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Abstract

This work considers a systematic derivation process to obtain hierarchies of dynamical equations for micropolar plates
being either homogeneous or with a functionally graded (FG) material variation over the thickness. Based on the three
dimensional micropolar continuum theory, a power series expansion technique of the displacement and micro-rotation
fields in the thickness coordinate of the plate is adopted. The construction of the sets of plate equations is systematized
by the introduction of recursion relations which relates higher order powers of displacement and micro-rotation terms
with the lower order terms. This results in variationally consistent partial differential plate equations of motion and
pertinent boundary conditions. Such plate equations can be constructed in a systematic fashion to any desired truncation
order, where each equation order is hyperbolic and asymptotically correct. The resulting lowest order flexural plate
equation is seen to be of a generalized Mindlin type. The numerical results illustrate that the present approach may
render accurate solutions of benchmark type for both homogeneous and functionally graded micropolar plates provided
higher order truncations are used. Moreover, low order truncations render new sets of plate equations that can act as
engineering plate equations, e.g. of a generalized Mindlin type.
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1. Theory of linear micropolar elasticity

Consider an isotropic micropolar continuum according to Eringen’s theory [1]. The equations of balance
of momentum and moment of momentum, written in cartesian coordinates, are expressed as

tkl,k = ρül, (1)
mkl,k + ǫlkmtkm = ρ jlkφ̈k, (2)
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in absence of body forces and body couples. Here tkl is the stress tensor, mkl is the couple stress tensor, ul
is the displacement vector, φk is the micro-rotation vector, ρ is the density, jlk is the microinertia tensor and
ǫlkm is the permutation symbol. Indices that follow a comma indicate partial differentiation. The surface
tractions are defined in accordance to

tl = tklnk, (3)
ml = mklnk, (4)

where nk is an outward pointing normal surface vector. The micropolar strain tensors εkl and γkl are defined
by

εkl = ul,k + ǫlkmφm, (5)
γkl = φk,l. (6)

These strain measures are related to the stress and couple stress tensors through the constitutive rela-
tions

tkl = λεmmδkl + (µ + κ)εkl + µεlk, (7)
mkl = αγmmδkl + βγkl + γγlk, (8)

where δkl is the Kronecker delta, λ and µ are Lamé parameters while α, β, γ and κ are micropolar elastic
moduli. Consider from now on spin-isotropic materials where the microinertia reduces to a scalar quantity,
jkl = jδkl.

2. Series expansion, recursion relations and plate equations

The governing equations for a micropolar continuum as described above are to be applied to a homogenous
or FG isotropic plate of thickness 2h. A cartesian coordinate system {x, y, z} is used, where the in plane x
and y axes are along the middle plate plane at z = 0. The components of the displacement field and micro-
rotation field are denoted {u1, u2, u3} and {φ1, φ2, φ3} respectively. The derivation procedure of the plate
equations is based on the assumption that each component of the displacement field and micro-rotation
field can be expanded in a power series in the thickness coordinate z according to

ul(x, y, z, t) =
∞
∑

n=0
znu(n)

l (x, y, t), (9)

φl(x, y, z, t) =
∞
∑

n=0
znφ

(n)
l (x, y, t). (10)

Using the assumptions in Eqs. (9) and (10), the constitutive equations (7) and (8), as well as the deformation
relations Eqs. (5) and (6), it is possible to express all the stress and couple stress components in power series
form

tkl =

∞
∑

n=0
znt(n)

kl , (11)

mkl =

∞
∑

n=0
znm(n)

kl . (12)

For the homogeneous case

t(n)
kl = λLiu(n)

i δkl + µ(Llu(n)
k + Lku(n)

l ) + κ(Lku(n)
l + ǫlkmφ

(n)
m ), (13)
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m(n)
kl = αLiφ

(n)
i δkl + βLlφ

(n)
k + γLkφ

(n)
l , (14)

while a similar albeit slightly more complicated relation holds for FG material using that the material
parameters vary in the thickness direction. In that FG case these fields are expanded in Taylor series [7]
as

f (z) =
∞
�

n=0
zn f (n), (15)

where f covers both traditional elastic parameters {ρ, λ, µ} and the micropolar parameters {κ, α, β, γ, j}.
Note that the introduced operator Lk is defined as

Lk f (n)
l =



























∂x f (n)
l if k = 1,

∂y f (n)
l if k = 2,

(n + 1) f (n+1)
l if k = 3,

(16)

where ∂x and ∂y are used to denote partial derivatives with respect to x and y.

