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Automatically Introducing Tail Recursion in CakeML
OSKAR ABRAHAMSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In this thesis, we describe and implement an optimizing compiler transformation
which turns non–tail-recursive functions into equivalent tail-recursive functions in
an intermediate language of the CakeML compiler. CakeML is a strongly typed
functional language based on Standard ML with call-by-value semantics and a fully
verified compiler. We integrate our implementation with the existing structure of
the CakeML compiler, and provide a machine-checked proof verifying that the
observational semantics of programs is preserved under the transformation. To
the best of our knowledge, this is the first fully verified implementation of this
transformation in any modern compiler. Moreover, our verification efforts uncover
surprising drawbacks in some of the verification techniques currently employed in
several parts of the CakeML compiler. We analyze these drawbacks and discuss
potential remedies.

Keywords: Compiler verification, formal methods, compiler optimizations, func-
tional programming, CakeML, tail recursion

v





Acknowledgements
I would like to thank my supervisor Magnus Myreen for continuous encouragement,
support and helpful ideas throughout my thesis project, as well as for giving me
the opportunity to contribute to the CakeML project. I would also like to thank
my examiner Carlo A. Furia for providing valuable feedback during the writing
of this report. Drafts of this report were read by Maximilian Algehed and Sòlrùn
Halla Einarsdòttir.

Oskar Abrahamsson, Gothenburg, July 2017

vii





Contents

Contents ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Tail-recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Tail recursion using accumulators . . . . . . . . . . . . . . . . . . . 6

2.3.1 Example: List reversal . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Generalizing the transformation . . . . . . . . . . . . . . . . 7

2.4 CakeML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 The BVI intermediate language . . . . . . . . . . . . . . . . 8

2.5 The HOL4 interactive theorem prover . . . . . . . . . . . . . . . . . 9
2.5.1 Software development in HOL4 . . . . . . . . . . . . . . . . 9

3 Transforming BVI functions 11
3.1 The BVI abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Compiling BVI programs . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Transforming BVI expressions . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Example: The factorial in BVI . . . . . . . . . . . . . . . . 13
3.3.2 Transforming the tail position . . . . . . . . . . . . . . . . . 14

3.4 Detecting necessary conditions . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Inferring the type of BVI expressions . . . . . . . . . . . . . 20
3.4.2 Selecting expressions for transformation . . . . . . . . . . . . 21

3.5 Integration with the CakeML compiler . . . . . . . . . . . . . . . . 21

ix



Contents

4 Proving semantics preservation 25
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 The semantics of BVI . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Proving theorems about expression semantics . . . . . . . . 26
4.1.3 Reasoning about divergence . . . . . . . . . . . . . . . . . . 28
4.1.4 Proving theorems about program semantics . . . . . . . . . 29

4.2 Semantics preservation . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Semantics of programs . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Semantics of expressions . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Generalized semantics of expressions . . . . . . . . . . . . . 33
4.2.4 Supporting theorems . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 The lack of a type system . . . . . . . . . . . . . . . . . . . 38
4.3.2 The compiler clock . . . . . . . . . . . . . . . . . . . . . . . 39

5 Related Work 41

6 Conclusions and future work 43

Bibliography 45

x



1
Introduction

1.1 Motivation
Modern compilers are complex pieces of software, responsible for translating a large
set of input programs to executable machine-code. Optimizing compilers perform a
wide range of transformations in order to ensure efficient execution of the resulting
machine-code programs. While the desirable outcome of these transformations are
usually performance gains, it is also vital that program semantics are preserved,
so that the resulting executable code behaves as intended.

CakeML is a functional programming language based on a substantial subset
of Standard ML [1]. The CakeML compiler is a verified compiler; that is, for every
run of the compiler on a CakeML source document, the compiler has been verified
to produce machine-code behaving in accordance to the semantics of the source
program. The compiler and its proof of correctness are implemented entirely in
the higher-order logic of the HOL4 theorem prover [2].

This thesis describes how a new verified optimization has been added to the
CakeML compiler. The optimization is a code transformation, which turns non–
tail-recursive functions into tail-recursive functions by automatically introducing
accumulator arguments. A tail-recursive function is a function in which all recur-
sive calls are tail calls, i.e. calls that are situated in the value-returning positions
of a function body. Although the technique we employ is well known, it is usually
performed manually by the programmer at the source level.

As CakeML strives to be the most realistic implementation of a verified modern
compiler for a functional programming language [3], efficient and proven-correct
optimizations contribute not only towards the project itself, but benefit future
efforts in the area of formally verified optimizing compilers.

1.2 Preliminaries
The optimizing transformation described in this thesis allows the CakeML compiler
to automatically transform certain recursive functions into equivalent tail-recursive
functions. A recursive function is a function which contains a self-reference. In
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1. Introduction

programming, this entails a function or procedure which calls itself at some point
during evaluation. A tail-recursive function is a recursive function in which a
recursive call is present in a tail position of the function definition. Intuitively, a
tail position of a function is any part of its body which ‘returns’ a value. Hence, in
a tail-recursive function, the last action performed during evaluation is a recursive
call or the evaluation of a non-recursive expression.

Consider two different – but equivalent – recursive definitions of the factorial
n! = n ·(n−1) · · · 2 ·1 in some fictitious functional language. A recursive definition
of the factorial is given by

fac n = if n ≤ 1 then 1 else n × fac (n − 1). (1.1)

The self-reference contained in (1.1) exists under a multiplication operator (×).
In order for fac n to yield a value for some n > 1, we must first compute this mul-
tiplication, requiring subsequent recursive computations of fac until the base case
n = 1 is reached. We give a second definition of the factorial. It is extensionally
equivalent to (1.1), but it is defined in such a way that it is tail-recursive:

fac’ acc n = if n ≤ 1 then acc else fac’ (n × acc) (n − 1). (1.2)

Evaluating fac’ 1 n yields the same value as the evaluation of fac n. However,
in (1.2) the recursive call sits in tail position. This turns out to be crucial from a
computational standpoint. Evaluating (1.1) for some n > 1 demands subsequent
recursive evaluations of fac before yielding a value. Each successive recursive call
requires a small amount of bookkeeping, which consumes a non-negligible amount
of time and stack space. In (1.2) however, the need for bookkeeping is eliminated
altogether, as computation of the function arguments can be performed in-place,
and the last recursive call to fac’ can return to the original caller. Consequently, our
tail-recursive factorial can be evaluated with stack space consumption bounded by
a constant, whereas the previous definition consumed additional stack space and
time proportional to the number of recursive calls.

1.3 Contributions
In this report, we describe a fully verified implementation of an optimizing code
transformation for functional programs, which automatically introduces tail recur-
sion using accumulators. The implementation acts on an intermediate language
in the fully verified CakeML compiler. Our contributions consist of extending
the CakeML compiler with a self-contained phase performing the transformation,
as well as a machine-checked proof of semantic preservation. To the best of our
knowledge, ours is the first proven-correct implementation of this transformation,
existing in a fully verified compiler.
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1. Introduction

Proving the correctness of the implemented transformation exposes some sur-
prising shortcomings in the techniques used for the verification of the CakeML
compiler. The style of verification employed in the functional intermediate lan-
guages of the CakeML compiler has so far proven successful. In particular, it
has enabled the verification of several intricate optimizations that manages to
put CakeML in league with the OCaml and Poly/ML compilers in certain bench-
marks [4]. However, the verification of the transformation presented in this work
reveals drawbacks to this approach. We discuss these drawbacks and suggest
workarounds.

1.4 Thesis structure
Chapter 2 gives the relevant background on the topic of the thesis. We start by
detailing the notation used throughout this report (Section 2.1) followed by an
extended account of tail-recursion (Section 2.2). Following this, we introduce a
code transformation for automatically introducing tail recursion (Section 2.3). In
addition, we introduce the CakeML language and compiler, as well as the inter-
mediate language BVI of the CakeML compiler, on which our transformation acts
(Section 2.4). Lastly, the HOL4 theorem prover within which our work is carried
out is described (Section 2.5).

Chapter 3 starts with a description of BVI (Section 2.4). This is followed by
a description of the BVI compiler stage (Section 3.2). We then proceed to give a
detailed account of how the implementation of the transformation for BVI expres-
sions is carried out in the HOL4 theorem prover (Section 3.3), including the static
analysis required to transform expressions (Section 3.4). Finally, we conclude with
a description of how the transformation is integrated into the CakeML compiler
as a stand-alone compiler stage (Section 3.5).

Following this, the implementation from Chapter 3 is verified correct in Chap-
ter 4. The chapter starts by giving the necessary background for carrying out
formal reasoning about the semantics of BVI programs (Section 4.1). In particu-
lar, we account for the semantics of BVI (Section 4.1.1), what correctness entails,
and how proofs of correctness are carried out (Sections 4.1.2 through 4.1.4). This is
followed by a detailed account of the most important correctness theorems for the
implementation from Chapter 3, as well as descriptions on how proofs are carried
out for these theorems (Section 4.2). We conclude the chapter with a description
of some surprising limitations in the verification techniques used which are exposed
when carrying out proofs for some of our theorems (Section 4.3).

