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Ny serie nr. 4311
ISSN 0346-718X
Department of Mechanics and Maritime Sciences
Chalmers University of Technology
SE-412 96 Göteborg
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Abstract

In this thesis traffic situation management for driving automation of long combination
vehicles is discussed. The automation targets high-speed driving in multiple-lane, one-way
roads. Traffic situation predictions, traffic situation manoeuvres and driving principles
are studied specifically. Traffic situation predictions relates to the functions used to
predict how an observed traffic situation will evolve in the future. Traffic situation
manoeuvres relates to decision-making regarding driving principles and control on a
tactical level of driving. The developed methods and principles assume the existence of
vehicle environment sensing functionalities. Furthermore, the methods have been verified
using motion platform driving simulator experiments and desktop simulations.

In the proposed methods for traffic situation predictions, models of the subject vehicle,
driver, road and surrounding traffic have been formulated. These models capture both
subject vehicle dynamics and predicted motion of surrounding traffic. Also, a unique
driver steering model for articulated vehicles has been derived. Moreover, traffic situation
predictions for multiple-lane one-way road driving has been derived by using driver
steering and acceleration models in a closed loop with the subject vehicle model. Also,
a second approach to calculate actuation trajectories has been developed and evaluated
using a model predictive control framework including on-line optimisation. The derived
traffic situation manoeuvres include maintain-lane, lane changes and non-evasive abort
manoeuvres.

It is envisaged that studying the important characteristics of manual driving will give
insight into how to design driving automation especially in regard to mixed traffic with
both manually driven and automated vehicles. Driving principles for driving automation
are derived by using back-to-back comparisons of manual and automated driving in
simulator experiments. Driving principles for initiation and execution of lane-change
manoeuvres with surrounding traffic as well as managing mandatory road exits and lane
changes in dense traffic have been studied and some driving principles for automation
have been derived.

Keywords: articulated heavy-vehicles, long combination vehicles, vehicle dynamics, vehicle
model, driver model, driving automation, driving simulator, driving principles
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1 Introduction

Safe and effective road freight transports are an important part of today’s society, enabling
economic development. In 2014, freight transports by road accounted for close to three-
quarters of the total inland tonne-kilometres conducted in the European Union [30]. To
meet future environmental and productivity goals, an interesting starting point is the use
of long combination vehicles (LCVs), as illustrated in Fig. 1.2. These are road transport
vehicles whose length and weight fall outside the dimensions permitted under conventional
European road regulations. Typically, LCVs include at least two articulated joints and
their length generally varies between 27 m and 34 m. The weight and/or volume of goods
transported by LCVs increases by a factor 1.5-2.0, compared with a conventional tractor
semi-trailer combination. The energy consumption is typically reduced by 15-20% per
tonne-kilometre [68].

Road freight transports are mainly carried out on the same public road infrastructure
used by passenger cars. When comparing heavy trucks used for freight transports and
passenger cars, relevant differences include: a factor of up to 5 in length (affects lateral
tracking), a factor of up to 30 in mass (affects both acceleration and braking capacities
due to lower specific propulsion and braking effect) and a factor of up to 3 in the height
of the centre of gravity (affects roll-over), see Fig. 1.1. The static roll-over limit for heavy
trucks can be as low as 0.35g, whereas the roll-over limit for passenger cars is typically
1.1g.

In addition to the distinct differences in size and weight, there are further differences
related to vehicle behaviour in dynamic manoeuvring, such as lane changes. As a first
example of articulated vehicle characteristics, consider the behaviour in cornering, as
illustrated in Fig. 1.2.

Figure 1.1: Difference in height and width between a passenger car and heavy truck
combination. This affects the risk of roll-over and available lane space. The static roll-
over limit for heavy trucks can be as low as 0.35g, whereas the roll-over limit for passenger
cars is typically 1.1g.
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Figure 1.2: Low speed cornering (top). The shaded area represents the swept path width
between the outer corner of the first vehicle unit and the inner corner of the last vehicle
unit. Lane-change manoeuvre (bottom). The vehicle speed is 70 km/h and a critical
steering wheel frequency input. The rearmost unit swings out approximately 0.5 m and the
lateral acceleration is amplified by a factor of 1.5.

This shows the vehicle navigating a sharp bend with an outer radius of 12.5 m at low
speed. Here, it should be observed that the last vehicle unit is travelling inwards of the
first vehicle unit. The effect of the different paths between the first and last axle in the
vehicle combination is known as off-tracking. The off-tracking in this example results in a
swept path width of 12.5 m.

As a second example, consider the vehicle behaviour in a lane-change manoeuvre. In
Fig. 1.2, the vehicle is travelling at 70 km/h and carries out a lane-change manoeuvre
with a critical steering wheel frequency of around 0.4 Hz. Due to vehicle dynamics, the
last vehicle unit swings out by approximately 0.5 m compared to the first unit. Moreover,

2



(a) Long articulated heavy vehicle

(b) Passenger car

Figure 1.3: Example of a lane change to the right situation in dense highway traffic. Traffic
speed typically 70 km/h and time gap 1 s. There is a sufficient gap for the passenger car
but not for the articulated heavy vehicle.

the maximum magnitude of lateral acceleration of the last vehicle unit is amplified by
a factor of 1.5 compared to the first unit, from 2.3 m/s2 to 3.4 m/s2, which can pose
a significant risk of vehicle roll-over. As mentioned above, the roll-over limit for heavy
trucks is often clearly lower than for passenger cars due to the position of the centre of
gravity. The amplification effect, known as rearward amplification increases the risk of
roll-over.

The manoeuvring characteristics of articulated vehicles result not only in different
continuous driving behaviour (i.e. execution of steering and propulsion/braking) but
also a different discrete driving behaviour (i.e. initiation of braking and/or a specific
manoeuvre). Drivers of articulated vehicles typically refer to extended planning, including
an increased planning horizon. Consider a highway driving scenario in dense traffic, see
Fig. 1.3. Due to the length of their vehicles, drivers of long articulated vehicles are often
exposed to many surrounding vehicles ahead as well as behind. Executing a lane change
in such dense traffic (which might be fully possible for a passenger car due to the natural
gap size), may be impossible for an articulated vehicle, simply because there are no gaps
big enough. To accomplish their lane change manoeuvre, the driver needs to initiate and
rely on cooperation from surrounding traffic.

In recent decades, industry and academia has placed an increasing emphasis on
driving automation for road vehicles. These efforts have accelerated recently thanks
to technological developments which have made high data processing capacity possible.
The focus of driving automation has primarily been passenger vehicles and many of the
commercial actors have announced the introduction of high-level driving automation
features in the near future [33, 95, 97]. However, although it has attracted less attention,
the development of driving automation for heavy vehicles is also underway. Nevertheless,
the primary motivation for introducing driving automation features is not necessarily
shared by passenger vehicles and heavy trucks. For passenger cars, the main motivations
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are traffic safety and more free time for the driver. For heavy trucks, however, the main
motivations are business operation and traffic safety concerns.

Returning to the above discussion on differences in manoeuvring characteristics between
passenger cars and articulated heavy vehicles, it is probably necessary to take these
characteristics into account to ensure safe and reliable driving automation features for
articulated vehicles. Consideration of manoeuvring characteristics is foreseen in the
creation of traffic situation predictions (tactical motion planning) and traffic situation
manoeuvres (tactical decision-making). Moreover, it is anticipated that learning from
the driver behaviour of professional truck drivers (who often have considerable driving
experience) can be an efficient way to aid development of driving automation principles.

1.1 Objective

The objective of this work is to study traffic situation predictions and traffic situation
manoeuvres that can be used for high-speed driving automation features of articulated
heavy vehicles. High-speed driving refers to vehicle speeds in the range of 0-80 km/h.
The primary application is long combination vehicles; often the most demanding in
terms of lateral stability. Due to manoeuvring characteristics of these vehicles, traffic
situation predictions are likely to incorporate motion constraints. When considering the
use of vehicle models to express motion constraints, the models need to be quantified
in respect of their level of complexity. This will guarantee reliable and computationally
efficient algorithms. Furthermore, traffic situation manoeuvres are strongly linked with
driving behaviour and are important in terms of the overall acceptance of the envisaged
driving automation. The implementation of driving principles entails the specific design
of continuous and discrete motion control for driving automation in a given operational
design domain.

1.2 Prerequisites

The work presented in this thesis assumes that the envisaged reference architecture for
vehicle motion functionality has been used (developed at Volvo Global Trucks Technology
(VGTT)). Methods and strategies developed for traffic situation predictions and traffic
situation manoeuvres are given under the following assumptions:

A1 the methods and strategies should include vehicle combinations of up to three
articulation joints. The vehicle configuration is known to the vehicle control, in
terms of geometry and payload parameters.

A2 the methods and strategies assume the existence of vehicle environment sensing
functionalities. This means a vehicle sensor system that measures the subject
vehicle’s position on the road as well as such things as the relative positions and
velocities of surrounding traffic and objects.
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A3 the methods and strategies assume the existence of vehicle motion management
functionalities. This means a low-level control system that handles coordination
of propulsion, braking, and steering.

1.3 Limitations

This work is presented, subject to following limitations:

L1 the primary application of this work is in long combination vehicles based on
the modular concept. However, only the A-double combination has been used
as an example.

L2 the methods and strategies developed for traffic situation predictions and traf-
fic situation manoeuvres only consider one-way, multiple-lane roads such as
highways.

L3 the methods and strategies developed for traffic situation predictions and traffic
situation manoeuvres have not been verified using physical testing. Verification
has been carried out using motion platform driving simulator experiments and
desktop simulations.

L4 the methods and strategies developed for traffic situation predictions and traffic
situation manoeuvres have not been adapted to the computing capacity of
existing production vehicles.

L5 the main standard for functional safety of electrical automotive systems, ISO-
26262, has not been considered.

1.4 Contributions

The scientific contributions of this work are:

C1 Formulation of traffic situation predictions by using models for subject vehicle,
driver, road and surrounding traffic.

C1a Formulation of a unique driver steering model for articulated vehicles.

C2 Traffic situation predictions used in multiple-lane, one-way road driving simulator
experiments, including actuation requests for subject vehicle longitudinal and
lateral control. The actuation requests are based on driver modelling and model
predictive control.

C3 Traffic situation manoeuvres including formulation of decision making for driv-
ing automation including maintain-lane, lane changes and non-evasive abort
manoeuvres in multiple-lane, one-way roads.
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C4 Deriving driving principles for automation by using back-to-back comparison of
manual and automated driving in simulator experiments. These derived driving
principles are based on human driving behaviour by professional drivers to attain
high levels of acceptance.

C4a Initiation and execution of lane changes with surrounding traffic.

C4b Managing mandatory road exits and lane changes in dense traffic.

1.5 Outline

Chapter 2 presents long combination vehicles, including typical road usage and manoeu-
vring characteristics. Chapter 3 illustrates goods transports and their connection to
driving automation, as well as existing heavy truck-driving automation demonstrators.
Chapter 4 illustrates general vehicle motion function components and presents the Volvo
GTT vehicle motion functionality reference architecture. Chapter 5 presents the models
of road, subject vehicle, driver and surrounding traffic, used to calculate traffic situation
predictions. Chapter 6 presents traffic situation predictions, based on driver modelling
and model predictive control. Chapter 7 gives traffic situation manoeuvres, including
manoeuvre planning and manoeuvring decisions. Chapters 8 presents some concluding
remarks, including scientific contributions, appended papers, industrialisation and future
research directions.
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2 Long combination vehicles

Long combination vehicles (LCVs) refer to modular road vehicles that are longer and
possibly heavier than the currently permitted dimensions in Sweden. Section 2.1 presents
a short background on combination vehicles. Section 2.2 gives the typical road usage for
LCVs and Section 2.3 presents important manoeuvring characteristics.