2.1. Recursion relations

By inserting the expanded displacement and micro-rotation fields Eqs. (9) and (10), together with the
expanded stress and couple stress tensors Eqs. (11) and (12) into the equations of motion, Eqs. (1) and
(2), and collecting terms of equal power in z one can obtain recursion formulas for each displacement and
micro-rotation field. The recursion formulas are essential for the derivation of the plate equations since the
number of expansion functions for each field can be reduced from an infinite amount to a finite amount. By
using the recursion formulas it is possible to express all expansion functions u(n)

l and φ(n)
l with n = {2, 3, . . . }

in terms of the lowest order ones with n = {0, 1}. For the homogeneous case the recursion formulas are
obtained as

(µ + κ)(n + 2)(n + 1)u(n+2)
l + (λ + µ)(n + 2)(n + 1)u(n+2)

3 δ3l =

ρü(n)
l − (µ + κ)(∂2

x + ∂
2
y)u(n)

l − (λ + µ)Ll(∂xu(n)
1 + ∂yu(n)

2

+ (n + 1)u(n+1)
3 (1 − δ3l)) − κδliǫi jkL jφ

(n)
k , n = 0, 1, . . . ,

(17)

γ(n + 2)(n + 1)φ(n+2)
l + (α + β)(n + 2)(n + 1)φ(n+2)

3 δ3l =

ρ jφ̈(n)
l − γ(∂

2
x + ∂

2
y)φ(n)

l − (α + β)Ll(∂xφ
(n)
1 + ∂yφ

(n)
2

+ (n + 1)φ(n+1)
3 (1 − δ3l)) − κ(δliǫi jkL ju(n)

k − 2φ(n)
l ), n = 0, 1, . . . ,

(18)

for l = 1, 2, 3. Note that these coupled six recursion formulas do not involve any approximations since they
stem from the equations of motion, Eqs. (1) and (2), and the power series expansion of the displacement
and micro-rotation fields Eqs. (9) and (10). Furthermore, the power series have not been truncated which
is essential for the present method. Similar but more complicated expressions are obtained for the FG
case.

2.2. Plate equations

By adopting the free plate boundary condition at the surfaces at z = ±h, Eqs. (11) and (12) at an order
N > 0, gives

N
�

n=0
(±h)nt(n)

3l (x, y, t) = 0,
N
�

n=0
(±h)nm(n)

3l (x, y, t) = 0. (19)
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These boundary conditions constitute the hyperbolic set of twelve partial differential equations for a mi-
cropolar plate. Using the recursion relations Eqs. (17) and (18) these plate equations may be written in
terms of the twelve lowest order expansion functions {u(n)

l , φ
(n)
l } for n = {0, 1}.

3. Properties of FG materials

For a FG plate the material parameters are to vary continuously over the thickness. Consider a plate where
the top z = h (subscript t) and the bottom z = −h (subscript b) consists of different material. There are
different ways to model the variation of the materials over the thickness, e.g. adopting a power law or an
exponential law. Here consider the often used power law where the volume fraction of the bottom material
varies as

Vb(z) = ((h − z)/2h)p . (20)

Note that the volume fraction law follows Vb+Vt = 1, and the power index p is a positive number. There are
various methods to model the effective material properties in FG materials. Here consider the Voigt model
for the density and the micro parameters {κ, α, β, γ, j}, where these various material properties (denoted by
Q) are assumed to be proportional to the volume ratio according to

Q(z) = QbVb(z) + QtVt(z). (21)

As for the elastic Lamé parameters λ and µ the Mori-Tanaka model is used [8].