Chapter 5 puts our contributions in context with related work done on similar
compiler optimizations. Formal treatments of the transformation described in
this paper are sparsely accounted for in literature. In particular, most systematic
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1. Introduction

descriptions focus solely on the removal of list-append, with the introduction of
tail-recursion as an implicit side-effect.

Finally, we conclude our report in Chapter 6 with a discussion of our results,
and suggest suitable topics for future work.
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2
Background

This chapter provides the necessary background for the work carried out in this
thesis. We start by describing the notation employed in the remainder of the
report (Section 2.1). The concept of tail recursion, as well as the benefits of tail-
recursive functions when compiling functional programs, is further elaborated on
(Section 2.2). We introduce a transformation for automatically introducing tail-
recursion by means of an example, and then proceed with a more general descrip-
tion in an algorithmic fashion (Section 2.3). This is followed by a description of
the CakeML language and compiler (Section 2.4), as well as an introduction to the
BVI intermediate language which our implementation will target (Section 2.4.1).
Finally, we introduce to the HOL4 proof assistant, in which our implementation
and verification efforts will be carried out (Section 2.5).

2.1 Notation
The notation we employ is as follows. CakeML code is typeset in sans-serif with
comments enclosed by (* ... *). Functions written in CakeML are declared using
the keyword fun:

fun < identifier > [arguments] = <body>
The majority of the source code listings in this report consists of function def-

initions and theorems in higher-order logic (HOL) (see Section 2.5). These are
typeset automatically using the LATEX generation facilities of the HOL4 theorem
prover. The syntax of HOL closely resembles that of ML-style languages: con-
structors, keywords and function names are typeset in sans-serif. Variables are
written in italic. Records are declared using

my_record =
<| field1 := v1; field2 := v2; . . . |>

and use . (dot) for projection and with for update. Logical equivalence is denoted
by ⇐⇒ . Implication and case-style pattern matching is denoted by⇒. All other
logical connectives retain their usual meaning.
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2. Background

2.2 Tail-recursive functions
A tail-recursive function is a function which performs a recursive call to itself as
its final action before returning a value. In functional programming, this entails
that the function contains a recursive call in one of its tail positions, that is, those
positions in the function definition which evaluate to a value.

Evaluating a recursive call in tail position enables reuse of the current stack
frame to a greater extent, as no additional bookkeeping needs to be performed to
ensure that the function returns ‘to the right place’; one can simply branch uncon-
ditionally into the body of the callee. Moreover, the locations of any arguments
to the function can potentially be reused instead of being pushed onto the stack
or placed in registers to satisfy calling conventions. When this is the case, the
function itself can be compiled into a corresponding loop statement, keeping stack
usage constant throughout its execution. This approach is commonly referred to
as tail-call elimination. It is highly advantageous when applicable, as it allows a
single function to perform recursive calls without additional stack space consump-
tion. This advantage is even more pronounced in implementations of functional
programming languages, where recursive functions act as the drop-in replacement
for loops.

2.3 Tail recursion using accumulators
In this section, we describe a code transformation for automatically transforming
recursive functions into tail-recursive functions. Although the transformation is
well-known [5], it is usually performed by the programmer at the source level.
We start by providing an informal description of the procedure through a worked
example in Section 2.3.1. The example is generalized to an algorithmic description
of the steps of the transformation in Section 2.3.2.

2.3.1 Example: List reversal
Consider the following naive implementation of a function which reverses a list:

fun reverse [] = [] (∗ reverse .base ∗)
| reverse (x :: xs) = reverse xs ++ [x] (∗ reverse . rec ∗)

The tail position in the recursive case of reverse contains a list append operation
reverse xs ++ [x]. We will introduce a function reverse’ such that for all xs and for
all a, it holds that reverse’ xs a = reverse xs ++ a. We proceed by specifying the
recursive case:

fun reverse ’ (x :: xs) a = reverse (x :: xs) ++ a

6



2. Background

Next, we substitute the definition of reverse.rec for the call on the right-hand side:
fun reverse ’ (x :: xs) a = (reverse xs ++ [x]) ++ a

We then utilize the associative property of (++), yielding
fun reverse ’ (x :: xs) a = reverse xs ++ ([x] ++ a)

Since the property reverse’ xs a = reverse xs ++ a holds for all choices of a, we
substitute reverse’ xs [] for reverse xs by an inductive argument.
fun reverse ’ (x :: xs) a = reverse ’ xs [] ++ ([x] ++ a)

We apply the inductive argument once more, this time with [x] ++ a for a.
fun reverse ’ (x :: xs) a = reverse ’ xs (([ x] ++ a) ++ [])

The same procedure is applied for the base case of reverse. Finally, we give the
definition some touch-ups utilizing the definition of (++) and introduce an auxiliary
function named so that reverse’ may be used in place of the original reverse:
fun reverse ’ [] a = a
| reverse ’ (x :: xs) a = reverse ’ xs (x :: a)

fun reverse xs = reverse ’ xs []

2.3.2 Generalizing the transformation
The transformation steps applied in Section 2.3.1 can be generalized to work with
any operation in tail position, so long as it is associative and has an identity
element. Let + be an associative operator with identity 0, and let f be some
recursive function. The key takeaway from the reverse-example is that whenever
f has an operation

f x+ a (2.1)
in tail position, we can replace this operation by a tail call, by introducing a
function f ′ satisfying

f ′ x a = f x+ a . (2.2)
The additional argument a to f ′ is commonly referred to as an accumulator, since
it accumulates the partial sum of the result computed during the recursion. The
production of such a function f ′ can be performed as follows, by rewriting the
existing expression constituting the body of f :

1. For those expressions e in tail position that satisfy the form e := f x+ y for
some x, y, replace e by f ′ x (y + a), where f ′ is an unused function name.

2. For all other expressions e in tail position, replace them with the expression
e′ := e+ a.

7



2. Background

3. Finally, rename f to f ′, and give it an additional argument pointed to by a.
The name f is re-used for an auxiliary definition applying f ′ to the identity
of + by setting f x = f ′ x 0.

We will return to this transformation in Chapter 3 as we provide an implemen-
tation in higher-order logic, and describe the steps of its subsequent inclusion in
the CakeML compiler.

2.4 CakeML
CakeML [6] is a strongly typed functional programming language with call-by-
value semantics, based on Standard ML. It supports a large subset of the features
present in Standard ML, including references, exceptions, modules and I/O. The
CakeML compiler targets several common hardware architectures, including Intel
x86, ARM, MIPS and RISC-V. The compiler is implemented in higher-order logic
using the HOL4 proof assistant, and comes with a mechanically verified proof of
correctness which guarantees that every valid CakeML source program is compiled
into semantically compatible machine code.

2.4.1 The BVI intermediate language
The CakeML compiler recently received a new backend [3] which makes use of
12 intermediate languages (ILs) during compilation. The IL under consideration
for our implementation is BVI (Bytecode-Value Intermediate language). BVI is
a first-order functional language with de Bruijn-indices.1 Like all other ILs in
the new CakeML compiler backend, its formal semantics is specified in terms of a
functional big-step style [7].

The transformation described in this thesis is to be applied on BVI programs
as a standalone stage in the CakeML compiler. At this stage of compilation, the
input program has been divided into a list of functions stored in an immutable
code store, which we call the code table. Our motivations for choosing BVI for this
optimization are the following:

• BVI does not support closures. Determining equivalence between values in a
language with closures is complicated, since values contain expressions that
would be changed by our transformation. Implementing the transformation
in a first-order language greatly simplifies verification, as it enables us to use
equality as equivalence between values before and after the transformation.

1The usage of de Bruijn-indices is common to compilers, as it eliminates the need for variable
renaming.

8



2. Background

• The compiler stage which transforms a prior higher-level IL into BVI intro-
duces new functions into the compiler code table, and keeps track of what
function names are unused. This suits our purposes, since our transformation
needs to introduce auxiliary definitions, i.e. using previously unused entries
in the code table.

Chapter 3 gives an account of the BVI abstract syntax (Section 3.1). In ad-
dition to this, Chapter 4 includes a description of the semantics of the language
(Section 4.1.1).

2.5 The HOL4 interactive theorem prover
The implementation of the CakeML compiler as well as its proof of correctness
is carried out wholly within the HOL4 interactive theorem prover [2], and by
extension, so is all work presented in this thesis. The HOL theories representing
the additions to the CakeML compiler resulting from this work can be found at
the CakeML GitHub repository at

https://github.com/cakeml/cakeml.

The HOL4 system implements the basic inference rules of higher-order logic
as a library in the ML programming language. Proofs are produced by applying
so-called proof tactics; that is, functions in the ML language which decompose the
proof goal into a list of sub-goals, and provide a ‘joining’ function which produces a
proof for the original goal given proofs of the sub-goals. In this way, the theorem is
proven somewhat recursively by the user, by decomposing the goal into manageable
pieces, and proving these separately.

