
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Sea Ice Concentration Estimation and Ice Type
Classification from Dual-Frequency Satellite Synthetic

Aperture Radar

WIEBKE ALDENHOFF

Department of Space, Earth and Environment
Division of Microwave and Optical Remote Sensing
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2017



Sea Ice Concentration Estimation and Ice Type Classification from Dual-Frequency
Satellite Synthetic Aperture Radar
WIEBKE ALDENHOFF

c© WIEBKE ALDENHOFF, 2017

Department of Space, Earth and Environment
Division of Microwave and Optical Remote Sensing
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Sentinel-1 C-band SAR image of sea ice in Fram Strait overlayed with results from
ice-water classification (22.10.2015).

Chalmers Reproservice
Gothenburg, Sweden 2017



Sea Ice Concentration Estimation and Ice Type Classification from Dual-Frequency
Satellite Synthetic Aperture Radar
WIEBKE ALDENHOFF
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract

The sea ice cover in the Arctic has undergone dramatic changes in recent years.
The perennial sea ice extent is decreasing by 12.2 % per decade while annual mean
sea ice thickness has decreased by more than 2 m for the central Arctic Basin from
1975 to 2012. High resolution information of the ice cover is necessary for a better
understanding of the involved processes. Furthermore increased economic, scientific
and touristic activities in the Arctic demand ice information for safer navigation in
ice infested waters.

Satellite synthetic aperture radar facilitates year round monitoring of the sea
ice cover with high spatial and temporal coverage. High resolution is a requirement
to capture small scale sea ice features like leads and the dynamics of the ice cover
driven by the atmosphere and ocean.

This thesis presents investigations on sea ice characterization from multi-spectral
SAR imagery. Dual-polarization C- and L-band images from Sentinel-1 and ALOS
PALSAR-2 have been used to derive sea ice concentration, for creation of ice-water
maps and ice type classification.

The developed algorithms for sea ice concentration estimation and ice/water
classification use spatial autocorrelation as a texture feature to improve the dis-
crimination of ice and water. The mapping between image features and the output
variable is realized with a neural network. The proposed algorithms show good
performance when evaluated against manually derived ice charts and radiometer
data. We demonstrate that C- and L-band contain complementary data and a
combination of these frequencies could achieve more robust classification results.

Furthermore the separability and signatures of ice types in different ice regimes,
i.e. marginal ice zone, pack ice and areas containing fast ice, have been investigated.
Classification only based on backscatter intensities has been carried out by means
of a support vector machine on selected examples of the same C- and L-band
dataset. The results indicate that also for ice type classification a combination of
frequencies can improve the classification accuracy.

Keywords: sea ice, SAR imaging, sea ice concentration, sea ice classification, Fram
Strait
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1 Introduction

Sea ice is covering the central part of the Arctic Ocean all year round and has long
been a natural barrier for exploration and exploitation of the far north (see Figure
1.1). Though the extent of the sea ice cover has a large natural variability from
year to year, long term trends show a decline in extent of approximately 12.2 %
per decade since 1980 [1] as well as a reduction of annual mean ice thickness by
0.58 m per decade in the Arctic Basin [2].

The retreat and thinning of the ice is not only a threat for the pristine and
vulnerable environment with its unique fauna and flora, but also one of the most
visible signs of climate change. Sea ice acts as an insulator between the ocean and
the atmosphere and a change in the sea ice cover impacts the heat balance of the
Arctic and thus the climate system in the whole region [3]. Monitoring the state
of the sea ice is therefore crucial to our understanding of climate changes and the
processes involved.

The retreating ice also induces an improved accessibility of the Arctic which
already leads to extended scientific, economic and touristic activities in this region.
The traffic volume is increasing in the Arctic, but still dependent on the ice situation
[4]. Safe navigation in ice-infested waters demands accurate, detailed and timely
information about the sea ice conditions to minimize the risk of accidents and to
protect the environment.

Systematic monitoring of the Arctic sea ice cover has long been hampered by
the harsh and cold environment. Regular observations of the sea ice extent started
with hunting and whaling activities in the mid 19th century. Though not primarily
made for scientific purposes they are a valuable source of historical sea ice data
[5]. Those observations were limited to the sea ice edge as shipping technology
did not permit to travel further into the ice. The first noticeable attempt to
describe sea ice scientifically was within the scope of the Austro-Hungarian Arctic
Expedition led by Payer and Weyprecht 1872-1984 [6]. The voyage of the Fram
lead by Fridtjof Nansen 1893-1896 was a great step forward in understanding the
oceanography, geography and ice cover of the Arctic [7]. Development of airship
technology facilitated airborne remote sensing observations of the Arctic in the late
1930s of last century [8]. The development continued from airborne to spaceborne
observations made with satellites which founded an era of continuous and large
scale measurements of the ice cover. Since 1978 a consistent dataset of sea ice
concentration exists from passive microwave radiometer measurements [9]. Despite
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2 Introduction

Figure 1.1: Map of the Arctic (Ice extent from NSIDC)

the progress in remote sensing data, in-situ measurements of sea ice parameters
remain scarce in space and time.

Remote sensing of the sea ice cover comprises several different techniques
operating in a wide range of frequencies in the electromagnetic spectrum. Optical
remote sensing, encompassing the visible part of the electromagnetic spectrum with
wavelengths in the range 390–700 nm, is widely used as images are straightforward
to interpret for the human visual system. Observations are limited to the polar
summer seasons due to lack of sunlight during polar night and are obstructed by
cloud coverage. Measurements in the infrared region, wavelengths in the range 0.75–
1000 µm, exploit temperature differences between different surface types but are
also largely affected by cloud layers. These limitations are overcome by microwave
remote sensing with wavelengths in the range of 0.01 m to 1 m. The atmosphere
is almost transparent in this frequency range, except for some narrow absorption
bands of atmospheric gases, and the radiation is not significantly affected by
clouds, haze and all but the heaviest rain. This is due to longer wavelengths in the
microwave region which are not susceptible to atmospheric scattering. Observations,
either passive (only receiving) or active (transmitting and receiving), can be made
all year round and thus cover the whole seasonal cycle. These advantages make
microwave remote sensing the number one choice for consistent monitoring the sea
ice cover.

