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Superior LSPR substrates based on electromagnetic
decoupling for on-a-chip high-throughput label-free
biosensing

Srdjan S Aćimović1, Hana Šípová1, Gustav Emilsson2, Andreas B Dahlin2, Tomasz J Antosiewicz1,3

and Mikael Käll1

Localized surface plasmon resonance (LSPR) biosensing based on supported metal nanoparticles offers unparalleled possibilities

for high-end miniaturization, multiplexing and high-throughput label-free molecular interaction analysis in real time when inte-

grated within an opto-fluidic environment. However, such LSPR-sensing devices typically contain extremely large regions of

dielectric materials that are open to molecular adsorption, which must be carefully blocked to avoid compromising the device

readings. To address this issue, we made the support essentially invisible to the LSPR by carefully removing the dielectric mate-

rial overlapping with the localized plasmonic fields through optimized wet-etching. The resulting LSPR substrate, which consists

of gold nanodisks centered on narrow SiO2 pillars, exhibits markedly reduced vulnerability to nonspecific substrate adsorption,

thus allowing, in an ideal case, the implementation of thicker and more efficient passivation layers. We demonstrate that this

approach is effective and fully compatible with state-of-the-art multiplexed real-time biosensing technology and thus represents

the ideal substrate design for high-throughput label-free biosensing systems with minimal sample consumption.

Light: Science & Applications (2017) 6, e17042; doi:10.1038/lsa.2017.42; published online 25 August 2017

Keywords: biosensing; hyperspectral; lab-on-a-chip; LSPR; nonspecific adsorption

INTRODUCTION

Surface plasmon resonance (SPR) biosensing, established in the late
1980s1, is the gold standard of optical label-free sensing technologies
and the most successful application of plasmonics to date2. However,
during the early 2000s3, the concept of localized SPR (LSPR) sensing
emerged as a convenient alternative to SPR. As the name suggests, the
LSPR-sensing transduction mechanism relies on localized plasmon
modes, typically excited in inert gold nanoparticles (GNPs)4–9, rather
than on surface plasmon polaritons propagating on a continuous
metal film. In both cases, the sensitivity is due to the delicate variation
in plasmon properties with the refractive index (RI) of the dielectric
material just above the metal surface. Recent studies have shown that
the sensitivity of SPR and LSPR to thin molecular coatings are very
similar10, but the LSPR concept presents clear advantages in terms of
the simplicity of supporting optics and possibilities for high-end
miniaturization, which can, for example, be utilized to enable the
simultaneous interrogation of a large number of independent sensor
elements on the same ‘chip’. Although individual GNPs can be
operated as autonomous sensors11,12, the optimal LSPR-sensing spot
for most applications is considerably larger, typically containing at
least a few thousand GNPs13,14 to ensure a sufficiently high dynamic
range and signal-to-noise ratio, and efficient molecule delivery. By
combining properly designed LSPR substrates with a microfluidics

interface based on polydimethylsiloxane (PDMS) technology, the
plasmonic-sensing spots can be addressed independently, and the
reagent and sample consumption can be greatly reduced compared to,
for example, standard enzyme-linked immunosorbent assays. The
integration of micro-mechanical valves15 can expand the functionality
further to true lab-on-a-chip format, enabling programmable and
autonomous operation16.
The existence of a well-established orthogonal surface chemistry for