2.5.1 Software development in HOL4
The higher-order logic of HOL4 supports typed functions, datatype declarations
and pattern matching. As such, it can be utilized as a purely functional program-
ming language: programs are written inside the logic and interpreted using an
interpreter which implements the semantics of the logic.

The CakeML software ecosystem includes a library which performs proof-
producing synthesis of CakeML code from the higher-order logic [8]: functions
in the logic are converted to CakeML functions using a fully verified procedure,
enabling the user to use theorems about the HOL functions to reason about their
corresponding CakeML counterparts. This implies that although the compiler is
implemented almost entirely in the logic, it is able to bootstrap itself (i.e. compile
itself) by first producing fully verified CakeML expressions from its own defini-
tions, and then use these expressions as input to the compiler functions in the

9
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2. Background

logic. The result is a fully verified binary of the compiler, compiled by a fully
verified compiler.

The proof-producing synthesis facilities allow for all ML-like functions in HOL
to be implemented as pure CakeML programs, and proven correct inside the con-
fines of the logic. In addition to this, CakeML recently received support for so-
called characteristic formulae [9] (a form of Hoare-triples for ML programs). The
addition of characteristic formulae enables verification of impure CakeML pro-
grams within the logic, arguably making the CakeML software suite the most
sophisticated system for writing fully verified functional programs to date.

10



3
Transforming BVI functions

This chapter describes an implementation of the transformation from Section 2.3.2
in higher-order logic, and how it fits into the existing structure of the CakeML
compiler. We start with a description of the BVI abstract syntax (Section 3.1),
followed by a description of the BVI stage of the CakeML compiler (Section 3.2). A
detailed description of the implementation of our transformation transformation is
given (Section 3.3), and we construct a simple check which allows us to determine
at compile-time which expressions are eligible for transformation (Section 3.4).
Finally, we show how the complete implementation is turned into a stand-alone
compiler stage for inclusion into the existing BVI phase of the CakeML compiler
(Section 3.5).

3.1 The BVI abstract syntax
The abstract syntax of the BVI language is shown in Figure 3.1. The type num
corresponds to natural numbers, and op to one of the languages primitive opera-
tions.

exp =
Var num (* de Bruijn-variable *)
| If exp exp exp (* If-then-else *)
| Let (exp list) exp (* Let-binding *)
| Raise exp (* Raise exception *)
| Tick exp (* Decrement semantics clock *)
| Call num (num option)

(exp list) (exp option) (* Function call *)
| Op op (exp list) (* Primitive operation *)

Figure 3.1: The abstract syntax of BVI.

11



3. Transforming BVI functions

The meaning of the BVI expressions is as follows: Var i denotes a variable
with de Bruijn-index i, Raise exc raises an exception exc, and Op op xs denotes a
primitive operation op on the expressions xs. The expressions If and Let have their
usual meaning. A Call expression is of the form Call ticks dest args hdl, where
dest denotes an address in the code table to the function being called, and args
the function arguments. Optionally, the address hdl to a function acting as an
exception handler is present. The ticks parameter to Call, and the Tick expression
are related to the verification of semantics preservation, and are in practice no-ops.
Thus, we defer their treatment until Chapter 4.

3.2 Compiling BVI programs
During the BVI stage of the compiler, programs are stored in an immutable code
store, or code table. All entries in the compiler code-table are BVI functions. Each
entry is defined by a tuple

((nm : num),(ar : num),(exp : exp)) .

Here, nm is an address used to index into the table, ar denotes the arity of the
function, and exp is the BVI expression constituting its body.

In general, most compiler optimizations will not require access to the code
table, as they transform programs on an expression-by-expression basis. However,
the optimization discussed in this thesis requires

(i) access to function addresses, to detect recursion.

(ii) access to the code table, to insert auxiliary definitions.

We will therefore implement it as a stand-alone compiler stage that transforms an
entire BVI program ‘at once’. The implementation of the transformation itself is
described in Sections 3.3 through 3.4. It is then made to act on the entire code
table in Section 3.5.

3.3 Transforming BVI expressions
This section provides an implementation of the transformation from Section 2.3.2
which rewrites BVI expressions. The implementation supports on associative inte-
ger arithmetic (i.e. addition and multiplication), since these operations are prim-
itive to the BVI language, and thus easily detected compile-time. However, the
implementation can be extended to work with any associative operation detectable
at compile-time. For the remainder of this section we will assume that the following
is known whenever an expression is transformed:

12



3. Transforming BVI functions

• It is known which operator sits in tail position. If there are several, we know
of one, and this operator is fixed. Clearly, there may be different operators in
different tail positions, and as such, we must parametrize our transformation
on a single one.

• We have some form of assurance that all tail-positions return a value of the
correct type, i.e. an integer.

In Section 3.4, we will ensure that these assumptions hold for the expressions on
which we apply the transformation, by means of static analysis.

3.3.1 Example: The factorial in BVI
Recall the factorial fac and fac’ defined in Section 1.2. We give CakeML imple-
mentations of fac and fac’:

fun fac n = if n ≤ 1 then 1 else fac (n − 1) ∗ n

fun fac ’ n acc = if n ≤ 1 then acc else fac ’ (n − 1) (n ∗ acc)

The definition of fac compiles into the following equivalent BVI expression:

bvifac =
If (Op LessEq [Var 0; Op (Const 1) []]) (Op (Const 1) [])
(Op Mult

[Call 0 (Some 1) [Op Sub [Var 0; Op (Const 1) []]] None;
Var 0])

Here, we have assigned the function bvifac the code table address 1, and represent
the single variable n by Var 0. The recursive nature of bvifac is made explicit by
the destination Some 1 of the Call sub-expression. In the same way, we give an
equivalent BVI expression for fac’:

bvifac’ =
If (Op LessEq [Var 0; Op (Const 1) []]) (Var 1)
(Call 0 (Some 2)

[Op Sub [Var 0; Op (Const 1) []];
Op Mult [Var 0; Var 1]] None)

In this definition, Var 1 represents the accumulating argument. Our goal for the
remainder of this section is then to devise an implementation which transforms
the expression bvifac into bvifac’.

13



3. Transforming BVI functions

3.3.2 Transforming the tail position
We return briefly to the transformation outlined in Section 2.3.2. The transfor-
mation is applied on the tail positions of a function body, and any tail position
occupied by a recursive expression f x+ y is replaced by a recursive call to a new
function f ′:

f x+ y 7→ f ′ x y. (Rule 3.1)

Any tail position containing any other type of expression e is simply transformed
according to

e 7→ e+ a (Rule 3.2)

where a is a variable pointing to the accumulating argument. From this it seems
that a natural starting point for our implementation is to provide a function which
performs the transformations given by Rule 3.1 and Rule 3.2. In order to perform
these transformations on BVI expressions we require the following information at
hand:

(i) The de Bruijn-index of the accumulating argument.

(ii) The code table address to the function which contains the expression.

(iii) An unused code table address.

(iv) The operation for which the transformation is to be applied.

For reasons of simplicity, we will let the accumulating argument be the last (or
rightmost) argument of the function. The index of this argument can be computed
by starting from the function arity, incrementing this by one, and subsequently in-
crementing it each time we introduce new variable binders (i.e by Let expressions).

Transforming non-recursive tail positions

We return to bvifac (Section 3.3.1). The expression has two tail positions; the first
is occupied by the integer literal

Op (Const 1) []

which does not contain any recursive calls. It is hence subject to Rule 3.2. We
introduce a function apply_op which is parametrized on an operation and two
expressions which are to be joined under the operation:

apply_op op e1 e2 = Op (to_op op) [e1; e2]
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3. Transforming BVI functions

The definition contains an auxiliary function to_op. The reason for this is to limit
the number of cases for apply_op generated by HOL; although our transformation
only treats addition and multiplication, the BVI language supports in excess of
40 different operations to be used with Op. Parametrizing apply_op on this type
would result in the creation a pattern matching case for each of these. For this
reason we introduce a binary datatype assoc_op and parametrize apply_op on
this datatype (see Figure 3.2). In fact, avoiding excessive pattern matching is the
reason for using apply_op in the first place.

assoc_op = Plus | Times | Noop
to_op Plus = Add
to_op Times = Mult
to_op Noop = Const 0

Figure 3.2: The assoc_op type and to_op.

Transforming recursive tail positions

The remaining tail position in bvifac is occupied by the expression

Op Mult [Call 0 (Some 1) [. . . ] . . . ; Var 0]

under which the recursive call sits. In order to transform this expression, we need
to extract the Call and Var expressions under the Op, extract the arguments from
the Call, and construct a tail call according to Rule 3.1. For these purposes we
introduce three functions (see Figure 3.3):

(i) get_bin_args, which extracts the arguments to a binary operation (if any).

(ii) args_from, which extracts the arguments from a Call expression.

(iii) push_call, which given the outputs of get_bin_args and args_from applies the
transformation given by Rule 3.1 to produce a Call expression.

