|}, and∑|L|
i=1 ηi = k.

(6)

A valid k×k submatrix of Ψ is constructed from the rows of
Ψ with corresponding η-values of one in any feasible solution
of (6). When |L| is large, solving (6) may become impractical
(solving a general integer program is known to be NP-hard),
in which case one can take several random subsets of the list
L of some size, construct the corresponding matrices Ψ, and
try to solve the program in (6). Finally, before solving (6),
one may check whether there are erasure patterns in L with
all its cyclic shifts (assuming they are all different) also in
L, in which case the corresponding submatrix of Ψ will be a
valid k × k matrix E.

V. NUMERICAL RESULTS

We present optimized values for the cPoP for different
systematic linear codes. The results are tabulated in Table I,
where θLB = 1/(1−R) is the lower bound on the cPoP taken
from [5, Th. 5], θopt is the optimized value computed from
Algorithm 1, and θnon−opt = n/(d̃min − 1). The code C1 in
the table is from Example 1, C2 is an (11, 6) binary linear
code with optimum minimum distance, while codes C3 and
C5 are Pyramid codes, taken from [8], of locality of 4 and 6,
respectively. C4 is an LRC of locality 5 borrowed from [9].

In [13], a construction of optimal (in terms of minimum
distance) binary LRCs with multiple repair groups was given.
In particular, in [13, Constr. 3], a construction based on array
low-density parity-check (LDPC) codes was provided. The
parity part (or the P matrix) of the parity-check matrix H of
the optimal LRC is the parity-check matrix of an array-based
LDPC code. The minimum distance of array LDPC codes
is known for certain sets of parameters (see, e.g., [14], and
references therein). Codes C6 and C7 in Table I are optimal
LRCs based on array LDPC codes constructed using [13,
Constr. 3] and having a locality of 11.

For all codes, θopt is close to the lower bound on the cPoP,
θLB. Remarkably, the codes C1, C3, and C5 achieve the lower
bound on the cPoP despite the fact that these codes are not
MDS codes. The remaining codes (C2, C4, C6, and C7) achieve
a cPoP of ñ/(ñ− k̃) = k/(k − k̃) > 1/(1−R), which is the

TABLE I
OPTIMIZED VALUES FOR THE CPOP FOR DIFFERENT CODES

Code dmin d̃min θnon−opt θopt θLB

C1 : (5, 3) (Example 1) 2 3 2.5 2.5 2.5
C2 : (11, 6) 4 4 3.6667 2.75 2.2
C3 : (12, 8) Pyramid 4 4 4 3 3
C4 : (16, 10) LRC 5 5 4 3.2 2.6667
C5 : (18, 12) Pyramid 5 5 4.5 3 3
C6 : (154, 121) LRC 4 6 30.8 4.9677 4.6667
C7 : (187, 121) LRC 7 16 12.4667 3.0656 2.8333

lowest possible value given the parameters of C̃. The strict
inequality is due to the fact that H̃ is not full rank.

VI. CONCLUSION

We generalized the PIR protocol proposed in [7] for a
DSS with a single spy node and where data is stored using
an MDS code to the case where an arbitrary systematic
linear code of rate R > 1/2 is used to store data. We also
presented an algorithm to optimize the cPoP of the protocol.
The optimization leads to a cPoP close to its theoretical lower
bound. Interestingly, for certain codes, the lower bound on the
cPoP can be achieved.
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