gold/glass surfaces based on the gold-thiol (–SH) bond gives plasmon-
based optical sensors an important advantage compared to all-
dielectric sensors, such as wave-guides or microresonators. However,
as schematically illustrated in Figure 1a, large areas of dielectric
material, the base substrate and the channel walls, are also present in
an LSPR-sensing structure. This material causes nonspecific molecular
adsorption, which can in turn cause unpredictable depletion of the
capture and target molecules as well as a false nonspecific sensor signal
due to the overlap between the plasmon-induced evanescent electro-
magnetic (EM) fields and the dielectric support. The issue of
nonspecific adsorption in microfluidics is typically countered by
introducing a passivation coating, for example, poly(l-lysine)-graft-
poly(ethylene glycol)17,18 or a similar non-fouling agent19,20. In the
ideal case, this coating confines the biorecognition reactions exclu-
sively to the plasmonic-sensing structures, as indicated in Figure 1b.
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Unfortunately, the majority of reported passivation strategies17–23 are
challenging to apply to structures that contain several different kinds
of interfaces, such as PDMS, SiO2 and gold, due to factors including
cross-contamination, differences in hydrophobicity/hydrophilicity24,
solvent incompatibility25, device assembly issues and so on. Moreover,
even if the dielectric support surrounding the plasmonic-sensing
structure is successfully passivated without interfering with the sensor
functionalization, which is extremely challenging, it would still occupy
a large proportion of the plasmonic near-field (Figure 1b), resulting in
reduced sensitivity. Here we address these issues by instead engineer-
ing plasmonic substrates to be intrinsically immune to the signals
caused by nonspecific substrate adsorption. This goal can be achieved
by positioning disk-shaped GNPs on narrow pillars optimized so that
the plasmonic probing volume falls completely outside and is
decoupled from the dielectric support material, as indicated in
Figure 1c. The idea of elevating gold nanodisks above the substrate
to increase the LSPR sensitivity to RI changes was introduced by
Dmitriev et al.26,27 and later followed up by several research
groups28–30. In particular, Sepulveda and co-workers29 demonstrated
that wet-etching could be used to achieve a significant undercut
beneath the Au nanodisk, resulting in pillar-like structures with ca.

50% enhanced sensing performance for small target DNAs. However,
to the best of our knowledge, none of these studies demonstrated
complete EM decoupling or made the connection to the issue of
nonspecific adsorption in the context of LSPR high-throughput
sensing. Here we optimize the technique pioneered by Otte et al.29

to maximize the EM decoupling effect without compromising the
mechanical integrity of the nanodisk sensors. We then demonstrate
that samples fabricated in this way exhibit markedly reduced sensitivity
to nonspecific substrate adsorption, which is later exploited as a
passivation step in our model system biosensing protocol. Further-
more, we show that it is possible to micropattern the samples
inexpensively using PDMS stamps and to interface such plasmonic
substrates with advanced microfluidics architectures.

MATERIALS AND METHODS

Fabrication of sensing substrates
Glass slides (24× 24 mm #5) were cleaned by 5 min sonication in
acetone and isopropanol, and then covered by sputter deposited
titanium (1 nm) and gold (50 nm), as indicated in Figure 2a. The
substrates were then briefly treated in oxygen plasma prior to the drop
casting of positively charged PDDA (poly-diallyldimethylammonium
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Figure 1 Nanoplasmonic molecular sensing in microfluidic channels. (a) Nonspecific binding will deplete both the receptor and the target molecular
concentrations if the channel has not been passivated, leading to delayed sensor response, and high receptor and target consumption. Arrows represent
possible interaction paths of analyte molecules. (b) Passivation of the channel surfaces with suitable blocking species reduces nonspecific binding, but the
blocking molecules occupy a large portion of the most sensitive plasmonic detection volume. (c) By elevating the metal particle on an optimized nanopillar,
the plasmonic fields decouple from the substrate and the passivation molecules. This configuration significantly increases the effective sensing volume and
improves the overall sensor performance.
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chloride, 0.2 volume % in water, Sigma-Aldrich), as shown in
Figure 2b. After a short water rinse, a solution of negatively charged
polystyrene (PS) beads (0.1% in water, Microparticles GmbH,
Germany) was drop casted on the substrates (Figure 2c). Depending
on the application, either the PS beads were removed from half of the
substrate surface with dicing tape, or the substrates were patterned by
PDMS micro-contact printing (Figure 2d). The self-assembled PS
beads acted as a mask during subsequent ion-beam milling (Ionfab
300, Oxford Instruments, UK; Figure 2e). The PS beads were then
removed by dicing tape, and the substrates were treated in oxygen
plasma to remove the remaining PDDA fragments (Figure 2f).