We compose these three functions into a function mk_tailcall, which performs the
transformation defined by Rule 3.1, as desired:

mk_tailcall n op name acc exp =
case get_bin_args exp of
None ⇒ dummy_case
| Some (call,exp′) ⇒ push_call n op acc exp′ (args_from call)
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3. Transforming BVI functions

get_bin_args (Op v0 [e1; e2]) = Some (e1,e2)
get_bin_args _ = None
args_from (Call t (Some d) as hdl) = Some (t,d,as,hdl)
args_from _ = None
push_call n op acc exp (Some (ticks,dest,args,handler)) =
Call ticks (Some n) (args ++ [apply_op op exp (Var acc)]) handler

push_call v0 v1 v2 v3 None = dummy_case

Figure 3.3: The definitions of get_bin_args, args_from and push_call.

Applying mk_tailcall to the multiplication in the tail position of bvifac with the cor-
rect parameters results in an expression corresponding to the second tail position
in bvifac’:

Call 0 (Some 2)
[Op Sub [Var 0; Op (Const 1) []];
Op Mult [Var 0; Var 1]] None

Finally, since mk_tailcall is applicable only on tail positions, we implement a
function rewrite_tail, which given an expression recursively applies mk_tailcall to
its tail positions (see Figure 3.4).

Rearranging using associativity and commutativity

Although mk_tailcall seems to mimic closely the transformation described in Chap-
ter 2, it is unnecessarily weak. Consider the following modification to fac, using
commutativity:

fun fac n = if n ≤ 1 then 1 else n ∗ fac (n − 1)

An expression like n * fac (n - 1) will not be accepted by mk_tailcall, as it expects
the recursive call to sit at the left-hand side of the operation. However, since
multiplication is commutative, we could clearly swap the recursive call with n.
Likewise, the (somewhat artificial) function foo defined by

fun foo n = if n ≤ 1 then 1 else n ∗ (foo (n − 1) ∗ 1)

can be transformed by first rewriting its tail position using commutativity and
associativity:

fun foo n = if n ≤ 1 then 1 else foo (n − 1) ∗ (n ∗ 1)
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3. Transforming BVI functions

rewrite_tail n op name acc (Let xs x) =
Let xs (rewrite_tail n op name (acc + length xs) x)

rewrite_tail n op name acc (Tick x) =
Tick (rewrite_tail n op name acc x)

rewrite_tail n op name acc (Raise x) = Raise x
rewrite_tail n op name acc (If x1 x2 x3) =
let y2 = rewrite_tail n op name acc x2;

y3 = rewrite_tail n op name acc x3
in
If x1 y2 y3

rewrite_tail n op name acc (Var v) = Var v
rewrite_tail n op name acc (Call t d xs h) =
Call t d xs h

rewrite_tail n op name acc (Op v21 v22) =
mk_tailcall n op name acc (Op v21 v22)

Figure 3.4: The definition of rewrite_tail.

Care must be taken, however, to not move expressions around that would incur
side-effects during evaluation, as changing their order of appearance under the
multiplication operator would change the order in which they are evaluated.

We introduce a function rewrite_op which recursively performs the associative
and commutative swaps required on BVI expressions, and strengthen mk_tailcall
by calling rewrite_op prior to push_call:

mk_tailcall n op name acc exp =
case rewrite_op op name exp of
(T,exp2) ⇒
(case get_bin_args exp2 of
None ⇒ dummy_case
| Some (call,exp3) ⇒

push_call n op acc exp3 (args_from call))
| (F,exp2) ⇒ apply_op op exp2 (Var acc)

The definition of rewrite_op (see Figure 3.5) appears slightly involved, although
its workings are simple:

1. First, op_eq determines if the expression is an operation of the correct sort.
If it is not, we do nothing.
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rewrite_op op name exp =
if ¬op_eq op exp then (F,exp)
else
case get_bin_args exp of
None ⇒ (F,exp)
| Some (x1,x2) ⇒

let (r1,y1) = rewrite_op op name x1;
(r2,y2) = rewrite_op op name x2

in
case
(is_rec_or_rec_binop name op y1,
is_rec_or_rec_binop name op y2)

of
(T,T) ⇒ (F,exp)
| (T,F) ⇒

if no_err y2 then (T,assoc_swap op y2 y1) else (F,exp)
| (F,T) ⇒

if no_err y1 then (T,assoc_swap op y1 y2) else (F,exp)
| (F,F) ⇒ (F,exp)

Figure 3.5: The definition of rewrite_op which rearranges BVI expressions using
associativity and commutativity.

2. If get_bin_args returns a positive result, rewrite_op applies itself recursively
on its sub-expressions in a bottom-up manner.

3. Applying is_rec_or_rec_binop determines if an expression is one of

(i) a recursive call
(ii) an operation conforming to the form of Rule 3.1 from Section 3.3.2.

Moreover, no_err tries to determine whether or not evaluating an expression
can incur side-effects.

4. Finally, assoc_swap utilizes associativity and commutativity to rearrange an
expression that is on correct form.

Note that we let rewrite_op return a boolean along with its resulting expression to
signify if a rewrite occurred or not. As we will see in Section 3.4, it turns out that
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op_eq Plus (Op Add v0) ⇐⇒ T
op_eq Times (Op Mult v1) ⇐⇒ T
op_eq _ _ ⇐⇒ F
is_rec_or_rec_binop name op exp ⇐⇒
is_rec name exp ∨
op_eq op exp ∧
case get_bin_args exp of
None ⇒ F
| Some (x1,x2) ⇒ is_rec name x1 ∧ no_err x2

assoc_swap op from into =
if ¬op_eq op into then apply_op op into from
else
case get_bin_args into of
None ⇒ apply_op op into from
| Some (x1,x2) ⇒ apply_op op x1 (apply_op op from x2)

Figure 3.6: Definitions of the auxiliary functions used in rewrite_op.
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3. Transforming BVI functions

rewrite_op can also be used to statically determine whether or not an expression
is eligible for rewrite in the first place.

3.4 Detecting necessary conditions
Recall the assumptions made in Section 3.3. Firstly, in order to ensure that a BVI
expression can be transformed, we need to ensure that its tail positions evaluate
to values of the correct type. Additionally, we require a procedure for detecting
whether or not an expression is eligible for transformation. Both types of as-
surances will be given by performing static analysis on the expressions of a BVI
program. In Section 3.4.1, we describe a pessimistic procedure for detecting inte-
ger expressions in BVI. Following this, we outline how to detect which expressions
are eligible for transformation in Section 3.4.2.

3.4.1 Inferring the type of BVI expressions
Since the BVI language has no types, we cannot directly query for the types of
expressions. The expressions which are known at compile-time to return integers
are

(i) Integer arithmetic, e.g. addition, subtraction, etc.

(ii) Integer literals.

(iii) An expression with any of the above in tail position.

We define a predicate is_ok_type which checks if an expression satisfies the above:

is_ok_type (Op op v0) ⇐⇒ is_arithmetic op
is_ok_type (Let v1 x1) ⇐⇒ is_ok_type x1
is_ok_type (Tick x1) ⇐⇒ is_ok_type x1
is_ok_type (If v2 x2 x3) ⇐⇒ is_ok_type x2 ∧ is_ok_type x3
is_ok_type _ ⇐⇒ F

The definition of is_arithmetic allows for operations Add, Sub, Mult, Div, Mod
and literals Const i. As a consequence of the above, our transformation will not
activate on functions that contain variables in the base case. Chapter 4 contains
a discussion on potential solutions to this issue.
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3.4.2 Selecting expressions for transformation
In order to decide which BVI expressions are eligible for transformation, we re-
visit the criteria for the transformation presented in Section 2.3.2. The criteria
presented there require only that some tail position in the expression under con-
sideration should be on the form of (Rule 3.1). Moreover, the operation in this
expression should be associative and have an identity element. Since the integer
arithmetic supported by our implementation satisfies the latter, it will suffice to
check that tail positions are on a form that can be rewritten.

It turns out that we have already implemented this functionality once in
rewrite_op (see Figure 3.5), which returns a boolean declaring if the rewrite suc-
ceeded. Based on this, we construct a static check tail_is_ok. Its definition is
shown in Figure 3.7. The function tail_is_ok works by recursively traversing all
sub-expressions of its input. If it encounters an expression Op op xs in tail position,
it ensures that
(i) the operation op is one of Add or Mult.

(ii) an application of rewrite_op to the expression – parametrized on the operation
op – succeeds.

Additionally, we decorate the return values of tail_is_ok with a boolean. This
boolean which allows us to deduce if the rightmost expression in an If branch was
eligible for transformation, and will be helpful when verifying the correctness of
our transformation, since there is otherwise no way to decide which branch of the
If-expression that resulted in the operation when checked.

Finally, we compose is_ok_type and tail_is_ok into a static check which ensures
that we only transform eligible expressions:

check_exp name exp =
if ¬is_ok_type exp then None else tail_is_ok name exp

When it succeeds, check_exp returns an operation which can act as input to the
rewrite_tail function.