2.1 Background

For heavy goods vehicles within the European Union, the maximum authorised weight and
length dimensions are regulated by the Council directive 96/53/EC. This directive states
that the maximum lengths of tractor semi-trailer combinations and rigid truck-trailer
combinations are 16.5 m and 18.75 m, respectively, see Fig. 2.1. The maximum weight
is restricted to 40 t, with the exception of domestic transports (including 40-foot ISO
containers) in a combined transport operation. For these, the maximum weight is 44 t.
As exceptions from the regulation, the maximum lengths in Sweden and Finland are 24 m
and 22 m, respectively.

Aditionally, the directive gives member states the option of using longer and heavier
vehicle combinations within their territories, provided that the combinations are based
on the European modular system (EMS) [5], or do not significantly affect international
competition in the transport sector. In Sweden, longer and heavier vehicle combinations
based on the EMS concept were introduced in 1997. There are three permitted types of
combinations, each carrying one short module and one long module, giving a total vehicle
length of 25.25 m and a maximum permitted weight of 60 t, see Fig. 2.2a.

The term long combination vehicles refers to modular road vehicles that are longer and
possibly heavier than those permitted in Sweden, i.e. longer than 25.25 m and possibly
heavier than 60 t. The primary motives for LCV utilisation are increased transport
productivity and reduced environmental impact. It is predicted that LCVs may be

(a) Tractor semi-trailer combination. Reproduced from [5].

(b) Rigid truck-trailer combination. Reproduced from [5].

Figure 2.1: Examples of existing vehicle combinations in Europe.
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(a) Existing EMS combination in Sweden. Reproduced from [5].

(b) A-double combination. Reproduced from [5].

Figure 2.2: Examples of modular vehicle combinations.

one way to meet future environmental targets and emission legislation on transported
goods. The predicted LCVs typically range between 27-34 m in length and have at least
two articulated joints. In a pilot project [68] conducted in Sweden, the productivity
and energy consumption of a 90 t vehicle combination of 30 m in length was improved
by approximately 20 percent. This was when compared to a conventional Nordic 60 t
combination of 25.25 m in length.

The main concerns regarding a general introduction of LCVs relate to road infrastruc-
ture and traffic safety. An introduction of LCVs in Sweden would most likely require
additions to the existing classification of road types. Such an initiative has been ongoing
in Sweden since 2016 [115]. There are also several studies concerning the traffic safety
impact of longer and heavier vehicles such as LCVs [3, 7, 60]. However, it is not clear
whether and how traffic safety would be affected by an introduction of LCVs.

2.2 Typical road usage

In Sweden, the public road network is currently divided into three buoyancy classes:
BK1, BK2 and BK3. As mentioned in Section 2.1, an initiative for introducing a fourth
buoyancy class is ongoing [115]. These classes restrict maximum gross combinations of
weight and static load per axle and axle groups and minimise the distance between axle
groups. BK1 roads, on which the highest weights are permitted, cover about 95 % of
the public road network. Today’s heavy goods vehicles are allowed on all BK1 roads.
However, LCVs are not expected to be driven on all existing BK1 roads and a further
specification of the road weight classes in some form is envisaged and proposed [117] as
part of a general introduction of LCVs. The intention is to allow modular LCVs mainly on
roads with the highest weight class. Before driving on other roads, they can be decoupled
into shorter conventional combinations. For example, the A-double combination, which

8



consists of a tractor unit, semi-trailer, dolly-converter and a second semi-trailer, can be
converted to a standard tractor semi-trailer when approaching city areas.

When determining the road usage in a general LCV introduction, other road infras-
tructure limitations besides weight restrictions (such as oncoming traffic and types of
intersection) may need to be taken into consideration. One traffic situation that has
been specifically studied is overtaking situations in oncoming traffic [3]. Even though
no significant increased accident risk associated with overtaking was found, this thesis
considers one-way, multiple lane roads to be the primary application for LCVs.

2.3 Manoeuvring characteristics of articulated heavy
vehicles

Performance-based standards are a basis for regulating articulated heavy vehicles incorpo-
rating specific performance criteria with quantified required level of performance [59]. One
example of performance-based characteristics for the longitudinal and lateral directions
have been defined in [103]. The characteristics for longitudinal direction are: startability,
gradeability, acceleration capability, stopping distance, and down-grade holding capability.
The characteristics for lateral direction are: rearward amplification (RA), swept path
width (SPW), high-speed transient off-tracking (HSTO), high-speed steady-state off-
tracking (HSSO), yaw damping coefficient (YDC), straight line off-tracking (SLO), lateral
clearance time (LCT), steady-state rollover threshold (SRT), and deceleration capability
in a turn. The most important lateral characteristics for high-speed manoeuvring are RA,
HSTO, HSSO and YDC, which are described as follows:

• RA is the relationship between the maximum motion of the first and last vehicle
units during a specified steering manoeuvre [51] and vehicle speed. RA is usually
given in the metrics lateral acceleration gain or yaw velocity gain. It expresses the
increased risk of a last unit roll-over or swing-out.

• The off-tracking characteristics, HSTO and HSSO, both describe the lateral deviation
between the path of the front axle and the path of the most severely off-tracking
axle of the last unit. Examples of HSTO and HSSO are given in Figures 2.3 and 2.4.
These measures express the additional space needed for the last unit in a specific
steering manoeuvre and vehicle speed.

• The YDC is the damping ratio of the least damped articulation joint’s angle during
free-yaw oscillations of the vehicle combination, after a specific steering manoeuvre
and vehicle speed. A longer decay time might result in higher driver workload and
increased risk of the safety of other road users.
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Figure 2.3: Lane-change manoeuvre illustrating HSTO, RA and YDC. Reproduced
from [103].

Figure 2.4: Steady-state manoeuvre illustrating HSSO. Reproduced from [103].
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3 Goods transports and driving automation

Somewhat simplified, goods transport is the movement of goods from location A to
location B. This is a task that seldom or never adds value to the goods. The existence of
goods transport is due to the location of raw materials or production operation rarely
corresponding to the location of demand for goods. In general terms, goods transports
include elements such as infrastructure, vehicle and business operation. Moreover, goods
transports are divided into different transport modes such as road, rail, air, water,
pipelines, and so on. Section 3.1 illustrates goods transports and their connection to
driving automation. Section 3.2 presents existing standards for driving automation
for motor vehicles on public roads. Section 3.3 presents existing heavy truck-driving
automation demonstrators.

3.1 Goods transports

The nature of goods transport has given rise to a strong business operation focus, which
has historically contributed to continuously improved transport solutions. Typically, such
solutions are related to logistics planning, vehicle, infrastructure, and automation. In
the case of in-house logistics, automated transport applications (vehicle without a driver)
were carried out in the 1950s [32]. The first so-called automated guided vehicles (AGVs)
were used in production plants and warehouses. In early systems, the navigation was
implemented using electrical conductors embedded in the floors. Today’s systems, entails
free navigation using laser scanners and cameras. Regarding out-door private property
logistics, there are several examples of AGVs being used to improve productivity. At a
container terminal in Germany, battery-operated AGVs move containers between ship
and yard [46]. Automated trucks are also used at one of the world’s largest iron-ore mines
in Australia [61].

By using the existing public road infrastructure, heavy truck goods transports
assist other modes of transport to improve overall transport accessibility. Considering
both domestic and international goods transports in Sweden 2014, goods transported
by heavy trucks constituted approximately 65% of the total goods transported [107],
see Fig. 3.1. Also notable is that only 8% of the domestic transports involving heavy
trucks were distances greater than 300 km. Typically, other transport modes are more
cost-effective for longer distances.

Road transports, including heavy trucks, carry several types of commodities. Common
goods in Sweden are products from the mining industries, from the agricultural and
forestry industries and piece-goods transports [107]. As a first example to illustrate
typical heavy truck transports, consider the timber transport [34], as shown in Fig. 3.2. In
this example, the transport takes place between the logging location and a pulp production
plant. The vehicle combination has a total length of 24 m and a maximum weight of 60 t.
The vehicle combination consists of a 3-axle rigid vehicle and a 4-axle trailer. The total
transport consists of approximately 61 km of driving. Out of these 3 km are on forest
road, 17 km are on poorly maintained roads and 41 km are on well-maintained roads. The
time distribution for a typical transport mission is: 40% driving with load, 36% driving
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Figure 3.1: Proportion of transported mass of goods in Sweden 2014. Based on [107].

without load, 15% loading and 9% unloading.

As a second example of typical heavy truck road transports, consider a container
transport included in a so-called intermodal transport, see Fig. 3.2. Here, the transporta-
tion of goods is made using two different modes (road and sea) and the sealed container
is lifted and replaced when changing modes. The benefits of intermodal transports are
standardised load carriers as well as lower environmental impact and improved traffic
safety, as compared with corresponding direct road transports [78]. The disadvantages
include the limited number of goods transfer terminals, high terminal investment costs and
low usage of volume and/or weight for the load carriers [78]. In the example shown [125],
the transport takes place out between the harbour and an industrial area. Typically, one
driver carries out two trips per day. One trip involves driving back and forth from the
harbour. One trip consists of approximately 128 km driving on well-maintained roads.
The vehicle combination has a length of 16.5 m and a maximum weight of 40 t. The

Timber transport Container transport 

Figure 3.2: Illustration of two different road transport applications of heavy trucks. Theses
applications include different vehicle combinations driven on different types of roads.
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combination consists of a 3-axle tractor vehicle and a 3-axle semi-trailer. The time
distribution for one transport is: 24% driving with load, 24% driving without load, 33%
waiting time at harbour, 5% loading, 5% unloading and 9% resting time.

Returning to the discussion on business operation focus in goods transports, a few
things can be noted based on the heavy truck road transport examples given above.
Firstly, logistics planning of such things as number of vehicle units, number of drivers,
number of trips per day, potential goods on the return trip, resting times and so on is
essential. Secondly, the vehicle specification needs to be as optimised as possible for the
given transport mission. Consideration must be given to road condition, topography,
curve density and the like, cf [26]. Finally, the transport mission often includes activities
other than driving such as paper work (for Customs), loading and securing the goods,
and unloading. Some of these are carried out by the driver. The management of these
factors together contributes to the success of the business operation.

Considering the recent focus in industry and academia on driving automation for road
vehicles, it is essential to clarify similarities and differences between passenger and goods
transports to understand the potential benefits for each category. Driving automation for
passenger cars is mainly motivated by concerns of mobility, traffic safety, and freeing up
time for the driver. In most cases, this requires a high level of automation; to such degree
that the driver is not expected to be the fall-back solution in a sudden critical event. For
heavy truck goods transports, however, driving automation is mainly fuelled by a business
operation focus and traffic safety concerns. Although traffic safety is a shared motivation
for passenger vehicles and heavy goods transports, consideration must be given to the
types of accidents and associated factors. These are necessarily not the same for heavy
trucks and passenger cars [96]. For example, a the driver of a heavy truck might need
assistance in reducing speed while negotiating a turn to avoid roll-over accidents, while
passenger car accidents are often associated with some form of distraction [96].
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Table 3.1: Levels of driving automation as proposed by SAE J3016 [104], BASt [39],
NHTSA [82].