Fabrication of PDMS structures
The mold for micro-contact printing was made by laser-writing
lithography on a silicon wafer (mrDWL 5-negative photoresist,
Allresist GmbH, Germany). The process parameters were tuned
according to the manufacturer’s recommendations. A bubble-free
PDMS mixture (10:1, Sylgard 184 kit, Dow Corning, USA) was spin-
coated on the mold at 250 r.p.m. After being kept in the dark for
~ 40 h, this process resulted in a final PDMS thickness of 0.75–1 mm.
The sticky PDMS membrane was carefully peeled off, rolled over the
PS-covered gold substrate, where it was kept in contact for 10–20 s,
and then removed in one smooth move. Detailed descriptions of the
PDMS microfluidic fabrication procedure can be found elsewhere31,32.

Optical spectroscopy
Ensemble averaged extinction spectra were recorded on a UV-VIS-
NIR spectrophotometer (Cary 2000, Agilent Technologies, USA).
Real-time tracking of the LSPR wavelength of single sensing spots
was performed using a home-built extinction set-up based on a
collimated fiber-coupled light source (HL-2000, Ocean Optics, Dune-
din, USA) and a fiber-coupled spectrometer (BRC711E, B&W Tek,
USA). Simultaneous measurements of multiple sensing spots were
performed using a hyperspectral imaging set-up33,34 built around an
inverted microscope (Eclipse Ti-E, Nikon, Japan), a liquid crystal
tunable filter (LCTF, 650–1100 nm spectral range, 7 nm bandwidth,
1 nm resolution, model Varispec SNIR, PerkinElmer, USA) and a
CMOS camera (Neo5, Andor Technologies, UK). Our system has been
specially designed for the real-time parallel interrogation and on-the-
fly analysis of multiple sensing sites by synchronizing and controlling
all essential optical components using custom-made Labview code.

Electrodynamics simulations
Simulations of optical spectra and near-field distributions were
conducted using a commercial finite-difference time-domain (FDTD)
implementation (Lumerical, Inc., Canada) with optical constants for
gold based on35 and a total-field/scattered-field formulation. The
simulated gold disks had diameters d= 172, 200 or 280 nm, thickness
t= 60 nm, a curvature of the top and bottom edges of radius 5 nm,
and a side taper angle of 20°. The RI of the substrate/pillar support was
set to n= 1.52, and the structures were surrounded by water
(n= 1.33). The mesh size was 4 nm but refined to 0.5 nm around
the disks and the etched profiles.

Surface chemistry
First, 0.1 mM SH-PEG-methoxy (5 kDa, Rapp Polymere, Germany)
was dissolved in ethanol at 50 °C. The substrates were immersed in
PEG solution overnight and then attached to the PDMS microfluidic
structures by low-temperature thermal bonding (40 °C) for 2–3 h.
Anti-PEG immunoglobulin Gs (IgGs) E11 and E6.3 were received in
50% glycerol at a concentration of 400 μg ml− 1 (Ref. 36). Neutravidin

(NTV; ThermoFischer Scientific) was dissolved in corresponding
buffer(s) to a concentration of 50 μg ml− 1 and used as such.