Depending on the task at hand different microwave remote sensing techniques are
used for sea ice observations. Passive microwave radiometry is employed for sea ice
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concentration and area/extent measurements as well as first year and multi year ice
concentrations [10, 11]. Radar, an active remote sensing sensor, is used in different
techniques. Sea ice thickness can be estimated from altimetry data [12], while
synthetic aperture radar (SAR) imagery can be used for sea ice drift estimation [13],
ice classification and determination of area/extent [14, 15]. SAR imagery of sea ice
is usually obtained from airborne and spaceborne sensors. Airborne measurements
offer high resolution at the expense of spatial coverage and are often used for
campaigns or reconnaissance focused on smaller areas. Spaceborne measurements
have a large spatial and temporal coverage with moderate to high resolutions and
are used for monitoring and operational purposes.

Automated image classification of sea ice and distinction of ice and water is not a
straightforward task. The backscatter intensity of sea ice encompasses a wide range
of values and depends on the properties of the ice, e.g. surface roughness, snow
layer, dielectric properties, as well as on the parameters of the radar system, e.g.
frequency, polarization, incidence angle. Radar is most sensitive to the properties of
the surface and upper layer of the ice which undergoes changes with time and also
depend on the ambient conditions, e.g. wind, precipitation, temperature. While a
smooth water surface has a very low backscatter intensity, wind roughening can
increase the backscatter of water to cover the range of typical backscatter values of
ice [16]. Hence for robust classification of ice types and the distinction of ice from
water spectral, contextual, textural as well as temporal information are necessary
and need to be extracted from the images.

The focus of our studies is Fram Strait, located between Svalbard and Greenland.
This area is of special interest as it’s sea ice cover is highly dynamic and different
ice regimes, i.e. fast ice, first year ice, multi year ice as well as the marginal ice
zone, are present. This imposes high demands on temporal and spatial resolution to
capture the ever changing environment. The majority of sea ice exported from the
Arctic is transported through Fram Strait and this area thus plays an important
role in the sea ice mass balance of the Arctic [17].

The idea behind the work presented in this thesis is the question of whether
the use of multiple frequencies can improve the accuracy of automatic image
analysis for sea ice parameter retrieval with high spatial and temporal resolution.
Therefore an algorithm, using texture features and backscatter intensities, has
been developed for automatic estimation of sea ice concentration and ice/water
classification from dual-polarized SAR imagery of present spaceborne sensors, i.e
Sentinel-1 in C-band (about 5 cm wavelength) and ALOS PALSAR-2 in L-band
(about 20 cm wavelength). The use of neural networks for mapping image features
into sea ice parameters allows for easy inclusion of more features and once trained
it can be applied to an unknown image. The algorithm performance is validated
against ice charts and radiometer data and showed good results. Comparison of
the two frequencies revealed potential that a combination could assist in retrieving
more robust estimates.

Furthermore separability and signatures of ice types in different ice regimes, i.e.
marginal ice zone, pack ice and areas containing fast ice, have been investigated.
A support vector machine with backscatter intensities as input has been used



4 Introduction

for classification of selected C- and L-band image pairs. Once more the different
imaging properties of the two frequencies underline the potential benefit of multi-
spectral analysis. Future work should concentrate on the limitation posed by
the constant movement of sea ice, which impacts the co-registration of images of
different frequencies.

The thesis is structured the following way: at first an introduction to principles
of synthetic aperture radar is given to impart the unfamiliar reader with the
necessary foundation to follow the rest of the thesis. The following chapter presents
a more thorough discussion of backscatter from sea ice and open water as well
as concepts and challenges of automatic analysis of sea ice imagery. The thesis
concludes with a brief summary of the appended papers and conclusions and
outlook into future research activities.



2 Synthetic Aperture Radar Principles

The term radar, short for Radio Detection And Ranging, embraces techniques
that use electro-magnetic radiation in a broad range of frequencies from 3 MHz to
100 GHZ for remote sensing purposes or non-destructive testing [18]. Initially in-
vented for military applications, radars are nowadays widely used for many different
civilian applications including parking assistance in vehicles, velocity measurements
of cars, weather (rain) radar as well as ship- and air-traffic surveillance. Radar
imaging refers to a 2- or 3-dimensional map of backscatter intensities created from
the transmitted signal.

Radars are active devices that transmit an electro-magnetic signal and receive
the reflected echoes. Thus they are independent of external illumination sources
and can be operated whenever needed. The choice of frequency depends on the
application and the focus of this thesis is in the microwave region. Typical radar
frequencies used for imaging and their nomenclature are shown in Table 2.1.

Earth’s atmosphere is almost transparent for frequencies in the microwave region
and these frequencies are unaffected by clouds due to their comparatively large
wavelength [20]. These properties make satellite radar remote sensing a good choice
for large scale and continuous monitoring of the Earth’s surface.

2.1 Radar Equation and Range Determination

The power of the received reflected or backscattered signal can be described by
the radar equation. For the monostatic case, that is the same antenna is used for
transmission and reception, the radar equation is given by [21]

Pr = Pt ·
σλ2G2

(4π)3R4L
, (2.1)

Table 2.1: Commonly used radar frequencies and nomenclature [19]

Band name Frequency Wavelength

L 1–2 GHz 15–30 cm
C 4–8 GHz 3.75–7.5 cm
X 8–12 GHz 2.5–3.75 cm

5



6 Synthetic Aperture Radar Principles 2.1

where Pr,t are the received and transmitted power, G the antenna gain, λ the
wavelength, L accounts for losses, R is the range to the target and σ the radar
cross section (RCS) of the scattering object.

The RCS describes the ability of a target to reflect the incident energy back to
the radar. The RCS depends on the physical properties of the reflecting object,
e.g. shape, size and material, and the frequency and polarization of the incident
radiation.