3.5 Integration with the CakeML compiler
So far, we have given an implementation of a code transformation which introduces
tail recursion using accumulators, as well as a set of static checks which ensures
that the transformation is only applied to expressions which will be correctly trans-
formed, i.e. in such a way that the observational semantics are preserved. Our final
order of business before concluding this chapters is the construction of a stand-
alone compiler stage in the CakeML compiler based on our implementation. To
this end, we will introduce two new functions:

21



3. Transforming BVI functions

tail_is_ok name (Var v0) = None
tail_is_ok name (Let v1 x1) =
tail_is_ok name x1

tail_is_ok name (Tick x1) =
tail_is_ok name x1

tail_is_ok name (Raise x1) = None
tail_is_ok name (If v2 x2 x3) =
let inl = tail_is_ok name x2;

inr = tail_is_ok name x3
in
case (inl,inr) of
(None,None) ⇒ None
| (None,Some (v4,iop′)) ⇒ Some (T,iop′)
| (Some (v6,iop),None) ⇒ Some (F,iop)
| (Some (v6,iop),Some v8) ⇒ Some (T,iop)

tail_is_ok name (Call v3 v4 v5 v6) = None
tail_is_ok name (Op op xs) =
if op = Add ∨ op = Mult then
let iop = from_op op
in
case rewrite_op iop name (Op op xs) of
(T,v3) ⇒ Some (F,iop)
| (F,v3) ⇒ None

else None

Figure 3.7: The definition of tail_is_ok.
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compile_exp n name num_args exp =
case check_exp name exp of
None ⇒ None
| Some (v1,op) ⇒

let (_,opt) = rewrite_tail n op name num_args exp;
aux = let_wrap num_args (id_from_op op) opt

in
Some (aux ,opt)

Figure 3.8: The definition of compile_exp.

(i) A function compile_exp which acts on a single code table entry. Its purpose
is to perform the static checks in check_exp, and apply the transformation
rewrite_tail when possible.

(ii) A function compile_prog, which maps compile_exp over the entries of the
code table.

The definition of compile_exp is shown in Figure 3.8. We let compile_exp return
an option value carrying two BVI expressions – an expression transformed by
rewrite_tail and an auxiliary definition. The function compile_prog (see Figure 3.9)
simply traverses the code table (which is here represented as a list) and inserts the
results from compile_exp into the code table, if any. It makes use of a parameter
n which is the next ‘free’ address in the code table. Following the insertion of an
additional function into the code table, n is incremented by two, since at this stage
of compilation, odd code table entries after n are guaranteed to be free.

Finally, an auxiliary definition is created using a call to let_wrap.

let_wrap num_args id exp =
Let (genlist (λ i. Var i) num_args ++ [id]) exp

Here, genlist (λ i. Var i) k generates a list of variables Var 0, Var 1, . . . , Var (k − 1)
and thus ‘copies’ the entire environment.

Although it would suffice for let_wrap to simply create a function call to the
optimized expression (see Figure 3.9), we are unable to do so at this point, since
a direct proof for the correctness of this approach leads to some surprising diffi-
culties – the particularities are described in Section 4.3. The current definition of
let_wrap simply extends the environment with the identity for the accumulating
variable, and inlines the remainder of the transformed expression. Although not
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compile_prog n [] = (n,[])
compile_prog n ((nm,args,exp)::xs) =
case compile_exp n nm args exp of
None ⇒
let (n1,ys) = compile_prog n xs in (n1,(nm,args,exp)::ys)

| Some (exp_aux ,exp_opt) ⇒
let (n1,ys) = compile_prog (n + 2) xs
in
(n1,(nm,args,exp_aux)::(n,args + 1,exp_opt)::ys)

Figure 3.9: The definition of compile_prog.

very elegant, at the very least we manage to avoid the extra overhead that an
additional function call would incur. We discuss potential approaches to avoid
let_wrap in Chapter 6, but leave these as future work.
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4
Proving semantics preservation

In this chapter we describe the process of verifying the correctness of the compiler
transformation introduced in Chapter 3. The notion of correctness in this context
entails the preservation of observational semantics under a transformation. We
start by providing a foundation of the concepts needed in order to perform formal
reasoning about the properties of sentences in the BVI language (Section 4.1).
In particular, we give the abstract syntax of BVI (Section 4.1.1), followed by the
details on how properties about the semantics of BVI expressions are stated (Sec-
tion 4.1.2). This is followed by a description of the workings of the CakeML com-
piler in the BVI stage, as well as the details on how semantic properties of BVI pro-
grams are verified (Sections 4.1.3 and 4.1.4). The bulk of the chapter is dedicated
to the verification of the semantic preservation of the compiler transformation dis-
cussed in this thesis (Section 4.2). We state a number of theorems describing the
properties of the transformation when acting upon BVI programs, and describe
how these theorems are proven (Sections 4.2.1 through 4.2.4). Lastly, we conclude
with the surprising discovery of some drawbacks in the verification methodology
applied in this work, as well as in a large part of the CakeML compiler. We detail
how this affects our implementation, and discuss potential workarounds to these
drawbacks (Section 4.3).

4.1 Preliminaries

4.1.1 The semantics of BVI
Like most intermediate languages in the CakeML compiler, the semantics of BVI
is defined in a functional big-step style using an interpreter function [7] called
evaluate. Although functional big-step semantics are usually defined as a relation,
defining a semantics in this way naturally gives rise to a large number of cases
that need to be treated when carrying out proofs. Defining the semantics as an
interpreter leads to simpler proofs, as it enables us to prove theorems regarding
program semantics by performing induction on the recursive cases of the interpreter
function.
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The interpreter evaluate (see Figure 4.1) takes as input a list of expressions,
an environment, and a compiler state. The environment is represented as a list
of concrete values. The compiler state is the following record type. Here, refs is
a mapping from an identifier to a concrete pointer, and global is a reference to
a dynamic array used for storing global variables. The field ffi contains a state
which tracks the calls made to the foreign function interface (FFI). Lastly, clock
is a natural number used by the semantics to track divergence (see Section 4.1.3).

α state =
<| refs : (num 7→ v ref); (* pointers to ref:s *)
clock : num; (* the compiler clock *)
global : (num option); (* pointer to global variables *)
code : ((num × exp) num_map); (* compiler code table *)
ffi : (α ffi_state) (* FFI state *)

|>

An application evaluate (xs,env,s) for some expression list xs, some environment
env and some state s will have one of two different outcomes: either the evaluation
succeeds for all expressions in xs, in which case evaluation results in Rval vs,
where vs is a list of concrete values, each one corresponding to an expression in
xs. Otherwise, should the evaluation fail for some expression in xs, the result is
Rerr err , where err is the error from the expression that first failed in xs. The
errors carried by the Rerr constructor are divided into two categories:

(i) Rraise a, resulting from an expression which raises an exception. Here a is
the result of evaluating exc in the BVI expression Raise exc.

(ii) Rabort e, where e is one of:

• Rtimeout_error, if the evaluation of some expression in xs diverged (see
Section 4.1.3).

• Rtype_error for all other types of errors. This includes the results of
evaluating ill-typed expressions, out of bounds variable accesses, etc.

In addition to the results Rval and Rerr, evaluate will also return a post-state. Since
BVI is an impure language, this state may be different from the pre-state.

4.1.2 Proving theorems about expression semantics
Theorems about the semantics of expressions are stated with evaluate and proven
using recursive induction on the cases of evaluate. In general, such theorems will
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evaluate ([],env,s) = (Rval [],s)
evaluate (x ::y::xs,env,s) =
case evaluate ([x ],env,s) of
(Rval v1,s1) ⇒
(case evaluate (y::xs,env,s1) of

(Rval vs,s2) ⇒ (Rval (hd v1::vs),s2)
| (Rerr v8,s2) ⇒ (Rerr v8,s2))

| (Rerr v10,s1) ⇒ (Rerr v10,s1)
evaluate ([Var n],env,s) =
if n < length env then (Rval [el n env],s)
else (Rerr (Rabort Rtype_error),s)

evaluate ([If x1 x2 x3],env,s) =
case evaluate ([x1],env,s) of
(Rval vs,s1) ⇒
if Boolv T = hd vs then evaluate ([x2],env,s1)
else if Boolv F = hd vs then evaluate ([x3],env,s1)
else (Rerr (Rabort Rtype_error),s1)

| (Rerr v7,s1) ⇒ (Rerr v7,s1)
. . .

evaluate ([Op op xs],env,s) =
case evaluate (xs,env,s) of
(Rval vs,s′) ⇒
(case do_app op (reverse vs) s′ of
Rval (v3,v4) ⇒ (Rval [v3],v4)
| Rerr e ⇒ (Rerr e,s′))

| (Rerr v10,s′) ⇒ (Rerr v10,s′)
evaluate ([Tick x ],env,s) =
if s.clock = 0 then (Rerr (Rabort Rtimeout_error),s)
else evaluate ([x ],env,dec_clock 1 s)

Figure 4.1: Select cases of the interpreter evaluate, which defines the semantics
of BVI.
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be of the form
` evaluate (xs,env,s) = (r ,t) ∧

r 6= Rerr (Rabort Rtype_error)⇒
evaluate (map f xs,env,s) = (r ,t)

where f is some transformation on BVI expressions. The above theorem states the
following.