4. Numerical results

The object for the numerical results is to illustrate the accuracy of the present partial differential equations
for homogeneous or FG micropolar plates; both for low and high order sets. The low order cases may be
used as approximate engineering plate theories while the higher order theories act as benchmark theories
converging to the exact 3D solution. The plates are simply supported with with free lateral surfaces. As
for the FG plate the top material consists of pure aluminum, while the bottom material consists of epoxy
containing randomly distributed aluminum particles. Consequently, the amount of aluminum decreases
continuously from the top to the bottom of the plate. From [2] the material parameters for aluminum at
the top are Et = 70.85 GPa, νt = 0.33, ρt = 2800 kg/m3, jt = 0.325 × 10−7 m2, κt = 1.3155 × 10−5 GPa,
αt = 1.2355 kN, βt = 0.1585 kN, γt = 0.59664 kN while for the epoxy matrix with aluminum particles at
the bottom one has Eb = 5.31 GPa, νb = 0.40 ρb = 2192 kg/m3, jb = 1.96 × 10−7 m2, κb = 1.3234 × 10−4

GPa, αb = 83.255 N, βb = 0.1028 kN, γb = 3.3349 kN. As for the homogeneous plate aluminium is used
throughout.

In this section, eigenfrequencies and mode shapes as well as stress distributions are illustrated for a square
plate a = b for a plate of thicknesses a/h = 20. For the FG plate the influence from the material distribution
is studied by choosing different power indexes p from Eq. (20). For both the homogeneous and FG
plate the lowest eigenfrequencies ωmn are calculated using different truncation orders, where m and n
refer to the mode numbers in the x and y directions, respectively. For convenience, introduce the non
dimensional frequencyΩmn = 1000ωmnh/ct, where the velocity ct is for the aluminummaterial and defined
as ct =

√

Et/ρt.

4.1. Eigenfrequencies

For the homogeneous plate it is possible to obtain exact analytical results from 3D theory; these are used
as a benchmark for the approximate theories. Besides the present theory for different truncation orders,
the approximate plate theories due to Eringen [3] and Sargsyan and Sargsyan [4] are also studied. Table 1
presents the eigenfrequencies for various modes. It is clear that the approximate theories due to Eringen,

Hossein Abadikhah and Peter D. Folkow / Procedia Engineering 00 (2017) 000–000 5

Sargsyan and the present N = 3 theory render reasonably accurate results, even though the results for the
N = 3 theory are slightly less accurate. The results for Eringen and Sargsyan differ for other boundary
conditions not presented here [5]. As expected, the accuracies for all these approximate theories decrease
as the mode numbers increase. For higher truncation orders, the results for the present theory converge
rapidly to the exact eigenfrequencies.

Table 1. The eigenfrequencies Ωmn for a homogeneous plate using exact theory and approximate theories.
m n Exact Eringen Sargsyan N = 3 N = 5 N = 7 N = 33
1 1 7.48031 7.48644 7.48644 7.46805 7.48031 7.48031 7.48031
2 1 18.4555 18.4923 18.4923 18.4003 18.4555 18.4555 18.4555
2 2 29.1609 29.2468 29.2468 29.0322 29.1609 29.1609 29.1609
3 1 36.1569 36.2918 36.2918 35.9545 36.1569 36.1569 36.1569

For the functionally graded plate it is not possible to derive analytical 3D solutions. Here a higher order
truncation (N = 50) is used as benchmark result. By studying the higher truncation orders more in detail,
it is seen that the results for these highest presented order seem to be accurate to all the given figures.
Hence, these eigenfrequencies may be used as benchmark results to the exact 3D theory [7]. It should be
stressed that the present derivation process, when applied to other materials presented in the literature, ren-
der consistent numerical results for homogeneous micropolar plates [5] as well as for functionally graded
elastic plates [7]. The results are given in Table 2 for different truncation orders. Note that higher eigenfre-
quencies are obtained for the less slender plate as expected. Moreover the eigenfrequencies become higher
by increasing the power index p, as this results in higher amount of the aluminum phase. This could be
compared to the homogeneous aluminum plate in Table 1 which corresponds to p→ ∞.