For distributed targets, i.e. large surfaces, the backscatter coefficient σ0 is
defined by

σ0 =
〈σi
A

〉
, (2.2)

where 〈〉 means averaging, A the surface area of a resolution cell and σi the RCS
of individual scatterers. It is used to characterize the backscattered signal [22]. σ0

depends on the incidence angle and an alternative parameter which reduces this
dependency is the quantity γ0

γ0 =
σ0

cos θi
(2.3)

where θi is the incidence angle [23].

2.1.1 Range Resolution

The range R from the radar to a target is determined by measuring the travel time
t between transmission and reception of the signal:

R =
c · t
2

(2.4)

where c is the propagation speed and the factor 2 accounts for the two-way delay.
Range resolution is the ability of the radar to discern nearby targets in the

range direction. For a simple monochromatic and unmodulated pulse the range
resolution is defined as follows [24]:

∆R =
c · τ

2
(2.5)

where τ is the pulse length. The shorter the pulse length the better the range
resolution will be. To maintain the signal-to-noise ratio (SNR) as pulses get
shorter, higher pulse powers are needed and thus raise the demands on the hard-
ware. Therefore unmodulated pulsed radars are limited in their range resolution
capabilities.

To overcome these limitations, linear frequency modulated pulses are widely
used in modern radars. The range resolution of such a waveform is defined by [21]

∆R =
c

2 ·B (2.6)

where B is the bandwidth of the waveform. In this way longer pulses can be used
to increase the SNR and still a good range resolution can be achieved.
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2.1.2 Azimuth Resolution

2- and 3-dimensional imaging can be achieved by sweeping the antenna over the
desired area or volume. The resolution is determined by the size of the antenna
footprint, i.e. the size of the area illuminated by the radar, in the targeted area (see
Figure 2.1). The beamwidth of an antenna of size D with D � λ, the wavelength
of the transmitted signal, is approximately

∆β ≈ λ

D
(2.7)

and the footprint size at a certain range R is thus given by

δx = ∆β ·R ≈ λ ·R
D

. (2.8)

The resolution depends on the range and the size of the antenna; the larger the
antenna and shorter the range the better the resolution will be. For spaceborne
systems with large ranges between the target and the antenna, this means very
large antennas would be needed to achieve a good spatial resolution.

2.2 Synthetic Aperture Radar

High resolution imaging with conventional or real aperture radar systems, i.e. where
the resolution is determined by the antenna size, is limited by the impracticability
of large antennas. To overcome these limitations a technique called Synthetic
Aperture Radar (SAR) is used, where a larger antenna is artificially created by
moving a smaller antenna along a defined path.

The final image is not directly available and needs to be created by signal
processing from the measured data. Many different algorithms for image formation
have been invented to accommodate varying imaging scenarios and to reduce
computational load for processing [25][26].

The imaging geometry of an air- or spaceborne SAR system is shown in Figure
2.1. The direction of the antennas flight path is called along track or azimuth
direction. The range or across track direction is oriented perpendicular to the
azimuth direction. Two different ranges are considered, firstly the slant range and
secondly the ground range. The first one describes the direct distance from the
antenna to the object while the second one refers to the projection of the slant range
onto the ground plane. The radar is operated in a side-looking configuration (see
Figure 2.2). The elevation or look angle is the angle between the nadir position of
the radar and the slant range direction. The incidence angle is defined between the
normal of the Earth’s ellipsoid and the slant range direction. The local incidence
angle takes the actual slope of the Earth’s surface into account. The incidence
angle for SAR imaging usually varies in the range 20–50◦.

2.2.1 SAR Imaging Modes

Synthetic Aperture Radars can be operated in different imaging modes to accom-
modate various demands regarding resolution and spatial coverage of the imagery.
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Figure 2.3: Integration angles of different SAR modes

The standard mode is the so called stripmap mode (see Figure 2.3a). The
antenna is pointing at a fixed direction and the spatial coverage is limited in width
by the footprint of the antenna on the ground.

Larger spatial coverage with swath widths up to several hundred kilometres can
be achieved with ScanSAR (see Figure 2.3b). In this mode the antenna is steered
to different locations in range, producing so called subswaths, which, stitched
together, give the final wide swath image. Thus a larger area can be covered at
the expense of resolution, which is usually around 100 m [27]. Another variant is
TOPSAR, where the antenna is steered in azimuth and range to reduce image
artefacts compared to traditional ScanSAR [28].

Spotlight mode SAR is the choice if a high spatial resolution is more important
than coverage. In this mode the antenna is steered to observe a target area for a
longer period of time (see Figure 2.3c). For spaceborne SARs resolutions less than
a metre can be achieved [29].

2.2.2 Resolution

The resolution in range is the same as for the real aperture radar and depends
on the bandwidth of the signal waveform according to Equation 2.6. It should be
noted here that the slant range resolution is independent of range while the ground
range resolution increases with range due to the side-looking imaging geometry.
The advantage of SAR imaging is the resolution in azimuth direction, which can
be defined as follows:

δx =
λ

2θint
, (2.9)

where λ is the wavelength and θint the integration angle, i.e. the angular extent
over which the scene of interest is sampled [22]. The integration angle depends on
the imaging mode of the SAR system (see Figure 2.3).

For strip map collection in broadside geometry the integration angle is equivalent
to the beam width of the real antenna (see Figure 2.3a). With the beam width
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Figure 2.4: Different scattering mechanisms

from Equation 2.7 the azimuth resolution is

δx =
λ

2 λD
=
D

2
, (2.10)

where D is the size of the real antenna. The azimuth resolution of a SAR system
is hence independent of the range to the target and the smaller the antenna the
better the resolution will be. A lower bound of antenna size is imposed by the
Signal-to-Noise ratio and range-Doppler ambiguities.

2.3 Radar Backscatter

The backscattered intensity mainly depends on the radar system parameters, e.g.
frequency, polarization and incidence angle, and on the properties of the target, e.g.
dielectric constant, geometrical shape and for distributed targets also on surface
roughness and the homogeneity of the medium. Two different mechanisms are used
to describe the scattering process: surface and volume scattering.