When the expressions xs are evaluated with the environment env from
the state s, and this evaluation terminates with result r and post-state
t, and r is not a Rtype_error, then the expressions xs evaluate to the
same result and state under the transformation f , within the same
environment and from the same state.

If the above holds, we say that the semantics of the expressions xs are preserved un-
der the transformation f . Note that the theorem assumes that the result r is not an
error of the type Rtype_error. The reason for this is that Rtype_errors do not man-
ifest themselves in well-typed programs. Since the type inference algorithm used
in the CakeML compiler comes with proofs of soundness and completeness [10],
the possibility of encountering such expressions is eliminated in a proof for a prior
stage of compilation.

4.1.3 Reasoning about divergence
Allowing computations to diverge (i.e. ‘loop forever’ without terminating) is ar-
guably a desirable feature for any programming language to be usable in practice.
However, the presence of divergence incurs some additional difficulties when prov-
ing the semantic equivalence of programs. In particular, the semantics of the
language needs to correctly reflect whether or not a computation diverges. The
CakeML compiler verification handles this by keeping a logical counter – the clock
– in the semantic state of each intermediate language. The approach is described
in detail in [7]. We give a short summary here.

Since BVI does not support any loop-type constructs, the only way to achieve
divergence is by performing recursive calls endlessly. Hence, whenever a function
call is evaluated in the semantics, the compiler clock is decremented. When the
clock reaches zero, the evaluation terminates with an Rabort Rtimeout_error, sig-
naling divergence. The initial value of the clock is determined implicitly in the
top-level proofs; to prove termination it suffices to show the existence of some
clock value for which the program does not diverge. This type of reasoning has
the unpleasant side effect that any removal or introduction of function calls – for
instance by inlining, or introducing an auxiliary wrapper as by the transformation
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in Chapter 2 – changes the program’s evaluate semantics, even though it does not
affect its observational semantics, i.e. semantics (see Figure 4.2).

As inlining of function definitions is a common compiler optimization, the BVI
language includes an additional expression Tick. The expression Tick exp is se-
mantically equivalent to the expression exp apart from the fact that it decrements
the compiler clock. In this way, the semantics of any inlined definition is preserved
by wrapping it in a Tick constructor. The other way around is less trivial. When-
ever additional function calls are introduced, additional clock ticks are consumed
during evaluation. However, since the amount of introduced function calls has to
be finite, we allow for a finite increase in clock ticks when evaluating a transformed
expression, so long as the results of the evaluation are preserved. Proofs involving
an increase in clock ticks are greatly complicated; the goal involves an existential
quantifier, requiring that we provide a witness declaring by how many ticks the
clock should be increased. In general, this prevents us from fully expanding the
goal before a witness is provided. In addition, it is possible to create situations
where an expanded goal is required for a witness to be provided (Section 4.3). As
a consequence, we avoid theorems involving clock increments when possible.

4.1.4 Proving theorems about program semantics
So far we have discussed the semantics of BVI expressions, and the verification
of the semantics of expressions in isolation. However, the transformation from
Chapter 3 is implemented as a stand-alone compiler stage which acts on the entire
BVI code table. Hence, in addition to providing theorems which reason about the
transformation of single expressions, we are also required to provide a higher-level
semantics theorem, stating that the semantics of any program is preserved under
our compiler stage.

A BVI program is defined as a compiler code table together with a starting
address (the program entry-point) and an initial state. Program semantics are
described using the semantics function semantics (see Figure 4.2). Although an
in-depth explanation of semantics lies outside the scope of this thesis, we note that
it is defined in terms of the evaluate function: the result of any application of
evaluate on an expression which calls the entry-point of the program is denoted
Fail if it results in an error other than a Rtimeout_error. In practice, this entails
that any ill-typed program will evaluate to Fail.

4.2 Semantics preservation
In this section we will state and prove a theorem which allows us to guarantee that
the semantics of any BVI program with non-Fail semantics is preserved under the
transformation presented in Chapter 3. In Section 4.2.1, we describe this theorem,
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semantics init_ffi code start =
let es = [Call 0 (Some start) [] None]
in
if
∃ k e.
fst (evaluate (es,[],initial_state init_ffi code k)) = Rerr e ∧
e 6= Rabort Rtimeout_error

then
Fail

else
case
some res.
∃ k s r outcome.
evaluate (es,[],initial_state init_ffi code k) = (r ,s) ∧
(case (s.ffi.final_event,r) of

(None,Rval v9) ⇒ outcome = Success
| (None,Rerr v10) ⇒ F
| (Some e,v3) ⇒ outcome = FFI_outcome e) ∧

res = Terminate outcome s.ffi.io_events
of
None ⇒
Diverge
(build_lprefix_lub

(image
(λ k.
fromList
(snd

(evaluate
(es,[],initial_state init_ffi code k))).

ffi.io_events) U(: num)))
| Some res ⇒ res

Figure 4.2: The observable semantics for BVI programs.
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and outline the steps required in order to prove it. In Section 4.2.2, we will state
a number of complementary theorems, and describe how they are proved. In
addition, a number of supporting lemmas will be described. Finally, we conclude
with the discovery of some surprising drawbacks of the verification methodology
employed in most parts of the CakeML compiler in Section 4.3.

4.2.1 Semantics of programs
Inclusion of the compiler pass implemented in Chapter 3 into the BVI stage of
the CakeML compiler requires a semantics verification proof stated in terms of the
semantics function (see Figure 4.2). We state and prove the following theorem for
the function compile_prog which applies our transformation to a BVI program.

Theorem 1. Program semantics are preserved under the transformation compile_-
prog.

` every (odd_names_free n ◦ fst) prog ∧
all_distinct (map fst prog) ∧
snd (compile_prog n prog) = prog2 ∧
semantics ffi (fromAList prog) start 6= Fail⇒
semantics ffi (fromAList prog) start =
semantics ffi (fromAList prog2) start

Additionally, we condition our theorem on two assumptions that are guaranteed
to hold: all_distinct ensures that all addresses in the code table prog are distinct
(cf. Section 3.2), and every (odd_names_free n ◦ fst) ensures that any odd address
exceeding the address n is guaranteed to be free in the code table.

Theorem 1 bears close resemblance to most other top-level semantics theorems
in the CakeML compiler – in fact, so does its proof. Unlike theorems involving
evaluate, theorems like Theorem 1 are not proven by induction; instead the def-
inition of semantics is unfolded, and the remaining goals are proven by repeated
applications of lemmas which talk about expression semantics. In the case of
Theorem 1 we will make use of one such lemma, which will be described in the
upcoming section. The subsequent proof of this lemma, however, is both involved
and interesting to such a degree that we dedicate the remainder of this chapter to
this goal.

4.2.2 Semantics of expressions
The proof of Theorem 1 requires a theorem which states that the semantics of
the expression pointed to by the start address in any valid BVI program prog are
preserved under the compile_prog transformation.
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Theorem 2. The semantics of the entry-point expression at address start is pre-
served under compile_prog.

` every (odd_names_free n ◦ fst) prog ∧
all_distinct (map fst prog) ∧
evaluate
([Call 0 (Some start) [] None],[],
initial_state ffi0 (fromAList prog) k) = (r ,s) ∧

0 < k ∧ r 6= Rerr (Rabort Rtype_error)⇒
∃ ck s2.
evaluate
([Call 0 (Some start) [] None],[],
initial_state ffi0
(fromAList (snd (compile_prog n prog)))
(k + ck)) = (r ,s2) ∧

state_rel s s2

Theorem 2 does not adhere to the general style of evaluate-theorems discussed
in Section 4.1.2. First, the consequent of the implication contains an existential
quantifier, suggesting that we need to provide two witnesses ck and s2. Here, ck
is a potential (finite) increment to the state clock, and s2 is any post-state related
to the post-state s of the non-transformed program. The former is needed since a
compiler transformation may potentially introduce additional function calls, which
would consume additional clock ticks (although we need no such ticks here, the
quantifier is kept to ensure consistency with the definition of semantics). The
relation state_rel is defined as follows:

state_rel s t ⇐⇒
s.ffi = t.ffi ∧
s.clock = t.clock ∧
code_rel s.code t.code

Here, we require that both compiler states have corresponding FFI states, and that
their clocks correspond. Additionally, we require that the code tables are related
under a relation code_rel – any requirement that they are the same would fail for
the simple reason that compile_prog modifies the code table. The definition of
code_rel is shown in Figure 4.3.

The purpose of code_rel is to simplify the statement and subsequent proof of
theorems involving evaluate by not explicitly mentioning compile_prog. Instead,
it is explicit about where expressions are located before and after transformation
of the code table. This relation between code tables turns out to be sufficient for
all subsequent proofs of theorems regarding expression semantics. The relation
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code_rel c1 c2 ⇐⇒
∀ name args exp op.
lookup name c1 = Some (args,exp)⇒
(check_exp name exp = None⇒
lookup name c2 = Some (args,exp)) ∧

(check_exp name exp = Some op ⇒
∃ n.
∀ exp_aux exp_opt.
compile_exp n name args exp =
Some (exp_aux ,exp_opt)⇒
lookup name c2 =
Some (args,exp_aux) ∧

lookup n c2 =
Some (args + 1,exp_opt))

Figure 4.3: The definition of the relation code_rel.

defines the results of a lookup into the code table in terms of the results of the
static check check_exp (see Chapter 3.4.2). Any expression in c1 which does not
pass the check should appear untouched in c2. For any expression in c1 that passes
the check, an optimized expression and an auxiliary definition should be present
in c2. In order to use code_rel in place of compile_prog in our theorems we state
and prove the following lemma.