RESULTS AND DISCUSSION

We used the well-established, cheap and scalable colloidal lithography
method37 to produce well-defined patterns of short-range-ordered
gold nanodisks on standard glass microscope slides. The fabrication
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Figure 2 Fabrication of nanopillar-supported Au nanodisks. The steps in the
fabrication process are as follows: (a) material sputtering; (b) drop casting of
positively charged polymer film; (c) self-assembly of negatively charged
polystyrene (PS) beads; (d) optional micro-patterning using PDMS stamp;
(e) ion-beam milling; (f) removal of remaining PS beads by tape-stripping;
(g) etching of glass substrate in BOE; (h) final micro-pattern containing gold
nanodisks on glass nanopillars.
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steps involved are schematically illustrated in Figure 2a–2f, where we
have also included the optional step (Figure 2d) of two-dimensional
micro-patterning based on the lift-off-free method developed by
Andersson et al.38. This fabrication protocol yields samples fully
compatible with the microfluidics devices and assay protocols
previously developed by Aćimović et al.32. The contrast between
regions with and without nanoparticles achievable through this
method is excellent, as illustrated in Supplementary Fig. S1.
The nanodisk substrates constitute the starting point for wet-

etching (Figure 2g), to generate nanodisks on narrow pillars, as
introduced by Otte et al.29. We use a standard buffered oxide etch
(BOE, 15% of hydrofluoric acid) throughout. Following a gentle water
rinse to stop the etching process, the samples are dried under a stream
of nitrogen. The surface tension that arises because of the retreat of the
thin water layer during drying can cause the nanopillars to break, and
this effect sets a limit on how thin a nanopillar can be, which, in turn,
limits the minimum nanodisk diameter needed to achieve EM
decoupling. For this reason, we focused on gold nanodisks with larger
diameters, d, than explored previously29.
Figure 3 summarizes morphological changes versus etching time for

three different Au nanodisk samples with d= 170–290 nm. We
hypothesized that the etching rates might be anisotropic due to the
three-dimensionally nanostructured landscape. To test this possibility,
we first determined the vertical etching rate by profilometer scans
across boundaries with and without d= 290 nm nanodisks. As seen in
Figure 3a, these data are in excellent agreement with the known
nominal etch rate of glass in BOE in our lab (~90 nmmin− 1). We
then imaged the substrates using a scanning electron microscope
(SEM) at a tilt angle of 70° to estimate the lateral etch depth directly
underneath the nanodisks, obtained as (d− d′)/2, where d′ is the
diameter of the nanopillar closest to the nanodisk. The data in
Figure 3a suggest a lateral etch rate of 77.5 nmmin− 1 (linear fit),
demonstrating a pronounced but favorable etching anisotropy, pre-
sumably due to diffusion inhomogeneity. Finally, based on the SEM
image analysis, we estimated the minimum mechanically stable
nanopillar diameter to be d′≈50 nm. Figure 3b compares non-etched
disks (left) and disks supported by d′≈50 nm nanopillars (right).
We measured optical extinction as a function of etching time to

quantify the degree of EM decoupling versus pillar morphology.
Figure 4a illustrates typical spectral evolution during etching for the
case of 210 nm disks (for 170 and 290 nm disks, see Supplementary

Fig. S2). It is obvious that the dominant LSPR, which corresponds to a
dipolar charge oscillation in the plane of the disk, undergoes a
continuous blue shift and narrowing upon pillar formation. The
blue shift is a result of the decreasing average RI within the plasmo-
nic near-field. We interpret the narrowing as due to the more
symmetric dielectric environment around the disks. In Figure 4b,
we plot the resonance peak wavelength versus etching time for the
three nanodisk diameters considered. The resonance evolution can
be fitted well with an exponential decay towards a static value,
lLSPR tð Þ � lLSPR Nð Þpexp �t=tð Þ; with a time constant τ that increa-
ses with the disk diameter (9.8± 1.1, 14.29± 5.9 and 24.69± 10.1 s),
indicating a larger sensing volume for larger disks. More importantly,
the change in resonance position versus time levels out and enters a
plateau region (that is, approaching lLSPR Nð ÞÞ after a certain size-
dependent etching time, indicating that we have reached the EM
decoupling regime in which the dipolar plasmonic near-field no longer
‘sees’ the supporting nanopillar. Figure 4b shows that the EM
decoupling regime begins at an etching time of ca. 40, 50 and 75 s
for the 170, 210 and 290 nm nanodisk substrates, respectively. Ideally,
one would like to be as far as possible at the right side of the plateau
region, as long as the mechanical stability of the nanopillars is
preserved. For instance, at the threshold of mechanical stability for
the 210 nm disks, corresponding to a 65 s etching time, a 20 nm-thick
passivation layer would still reside mainly within the ‘invisible zone’
according to the etching rates extracted from Figure 3a. In addition,
the substantial reduction in LSPR linewidth (see the inset of
Figure 4b), is highly beneficial because it results in lower baseline
noise levels when tracking the LSPR position in sensing experiments39.
Spectroscopic tracking can also be used to precisely identify the point
when substrate over-etching induces mechanical instability of the
nanopillars, which results in broad and red-shifted resonances
(Supplementary Fig. S3).
We performed electrodynamics calculations using the FDTD