Surface scattering takes place at the interface of two homogeneous media, in the
case of remote sensing these are usually air and the medium of interest (see Figure
2.4a and 2.4b). The scattering intensity is governed by the dielectric properties of
the medium and the roughness of the surface. Whether a surface appears smooth
or rough depends on the wavelength of the radar signal. A surface is defined as
smooth if the Rayleigh criterion

∆h <
λ

8 cos(θ)
(2.11)

where ∆h is the standard deviation of surface height, λ the wavelength and
θ the incidence angle, is fulfilled. The backscattered intensity increases with
surface roughness. For a smooth surface specular reflection occurs and thus the
backscattered intensity is negligible. Double or triple bounce at perpendicular
surfaces also increases the backscattered signal.
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Volume scattering occurs when the radar wave penetrates into a medium and is
scattered by particles or dielectric inhomogeneities within the medium. A schematic
sketch of volume scattering is shown in Figure 2.4c. The penetration depth is a
measure for the distance a wave can penetrate into a medium and usually increases
with decreasing frequency. The distribution and the size of the particles relative to
the wavelength of the wave play an important role for the scattering within the
medium.

Both scattering mechanisms usually occur at the same time, but depending
on surface properties one can be negligible compared to the other. More detailed
descriptions can be found in [23, 30].

The scattering process is also sensitive to the polarization of the incident wave.
Polarization refers to the orientation of the electric field vector of a radar wave,
where the field vector oscillates perpendicular to its propagation direction. Radars
usually transmit and receive linearly polarized signals, e.g. the field vector is
confined to one plane which is either horizontally (H) or vertically (V) oriented
with respect to the propagation direction (see Figure 2.5). Scattering with multiple
scattering events, e.g. volume scattering or extremely rough surfaces, can alter the
polarization state of the radar wave; this process is known as depolarization [31].
Additional information about a target can thus be gained by using dual-polarized
data, where both polarizations are received, or fully-polarimetric data, where both
polarizations are transmitted and received. If the same polarization is transmitted
and received the data is said to be co-polarized and the channel is denoted as
either HH or VV; cross-polarization is used to define different polarizations on
transmission and reception, which is abbreviated by HV or VH.
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3 SAR Imaging of Sea Ice

Fundamental to the interpretation of sea ice SAR imagery is the understanding
of the different factors influencing the backscatter intensities of sea ice and open
water. The sea ice cover is undergoing constant changes driven by atmosphere and
ocean changing its appearance in SAR imagery. Especially for wide swath imagery
where a broad range of incidence angles and different ice and atmospheric regimes
are covered in the same image, the backscatter intensities vary considerably. Radar
backscatter of a surface is generally governed by

1. the dielectric properties of the material

2. surface roughness and inclusions of scattering inhomogeneities

3. frequency, polarization and sensor geometry of the radar.

The first two describe the physical properties of the surface and the latter one the
characteristics of the imaging system. Radar scattering is most sensitive to the
surface and upper layer of the scattering medium.

3.1 SAR Signatures of Sea Ice and Open Water

3.1.1 Radar Backscatter of Open Water

An incoming radar wave is reflected almost specularly by a calm ocean surface,
resulting in a low backscatter intensity. However the ocean surface is seldom
flat as wind introduces surface roughness originating from capillary and gravity
waves. Backscatter intensities increase with the roughness (see also Section 2.3)
of the surface and hence with wind speed [32]. The backscatter of a roughened
ocean surface depends on the incidence angle and the orientation of the waves
relative to the look direction of the radar for the co-polarization channel [33]. For
the cross-polarization channel the backscatter is significantly lower, about 10 dB
compared to co-polarization and below the noise floor of many spaceborne SARs,
and almost independent of incidence angle and wind direction [34].

Depolarization is small because the high dielectric constant of sea water leads
to primarily surface scattering and little penetration into the water. The cross-
polarization channel therefore greatly enhances the ice water contrast in SAR
imagery [35]. The left part of Figure 3.1 summarizes the scattering mechanism
over open water.

13
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Figure 3.1: Scattering mechanisms in ice and water. Adapted from [38, p. 74]

The ocean in general is not a homogeneous surface and especially over wide
swath imagery the surface roughness is varying over the image. The presence of
biogenic or anthropogenic surface films can dampen the wind induced roughness and
hence reduce backscatter even for high wind conditions [36]. Furthermore oceanic
phenomena like upwelling/downwelling can modulate the sea surface roughness as
well as atmospheric effects as boundary layer stability [32]. Close to land wind
shadowing can reduce backscatter over the ocean surface [37].

3.1.2 Radar Backscatter of Sea Ice

Sea ice is an inhomogeneous mixture of freshwater ice, liquid brine inclusions and
air pockets or bubbles. Its composition depends on the ambient conditions, e.g.
wind, waves, temperature, when it was formed and its age, as weathering processes
alter the state of the sea ice. Brine will be drained from the ice by gravity or
expulsion over time resulting in a lower salinity of older ice. Furthermore the
summer melt cycle facilitates crystal restructuring within the ice. The dielectric
properties of sea ice are hence a complex function of the volume fraction of its
constituents, the age of the ice and shape, size and orientation of the brine pockets
and air bubbles, which are to a large extent controlled by the temperature of the
ice [38][31]. The backscatter of first year ice is mostly characterized by surface
scattering but multi year ice with its lower salinity facilitates volume scattering
(see Figure 3.1).

Scattering is largely influenced by surface roughness. Small scale surface features
in the order of the wavelength, like frost flowers, can greatly enhance the backscatter
values over ice [39] [40]. Topographic features like ridges can also increase the
backscatter intensities because of multi bounce or surfaces inclined towards the
radar [41]. The surface of the ice can be covered with a layer of snow. While
dry snow has little impact on the backscatter intensity, wet snow can reduce the
backscatter intensity significantly and the backscatter intensity becomes more
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frequency dependant [38]. Ambient conditions also influence the backscatter
signatures of sea ice, as the temperature of the ice and the moisture content of
the snow layer changes the dielectric properties [42]. Thus the radar signature
is more attributed to its surface and upper layer properties, which might lead to
complications to distinguish different ice types.