Lemma 1. Any BVI programs prog and compile_prog n prog are related under
code_rel.

` all_distinct (map fst prog) ∧ every (odd_names_free n ◦ fst) prog ∧
compile_prog n prog = (n1,prog2)⇒
code_rel (fromAList prog) (fromAList prog2)

The lemma is proved by recursive induction on the cases of compile_prog.

4.2.3 Generalized semantics of expressions
So far, we have only presented one theorem which explicitly relates the seman-
tics of expressions to their transformed counterparts under compile_prog, namely
Theorem 2. Apart from the previously mentioned existential quantifiers present
in its consequent, there is another key issue with Theorem 2: it is stated in terms
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of a single expression. Recall from Section 4.1.1 that evaluate is defined on lists
of expressions. This necessarily implies that we are unable to prove any theorem
in which evaluate is applied to a singleton list by recursive induction. Instead, we
will generalize Theorem 2 to reason about any list of expressions.
Theorem 3. The semantics of any BVI expression evaluated in an environment
env1 and a state s is preserved under the transformation rewrite_tail, if the trans-
formed expression is evaluated in an environment env2 related to env1 through
env_rel, and a state with the code table c related to s.code through code_rel.

` evaluate (xs,env1,s) = (r ,t) ∧
env_rel transformed acc env1 env2 ∧
code_rel s.code c ∧
(transformed ⇒ length xs = 1) ∧
r 6= Rerr (Rabort Rtype_error)⇒
evaluate (xs,env2,s with code := c) =
(r ,t with code := c) ∧

(transformed ⇒
∀ op n exp arity.
lookup nm s.code = Some (arity,exp) ∧
optimized_code nm arity exp n c op ∧
(∃ op′ p.
check_exp nm (hd xs) = Some (p,op′) ∧
op′ 6= Noop)⇒
let (p,x) = rewrite_tail n op nm acc (hd xs)
in
evaluate ([x ],env2,s with code := c) =
evaluate
([apply_op op (hd xs) (Var acc)],env2,
s with code := c))

The first few lines of Theorem 3 are quite common for any verification of an
optimization in the CakeML compiler. Outside of the relation code_rel, we also
introduce a relation env_rel between environments. Here, env1 4 env2 denotes
that env1 is a prefix of env2.

env_rel transformed acc env1 env2 ⇐⇒
env1 4 env2 ∧
(transformed ⇒
length env1 = acc ∧ length env2 > acc ∧
∃ k. el acc env2 = Number k)

The purpose of env_rel is to weaken the requirements of Theorem 3: any expression
that exists in a transformed program is likely to involve an additional accumulating
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variable. Hence, we require that whenever env_rel p a env1 env2 holds, env1 is a
prefix of env2, and the accumulating variable points at index a of env2, at which
an integer is required to reside.

What makes Theorem 3 unusual is the boolean variable transformed together
with the implication transformed ⇒ . . . , which declares the behavior of trans-
formed expressions. In short, we ensure that any such expressions that are present
in the code table s.code are transformed in the code table c, as well as requiring
that any expression that passes check_exp (see Section 3.4.2) will – when trans-
formed by rewrite_tail – evaluate to a result that is equal to the result of simply
applying the expression to the accumulator variable under the operation (cf. Sec-
tion 2.3.2). In particular, the conjuncts

lookup nm s.code = Some (arity,exp)

and
optimized_code nm arity exp n c op

together with the definition of optimized_code (see below) ensures that any ex-
pression present in the original program and for which check_exp succeeded was
transformed using compile_exp.

optimized_code name arity exp n c op ⇐⇒
∃ exp_aux exp_opt p.
compile_exp n name arity exp = Some (exp_aux ,exp_opt) ∧
check_exp name exp = Some (p,op) ∧
lookup name c = Some (arity,exp_aux) ∧
lookup n c = Some (arity + 1,exp_opt)

Finally, Theorem 3 is proven by strong induction induction on a well-founded
relation which is ordered on the size of expressions and the number of remaining
ticks in the compiler clock. The reason for which we cannot apply recursive in-
duction is related to the step of our compiler transformation which replaces an
Op expression with a tail call to a fresh function definition. Since this tail call is
not a sub-expression to the original Op expression, our induction hypothesis would
not be applicable, should we attempt a proof based on recursive induction on the
cases of evaluate. The proof of Theorem 3 accounts for the bulk of our efforts, as
the process is made cumbersome by the stronger induction. Moreover, it requires
a series of supporting theorems for ensuring the correctness of various parts of
the implementation from Chapter 3. The most important of these theorems are
described in Section 4.2.4.
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4.2.4 Supporting theorems
We conclude the verification of semantics preservation by describing the most
important supporting theorems required for the proof of Theorem 3. Recall the
implementation of rewrite_tail (Figure 3.4). The correctness of rewrite_tail relies
on the following:

(i) Expression semantics is preserved when transformed by rewrite_op (see Fig-
ure 3.5).

(ii) Expressions that satisfy is_ok_type return an integer value when evaluation
is successful.

In addition to the above, we are required to eliminate the possibility of reaching the
dummy_case cases present in some of the definitions from Chapter 3 (see Figure 3.3
and both definitions of mk_tailcall in Section 3.3.2). The dummy_case in the final
definition of mk_tailcall is eliminated by the following lemma for rewrite_op, which
ensures that its result is always a binary operation upon success.

Lemma 2. If rewrite_op has transformed an expression then its result is always
a binary operation.

` rewrite_op iop name (Op op xs) = (T,exp)⇒
∃ e1 e2. get_bin_args exp = Some (e1,e2)

The second dummy_case is present in the definition of push_call (see Figure 3.3)
and occurs when the args_from function is called on an expression which is not a
Call. The following lemma ensures that this is never the case.

Lemma 3. If rewrite_op has transformed an expression then the left operand of
the resulting expression is always a recursive call.

` iop 6= Noop ∧
rewrite_op iop name (Op op xs) = (T,Op op [e1; e2])⇒
is_rec name e1

Both Lemmas 2 and 3 are proven directly in a similar style, by applying a sim-
plification tactic which rewrites the proof goal using the definition of rewrite_op,
followed by exhaustive treatment of its resulting cases.

We now turn our attention to the main correctness theorem for rewrite_op,
which acts to ensure that it is semantics preserving.
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Theorem 4. The transformation rewrite_op is semantics preserving.

` evaluate ([exp],env,s) = (r ,t) ∧
r 6= Rerr (Rabort Rtype_error) ∧
rewrite_op op name exp = (p,exp2) ∧
evaluate ([exp],env,s) = (r ,t)⇒
if ¬p then exp2 = exp
else evaluate ([exp2],env,s) = (r ,t)

Although Theorem 4 is concisely stated, its proof is unusually involved. The rea-
sons for this is that it exploits both the associative and commutative properties of
integer addition and multiplication. Moreover, the definition of rewrite_op contains
a large number of cases. Several of these implicitly make use of commutativity
and associativity more than once, requiring multiple instantiations of associativity-
and commutativity lemmas. For reasons of brevity, we refrain from including these
lemmas here. In addition, the properties of multiplication and addition are already
well established. The proof of Theorem 4 is performed by recursive induction on
its cases.

We conclude this section with a theorem stating that any expression satisfying
the check is_ok_type (see Section 3.4.1) evaluates to an integer.

Theorem 5. Whenever the evaluation of an expression satisfying is_ok_type re-
sults in value this value is an integer.

` is_ok_type exp ∧
evaluate ([exp],env,s) = (Rval r ,t)⇒
∃ n. r = [Number n]

In contrast to all other theorems treated in this chapter so far, the proof of The-
orem 5 is performed by induction over the datatype which defines the abstract
syntax of BVI expressions (see Figure 3.1 in Section 3.1).

Note on omitted theorems. The entire suite of theorems required for proving
the correctness of the implementation of the optimization described in this report
is larger than what is presented here. For reasons of brevity, the theorems and
lemmas deemed most important were selected for inclusion. For a complete listing
of all theorems, as well as the mechanized proofs in all their glory, we refer the
reader to the proof theories located in the CakeML GitHub repository:

https://github.com/CakeML/cakeml/blob/master/compiler/backend/proofs/bvi_
tailrecProofScript.sml
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4. Proving semantics preservation

4.3 Limitations
We return briefly to the transformation described in Chapter 2, and its implemen-
tation described in Chapter 3. It should be clear by now that the transformation
and its HOL implementation is correct – in fact, we have dedicated this chapter
towards giving a formal proof of this claim. However, there are two separate is-
sues that arise when proving the correctness of the transformation, both of which
impose restrictions on the efficiency of the transformation.