Automation
level

0 1 2 3 4 5

SAE
No driving
automation

Driver
assistance

Partial
driving
automation

Conditional
driving
automation

High driving
automation

Full driving
automation

BASt Driver only Assisted
Partial
automation

High
automation

Full
automation

-

NHTSA
No
automation

Function
specific
automation

Combined
function
automation

Limited
self-driving
automation

Full
self-driving
automation

-

3.2 Driving automation on public roads

Standards for describing levels of driving automation for motor vehicles on public roads
have been proposed by the organisations SAE [104], BASt [39] and NHTSA [82], see
summary in Table 3.1. Perhaps the most common is the standard from SAE which consists
of six levels. Essential to this standard are respective roles of the human driver and the
driving automation system in relation to each other. Moreover, to accurately describing a
driving automation system feature such as automated parking, it is necessary to identify
both the level of driving automation and its operational design domain (ODD). ODD
covers the specific conditions in which a given driving automation system is designed to
function; for example, a geographically-defined area or vehicle speed range. Furthermore,
the dynamic driving task (DDT) includes all real-time operational and tactical functions
needed to operate a vehicle in traffic. Strategic driving tasks, such as trip scheduling
and selection of destinations and waypoints are excluded. In the SAE terminology,
driving automation system is a generic term referring to any level 1-5 system, whereas an
automated driving system (ADS) is used to describe a level 3-5 system. Moreover, an
ADS-dedicated vehicle (ADS-DV) is a vehicle designed to operate exclusively by a level 4
or 5 ADS for all trips.

In a level 1 system (driver assistance), the driving automation system carries out part
of the DDT by executing either longitudinal or lateral motion control. The driver carries
out the remainder of the DDT, engages and disengages the system and supervises and
intervenes as necessary, to ensure safe operation. In a level 2 system (partial driving
automation), the role distribution between the human driver and the system is the same
as in a level 1 system, with the exception that the driving automation system carries out
both longitudinal and lateral motion control. In a level 3 system (conditional driving
automation), the driving automation system (while engaged), performs the entire DDT,
determines whether ODD limits are about to be exceeded, determines whether there is a
relevant system failure, disengages an appropriate time after failure (or immediately in
the case of driver request). While ADS is engaged, the driver serves as DDT fall-back
in case of system failure and determines how to achieve a minimal risk condition. In a
level 4 system (high driving automation), the ADS (when engaged) carries out the entire
DDT, serves as DDT fall-back and transitions to a minimal risk condition in case of:
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Figure 3.3: Vehicle platoon from the European Truck Platooning Challenge 2016. Repro-
duced from [29].

system failure, a user not responding to a requested to intervene, or a user request for the
system to implement a minimal risk condition. Moreover, the ADS only disengages after
it achieves a minimal risk condition or a driver is carrying out the DDT. The driver (while
ADS is engaged) may serve as DDT fall-back following a request to intervene, may request
that ADS be disengaged and may become the driver after a requested disengagement. In
a level 5 system (full driving automation), the role distribution between the human driver
and the system are the same as in a level 4 system, with the exception that the ADS can
operate the vehicle under all driver manageable road conditions (unlimited ODD).

The SAE standard for driving automation 2016 [104] has been updated since 2014 [105],
and further updates of the standard are expected.

3.3 Driving automation demonstrators for heavy trucks

Demonstrators involving vehicle platooning are perhaps the most common example of
heavy truck applications including driving automation features equal to, or higher than,
SAE level 2. In the concept of vehicle platooning, a collection of vehicles travels together
in a coordinated formation. By operating the vehicles at short inter-vehicular distances,
the overall aerodynamic drag (and thus the fuel consumption) can be reduced.

In the U.S., the California PATH programme has shown the technical feasibility of
driving two trucks at an inter-vehicular distance of 3−10 m at vehicle speeds 80−90 km/h.
The experiments have shown fuel consumption savings in the range of 5% for the lead
truck and 10% to 15% for the following truck [19, 110].

In Europe, the CHAUFFEUR project (lead by DaimlerChrysler) carried out platooning
using two heavy-duty tractor semi-trailer combinations [36]. In the subsequent project
CHAUFFEUR 2, longitudinal and lateral control was implemented using the sensors
available in series production vehicles [37]. The German KONVOI project (2005-2009),
studied the impact (on driver acceptance, traffic flow and environment) and the legal
and economic implications of platoons [49]. In the European project SARTRE, the lead
vehicle of the platoon was a manually driven heavy vehicle, with the following vehicles
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under automated longitudinal and lateral control. A platoon comprising five vehicles was
demonstrated on public roads near Barcelona, Spain in 2012 [13, 14].

In Japan, the national project Energy ITS [121], started in 2008, included platooning in
which three fully automated trucks were tested under highway conditions. Measurements
showed fuel consumption savings of about 14%.

More recently, the COMPANION project [21] led by Scania, aimed to contribute
to future standardisation and policy development for European transportation. In the
European Truck Platooning Challenge 2016 [29] launched by the Netherlands, six truck
brands drove semi-automated truck platoons on public roads from several European cities
to the Netherlands. The initiative targeted a joint effort between authorities and industry.

Aside from vehicle platooning there is a small number of other examples of single
heavy truck driving automation demonstrators. In 2015, the Freightliner Inspiration
Truck [35] became the first commercial vehicle equipped with level 3 driving automation
(NHTSA) [82] to operate on an open public highway in the U.S. In Europe, Daimler [22]
has demonstrated driving level 2 and 3 automation (BASt) [39].
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4 Vehicle motion functionality architecture

A motion functionality architecture describe how functions connected to the vehicle motion
are divided and how they relate to each other. Section 4.1 gives a brief background and
illustrates general vehicle motion function components for driving automation. Section 4.2
presents the Volvo GTT vehicle motion functionality reference architecture.

4.1 Background

A simplified interpretation of the concept system architecture1 is that it represents the
construction plan of the system. Typical mechanical architectures for vehicles includes
frame/body dimensions, wheel sizes and so on. Typical electrical architectures include
hardware architecture, software architecture and network architecture. An architecture
enables dismantling and decoupling into smaller building components. It facilitates
reuse, introduction of new components and parallelisation of the development process. In
accordance with the concept of system architecture, a motion functionality architecture is
a way to describe how functions connected to the vehicle motion are divided and how
they relate to each other. A motion functionality architecture does not include the actual
technical implementation in terms of hardware and software.

One example of functionality for high-level driving automation, based on [9], is given in
Fig. 4.1. The main components are perception, decision and control and vehicle platform
manipulation. Firstly, perception refers to the functions concerned with interpretation of
data collected by vehicle sensors. The subcomponents sensing and sensor fusion include
functions that sense physical variables of the surrounding environment and the subject
vehicle, as well as combining the information from multiple sensors. Localisation functions
determine the position of the subject vehicle (typically using GPS and inertial sensors)
with respect to a global map. Semantic understanding functions and the world model are

Automated Driving Functional Components 

Perception 
Sensing 
Sensor fusion 
Localisation 
Semantic understanding 
World model (passive) 

Decision & Control 
Trajectory generation 
Energy management 
Diagnosis & fault management 
Control 
World model (active) 

Vehicle platform  
manipulation 
Platform stabilisation 
Passive safety 
Trajctory execution: propulsion, 
braking, steering 

Figure 4.1: Typical function components for high-level driving automation. Based on [9]

1According to [52], architecture is ”fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution”
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responsible for interpretation of what has been detected, such as representing drivable
areas and storing physical variables of the surrounding environment.

Secondly, decision and control refers to functions concerning the vehicle behaviour
in context of the vehicle’s environment. The subcomponents are trajectory generation,
energy management, diagnosis and fault management, control and world model. A
function related to trajectory generation calculates feasible trajectories (typically position,
orientation and velocity of the subject vehicle), representing the motion given a specific
actuation. The control functions are used for instant response to unforeseen events from
the environment, such as automated emergency braking. These functions complement,
or are redundant to the former trajectory generation functions. World model refers to
functions that can predict the environment’s evolution when given a sequence of inputs.

Finally, vehicle platform manipulation means functions directly related to the motion
of the subject vehicle. Its subcomponents are vehicle stability functions, passive safety and
trajectory execution. The stability functions are related to anti-lock braking, electronic
stability programs and so on. Functions related to trajectory execution are responsible
for coordinating the use of the available actuators, given the trajectory generated by
decision and control. A function architecture for the motion of an automated vehicle can
be achieved by distributing the components described above, cf [9].

4.2 Volvo GTT vehicle motion functionality reference
architecture

In the presented work, the Volvo GTT vehicle motion functionality reference architecture
(VeMFRA) [73] has been used as a reference for dismantling and structuring functionality.
One of the cornerstones of VeMFRA is the layers used to organise sets of functionalities.
The layer order and functions included in each layer are organised based on their temporal
and spatial extension. Upper layers (longer extension) are dependent on the existence
of lower layers. Lower layers provide aggregated capabilities to the next upper layer.
Moreover, VeMFRA defines generic elements for hierarchical structuring. The main
elements are ordered from top to bottom: functionality domain (FD) and functionality
area (FA). The main functionality domains are: FD-Transport mission management (FD-
TMM), FD-Route management (FD-RM), FD-Route situation management (FD-RSiM),
FD-Traffic situation management (FD-TSM), FD-Vehicle motion management (FD-
VMM), FD-Motion support device management (FD-MSDM), FD-Vehicle environment
management (FD-VEM) and FD-Human machine interface (FD-HMI), see Fig. 4.2.

The FD-Transport mission management includes functions related to fleet man-
agement and route assignment. As an example, functions in this layer can provide weekly
or daily plans for each vehicle managed by a fleet owner. The functions aim to optimise
vehicle usage and provide information for fleet optimisation with respect to energy con-
sumption and cost, see Fig 4.3. Functions related to FD-Route management handles
the vehicle performance for an actual designated route i.e. a delivery from point A to point
B. Typically the range for this FD is within the spatial horizon of 100 km. One example
is route planning as provided by, say, Google. The FD-Route situation management
includes functionalities related to road segments, typically 1−5 km, of a planned route.
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Figure 4.2: Overview of envisaged vehicle motion reference architecture for Volvo GTT.
Arrows represent data flow.
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Figure 4.3: Illustration of the spatial resolution for the function domains Traffic mission
management (FD-TMM), Route management (FD-RM) and Route situation management
(FD-RSiM).

One example of an existing function within this domain is the Volvo I-See function [1]
used for fuel-saving. Another example is functionalities related to planning road junctions
and exists during highway driving. If comparing VeMFRA with the driving assignment
carried out by a human driver, the layers FD-RM and FD-RSiM can be associated with
the strategic level of the driving as defined by Michon [79].