The backscatter intensity of sea ice depends on the frequency of the SAR system.
For higher frequencies (C- and X-band) small scale surface features in the order
of a few centimetres have a larger influence on the backscatter compared to lower
frequencies like L-band. Furthermore volume scattering is more pronounced for
the shorter wavelengths because of the size of the scattering inhomogeneities inside
the ice [38]. Lower frequencies with their larger penetration depths are preferable
under melting conditions, when they can penetrate through a wet snow cover, and
for detection of deformation features [43][44]. Ice type classification and distinction
of surface deformation features like ridges can be improved by considering the
cross-polarization channel [45][46].

3.2 Texture Features for Image Classification

A robust automated classification scheme needs to be able to cover the large
varieties of backscatter values of sea ice and open water. This is especially true
for wide swath images mostly employed for monitoring purposes, where different
ice regimes and ambient conditions are covered within a single image. Because of
large variations and overlap of backscatter signatures of water and ice, backscatter
alone is not sufficient for a robust classification [47].

Therefore tonal/spectral variations, textural and contextual features are taken
into account. Texture describes the spatial variations of image brightness values
within an image part while the contextual features cover the relation of the image
part to its surrounding. While texture can be recognized and described empirically,
i.e using adjectives like smooth, rough, irregular or rippled, relatively easily by
humans, it is difficult to give a precise definition a computer can process [48]. In
the course of time different texture features have been proposed and employed in
sea ice classification schemes: gray level co-occurrence matrices, a second order
texture feature[14][49][50], autocorrelation, which has been successfully employed
in the Baltic [51][52], as well as Markov random fields [53].

Autocorrelation has been applied in the algorithms developed in the framework
of this thesisThe normalized autocorrelation of an image block for lag (i, j) is
defined as follows:

A(i, j) =
1

n− 1

∑
xy(I(x− i, y − j)− µ)(I(x, y)− µ)

σ2
(3.1)

where n is the number of pixels, µ the mean value and σ the standard deviation
of an image block. Autocorrelation gives information about the coarseness of
the texture and can detect repetitive patterns [54]. Over ice neighbouring pixels
are assumed to be more related to each other while the backscatter values over
open water fluctuate more randomly resulting in lower autocorrelation values.
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Figure 3.2: SAR images of sea ice from 09.01.2016: a) C-band HH, b) L-band HH,
c) C-band HV, d) L-band HV, where C-band imagery is from Sentinel-1 and L-band
imagery from ALOS PALSAR 2 [Contains Copernicus Sentinel Data (2016)]

Nevertheless some sea ice areas show little texture, e.g. smooth fast ice and areas in
the MIZ where subresolution ice floes lead to a more random and smooth texture,
while texture over open ocean can be introduced by wind patterns or oceanic
features, e.g upwelling and eddies (see section 3.1.1).

Autocorrelation is computed for image blocks around the pixel of interest with
lags in all directions and the average is assigned as the new pixel value. The size of
the image block is important, as it needs to capture the prevalent texture features
of the image. For our purposes a block size of 11x11 pixels has given the best
results.

3.3 SAR Imagery of Different Frequency and Polarization

The primarily used frequency for operational sea ice observations and monitoring
is C-band [55], providing a 25 year record of observations starting with ERS-1/2 in
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1991/1995, RADARSAT 1/2 since 1995/2007, Envisat ASAR 2002 and the two
Sentinel-1 satellites since 2014/2016. Studies have shown that other frequencies, X-
and L-band in particular, can add complementary information that can facilitate
interpretation and classification of SAR imagery [44, 56]. L-band, due to its larger
wavelength, can aid to improve image interpretation during melting conditions
compared to higher frequencies [57].

Dual polarization imagery (mostly HH and HV) is state of the art for image
interpretation and is supported by most current spaceborne SAR missions. The
cross polarization channel can help to improve the distinction of different ice types
and ice/water discrimination [58]. Depolarization is related to volume scattering
or multiple scattering processes associated with rough surfaces, and hence lower
for water areas [31]. But care must be taken for the cross-polarization images
when the backscatter reaches the noise floor. At these low backscatter values, noise
floor variations especially at boundaries between subswaths can become visible and
impede automatic classifications [59].

Figure 3.2 shows dual-polarization images from Sentinel-1 in C-band (5.405 GHz)
and ALOS PALSAR 2 in L-band (1.2 GHz). Imagery from these two SAR systems
has been used throughout the work contained in this thesis. The cross-polarization
channel of the Sentinel-1 image in 3.2c) shows prominent striping over areas with
low backscatter (right part of the image) due to noise floor corrections. Striping is
not so pronounced for the PALSAR 2 image, although not evident in this image,
reduced image quality has been observed for many low backscatter areas. The
contrast between ice and water (right part of the image) is more pronounced in
the cross-polarized channel of C-band compared to L-band.
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4 Sea Ice Characterization

The sea ice cover can be described in more detail by properties derived from SAR
imagery:

1. Sea Ice Concentration

2. Sea ice Classification: ice/water discrimination, ice types

3. Sea Ice motion

4.1 Sea Ice Concentration

Sea ice concentration is the areal fraction of sea ice covering the ocean surface in
a predefined region. Sea ice concentration plays an important role for air-ice-sea
interaction processes and is thus of interest to atmospheric studies and climate
modelling [60]. Concentration information is also valuable for navigation in ice
infested waters, as high concentration areas are usually to be avoided [61].

Ice concentration in ice charts issued by national ice services, is defined in
tenths on a scale ranging from 0 = ice free to 10/10 = consolidated pack ice [62].
Percentage is also a widely used unit to describe ice concentration for instance
datasets derived from passive microwave radiometry.