method to substantiate our claim of EM decoupling and to obtain a
better understanding of the optimal structure parameters. We
calculated the optical response for single nanodisks of diameter
d= 172, 200 and 280 nm, which closely match the experimental
values, but assumed isotropic etching dynamics to reduce calculation
time and modeling efforts. As summarized in Figure 4c, the calculated
peak positions display a similar exponential trend to the one observed
in the experiments. The LSPR linewidths also exhibit an exponential
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decay (Figure 4c, inset), although the experiments only showed a
general decrease in full width at half maximum, probably due to
inhomogeneous broadening, for example, from the size polydispersity
of PS beads (Figure 4b, inset). The calculations reveal that the
resonance plateaus are not entirely flat, partly because of the assumed
isotropic rather than anisotropic etching, but they do have very low

slopes after a certain time. We checked the derivative of the resonance
position as a function of etching depth to determine the highest degree
of EM decoupling attainable for the chosen minimum nanopillar
diameter d′= 50 nm (Figure 4d). The data show that the minimal
absolute value, ~ 0.12 nm per nm of adsorbed layer thickness, is
obtained for the 200 nm disks. The initial derivatives, at zero etch
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Figure 4 Optical properties of gold nanodisks versus etching time. (a) Experimental extinction spectra in air as a function of substrate etching time for
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resonance showing spatial extension of sensing volume for a 200 nm nanodisk directly on glass (left, λ=752 nm) and supported by a 50 nm glass nanopillar
(right, λ=652.5 nm).
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depth, represent the response of the disks to an infinitesimally thin
layer with RI= 1.52 formed on the glass. For the 200 nm disk, this
value is ~ 5.01, that is, ~ 40 times higher than the derivative value for
the same disk supported by a d= 50 nm pillar. Thus, the nanodisk is
essentially decoupled from the substrate for the optimally etched
structure. Figure 4e illustrates the corresponding changes in EM near-
field intensity at resonance for these two limiting cases, indicating a
significant reduction in field–substrate spatial overlap for the pillar-
supported nanodisk.
To demonstrate the advantage of EM decoupling for biosensing

applications, we choose to work with a simple model system
resembling the ideal assay strategy as illustrated in Figure 1b and 1c.
We use NTV as a passivating entity due to its almost irreversible
adsorption to glass at neutral pH40. The receptor is a 5 kDa thiol-PEG-
methoxy that binds exclusively to gold and repels proteins efficiently41,
thus fulfilling the requirement of low cross-contamination between
the passivating species and the receptor biorecognition layer. We first
investigated the LSPR response of PEG-coated nanodisks to NTV
(50 μg ml− 1), which is thus expected to bind almost exclusively to the
glass substrate. Figure 5a summarizes the response upon injection of
NTV of 210 nm disks subjected to 0, 10, 30 and 50 s of etching in
BOE. For the longest etching time used, which is considerably shorter
than the 65 s limit determined for the 210 nm disks, the response
drops by approximately an order of magnitude compared to the non-
etched case (see inset of Figure 5a for absolute peak-shift values).
The data in Figure 5a clearly show that nanopillar formation