FD-Traffic situation management, cf control and decision in Section 4.1, is related
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(a) FD-VEM (b) FD-TSM (c) FD-VMM

Figure 4.4: Illustration of the functional domains Vehicle environment management
(FD-VEM), Traffic situation management (FD-TSM) and Vehicle Motion management
(FD-VMM).

to functions with a temporal horizon of up to 10 s. The main attributes include: continuous
control and decision-making with respect to the subject vehicle behaviour in an observed
traffic situation, see Fig. 4.4. If comparing with the driving task for a human driver,
FD-TSM can be associated with tactical [79] manoeuvring including such things as gap
acceptance and overtaking. When driving on public roads, the functions in FD-TSM
often include consideration of obstacles and surrounding traffic. This, in combination
with the subject vehicle stability limits, results in safety-critical functionalities. One
example of an existing function in FD-TSM is the adaptive cruise control [28]. The FA-
Traffic situation observations (FA-TSO) include functions concerning the creation of
instant observation of the traffic situation around the subject vehicle. Typically, observed
information includes number of lanes, lane widths, subject vehicle position in lane and
motion states of subject and surrounding vehicles. This is similar to the passive world
model in perception, described in Section 4.1 above. FA-Traffic situation predictions
(FA-TSP) relates to the functions used to predict how the observed traffic situation will
evolve in the future. Throughout this work, the term traffic situation predictions (TSPs)
refers to the complete set of functions included in FA-TSP. The objective of FA-TSP
is to generate feasible manoeuvres for the subject vehicle, such that the vehicle motion
fulfils requirements on such things as safety, efficiency and driving comfort. Given the
objective above, typical FA-TSP functionalities include predictions of the subject vehicle
and surrounding traffic. This is similar to the active world model in decision and control,
described above in Section 4.1. The FA-Traffic situation manoeuvres (FA-TSM) can
be described as decision-making regarding driving principles and control on a tactical
level. Candidate actuation requests for a set of traffic manoeuvres can be generated
by FA-TSP. However, FA-TSP does not necessarily determine why nor when a specific
manoeuvre is executed. The manoeuvre planning and manoeuvre decision are made
instead by the functionalities associated with FA-TSM to achieve tactical as well as
strategical goals. Throughout this work, the term traffic situation manoeuvres (TSMs)
refers to the complete set of functions included in FA-TSM.

FD-Vehicle motion management (compare with vehicle platform manipulation
in Section 4.1) encapsulates knowledge of available actuations and coordinates the use
of the actuators within the vehicle. Typically, these functions are related to a temporal
horizon of up to 1 s. If comparing with the driving task for a human driver [79], FD-VMM
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can be associated with control including automatic action patterns. Functions related
to FD-Motion support device management handle the organisation of monitoring,
measurement and control of devices, typically actuators and sensors. FD-Vehicle
environment management, see perception in Section 4.1, is related to functions that
represent the external environment of the vehicle operation. Examples of functions in
FD-VEM are lane and road sign detection. Finally, functions in FD-Human machine
interface (FD-HMI) include detection and response to drivers’ intentions. One example
of a function in this layer is activation and deactivation of a driving support system.
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5 Modelling for traffic situation predictions

In the traffic situation predictions, models of the road, subject vehicle, driver and sur-
rounding traffic (see Fig. 5.1) are used to calculate candidate actuation requests for
steering and acceleration. Moreover, these models are used to evaluate the actuation
feasibility for a given prediction horizon. The individual models are described in Sec-
tions 5.1-5.4.
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Figure 5.1: Illustration of combined road, subject vehicle, driver and surrounding traffic
model. Arrows represent data flow.
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5.1 Road modelling

5.1.1 Background

The design of public roads is regulated by national authorities; in Sweden this is the
Swedish Transport Administration. The design elements in Sweden [116] for the horizontal
road geometry are: straight lines, circular arcs and clothoids. A clothoid is a spiral whose
curvature c (s) is a linear function of its length [77].

The recommended minimum radius in the horizontal plane for roads with a refer-
ence speed of 110 km/h is 900 m in the case of new construction and 800 m in case of
reconstruction [116]. The corresponding minimum radii for a road with a reference speed
of 60 km/h are 140 m and 100 m [116]. The horizontal curvature of the roads used in the
simulator experiments described in [90, 94] and Papers D and E are illustrated in the top
row of Fig. 5.2.

The design elements in Sweden [116] for the vertical road geometry are: straight lines,
circular arcs and parabolae. The recommended minimum concave radii for roads with a
reference speed of 110 km/h are in the interval of 2000 m to 9000 m. The corresponding
minimum radii for roads with a reference speed of 60 km/h are 600 m to 1750 m. The
vertical curvature of the roads used in the simulator experiments described in [90, 94]
and Papers D and E are illustrated in the bottom row of Fig. 5.2.

0 2,000 4,000 6,000 8,000
−1

0

1
·10−2

C
ur

va
tu

re
c h

[1
/

m
]

0 2,000 4,000 6,000 8,000
−1.5

0

1.5
·10−3

Distance [m]

C
ur

va
tu

re
c v

[1
/

m
]

0 1,000 2,000 3,000
−1

0

1
·10−2

0 1,000 2,000 3,000
−1.5

0

1.5
·10−3

Distance [m]

Figure 5.2: The horizontal (top row) and vertical (bottom row) curvature of the roads
used in the simulator experiments described in [90, 94] (left-hand panel), and Papers D
and E (right-hand panel).
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Figure 5.3: Illustration of a road model in the horizontal plane, consisting of five clothoid
spline segments. The start and end of each segment is marked with a black square. The
left and middle panels show the curvature ch and the road angle ψR for each segment as a
function of the distance, sh. The right panel shows the position given a fixed reference
frame OXY.

5.1.2 Design

In the proposed road model, the projection of the road in the horizontal plane is represented
by a curve denoting a clothoid spline as circles whilst straight lines may be considered
as limiting forms of clothoids. The curve representing the vertical road geometry is a
clothoid spline, expressed using the total distance, s. The proposed road model consists
of n clothoid segments for the horizontal description and m clothoid segments for the
vertical description. The reason for using a different number of segments for the horizontal
and vertical descriptions is due to the different minimum radii, see Section 5.1.1. Fig. 5.3
illustrates a road section consisting of five clothoid segments. The horizontal and vertical
curvatures ch(sh) and cv(s) of segment i and j are described as

c
(i)
h (sh) = c

(i)
h,0 + c

(i)
h,1 · sh (5.1)

c(j)v (s) = c
(j)
v,0 + c

(j)
v,1 · s (5.2)

where sh is the arc position of the horizontal projection, s is the total arc position, c
(i)
h,0

and c
(j)
v,0 are the initial curvatures and c

(i)
h,1 and c

(j)
v,1 are the curvature rates. It is assumed

that the segments are connected to each other such that G2 continuity is ensured, i.e. the
position, heading and curvature of two segments are equal at their joints.

Furthermore, the curvatures c
(i)
h and c

(j)
v of each segments i and j are defined as

c
(i)
h =

dψ
(i)
R

dsh
(5.3)

c(j)v =
dθ

(j)
R

ds
(5.4)

where ψ
(i)
R is the angle between the road tangent vector and the X-axis, and θ

(j)
R is the

angle between the tangent vector and the sh axle. Using the chain rule and (5.3)-(5.4),
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the angular velocities ψ̇
(i)
R and θ̇

(i)
R can be written as

ψ̇
(i)
R = c

(i)
h · ṡh (5.5)

θ̇
(j)
R = c(j)v · ṡ (5.6)

For the horizontal plane, the position of each segment of the road in a local coordinate
frame is described as

x
(i)
l (sh) = x

(i)
0 +

∫
cos(ψ

(i)
R (sh))dsh (5.7)

y
(i)
l (sh) = y

(i)
0 +

∫
sin(ψ

(i)
R (sh))dsh (5.8)

where x
(i)
0 and y

(i)
0 are initial values and

ψ
(i)
R (sh) = c

(i)
h,0 · sh +

c
(i)
h,1

2
· s2

h (5.9)

The integrals (5.7)-(5.8), include the Fresnels integrals [77] and do not have a closed form
solution. However, an approximate solution can be found using Taylor expansion.
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5.2 Subject vehicle modelling

5.2.1 Background

Vehicle planar dynamics refer to the vehicle motion in a plane horizontal to the vehicle,
with longitudinal, lateral and yaw degrees of freedom. A vehicle model is defined as
the system of equations needed to describe the dynamics of a vehicle during acceleration,
braking and/or cornering manoeuvres. The model is often expressed as a system of
non-linear differential-algebraic equations (DAEs). These DAEs are based on kinematic
and inertial properties of the vehicle, as well as constitutive relations between motion and
force quantities. One example of a commonly used constitutive relation is a tyre model
where the tyre force is related to the tyre velocity.

A vehicle model is used in the traffic situation predictions to calculate future pre-
dicted motion of the subject vehicle. Important motion characteristics, such as vehicle
accelerations, velocities and positions, are used to verify the feasibility of the calculated
candidate actuation requests. As mentioned in Section 2.3, highly important lateral
motion characteristics for articulated heavy vehicles are connected to off-tracking and
rearward amplification, see example in Fig. 5.4. Important criteria for a subject vehicle
model used in the traffic situation predictions are:

i) the model can capture important motion characteristics in the operating speed range
of the vehicle. In highway driving, the operating speed range is typically 0-80 km/h;

ii) the model can handle relevant driving scenarios. The driving scenarios considered
in this work are typically related to maintain-lane manoeuvring, lane changes and
prospective non-severe avoidance manoeuvres;

iii) the model is tunable in terms of physically interpretable parameters;

iv) the model is computationally efficient to allow real-time execution.

One way to approach the above criteria is to use a two-track-model, see illustration in
Fig. 5.5. In a two-track model, each wheel is modelled separately and can accordingly
exhibit varying cornering stiffness. Moreover, yaw moment produced by non-symmetrical

(a) Off-tracking in low speed roundabout driving
using an A-double combination.

(b) Rearward amplification in a severe lane
change manoeuvre.

Figure 5.4: Example of important motion characteristics for articulated heavy vehicles.

27



Lwb Lwb 

Lwb 

leq 

Two-track model 
with multiple 
nonsteering axles 
and dual tyres 

One-track model 
with multiple 
nonsteering axles 
and single tyres  

One-track model 
with equivelent 
wheelbase and 
single tyres 

Model simplification 

Figure 5.5: Illustration of single-unit two-track model with multiple nonsteering axles and
dual tyres (left), single-unit one-track model with multiple nonsteering axles and single
tyres (middle) and single-unit one-track two axles model with equivalent wheelbase and
single tyres (right).

wheel torque interventions are inherently represented. However, the two-track model
requires the actuator configuration to be on wheel level which generates a computationally
demanding model with many states and multiple inputs. Instead, a one-track model [53]
(also known as a single-track model or bicycle model) with simplified actuation requests of
steering and longitudinal forces is considered. Here, the effects of all tyres on an axle are
combined into one virtual tyre, see illustration in Fig. 5.5. Moreover, the concept of an
equivalent wheel-base [129] can also be used, which means that groups of axles (such as a
tandem or tridem) are collapsed into one axle, see illustration in Fig. 5.5. The motion
degrees of freedom included in the model are the longitudinal, lateral, and yaw motion of
each vehicle unit.