A continuous time series of ice concentration observations with a spatial res-
olution of 25x25 km exists for the Arctic and Antarctica from passive microwave
radiometer data since 1978 [63]. Daily ice concentration maps are also issued by the
University of Bremen based on AMSRE-2 data with a resolution down to 3.125 km
[64]. The low resolution limits the use for navigational purposes but the data is
widely-used in climatological studies. For navigation, National ice services provide
ice information with higher spatial resolution. The charts are derived manually
from a number of different data sources including optical, microwave and infrared
remote sensing data as well as information from ships or reconnaissance missions
[65]. When using ice charts as reference data it should be pointed out that they
are biased towards the C-band data, which is the primary information source in
the manual interpretation process.

Manually derived ice charts are a subjective interpretation of the expert ice
analyst and thus depend on the experience level as well as on the person itself [66].
Furthermore manual interpretation is usually accompanied with generalization on

19
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(b) Ice chart from met.no

Figure 4.1: Ice concentration from algorithm and ice chart [from Paper A]

the expense of resolution. To overcome these limitations scientific efforts have been
undertaken to automatize this process. Although the human brain can process
complex imagery relatively easily and effectively, digital implementing is not a
straightforward task [67]. To date manual interpretation has not been fully replaced
by automatic evaluation procedures.

Sea ice concentration estimation from SAR imagery consists of feature extraction
and mapping of the feature vector to ice concentration. Features include backscatter
coefficients, polarization ratios and texture measures. Mapping is usually done
with a machine learning approach or statistical classifiers.

Autocorrelation as texture feature and feedforward neural networks have been
used on single and dual polarization data for sea ice concentration estimation in
the Baltic [47, 51, 52]. Gray Level Co-occurrence matrices derived texture features
in conjunction with a data assimilation process are exploited in an algorithm using
RADARSAT-2 images in the Canadian Arctic [68]. An approach with automated
feature learning only based on backscatter intensities is using a convolutional neural
network, widely-used in other fields of computer recognition, for the mapping process
[69]. A Bayesian approach is used to fuse ice-water maps from RADARSAT-2
imagery with ice concentration derived from AMSR-E to improve the concentration
estimates. The only algorithm using L-band is based on scattering entropy of
polarimetric data and simple thresholding [70].

Figure 4.1 shows an example of ice concentration derived from Sentinel-1 data
with the algorithm presented in Paper A in comparison with an ice chart from
met.no.

4.2 Sea Ice Classification

Sea ice classification aims to further characterize sea ice according to its type, stage
of development, presence of ridges or melting state. Once again this is valuable
information for navigation in ice infested waters and changes of the characteristics
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(a) L-band HH image from ALOS PALSAR-
2

(b) Classification result

Figure 4.2: Ice classification: blue - open water/very thin ice, cyan - young ice,
dark cyan - old ice floes and white - first year ice [from Paper C]

of the ice cover are indicative of a changing environment. The area/extent of multi
year ice, i.e. ice that survived at least two summers, for example is slightly more
declining compared to the total ice cover [1].

This thesis focused on the one hand on the discrimination of ice and water, the
most basic case of classification, and on the other hand on ice type classification,
where only a few visually distinguishable classes have been selected. In both cases
multi-spectral comparisons of C- and L-band has been conducted to investigate the
possibly complementary information content of the two frequencies. While ice type
classification has been applied on L-band data, no studies on distinct ice/water
discrimination have been published to the authors knowledge.

The general procedure of ice classification is similar to the one for ice concen-
tration estimation. A set of features separating the ice classes is defined and a
mapping technique is applied to link the feature vector to a certain class.

Ice/water maps have been derived from Gray level co-occurrence texture features
in conjunction with a Support Vector Machine (SVM) from RADARSAT-2 data
[14]. A more complex algorithm fuses the ice-water output of a SVM with an
unlabelled six class segmentation to obtain a more robust classification result
[71]. While these are algorithms specifically designed for ice/water discrimination,
basically any ice classification containing an open water class can be used for this
task.

Ice type classification/segmentation is a far wider field and many studies have
been conducted in this field addressing different classification tasks [72, 73, 74].
Figure 4.2 shows a classification based on backscatter signatures of an ALOS
PALSAR-2 L-band into visually distinguishable ice classes. It visualizes the
challenges for a computer algorithm to discriminate different ice regimes, a human
can identify.
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Figure 4.3: Example of ice drift in Fram Strait [77]

The potential benefit of multi-frequency SAR imagery has been addressed in
the foregoing chapter and comparison studies have revealed a potential benefit
of combining them to achieve more accurate classification results [15, 44, 75,
76]. Nevertheless only one study used C- and L-band imagery simultaneously to
obtain a combined classification result from satellite SAR data using the ISODATA
algorithm on intensity imagery [43]. The challenge of multi-frequency analysis of
spaceborne SAR imagery is the availability of near coincidental datasets required
due to the constant motion of the ice cover.

4.3 Sea Ice Motion

The sea ice cover is constantly changing in space and time due to the influence
of both the atmosphere and ocean. Sea ice drift, the motion of the ice relative
to Earth’s surface, is forced by geostrophic winds and ocean currents and is
quantified by its velocity and direction. Drift velocities up to 0.64 m s−1 have been
observed in Fram Strait from buoy data [78]. Figure 4.3 shows mean ice velocities
estimated from SAR imagery in Fram Strait February to March 2012 [77]. The
figure underlines the dynamics in Fram Strait and that the motion of the ice is not
negligible when comparing images or auxiliary data acquired at different times.
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Motion of the ice is not homogeneous over the area covered within the swath
width of an image and is a complex mixture of lateral movement and rotation. The
constant motion of the ice creates divergence and shear, resulting in the formation
of leads, as well as convergence causing the build up of pressure ridges, that can
reach several meters in height [79].

The extraction of sea ice drift from SAR imagery is an active field of research
and different algorithms have been proposed [13, 80, 81]. Some studies included
L-band data into their investigations [82, 83].