Table 2. The eigenfrequencies Ωmn for a FG plate using different truncation orders.
p mn N = 2 N = 3 N = 4 N = 6 N = 10 N = 25 N = 50

11 6.13441 4.15222 4.74982 4.61891 4.61086 4.61055 4.61055
1 12 15.0702 10.2634 11.7483 11.4193 11.3983 11.3976 11.3976

22 23.7129 16.2477 18.6047 18.0746 18.0405 18.0396 18.0396
11 7.54932 5.31461 5.16915 5.19175 5.21619 5.21527 5.21527

2 12 18.5484 13.1313 12.8064 12.8472 12.9082 12.9060 12.9057
22 29.1893 20.7766 20.3105 20.3523 20.4498 20.4461 20.4461
11 8.30785 6.29905 4.97666 5.69495 5.58045 5.57178 5.57178

3 12 20.4123 15.5434 12.3465 14.0907 13.8122 13.7914 13.7911
22 32.1235 24.5605 19.6071 22.3193 21.8854 21.8529 21.8523
11 8.91844 7.27265 5.54764 5.83391 5.9806 6.01247 6.01216

5 12 21.9117 17.9201 13.7509 14.4398 14.8006 14.8786 14.8777
22 34.4817 28.2758 21.8189 22.8804 23.4507 23.5721 23.5702

4.2. Eigenmodes

In order to further illustrate the differences between the truncation orders, various plots on mode shapes
and stress distributions are compared. Consider only the FG case with p = 3 for the fundamental frequency
Ω11 using a thicker plate a/h = 8. Fig. 1 shows the displacements in the y- and z-directions, u2 and u3,
respectively. It is clearly seen that the fundamental mode is predominately flexural, as the u2 field is close
to antisymmetric and the u3 field is close to symmetric with respect to z. The results from N = 3 and N = 4
are almost overlapping, while the N = 10 curve is indistinguishable from the high order benchmark curve
N = 50. This latter conformity for the higher modes are visible in other cases.

Next consider the normal stresses in Fig. 2. Here the differences among the truncation orders are more
pronounced when compared to the displacements and the eigenfrequencies. Note that the second order
polynomial used in the N = 2 case for the normal stress t33 in Fig. 2(b) does not capture the higher order
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Ω11 using a thicker plate a/h = 8. Fig. 1 shows the displacements in the y- and z-directions, u2 and u3,
respectively. It is clearly seen that the fundamental mode is predominately flexural, as the u2 field is close
to antisymmetric and the u3 field is close to symmetric with respect to z. The results from N = 3 and N = 4
are almost overlapping, while the N = 10 curve is indistinguishable from the high order benchmark curve
N = 50. This latter conformity for the higher modes are visible in other cases.

Next consider the normal stresses in Fig. 2. Here the differences among the truncation orders are more
pronounced when compared to the displacements and the eigenfrequencies. Note that the second order
polynomial used in the N = 2 case for the normal stress t33 in Fig. 2(b) does not capture the higher order



1434	 Hossein Abadikhah  et al. / Procedia Engineering 199 (2017) 1429–1434
6 Hossein Abadikhah and Peter D. Folkow / Procedia Engineering 00 (2017) 000–000

�0.1 0.1 0.2

�1.0

�0.5

0.5

1.0
z/h

u2

(a)

0.975 0.980 0.985 0.990 1.000

�1.0

�0.5

0.5

1.0
z/h

u3

(b)

Figure 1. Displacement in y-direction u2 (a) and z-direction u3 (b) for the first mode: —— N = 50, - - - N = 10, - · - N = 6, – – · – –
N = 4, · · · N = 3 , – · · – N = 2

variation over the thickness properly. All truncation orders fulfill the stress free boundary condition at the
free surfaces z = ±h as illustrated in Fig. 2(b).
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Figure 2. Normal stresses in y-direction t22 (a) and the z-direction t33 (b) for the fundamental eigenfrequency: —— N = 50, - - -
N = 10, - · - N = 6, – – · – – N = 4, · · · N = 3 , – · · – N = 2
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