Furthermore, the general form of the one-track model can be simplified by introduc-
ing assumptions related to the vehicle driving conditions. A common simplification is
linearisation, in which the physical assumptions are: constant longitudinal velocity, small
steering and articulation angles, small side slip angles, and linear tyre constitution. A
linear tyre constitution in this context means that the tyre force varies linearly with the
lateral slip. In general, vehicle manoeuvring often involves a combination of steering
and propulsion or braking. During such conditions, the lateral and longitudinal tyre
forces deviate from the values derived under independent conditions. Introduction of
longitudinal slip generally tends to reduce the lateral force at a given slip angle and,
conversely, the application of a slip angle reduces the longitudinal force under a given
propulsion or braking condition. This effect is often referred as combined slip. In ad-
dition to linearisation, manoeuvre-dependent assumptions are possible and commonly
utilised. One example is steady-state conditions, which are mathematically represented
by neglecting state derivatives.
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5.2.2 Design

5.2.2.1 Vehicle body motion

The equivalent wheel-base of a multi-axle vehicle is the wheel-base of a two-axle vehicle,
with steady-state turning behaviour equivalent to that of the multi-axle vehicle. The
equivalent wheel-base is always greater than the actual wheelbase. Assuming linear lateral
tyre forces, the equivalent wheelbase is calculated as

leq = Lwb ·
(

1 +
Tf

L2
wb

·
(

1 +

∑M
m CY1m

CY11

))
(5.10)

where Lwb is the actual wheelbase, M is the number of rear axles and CY11 is the cornering
stiffness of the front axle. CY1m is the cornering stiffness of the mth rear axle. The
tandem factor Tf is calculated as

Tf =

∑M
m=1 ∆2

m

M
(5.11)

where ∆m is the longitudinal distance from the rear end of Lwb to the mth rear axle.

In this work, Lagrangian formalism [17] is used to derive one-track models with
equivalent wheelbase. The first step is to define a set of coordinates which describe the
position and orientation of all parts of the system uniquely with respect to an inertial
frame. Any set of coordinates having this property is called a set of generalised coordinates.
The defined generalised coordinates are assumed to be free, i.e. the number of coordinates
is equal to the number of degrees of freedom. Secondly, the kinetic and potential energies
are written in terms of these coordinates and the force components of the forces acting
on the system are computed along these coordinates. These forces are referred to as
generalised forces. Finally, the substitution of these quantities in Lagrange’s equations
results in the final formulation. The main advantage of using the Lagrange formalism
is that the coupling forces between the vehicle units are inherently represented and the
numbers of equations are correspondingly fewer. This approach also has the advantage
of requiring only the kinetic and potential energies of the system to be formulated and
hence tends to be less prone to error than summing together the coupling forces. On
the other hand, Newtonian formalism is more adapted for multi-domain modelling and
modularisation. Modularisation can be efficient when modelling articulated vehicles,
especially when combined with tools for symbolic equation manipulation [114].

The Lagrangian equations are defined as

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi (5.12)

where i = 1, ..., N with N as the number of generalised coordinates. The generalised
coordinates qi are the dependent variables, T is the kinetic energy, V is the potential
energy and Qi are the generalised forces. Due to the fact that only planar motion is being
considered, the potential energy is zero.
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Figure 5.6: One-track model of an A-double combination. The left panel illustrates the
spatial parameters of the vehicle model and the right panel illustrates the included motion
variables and forces. The spatial parameters are defined as positive if they are in front of
the unit’s CoG and negative if they are behind the CoG.

For the A-double combination, the following set of generalised coordinates is chosen

q =
(
X̄1, Ȳ1, ψ1, ∆ψ1, ∆ψ2, ∆ψ3

)
(5.13)

where X̄1 and Ȳ1 are the longitudinal and lateral position of the CoG for the first vehicle
unit, expressed in an inertial coordinate frame. ψ1 is the heading angle of the first vehicle
unit and ∆ψ1,∆ψ2 and ∆ψ3 are the articulation angles of the trailing vehicle units.

To improve the usability of the model, the velocities of the first vehicle unit are
expressed relative to a body-fixed coordinate frame. However, the longitudinal and lateral
velocities, vXv1 and vYv1 respectively, are not derivatives of generalised coordinates. How-
ever, they may be regarded as derivatives of quasi-coordinates and can be introduced into
the Lagrange equations. To express the Lagrange equations using the quasi-coordinates,
the approach presented in [98] can be followed.
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The kinetic energy of the system is calculated as

T =
1

2
·




4∑

j=1

mj · |vj |2 + JZj · ψ̇2
j


 (5.14)

where vj and ψ̇j are the translational and rotational velocities of unit j. The mass is mj

and JZj is the yaw moment of inertia of unit j. The translational velocity components in
the CoG of the vehicle units are calculated using the corresponding position vectors as
a starting point. The position vectors rj , are expressed relative to the CoG of the first
vehicle unit as

r1 =
(
X̄1, Ȳ1

)(eXE

eYE

)
(5.15)

r2 = r1 +
(
l12 − l1r, 0

)
Rv1

(
eXE

eYE

)
+
(
l2f, 0

)
Rv2

(
eXE

eYE

)
(5.16)

r3 = r2 +
(
l21 + l2r, 0

)
Rv2

(
eXE

eYE

)
+
(
l3f, 0

)
Rv3

(
eXE

eYE

)
(5.17)

r4 = r3 +
(
l31 − l3r, 0

)
Rv3

(
eXE

eYE

)
+
(
l4f, 0

)
Rv4

(
eXE

eYE

)
(5.18)

where eXE
and eYE

are unit vectors of the inertial frame. Rvj are rotation matrices in
2D Euclidean space, defined as

Rvj =

(
cos (ψj) sin (ψj)
− sin (ψj) cos (ψj)

)
j = 1, ..., 4 (5.19)

The position vectors are transformed between the body-fixed coordinate frames and the
reference frame using

(
eXvj

eYvj

)
= Rvj

(
eXE

eYE

)
j = 1, ..., 4 (5.20)

where eXvj and eYvj are body-fixed unit vectors. Starting from (5.15)-(5.18), the transla-
tional velocity vectors of the CoG of the vehicle units are calculated as

vj =
drj
dt

j = 1, ..., 4 (5.21)

The velocities of the first vehicle unit relative a body-fixed coordinate frame are introduced
using

v1 =
(

˙̄X, ˙̄Y
)(eXE

eYE

)
=
(
vXv1, vYv1

)
RT

v1

(
eXE

eYE

)
(5.22)

The rotational velocity vectors of the different units are given as ψ̇1, ψ̇2, ψ̇3 and ψ̇4.
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The external forces acting on the system are the body forces Fj = FXvj · eXvj +FYvj ·
eYvj and the tyre forces Fjk = FXwjk · eXwjk + FYwjk · eYwjk. The lateral body forces
are assumed to be zero. The generalised forces represent the external forces applied to
the system in terms of components along the generalised coordinates. The body forces
in longitudinal direction FXvj , are calculated using the aerodynamic drag Fair,1 and the
gravitational forces Fgrav,j , according to

FXvj =

{
Fair,1 + Fgrav,j j = 1
Fgrav,j j = 2, 3, 4

(5.23)

The aerodynamic drag is assumed to act on the CoG of the first vehicle unit and the
gravitational forces are assumed to act on the CoG of each vehicle unit. The longitudinal
body forces are calculated as

Fair,1 = −1

2
· ρ ·Av · CD · v2

Xv1 (5.24)

Fgrav,j = −mj · g · sin (θR (sR11)) j = 1, ..., 4 (5.25)

where ρ is the air density, Av is the vehicle front cross-sectional area, CD is the air drag
coefficient. g is the gravitational acceleration, and θR(sR11) is the road uphill slope at the
first vehicle unit’s first axle. Note that the road slope in (5.25) is assumed to be equal for
all vehicle units; not necessarily the case for general road conditions. However, in the case
of the highway and vertical curvatures mentioned in Section 5.1.1, the approximation is
considered valid.

In the derived vehicle body motion model, combined slip is ignored and the tyre
forces in the longitudinal direction FXwjk are calculated as actuation forces for propulsion
and braking. The lateral tyre forces FYwjk, are calculated using constitutive relations
described according to

FYwjk = −CYjk · SYjk (5.26)

where CYjk is the cornering stiffness of unit j axle k. The lateral tyre slip SYjk is
defined as the ratio of the wheel hub sliding speed in the lateral direction and a reference
speed [53]. The reference speed is usually the absolute value of the wheel radius times
the wheel rotational speed or the absolute value of the longitudinal velocity. These are
equal assuming small longitudinal tyre slip.

Using (5.23)-(5.26), the generalised forces can be calculated as

Qi =

4∑

j=1

pj∑

k=1

Fjk •
∂rjk
∂qi

+

4∑

j=1

Fj •
∂rj
∂qi

(5.27)

where i = 1, ..., 6 are the generalised coordinates, j = 1, ..., 4 are the number of vehicle
units, and k = 1, ..., pj with pj as the number of vehicle axles of unit j. The positions of
the tyres are rjk and rj are the positions where the body forces applies.

The dynamic equations of the one-track model representing inertial and kinematic vehicle
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properties can be calculated using (5.12)-(5.27). Models for an A-double and a tractor
semi-trailer are given in Appendix I.

The longitudinal and lateral accelerations of the first and last vehicle units, expressed
relative to body-fixed coordinate frames, are used in the traffic situation predictions to
verify the feasibility of the candidate actuation requests. The accelerations of the first
vehicle unit a1 are calculated according to

a1 =
dv1

dt
(5.28)

dv1

dt
=
δ

δt
v1 + Ω1 × v1 (5.29)

δ

δt
v1 =v̇Xv1 · eXv1 + v̇Yv1 · eYv1 (5.30)

where Ω1 = ψ̇1 · eZv1. Furthermore, a local time derivative operator δ
δt is introduced, see

further [17]. The resulting longitudinal and lateral accelerations for the first vehicle unit
are described as

a1 =(v̇Xv1 − vYv1 · ψ̇1) · eXv1 + (v̇Yv1 + vXv1 · ψ̇1) · eYv1 (5.31)

Starting from (5.21), the accelerations of the last vehicle unit can be calculated as

a4 =
dv4

dt
(5.32)

The resulting longitudinal and lateral accelerations are described as

a4 =
(

cos (ψ1 − ψ4) ·
(
v̇Xv1 − ψ̇1 ·

(
ψ̇1 · (l12 − l1r) + vYv1

))
+

sin (ψ1 − ψ4) ·
(

(l1r − l12) · ψ̈1 − ψ̇1vXv1 − v̇Yv1

)
+ ψ̇2

4 · l4f

ψ̇2
2 · (l2f − l2r − l21) · cos (ψ2 − ψ4) + ψ̈2 · (l2f − l2r − l21) · sin (ψ2 − ψ4) +

ψ̇2
3 · (l3f + l3r − l31) · cos (ψ3 − ψ4) + ψ̈3 · (l3f + l3r − l31) · sin (ψ3 − ψ4)

)
· eXv4+

(
sin (ψ1 − ψ4) ·

(
v̇Xv1 − ψ̇1 ·

(
ψ̇1 · (l12 − l1r) + vYv1

))
+

cos (ψ1 − ψ4) ·
(

(l12 − l1r) · ψ̈1 + ψ̇1 · vXv1 + v̇Yv1

)
− l4fψ̈4+

ψ̇2
2 · (l2f − l2r − l21) · sin (ψ2 − ψ4) + ψ̈2 · (−l2f + l2r + l21) · cos (ψ2 − ψ4) +

ψ̇2
3 · (l3f + l3r − l31) · sin (ψ3 − ψ4) + ψ̈3 · (−l3f − l3r + l31) · cos (ψ3 − ψ4)

)
· eYv4

(5.33)
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5.2.2.2 Vehicle prediction actuation

The model described in this section predicts how the control and actuator systems such
as powertrain, brakes and wheels generates longitudinal wheel forces on each axle. The
actuations of the vehicle body motion model are the front wheel steering angle δ11 and
the longitudinal tyre forces FXwjk. The front wheel steering angle actuation is calculated
as

δ11 = sgn
(
δreq,pred

)
·min

( |δreq,pred|
ηs

, δ

)
(5.34)

where δreq,pred is the requested steering wheel angle for the prediction, calculated using
the driver steering model, see Section 5.3.2. The ratio between the steering wheel angle
and the front wheel steering angle is ηs and δ is the steering angle limit.