Though sea ice motion is not directly addressed by the research in this study,
it imposes challenges on sea ice monitoring and parameter estimation. Whenever
comparing data, be it imagery or auxiliary data, acquired at different times, changes
due to the drift of the ice need to be kept in mind for the analysis.
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5 Summary of Appended Papers

5.1 Paper A: Sea ice concentration estimation from Sentinel-
1 Synthetic Aperture Radar images over Fram Strait

In this paper an algorithm for sea ice concentration estimation from Sentinel-1
Synthetic Aperture Radar images is presented and evaluated for Fram Strait, the
main gateway to the Arctic. The algorithm is based on spatial autocorrelation, a
textural feature which is used on the one hand to distinguish ice and open water and
areas of different ice concentration on the other hand. While the backscatter of open
water is assumed to fluctuate independently between resolution cells, neighboring
pixels exhibit more correlation over a compact ice sheet [52]. In regions with lower
ice concentration the autocorrelation is usually lower, as a mixture of ice, open
water or sub resolution ice floes is present and lead to a more random backscatter.
A generally higher backscatter compared to the open water enables the distinction.
Problems remain for fast ice areas which exhibit little structure and have low
backscatter values. Dual polarization imagery greatly improves ice/water contrast
as the cross-polarization channel is not susceptible to backscatter increases caused
by a wind roughened ocean surface.

The mapping between image parameters and ice concentration is performed via
an artificial neural network. Neural networks are capable of complex mapping tasks
and once trained they can be applied to images of the same kind. Ice concentration
charts from the Norwegian Meteorological Institute are used for the necessary
training of the network. Generally the algorithm shows a good performance, but
improvements are needed for fast ice and some areas in the marginal ice zone, the
transition between the open ocean and the compact sea ice.

5.2 Paper B: Comparison of ice/water classification in Fram
Strait from C- and L-band SAR imagery

In this paper an algorithm for ice/water classification is evaluated for SAR imagery
in C- and L-band and the results of the two different frequencies are compared
to each other. The algorithm is based on the one developed in Paper A but has
been adapted to the needs of a three class classifier with categories ice, rough open
water and calm open water/thin ice. The partition of the water class is necessary
as fundamentally different image characteristics are observed. In co-polarization
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wind roughened water can basically take any backscatter value, while areas of calm
water or where wave dampening occurs, e.g. due to a layer of thin ice or a film of
natural organic matter, have a low backscatter due to specular reflection.

The observation area is again Fram Strait because of its pronounced sea ice
dynamics and its importance as a gateway to the Arctic. Two different frequencies
are used as they respond to distinct features of the ice cover. L-band is more
sensitive for topographic features like ridges or floe edges while C-band reacts
more to small scale surface roughness and features, i.e. frost flowers. Ground
truth for wide swath sea ice imagery is generally difficult and also varies in spatial
resolution. Ice extent maps derived from passive microwave radiometry and ice
concentration charts from the Norwegian Meteorological Institute are used in this
case for evaluation of the algorithm performance. Deviations occurred mostly in
the marginal ice zone, where the dynamics of this region exacerbate the difference
due to a time lag between the imagery and validation data. Furthermore details
get lost by manual interpretation and the larger pixel sizes of the validation data.

The ice/water classification derived from C- and L-band mostly agree but each
frequency shows different strengths. C-band is generally better in distinction of
ice and water while L-band maps have their strength with open or newly refrozen
areas within the ice pack. The first is attributed to the larger contrast between
ice and water backscatter especially at cross-polarization while the latter is caused
by the larger wavelength of L-band which reduces the susceptibility to small scale
surface roughness on the otherwise smooth ice. Deviations occur mostly in the
marginal ice zone due to the time lag between the acquisitions and the dynamics
at the edge of the ice.

Improvements could be achieved by inclusion of more texture features, which
discriminate the classes. Furthermore distinct algorithms for ascending and de-
scending orbital paths could be used, as they exhibit different incidence angle
dependences on the backscatter.

5.3 Paper C: Information Content of Multi-Spectral SAR –
Sea Ice Classification - Test Case Fram Strait

Paper C investigates the potential benefit of using C- and L-band SAR imagery
for sea ice classification in different ice regimes, e.g. pack ice, marginal ice zone
and areas with land fast ice. Three examples of dual frequency image pairs have
been classified with a Support Vector Machine based on backscatter signatures
in co- and cross-polarization channel. One of the example image pairs has been
coregistered to see the immediate effect of the combination of two frequencies. This
is generally a challenging task for spaceborne observations of sea ice due to the time
lag of the images from different sensors. Especially in Fram Strait where the drift
can reach several decimetres per second, time gaps of two hours yield significant
displacement at the resolution scale of the SAR data. The inhomogeneous and
complex motion patterns make correction for ice drift a challenging task.

The investigations reveal that C- and -L-band contain different information that
could be exploited for improvement of classification results. Ice floe boundaries
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and deformation features are better outlined in L-band, while C-band showed a
better separation of ice classes in consolidated pack ice. Different stages of thin
and young ice and open water could be better discriminated in C-band while in
L-band only thin ice deformation features indicate the difference between thin ice
and open water.

Though the results show promising indications of using dual frequency data for
more robust and accurate classification results, the time gap between observations
impede a quantification of the obtained results.
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6 Conclusions and Outlook

The objective of the thesis was the development of strategies for sea ice information
retrieval from SAR imagery in C- and L-band of present satellite sensors. The
studies presented in the appended papers, included ice concentration estimation,
ice/water discrimination and ice type classification. The developed algorithms have
been validated against available auxiliary data, i.e ice charts, radiometer data sets
or manual derivation of ground. Despite a purposely low number of input features,
satisfactory results could be achieved.

The presented work demonstrates the benefit of multi-frequency analysis and
the complementary information found in C- and L-band. Furthermore the same
algorithm, but tuned to each frequency, can be used without major adaptations. An
attempt to co-register detailed images from C- and L-band shows the difficulty of
simultaneous use of satellite imagery acquired at different times. In particular, the
small scale features like leads and areas with smaller floes or lower ice concentration,
which are more sensitive to sea ice motion, are difficult to map adequately.