4.3.1 The lack of a type system
Although it may not be immediately clear, the implementation described in Chap-
ter 3 changes the order of evaluation for transformed expression. Since CakeML is
an impure language, expressions may incur side effects, such as I/O events, when
evaluated. Hence, changing the order in which expressions are evaluated may po-
tentially result in I/O events appearing out of order, meaning that the observable
behavior of a program is changed. Clearly, this is not something we can allow.

The culprit is Rule 3.1 (Section 3.3.2), which swaps the order in which some
of the involved expressions are evaluated. To see that this is the case, let f and f ′

be BVI functions defined such that

f x+ y = f ′ x y . (4.1)

Expressions are evaluated from left to right, leading to the following orders of
evaluations for the respective sides in (4.1).

f x+ y f ′ x y
x x
body of f y
y body of f ′

. . . . . .

In this situation, the expression f x is expected to evaluate to f ′ x 0. Evaluation
of the function bodies at both sides of (4.1) will therefore end up in the same
expression. However, the order in which the expression y and the function bodies
are evaluated differ from both sides.

A situation closely resembling the one above exposes itself during the proof of
Theorem 3; in particular, when proving that the transformation operation Op op xs
(corresponding to f x + y) can be transformed to a tail call (corresponding to
f ′ x y). The assumptions of Theorem 3 only guarantee the evaluation of the
operation f x+y does not result in a Rtype_error. However, this does not rule out
the case that f x diverges, for instance. In this case, evaluation of f x+ y will not
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result in a type-error, and it will not do so even if the evaluation of y itself results
in a type-error! However, in this case, the right-hand side of (4.1) would result in
a type-error, and we are left unable to close the proof goal – it is simply not valid.

Clearly, to ensure that the above situation is avoided, we must be able to
guarantee that the evaluation of y always result in a concrete value. What’s
more, we must be able to guarantee that this value is of the correct type. Simply
restricting y to be a pure expression and preventing it from accessing global state in
any way is not enough, as even a variable expression may evaluate to a Rtype_error
(see Figure 4.1).

The current solution to these issues is to enforce strong restrictions on the
expression y. In particular, this forces us to disallow variables. However, in a
well-typed program, all variables are bound to a correctly typed value in the envi-
ronment. Hence, the addition of a type system to the BVI language would alleviate
the issues described above, as we could simply enforce purity on y and refrain from
applying the transformation to ill-typed programs.

The inclusion of a type system in the BVI stage of the compiler is non-trivial,
however: it would rely on all prior ILs having type systems. What’s more, we would
likely have to prove the preservation of soundness at the transition between each
pair of type systems. Instead, we suggest a less powerful solution that nevertheless
allow us to correctly deduce the type of variables and ensure that they are bound.
This would, at the very least, enable the optimization to correctly transform all
examples presented in this report. To each value in the environment we assign an
element in a context, which tells us

(i) whether or not a variable is bound,

(ii) the expected type of a variable, if it is bound.

The above information is collected by recursively traversing BVI expressions in
an analysis pass, decorating the context as we encounter expressions that reveal
type restrictions on variables (i.e. comparison with a literal, etc.). If we are un-
able to fully deduce the types of all expressions in tail position, we abstain from
transforming a function.

The above approach has the pleasant side-effect that it alleviates the need of
the is_ok_type check defined in Section 3.4.1. However, due to timing constraints,
we leave the implementation of type approximation using contexts as future work.

4.3.2 The compiler clock
Recall the discussion on the production of auxiliary functions from Section 3.5.
In the implementation of compile_exp (see Figure 3.8), auxiliary definitions were
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created using a function let_wrap which simply duplicated the optimized function.

let_wrap num_args id exp =
Let (genlist (λ i. Var i) num_args ++ [id]) exp

Clearly, we could have created an auxiliary function by simply performing a func-
tion call to the optimized function. The reason that we avoid doing so is related
to the discussion on the compiler clock from Section 4.1.3.

mk_aux_call name num_args id =
Call 0 (Some name) (id::genlist (λ i. Var i) num_args) None

Introducing auxiliary calls such as in mk_aux_call implies that any function
call in the optimized code table are subject to additional indirection; we must
potentially perform two function calls where we previously performed one. This
has the effect that the compiler clock will need to be increased in the proofs in the
way described in Section 4.1.3. In particular, this greatly complicates the proof of
Theorem 3.

For the reasons stated here, we leave the proof of an implementation using
mk_aux_call over let_wrap for auxiliary function creation as future work. However,
we believe that it is possible to include the former in the implementation by first
proving instances of the more complicated theorems (such as Theorem 3) that
utilize the current version of compile_exp (with let_wrap). In addition to these one
would provide a separate theorem stating that compile_exp would have preserved
semantics with mk_aux_call, so long as the compiler clock is increased. In this
way, reasoning about the compiler clock is limited to a simpler theorem.
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Related Work

Previous work has been done on verified optimized compilers. The CompCert [11]
compiler targets the C programming language, and is implemented mainly in the
Coq proof assistant [12]. It is notable for showing the feasibility of formally ver-
ifying a modern compiler. Examples in the functional programming domain in-
clude the Cogent [13] compiler, which produces verified C code from a functional
programming language aimed at systems programming, but for this reason lacks
features otherwise common to general purpose language implementations, such as
automatic memory management. The CakeML [6, 3] compiler is notable since
the CakeML language includes a rich subset of Standard ML with many modern
language features. Moreover, the compiler is able to bootstrap itself and produces
verified machine code for several hardware targets, making it the most realistic
verified optimizing compiler for a functional programming language to date [3].

Burstall and Darlington [14] described a framework for transforming recursive
functions into more efficient imperative counterparts. Their approach, however,
relies on user-guidance, and is thus not suitable for inclusion in a fully automatic
optimizing compiler.

An early systematic account of the transformation described in this paper was
given by Wadler [5], with the primary goal of eliminating quadratic list append
usage. Since the introduction of tail calls is our primary goal, we have settled
with treating associative integer arithmetic, although it is possible to extend its
application to list append. A different transformation for introducing accumulators
is presented in Kühnemann, et al. [15]. It is, however, limited to unary functions.
We are unaware of any compiler which implements this transformation.

Chitil [16] describes an improvement of the short-cut deforestation algorithm
which, among other improvements, enables deforestation to act on list producers
which consume their own result. It correctly handles the reverse example from
Section 2.3.1, but is limited to functions returning lists. As with Kühnemann et
al. [15], we are not aware of any compiler which implements it.

Finally, we note that in contrast to other work, our contribution is a fully
verified transformation with a machine-checked proof of semantic verification. In
addition, it is implemented in a proven-correct compiler, providing not only in-
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creased confidence in its correctness, but shows the feasibility of implementing the
transformation in practice and integrating it into a larger context.
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6
Conclusions and future work

In this thesis, we have described and implemented an optimizing compiler trans-
formation in HOL4 acting on expressions in the BVI intermediate language. The
transformation introduces tail recursion in certain recursive functions on the inte-
gers, while preserving observational semantics.

The implementation has been integrated with the existing structure of the
CakeML compiler as a standalone compiler stage. Moreover, we have verified
the compiler stage to preserve the observational semantics of the program under
transformation. To the best of our knowledge, this is the first fully verified im-
plementation of this transformation in any modern compiler. In addition, our
contributions make the CakeML compiler the first fully verified compiler which
performs this transformation.

During the course of verifying the transformation, our efforts uncover surpris-
ing drawbacks in some of the verification techniques currently employed in the
BVI compiler phase of the CakeML compiler. In particular, since BVI lacks a
type system, we are left unable to infer the types of variables. This leads to an
implementation that is weaker than the one originally envisioned, since the class of
expressions handled by the transformation is limited to tail expressions that consist
of an operation composed only by a single recursive call and integer literals.

Although the transformation handles some expressions, we feel that the current
solution is unnecessarily restrictive. We therefore suggest an alternative approach
to static analysis which would enable us to infer the types of variables in some
expressions. In particular, we show that this class of expressions include the ex-
amples shown in Chapters 2 and 3. However, we also note that a solution which
would lift these restrictions completely exists, namely giving BVI a type system.
This approach, however, has the unwanted side-effect that all ILs prior to BVI
would need a type system. In addition, soundness proofs for these type systems
between each major stage of compilation would be required.

Due mainly to lack of time, implementations of the suggested improvements
in Section 4.3 are left as future work. In addition, other topics suitable for future
study includes the addition of support for list append in the transformation. The
implementation from Chapter 3 can be easily extended to support append, as fewer
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cases need to be considered due to the operation not being commutative. While
the original intention was to include an implementation for append, the operation
was left out since it is currently not primitive to BVI1. We conclude by noting
that the benefits of transforming list-append are two-fold. They are made clear
by the reverse-example from Section 2.3.1: while the original example performs
a quadratic number of operations in proportion to the length of the input, the
transformed example is linear in this regards.

1The inclusion of list append as a primitive operation in the BVI language is under consider-
ation.
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