The requested total longitudinal force is calculated as

F req
X =areq,pred

Xv1 ·
4∑

j=1

mj −
4∑

j=1

FXvj + cr ·
4∑

j=1

pj∑

k=1

FZvjk (5.35)

where areq,pred
Xv1 is the requested longitudinal acceleration for the prediction calculated

using the driver acceleration model, see Section 5.3.2. The rolling resistance coefficient
is cr, pj is the number of vehicle axles of unit j, and FZvjk is the vertical force of unit j
axle k.

The requested total longitudinal force is coordinated between propulsion and braking
and the vehicle axles using

Fprop,12 = max
(

min
(
F req

X ,
Pprop(vXv1)

vXv1
, Fmax

prop

)
, 0
)

(5.36)

Fbrake,jk = min
( FZvjk

g ·∑4
j=1mj

· F req
X , Fmax

brake,jk, 0
)

(5.37)

where Pprop(vXv1) is the engine power and Fmax
prop is the maximum engine torque times the

ratio of the lowest gear. The maximum design brake force of unit j axle k is Fmax
brake,jk.

Equations (5.36)-(5.37) is an idealised model of control coordination between powertrain
and brake systems. The usage of engine brake is not included. Additionally, (5.37) models
the brake allocation/distribution on axles. The brake forces are assumed to act on each
vehicle axle, whereas the propulsion force is assumed to act on the first vehicle unit’s
second axle.

Finally, the longitudinal tyre forces are calculated as

FXwjk =

{
Fprop,12 + Fbrake,12 − cr · FZvjk jk = 12
Fbrake,jk − cr · FZvjk else

(5.38)

where j = 1, ..., 4, k = 1, ..., pj with pj as the number of vehicle axles of unit j. The
longitudinal force limitation due to road friction and combined slip are disregarded.
Equation (5.38) is an idealised model of an actuation system (powertrain and brake) and
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Figure 5.7: Supplementary motion characteristics that describe the vehicle body motion
relative to the road.

the wheel mechanics. Note that the both the braking and powertrain systems are generally
complex modules. The brake system of a heavy vehicle can include both the service brake
with pneumatics, brake discs and pads, as well as an auxiliary brake (an engine brake and
retarder for example). The powertrain system is composed of an engine, clutch, gearbox,
and final gear that transfers fuel energy into a longitudinal propulsion force. To include
the dynamics of these systems increases the model complexity beyond the TSP’s scope.
However, an approximation of the longitudinal dynamics of the powertrain and braking
system can be included by using, say, a first-order system including Fprop,12 and Fbrake,jk.

5.2.2.3 Vehicle in road coordinates

In addition to the vehicle body motion model, supplementary motion characteristics are
added to handle the vehicle body’s motion relative to the road. Added characteristics
are the distance travelled along the road for the first vehicle unit’s first axle sR11, and
last vehicle unit’s last axle, sR41. Furthermore, characteristics are added to capture the
lateral distance offset perpendicular to the road geometry for the first vehicle unit’s first
axle dR11, and last vehicle unit’s last axle dR41, see Fig. 5.7.

The absolute velocity of the first vehicle unit’s first axle v11, relative to a coordinate
frame (moving with the road clothoid spline) can be described as
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v11 =(vXv11 · cos(ψ1 − ψR11)− vYv11 · sin(ψ1 − ψR11)) · esR11

+(vXv11 · sin(ψ1 − ψR11) + vYv11 · cos(ψ1 − ψR11)) · enR11
(5.39)

v11 =(ṡR11 − dR11 · ψ̇R11) · esR11 + ḋR11 · enR11 (5.40)

where ṡR11 is the velocity of first vehicle unit’s first axle along the road clothoid spline and
ḋR11 is the first vehicle unit’s first axle velocity perpendicular to the road clothoid spline.
By combining (5.5), (5.39) and (5.40), the velocities ṡR11 and ḋR11 can be described as

ṡR11 =
(vXv11 · cos(ψ1 − ψR11)− vYv11 · sin(ψ1 − ψR11))

1− dR11 · ch(sR11)
· esR11

(5.41)

ḋR11 = (vXv11 · sin(ψ1 − ψR11) + vYv11 · cos(ψ1 − ψR11)) · enR11 (5.42)

Similarly, the velocities ṡR41 and ḋR41 can be described as

ṡR41 =
(vXv41 · cos(ψ4 − ψR41)− vYv41 · sin(ψ4 − ψR41))

1− dR41 · ch(sR41)
· esR41

(5.43)

ḋR41 = (vXv41 · sin(ψ4 − ψR41) + vYv41 · cos(ψ4 − ψR41)) · enR41
(5.44)

5.2.3 Model comparison

The derived, non-linear, one-track models for a tractor semi-trailer and an A-double
combination (see Appendix I) are compared to high-fidelity two-track models developed
at Volvo GTT. The high-fidelity models include detailed sub-models of the vehicle axle
suspensions, frame, cab suspension, steering system, powertrain and brakes. The tractor
semi-trailer that is studied, consists of a 6x4 tractor unit followed by a semi-trailer. The
total vehicle length equals 16.5 m and the total weight is 40 t. The A-double combination
consists of a 6x4 tractor unit followed by a second three-axle semi-trailer, two-axle
converter dolly and a three-axle semi-trailer unit. The total vehicle length equals 32 m
and the total weight is 80 t.

The model comparison includes the performance-based characteristics [103]: high-speed
steady-state off-tracking (HSSO), high-speed transient off-tracking (HSTO), and rearward
amplification (RAay). The off-tracking characteristics, HSSO and HSTO, both describe
the lateral distance offset between the path of the centre of the front axle and the path of
the centre of the most severely off-tracking axle of the last unit, see Section 2.3. These
measures express the swept width for a specific steering manoeuvre and vehicle speed.
A positive value for the off-tracking means that the last unit is tracking inward of the
first one. These off-tracking characteristics have been calculated for constant vehicle
speeds in the range of 30-80 km/h. HSSO has been calculated using two levels of constant
lateral acceleration of the first vehicle unit: 1 m/s2 and 2 m/s2. Furthermore, HSTO has
been calculated using a single sine wave lateral acceleration input [51] at a frequency
of 0.4 Hz and lateral acceleration of 2 m/s2. Rearward amplification is the relationship
between the maximum movement of the first and last vehicle units during a specified
steering manoeuvre and vehicle speed [51]. It is usually given in the metrics yaw velocity
amplification or, as here, in lateral acceleration amplification. It expresses the increased
risk of a last unit rollover or swing-out, which can occur if a sudden steering manoeuvre is
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Figure 5.8: High-speed steady-state off-tracking for tractor semi-trailer (left) and A-double
(right).

executed. The RAay has been calculated using a pseudo-random steering input [51], with
aYv1 in the range of 0.2-0.5 m/s2, and constant vehicle speed in the range of 30-80 km/h.

Fig. 5.8 shows the calculated high-speed steady-state off-tracking in the velocity
range 30-80 km/h for the high-fidelity and one-track models. For both the tractor semi-
trailer and the A-double combination, the HSSO is positive for vehicle speeds lower
than 50 km/h. This means that the last axle is tracking inward of the first unit. For vehicle
speeds higher than 50 km/h, the HSSO is negative and the last axle is tracking outwards
of the first axle. The magnitude of the HSSO is dependent on the lateral acceleration,
where high acceleration gives a higher HSSO magnitude. For the A-double, the HSSO is
approximately 0.75 m for the velocity of 30 km/h and lateral acceleration 1 m/s2. This is
equivalent to cornering with a constant radius of 70 m.

The calculated high-speed transient off-tracking is shown in Fig. 5.9. Similar to
the HSSO, the HSTO is positive for vehicle speeds lower than 50 km/h and negative
otherwise. The magnitude of the HSTO increases with increasing vehicle speed. Given
the manoeuvre conditions, the magnitude of the HSTO can be as high as 0.75 m for
the A-double combination. This should be compared to the available lane width, which
is typically 0.5 m for highways in Sweden (assumed lane width is 3.5 m and vehicle
width 2.5 m).

Fig. 5.10 shows the calculated rearward amplification. The maximum RAay for
the studied combinations are 1.2 for the tractor semi-trailer, and 2.5 for the A-double
combination.
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Figure 5.9: High-speed transient off-tracking for tractor semi-trailer (left) and A-double
(right).

0 20 40 60 80
0

1

2

Velocity [km/h]

R
A

a y
[-

]

Tractor semi-trailer

High fidelity model

Non-lin one-track model

0 20 40 60 80
0

1

2

Velocity [km/h]

A-double

Figure 5.10: Rearward amplification for tractor semi-trailer (left) and A-double (right).

38



5.3 Driver modelling

5.3.1 Background

How to drive a passenger car is considered common knowledge in today’s society. The
driver controls the planar motion of the vehicle by turning the steering wheel and using
the accelerator and brake pedals. Most of us agree that car driving is quite often routine
but sometimes requires more focus and attention. The famous psychologist and Nobel
laureate Daniel Kahnemann [56] describe driving on an empty road as an activity carried
out automatically and quickly, with little or no effort and no sense of voluntary control,
see Fig. 5.11a. On the other hand, Kahnemann also states that some driving activities,
such as parking in a narrow space, require attention and will most probably fail if the
necessary attention is lacking, see Fig. 5.11b. Obviously, from a psychological perspective,
driving may be considered an activity of both low and high complexity depending on the
circumstances.

Driving a heavy combination-vehicle such as an A-double is a different and often more
challenging activity than driving a passenger car. The disparity comprises differences
in size and weight dimensions, vehicle dynamics performance (in both longitudinal and
lateral directions) and the possible safety impact in case of failure. From a societal
perspective, the added complexity is reflected in the fact that heavy combination-vehicle
driving requires added training and a special driving licence. On the other hand, heavy
combination-vehicles are in generally not allowed in city environments, which can reduce
the driving complexity compared to passenger cars.

The term driver models, further divided into driver steering models and driver
acceleration models, refers to mathematical models of a driver’s steering and lon-
gitudinal acceleration control as a function of driver, vehicle and environment states.
Driver models are used in the traffic situation predictions to calculate candidate actuation
requests. Note that the driver models in question do not necessarily represent complete
driver behaviour and assume the existence of long-term driving goals. In the longitudinal

(a) Transport on empty road using a single-unit
vehicle.

(b) Timber transport in darkness using an ar-
ticulated vehicle.

Figure 5.11: Example of driving activities requiring a different amount of attention from
the driver.
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direction, for example, a reference velocity profile is assumed to exists. Typically, this is
calculated by the FD-RSiM for, say, optimized fuel consumption. Moreover, in the lateral
direction, the driver model associated with traffic situation predictions assumes curvature
profiles of current and adjacent lanes. If comparing with the driving assignment carried
out by a human driver, the driver models associated with traffic situation predictions can
be linked to the tactical level of the driving [79].