Though good results can be achieved, future work must focus on further improv-
ing the algorithms. There are ice regimes where the performance is still limited.
Ice drift estimations obtained from the imagery could be used to account for the
motion of the ice in multi-frequency approaches. But this will remain a challenging
task as ice motion is complex and highly spatially variant.

We also want to direct our research to ice thickness retrieval from altimeter
data (CRYOSAT-2 and Sentinel-3) and investigate how this can possibly be aided
by information about ice type or concentration obtained from SAR imagery. Multi
year and first year ice are characterized by different ice thickness, with the latter
one being thinner than the first one, but also different ice properties. Information
about ice type could therefore aid the conversion from sea ice freeboard to thickness.
The sea ice concentration on the other hand might alleviate the interpretation of
waveforms.
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The influence of declining sea ice on shipping activity in the Canadian
Arctic. Geophysical Research Letters, 43(23) (2016), 12, 146–12, 154. doi:
10.1002/2016gl071489.

[62] JCOMM Expert Team on Sea Ice. WMO Sea-Ice Nomenclature, volumes I,
II and III. WMO, 2015.

[63] D. J. Cavalieri, C. L. Parkinson, P. Gloersen, and H. J. Zwally. Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive
Microwave Data, Version 1. NASA National Snow and Ice Data Center
Distributed Active Archive Center, 1996, yearly updated.

[64] G. Spreen, L. Kaleschke, and G. Heygster. Sea ice remote sensing using
AMSR-E 89-GHz channels. Journal of Geophysical Research, 113(C2) (2008).
doi: 10.1029/2005jc003384.

[65] World Metrological Organization. Sea-Ice Information Services in the World.
World Metrological Institution, 2010.

[66] J. Karvonen, J. Vainio, M. Marnela, P. Eriksson, and T. Niskanen. A Com-
parison Between High-Resolution EO-Based and Ice Analyst-Assigned Sea
Ice Concentrations. IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 8(4) (2015), 1799–1807. doi: 10.1109/jstars.
2015.2426414.

[67] F. Fleuret, T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman.
Comparing machines and humans on a visual categorization test. Proceedings
of the National Academy of Sciences, 108(43) (2011), 17621–17625. doi:
10.1073/pnas.1109168108.

[68] N. G. Kasapoglu. Sea Ice Concentration Retrieval Using Composite ScanSAR
Features in a SAR Data Assimilation Process. IEEE Geoscience and Re-
mote Sensing Letters, 11(12) (2014), 2085–2089. doi: 10.1109/lgrs.2014.
2319212.

[69] L. Wang, K. A. Scott, L. Xu, and D. A. Clausi. Sea Ice Concentration Esti-
mation During Melt From Dual-Pol SAR Scenes Using Deep Convolutional
Neural Networks: A Case Study. IEEE Transactions on Geoscience and Re-
mote Sensing, 54(8) (2016), 4524–4533. doi: 10.1109/tgrs.2016.2543660.

[70] H. Wakabayashi and S. Sakai. Estimation of sea ice concentration in the
Sea of Okhotsk using PALSAR polarimetric data. 2010 IEEE International

36

https://doi.org/10.1007/s10712-014-9284-0
https://doi.org/10.1007/s10712-014-9284-0
https://doi.org/10.1002/2016gl071489
https://doi.org/10.1029/2005jc003384
https://doi.org/10.1109/jstars.2015.2426414
https://doi.org/10.1109/jstars.2015.2426414
https://doi.org/10.1073/pnas.1109168108
https://doi.org/10.1109/lgrs.2014.2319212
https://doi.org/10.1109/lgrs.2014.2319212
https://doi.org/10.1109/tgrs.2016.2543660


Geoscience and Remote Sensing Symposium. IEEE, 2010. doi: 10.1109/
igarss.2010.5652440.

[71] S. Leigh, Z. Wang, and D. A. Clausi. Automated Ice–Water Classification
Using Dual Polarization SAR Satellite Imagery. IEEE Transactions on Geo-
science and Remote Sensing, 52(9) (2014), 5529–5539. doi: 10.1109/tgrs.
2013.2290231.

[72] D. Clausi, A. Qin, M. Chowdhury, P. Yu, and P. Maillard. MAGIC: MAp-
guided ice classification system. Canadian Journal of Remote Sensing, 36(S1)
(2010), S13–S25.

[73] T.-J. Kwon, J. Li, and A. Wong. ETVOS: An Enhanced Total Variation
Optimization Segmentation Approach for SAR Sea-Ice Image Segmentation.
IEEE Transactions on Geoscience and Remote Sensing, 51(2) (2013), 925–
934. doi: 10.1109/tgrs.2012.2205259.

[74] M.-A. N. Moen, A. P. Doulgeris, S. N. Anfinsen, A. H. H. Renner, N. Hughes,
S. Gerland, and T. Eltoft. Comparison of feature based segmentation of full
polarimetric SAR satellite sea ice images with manually drawn ice charts.
The Cryosphere, 7(6) (2013), 1693–1705. doi: 10.5194/tc-7-1693-2013.

[75] R. Ressel and S. Singha. Comparing Near Coincident Space Borne C and X
Band Fully Polarimetric SAR Data for Arctic Sea Ice Classification. Remote
Sensing, 8(3) (2016), 198. doi: 10.3390/rs8030198.

[76] W. Dierking. Sea ice classification on different spatial scales for operational
and scientific use. ESA Living Planet Symposium 2013. (Edinburgh). 2013.

[77] A. Berg. “Spaceborne synthetic aperture radar for sea ice observations,
concentration and dynamics”. PhD thesis. Chalmers University of Technology,
2014.

[78] R. Lei, P. Heil, J. Wang, Z. Zhang, Q. Li, and N. Li. Characterization of
sea-ice kinematic in the Arctic outflow region using buoy data. Polar Research,
35(1) (2016), 22658.
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