drastically reduces the LSPR sensitivity to NTV adsorbtion on the
substrate. However, for this effect to be useful, we also need to show
that the LSPR sensitivity to target molecules is not compromised. We
achieve this verification by simultaneously comparing the response of
standard and pillar-supported nanodisks fabricated on two parts of the
same glass substrate. To ensure that the surface chemistry of the
standard and supported nanodisks are comparable, half of the sample

was first exposed to BOE for 45 s, after which the whole sample was
briefly dipped into BOE for 5 s. The whole sample was then incubated
with thiol-PEG-methoxy overnight, rinsed and then interfaced to a
single-channel PDMS fluidics device (see Supplementary Fig. S4b).
Using our hyperspectral imaging spectroscopy measurement system,
we could then simultaneously trace the LSPR response of the
‘standard’ (that is, 5 s etched) and pillar-supported (that is, 50 s
etched) nanodisks in real-time. As summarized in Figure 5b, we
successively exposed the sample to three different kinds of RI
perturbations: (1) NTV (50 μg ml− 1) in phosphate-buffered saline
(PBS) buffer, which tests the sensitivity to nonspecific interactions
with the substrate, as in Figure 5a, followed by a rinse; (2) a test of the
bulk RI sensitivity by injecting PBS buffer containing 2.5% glycerol
and NTV (50 μg ml− 1); and (3) a test of the analyte sensitivity,
performed by injecting a PEG-specific antibody36 (E11 IgG,
20 μg ml− 1) dissolved in PBS containing 2.5% glycerol and
50 μg ml− 1 NTV, followed by a rinse. The data in Figure 5b again
show that the sensitivity to nonspecific substrate binding is reduced for
the pillar-supported nanodisks, this time by a factor of 4–5 (the
theoretical reduction factor is 13, as calculated by integration of the
derivative in Figure 4d over a 4.5 nm-thick NTV layer42). In
agreement with earlier reports on elevated nanoplasmonic
structures26,29, the pillars also increase the bulk RI sensitivity by
almost a factor of two, and more importantly, they increase the analyte
sensitivity by ~ 25%. Thus, we can conclude that all essential sensing
characteristics of the nanodisk LSPR sensors are improved by EM
decoupling, as summarized in the inset of Figure 5b.
Although working with microfluidics channels directly interfaced

with pillar-supported nanodisks, such as the one used for the
measurements in Figure 5b, we found that the microfluidics devices
sometimes suffered from leakage and delamination issues (see
Supplementary Fig. S4b for an example). This result is not very
surprising, considering that the top face of the nanodisks can be
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4150 nm above the bottom glass surface for optimally etched
samples, which makes it difficult for the PDMS interface to deform
and establish a firm bond with the substrate. Leakage is not a major
issue if wide channels are used, when the liquid pressure can be kept
low, but for miniaturized multiplexed sensing, the substrate needs to
be patterned so that the pillar-supported nanodisks reside only inside
channels. Two-dimensional patterning on the micrometer-scale can
easily be achieved using PDMS stamps, as demonstrated here or by
Andersson et al.38, but it is challenging to precisely align such complex
patterns with narrow-channel microfluidics structures without com-
promising the functionality of the device or the total cost. We
therefore decided to test whether the simplified architecture used by
Chen et al.27 and Acímovic ́ et al.32, consisting of lines of plasmonic
nanoparticles running perpendicular to microfluidic channels, could
be applied to pillar-supported nanodisk substrates. The test device
consists of 210 nm disks supported on d′= 50 nm-narrow pillars
patterned into eight parallel 100 μm-wide stripes with a separation
of 150 μm. The patterned substrate was cross-aligned with an active
microfluidic structure with eight parallel 100 μm-wide channels with
100 μm separation and hemispherical cross-section radii of 16 μm.
The final device, shown in Figure 6a, contains 64 sensing spots with a
packing density of ~ 20 mm− 2. During the course of standard
operation, using pressure driven flows of o1 μl min− 1, we did not
observe any leakage or chip delamination in 410 tested devices.
Importantly, we did not observe any cross-contamination between
channels through the plasmonic stripes, where bonding is expected to
be the weakest. Finally, we used this kind of device to measure the
biorecognition reaction of two antibodies (E11 and E6.3 IgGs)
targeting the PEG receptor. Prior to antibody injection, the channels
were passivated with NTV as before. We then injected the IgGs, in
concentrations within the range recommended by the supplier, at
0.5 μl min− 1 for 30 min and then switched to rinsing buffer
(50 μg ml− 1 of NTV in 2.5% glycerol in PBS). Interestingly, the two
antibodies showed quite different binding kinetics, possibly due to
differences in affinity and different epitopes, but the origin of this
effect is beyond the scope of this article. More importantly, the
binding curves show no evidence of concentration-dependent delays,
even for the lowest concentrations detectable here (2 μg ml− 1) during
30 min incubation. This finding may allow LSPR to be used not only
for on-chip diagnostics27,32,43,44 but also for determining binding rates
in buffer matrices. We conclude that the micropatterned nanopillar-
supported nanodisk substrates are extremely well suited for