Driver models can be categorised based on origin [11] and divided into these main
groups: control perspective, behaviour perspective and cognitive perspective. Another
option is to categorise the models from the application [100] and divide them into
these groups: vehicle perspective, driver perspective, combined system perspective and
environment/traffic perspective. Accordingly, the driver models intended for use in the
traffic situation predictions are categorised as control perspective and combined system
perspective driver models.

According to Plöchl and Edelmann [100], fundamental components of driver models
are: general human driver skills and characteristics, information reception, perception and
processing, neuromuscular dynamics with thresholds, time delays and limitations, preview,
prediction/anticipation, adaptation/learning, planning capabilities and so on. Regardless
of the type of road vehicle the driving refers to, one starting point in driver modelling is
driver perception abilities. Different sensory systems are used by the human driver to
interpret surroundings and vehicle states. The main systems [81] are: visual, vestibular
and somatosensory. Perhaps the most important of these is the visual system, used to
detect road geometry and the motion of the subject vehicle relative to the surrounding
environment. The vestibular organs (located in the inner ear) detect rotations and
translations of the driver’s head. The somatosensors include a wide range of sensory
organs that detect different states of the driver’s body. Typically, somatosensors can
detect states such as contact pressure, temperature, limb position, joint angles, muscle
lengths and tensions. Typical primary visual sensory cues used in driver steering models
for single-unit vehicles are: lateral position error and heading angle error of the vehicle,
relative to a preferred path. However, in the case of articulated vehicles additional cues,
such as lateral acceleration and articulation angle errors are suggested. These are to
further assist the driver in carrying out the steering control actions more efficiently. From
the perspective of driver models associated with traffic situation predictions, we further
limit the focus to exclude neuromuscular dynamics and time delays. Although these can
be essential components in driver support systems (such as driver warning systems [6]
and shared control systems [128]) they are omitted here.

It is hypothesised that one component (in the overall pursuit of achieving driving
automation features with high operator/driver acceptability) is to use driver-models in
the TSP calculations, incorporating the following characteristics:

i) in case of a mixed traffic environment with both manually driven and auto-
mated vehicles, the generated behaviour is transparent and understandable to
the driver/operator as well as to surrounding traffic;

ii) the behaviour of the model can handle the targeted traffic scenarios. Typically
maintain-lane manoeuvring includes driving that is affected and unaffected by
other vehicles. Affected driving include approaching, braking and following another.
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Besides maintain-lane manoeuvring, common traffic scenarios for highway driving
are lane changes and possibly non-severe avoidance manoeuvres;

iii) the behaviour of the model is tuneable in that it has a small number of understandable
parameters.

The question of whether or not the models need to be fully realistic, in other words able to
fully reflect the behaviour exhibited by drivers, likely depends on the driving automation
application and is left open.

Considering single-unit vehicles there is a wide range of detailed simulation-ready
models, for both steering and acceleration, which meet the characteristics above. However,
for articulated vehicles, the range of models is more limited. There now follows a brief
review of existing acceleration and steering models. Models based on artificial intelligence
(such as fuzzy logic and neural networks) are excluded because they generally do not
offer a small number of understandable parameters. In case of steering models, there is
particular focus on articulated vehicles.

5.3.1.1 Acceleration models

From a cognitive science perspective, Lee [65] was one of the first to show how braking
can be solved using visual sensor cues. Lee proposed that the braking performance can be
specified using the parameter τ and its time derivative τ̇ , referred to as the τ̇ -strategy. τ
is defined as the quotient between the angular projection of an object θp and the angular

expansion rate θ̇p. τ is often cited as an example of an optical invariant, since it uniquely
specifies the time-to-collision (TTC) independent of changes in the object size. This is not
the case for lower order variables such as the optical angle and expansion rate, referred to
as non-specifying variables. In an approaching driving situation where the subject and a
lead vehicle are closing, τ and τ̇ specifies whether the vehicles are on a collision course or
not. When closing at a constant or acceleration rate τ > 0 and τ̇ ≤ -1. When closing at
an inadequate deceleration rate τ > 0 and τ̇ < -0.5, and when receding at a decelerating
rate τ < 0 and τ̇ < -1. The variable τ̇ directly states whether the deceleration is sufficient
or not. Also, if τ̇ = -0.5, the deceleration is the minimum required to avoid a collision.

Considering the important question of when to initiate braking, Lee [65] proposed that
the driver should base their decision on his assessment of the urgency of the situation. The
variable τ , can as shown above, be used by the driver to determine whether the subject
vehicle is on a collision course or not. Lee proposes that it should be used in deciding
when to initiate braking. However, depending whether the lead vehicle is stationary or
moving, the threshold value for safe braking should differ. Therefore, Lee proposes an
additional heuristic value, a margin value of the temporal headway, for use in the braking
initiation decision. In principle, the temporal headway could be registered as easily as
the time-to-collision. The τ̇ -strategy was supported in [134]. However, several studies
also indicate deviations from the τ̇ -strategy [31]. In general, drivers respond earlier (with
greater TTC values) at higher speeds. Likewise, drivers tend to respond earlier (with
greater TTC values) for large objects. An alternative to the τ̇ strategy [112], proposed
that the optical angle and the expansion rate are independent optical primitives and that
the control of braking could be accomplished by weighting these two as sources.
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From a control perspective, early work on driver acceleration models for car-following
assumed that the driver can perceive the space headway and relative speed between the
subject and the lead vehicle. In 1958, Chandler et al. [20] studied car-following and
proposed a model based on the relative speed, distance and sensitivity terms. In [40,
41], Gazis et al. assumed that the sensitivity terms were dependent on the vehicle space
headway and went on to formulate the GHR-model. Helly [45] added terms to the
GHR-model, adapting the driver acceleration to lead vehicle braking and a preferred
relative distance. In 1993, Ioannou [50] formulated the autonomous intelligent cruise
control for automatic vehicle following. The model includes a safety distance separation
rule, based on a constant time headway which reduces oscillation effects and ensures
string stability. In [138], a new vehicle-following controller was developed based on a
constant time headway. The controller especially targets heavy vehicles which have limited
acceleration capabilities.

Driver accelerations models and their implementation into vehicle control functions
have received considerable attention in recent decades, with the introduction of cruise
control and adaptive cruise control. Differences in acceleration capabilities and between
passenger vehicles and heavy vehicles are often handled by tuning gain factors.

5.3.1.2 Steering models

Among the first driver steering models used in the connection with an articulated vehicle
was the model proposed by MacAdam [70, 71] in the early 1980s. The driver in this model
steers to minimise the path deviation along a preview interval, given specific optimisation
criteria. However, in this specific application, the contribution of trailer dynamics was
overlooked. Starting in the late 1990s, Yang et al. [133, 132, 131] presented a model that
minimised the lateral acceleration, lateral position and orientation errors between the
previewed and the actual path of the tractor. Interestingly, Yang identified the lateral
acceleration of the vehicle as a main sensor cue based on its importance to lateral and
roll stability. As illustrated in Section 5.2, there is a great difference between passenger
cars and articulated vehicles in high-speed manoeuvring which needs to be considered
by the driver. The model was investigated for a tractor semi-trailer combination using
closed-loop simulations in an avoidance manoeuvre.

In 2007, Liu [67] presented a control model for a tracking situation. The steering
control was determined by a time-delayed feedback of the vehicle’s instantaneous state.
The feedback gain factors involved in this model were obtained through optimisation,
given a specific optimisation criterion. Moreover, in 2012 Ding and He [24] studied three
steering models that minimised lateral position errors based on the perceived motion
of a tractor, a trailer and a combined tractor-trailer. The models were compared using
closed-loop simulations in low-speed path-following and a high-speed lateral stability
manoeuvre.

In 2014, Taheri [118] published a two-stage preview model to characterise human driving
behaviour connected to articulated vehicles. The model includes path preview/prediction,
error estimation, decision making and hand-arm dynamics. The path-preview part of
the model is accomplished using near and far points to manage central lane position and
vehicle orientation. The error estimation and decision making contains vehicle orientation
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error, lateral position error, and additional vehicle states. The additional vehicle states are
lateral accelerations and yaw rate of the tractor and semi-trailer units and the articulation
angle rate. The gain factors were identified using minimisation with a performance index,
comprising the steering effort, path tracking and directional dynamic measures of the
vehicle. In 2016, Zhu [140] presented a preview model generalised for single-unit and
multi-unit vehicles. This model is based on a sliding mode control technique [136] and
determines the steering based on the lateral position and yaw errors of all vehicle units.
The model embraces the MacAdam model [71] as a special case. The model was evaluated
for stability and manoeuvrability-orientated modes to characterise high and low-speed
manoeuvring.

To conclude, the existing steering models used in connection with articulated vehicles
most often have added sensor cues compared to models adapted for single-unit vehicles.
This is to meet the added complexity of lateral vehicle dynamics, such as off-tracking and
rearward amplification, see Section 2.3. The added sensor cues are: orientation error or
lateral error of the trailing units, and lateral acceleration of towing and trailing units. The
manoeuvrability and stability aspects of articulated vehicles (low-speed and high-speed
manoeuvring) are challenging and often require different gain factors to achieve good
overall performance.

5.3.2 Design

In the design of functionalities associated with traffic situation predictions, the main
target of the driver modelling is to include the characteristics specified in the hypothesis
for high operator/driver acceptability, see Section 5.3.1. One possibility is to use driver
models inspired by human cognition and optical flow theory. A model based on relevant
perceptual abilities and mechanisms may be applicable to a wide range of driving scenarios
and still allow simple formulation as well as effective control.

In Paper A, a simple model based on Lee [65] was used to calculate the requested

longitudinal acceleration areq,pred
Xv1 in a combined lane change and lead vehicle braking

situation. It was shown that, using simple optical heuristics, the proposed model managed
to generate safe and conservative deceleration for lead vehicle deceleration of 0.7g and
speeds in the range 30-80 km/h. However, this type of simple stimulus model does not
have any preferred spatial gap, meaning that if the velocity difference between subject
and lead vehicle is zero, the requested acceleration is zero. The model is not suitable for
lead vehicle following or cut-in situations.

In Papers B, C and D, the acceleration model was changed to include lead vehicle
following. In Paper D, a driving simulator experiment with focusing on maintain-lane
and lane-change manoeuvring was carried out and manual and automated driving was
compared. The driver’s manual brake initiation and execution were compared with the
acceleration model and a non-linear model predictive controller. The proposed criterion
for brake initiation was based on time-headway and expansion rate. The criterion was not
supported by manual driving observations. In general, the manual drivers had smaller
lead vehicle time gaps and initiated braking later. The maximum decelerations used
in braking were most often higher for manual than automated driving. The maximum
deceleration for the manual drivers correlated well with increased levels of the inverse of
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time-to-collision.
In the automated driving carried out in the simulator experiment described in Paper

E, the requested acceleration for the current lane was calculated as

areq,pred
Xv1 =

{
kθ̇p ·∆v

(o)
1,n ·

∣∣∣∣
∆v

(o)
1,n

∆s
(o)
1,n

∣∣∣∣+ kθp · (∆s(o)
1,n −∆ssafe) lead vehicle following

k∆v ·∆vset speed-control

(5.45)

where ∆s
(o)
1,n and ∆v

(o)
1,n are the distance and speed differences between the rear of the

lead vehicle and front of the subject vehicle. The quotient between the relative speed and
distance is the inverse of τ (inverse of time-to-collision). kθ̇p , kθp and k∆v are gain factors

and ∆ssafe is a safety distance. ∆vset is the speed difference between the desired set speed
and the subject vehicle. The first term in the driver acceleration model for lead vehicle
following (5.45) is connected to the kinematic expression for the longitudinal acceleration
required to bring the relative velocity to zero at the time of the collision [54].