high-throughput low-consumption opto-fluidics LSPR sensing due
to their full compatibility with state-of-the-art microfluidics and read-
out schemes and their less restrictive nature regarding the develop-
ment of assay strategies for applications in diagnostics or the
pharmaceutical industry.

CONCLUSIONS

Elevated supports of various kinds have been previously explored as a
route to increased sensitivity of plasmonic nanoresonators to RI
perturbations26,28–30. The partial physical removal of the substrate
around and beneath a metal nanoparticle increases the usable fraction
of the plasmonic mode volume and pushes it away from the high
index substrate towards the embedding aqueous medium, resulting in
a sensing performance approaching that of a nanoparticle in solution.
In this work, we have shown that this ‘electromagnetic decoupling’
approach can also be used to make the plasmonic-sensing structures
almost insensitive to molecular adsorption at the dielectric support
structure. We achieved this goal by carefully engineering a mechani-
cally stable support pillar and selecting the optimal parameters of disk-
shaped GNPs. The sensing properties of the optimized pillar-
supported nanodisks were assessed in direct comparison to standard
nanodisk substrates by exposing them simultaneously to three classes
of possible RI perturbations (proteins interacting nonspecifically with
the substrate, a bulk RI change and a specific analyte–biorecognition
interaction) and found to be superior in all three aspects. However,
the most important conclusion is that it is possible to almost entirely
eliminate the sensitivity to perturbations occurring on the supporting
substrate, in this case represented by the adsorption of the moderately
large protein NTV. This possibility significantly simplifies the assay
strategy and sensor preparation in essentially all types of LSPR
biosensing applications, removing the restrictions on the size (mole-
cular weight) of the passivating layers. In addition, we showed that
nanopillar-supported gold nanodisk sensors can be easily patterned for
convenient integration with state-of-the-art active microfluidics
devices to achieve efficient and rapid read-out with a high signal-to-
noise ratio using parallel real-time hyperspectral imaging, enabling
flexible high-throughput operation. On the basis of these results, one
can argue that LSPR biosensing is extremely well poised to become the
next revolutionary tool for cost-effective label-free molecular interac-
tion analysis with high sensitivity, high throughput, low sample
consumption, robust instrumentation and superior miniaturization,
and multiplexing capabilities.
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Figure 6 Compatibility of pillar-supported disks with cross-aligning and bonding process to PDMS microfluidic large-scale-of-integration interface. (a) Portion
of the device, where 64 shiny squares (at crossings between channels and micropatterned plasmonic substrate) represent 64 sensing sites. These sites were
used to verify the sampling time and noise independence of the number of sensing sites (data not shown). Inset shows device (24×24×5 mm) next to a
coin (1 SEK). (b) Real-time sensogram comparing interaction of two types of anti-PEG IgGs as function of antibody concentration.
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