In the case of steering models, it was reported in [75] that the two-point model (5.46)
by Salvucci and Gray [106] was able to properly explain the variance in the steering
behaviour of human drivers, in both repeated and unexpected stabilization manoeuvring.
The model regulates the angular error to both a near-point and a stabilising far-point.
How these points are chosen depends on the driving scenario, see examples in [106]. In
Papers A-D, the longitudinal near-point location was fixed a short distance in front of
the subject vehicle, whereas the longitudinal location of the far-point varied with subject
vehicle speed and traffic scenario. In cases where there was a lead vehicle present, its
longitudinal position was used as a far-point location.

In Paper A, data collected on-road in highway driving was used to determine the
gain factors kf, kn, knI, for the two-point model (5.46) in lane-change manoeuvring. The
two-point model is written as

δ̇req,pred = kf · θ̇f + kn · θ̇n + knI · θn (5.46)

where δ̇req,pred is the requested steering wheel angle rate and θn is the near-point angle.
θ̇f and θ̇n are the far and near-point angular rates. In Paper A, the gain factors were
tuned using four lane-change manoeuvres and a genetic algorithm [48]. All lane changes
were executed on a straight road at 80 km/h with no traffic in the target lane. It was
found that the model captured the observed behaviour fairly well, see Fig. 5.12. The main
frequency of the steering behaviour was found to be approximately 0.1 Hz, well below the
critical subject vehicle yaw mode frequencies. Moreover, it was observed that the steering
included a second peak when the vehicle was straightened. This was captured by the
model, see Fig. 5.12 time interval 10-20 s.

In Papers B, C and D, the steering model (5.46) was used in functionalities associated
with traffic situation predictions for calculation of candidate steering requests for highway
driving automation. In Paper B, simulations of lane changes at constant vehicle speeds
in the range 20-80 km/h were executed. The lane change durations were in the range
of 7-20 s and the main steering wheel frequency was 0.1 Hz. The extremum of the lateral
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Figure 5.12: Steering wheel angle rate (left) and steering wheel angle (right) for one of
the measured lane-change events. From Paper A.

accelerations and rearward amplification were approximately 1 m/s2 and 1.2, respectively.
The lane change performances were considered reasonable for the given vehicle combination
and driving conditions. The vehicle dynamics performance for lane changes of an A-double
combination was compared, between the steering model and a non-linear model predictive
controller in Paper C. In general, the non-linear model predictive control showed shorter
lane change durations and lower extremum values for the lateral accelerations.

The driver model parameters extracted in Paper A were included in a framework for
driving automation used in a driving simulator experiment described in Paper D. In a
pre-study for the simulator experiment, it was observed that the gain factors obtained
did not perform satisfactorily in maintain-lane cornering manoeuvres. The identified gain
factors resulted in poor tracking performance. Furthermore, there was difficulty achieving
a common gain factor setting which worked satisfactorily for both maintain-lane and
lane-change manoeuvring. A gain factor setting that was capable of producing realistic
performance in lane changes resulted in poor tracking performance, whilst a gain factor
setting with good tracking performance resulted in unrealistically slow lane-changes. The
gain factors used in the final experiment in the paper comprised two different settings; one
for maintain-lane and one for lane-change manoeuvring. In Paper D, the driver’s manual
steering was compared to the steering model (5.46) and a non-linear model predictive
controller for lane change execution. The manual driver’s lane-change durations were
similar to those of the steering model. Both showed considerably longer lane change
durations than the automated driving approach based on optimisation. This behaviour
also reflected lower mean values on lateral acceleration and jerk, which can describe the
level of ride comfort.

5.3.3 Proposed driver steering model for articulated vehicles

As mentioned in Section 2, the main road usage for LCVs are one-way multiple-lane roads.
The majority of the driving is envisaged as consisting of maintain-lane manoeuvring, lane
changes, road junctions, exit ramps, and overtaking. Typical vehicle speeds are in the
range 0-80 km/h. Although in Paper D, satisfactory performance for high-speed maintain-
lane manoeuvring was given using the two-point model (5.46), see Section 5.3.2, it was
noted that the lateral distance offset of the last vehicle unit last axle was unacceptably
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(a) Front view. (b) View in rear view mirror.

Figure 5.13: Front and rear views from the driver position in a right cornering situation
when driving an A-double combination.

large in low-speed cornering.
The proposed driver steering model for articulated vehicles, targeting maintain-lane

manoeuvring, includes the concept of a near and far point, as developed by Salvucci and
Gray [106], see Section 5.3.2. In addition to the near and far points, the proposed model
includes a rear point, representing visual information on the orientation of the last vehicle
unit relative to the road. The added sensor cue is motivated using observations from eye
movement behaviour of professional truck drivers. In the driving simulator experiment
described in Paper D, the drivers’ visual focus in cornering situations repeatedly shifted
between the front view and nearside rear-view mirror, as the drivers were checking for
feasible manoeuvring. For example, the front and rear views shown to the driver in a
right-cornering situation, radius approximately 200 m, are illustrated in Fig. 5.13.

Formulation of driver-vehicle model

The positions of a near point n and far point f are assumed to be located on a clothoid
spline representing the lane centre at the distances ∆sRn and ∆sRf ahead of the subject
vehicle front axle position sR11, see Fig. 5.14. The near and far points are assumed to
travel along the lane centre with the velocities ṡRn and ṡRf respectively. The calculation
of the angular velocities θ̇n and θ̇f are similar and are here only described for θ̇f. The
absolute velocity of point f can be described as

vf =ṡRf · cos(θf + ∆ψR1 −∆ψRf) · esR11′ − ṡRf · sin(θf + ∆ψR1 −∆ψRf) · enR11′
(5.47)

∆ψR1 =ψ1 − ψR11 (5.48)

∆ψRf =ψRf − ψR11 (5.49)

where ψR11 and ψRf are the road angles at the subject vehicle’s front axle position and
the far point position, respectively. ∆ψR1 is the yaw angle of the subject vehicle’s first
unit relative to the road.
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Furthermore, the absolute velocity of point f can also be described in the moving
coordinate frame (esR11′, enR11′) as

vf =
(

(ṡR11 − ψ̇R11 · dR11) · cos(θf + ∆ψR1) + ḋR11 · sin(θf + ∆ψR1) + ṙf/o′
)
· esR11′

+
(
−(ṡR11 − ψ̇R11 · dR11) · sin(θf + ∆ψR1) + ḋR11 · cos(θf + ∆ψR1)

+ (θ̇f + ψ̇1) · rf/o′
)
· enR11′ (5.50)

where ṡR11 and ḋR11 are the velocities of the subject vehicle’s front axle in the road
coordinate frame (esR11

, enR11
). ψ̇R11 and ψ̇1 are the angular velocity of the road at

the subject vehicle’s front axle position and the angular velocity of the subject vehicle’s
first unit, respectively. dR11 is the subject vehicle’s front axle position perpendicular to
the road tangent. ṙf/o′ and rf/o′ are the velocity and position of point f in the moving
coordinate frame.

By combining (5.47)-(5.50), the angular velocity θ̇f and the velocity, ṙf/o′ can be
described as

θ̇f =
−ṡRf · sin(θf + ∆ψR1 −∆ψRf) + (ṡR11 − ψ̇R11 · dR11) · sin(θf + ∆ψR1)

rf/o′

− ḋR11 · cos(θf + ∆ψR1)

rf/o′
− ψ̇1 (5.51)

ṙf/o′ = ṡRf · cos(θf + ∆ψR1 −∆ψRf)− ((ṡR11 − dR11 · ψ̇R11) · cos(θf + ∆ψR1)

− ḋR11 · sin(θf + ∆ψR1)) (5.52)

In some cases, it can be useful to simplify (5.51). By assuming a circular road section,
equal velocities ṡR11 and ṡRf, small angles θf, ∆ψR1 and ∆ψRf, (5.51) can be written as

θ̇f ≈
ṡR11 · ch · rf/o′ − ḋR11

rf/o′
− ψ̇1 (5.53)

where ch is the horizontal curvature of the road.

A rear point r is now introduced and is the main extension compared to original model,
see (5.46). The rear point is positioned on the inner edge of the lane at the subject
vehicles’ rearmost axle sRn1, with n as the number of vehicle units. The rear point is
used to estimate the sensory information perceived from the rearmost trailing unit, see
illustration in Fig. 5.14a. The associated angle and angular velocity error are described as

∆θr = ψRn1′ − ψn (5.54)

∆θ̇r = ψ̇Rn1′ − ψ̇n (5.55)

where n = 4 in case of an A-double combination.
The proposed driver model for steering articulated heavy vehicles is formulated as

δ̇req,pred = kf · θ̇f + kn · θ̇n + knI · θn + kr ·∆θ̇r + krI ·∆θr (5.56)

where kf, kn, knI, kr and krI are gain factors.
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(a) Overview of geometry.
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(b) Geometry for far-point θf.

Figure 5.14: Geometry for aim point angles used in driver model for articulated vehicles.
The illustrated vehicle is an A-double combination consisting of four vehicle units.

Analysis

Two driver steering models are analysed. The first is the two-point model by Salvucci
and Gray [106] and the second is the proposed steering model for articulated vehicles that
includes the concept of a visual cue from the rearmost trailing unit. Furthermore, two
vehicle models are used to analyse the performance of the driver steering models. The
first vehicle model is a tractor semi-trailer combination and the second is an A-double
combination, see Section 2. The assumed vehicle width is in both cases 2.5 m. Moreover,
two driving manoeuvres are simulated using two different road sections. Firstly, low speed
maintain-lane manoeuvring is studied using an S-curve road section, see Fig. 5.15, where
the lane width is 3.5 m and the minimum radius is 100 m. Secondly, high-speed maintain-
lane manoeuvring is studied using an S-curve road section, see Fig. 5.15, where the lane
width is 3.5 m and the minimum radius is 200 m. In case of low speed maintain-lane
manoeuvring the vehicle speed is in the range of 10-50 km/h. For high-speed maintain-lane
manoeuvring the vehicle speed is in the range of 50-80 km/h. The minimum radii and
vehicle speed are adapted for typical roads and vehicle roll-over margin.

Performance measures

Performance measures are defined to objectively evaluate the driver models during low
and high-speed maintain-lane manoeuvring. The tracking performance is described using
the extremum of lateral offset of the centre of the first and last vehicle axles dR11,ext and
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Figure 5.15: Road section used in simulations. Road sections used in low-speed maintain-
lane manoeuvring (top row) and high-speed maintain-lane manoeuvring (bottom row).

Table 5.1: Performance measures used to evaluate the driver models. In the case of the
tractor semi-trailer n = 2 and for the A-double n = 4.

Variable Unit Description
dR11,ext m Extremum of lateral distance offset first axle
dRn1,ext m Extremum of lateral distance offset last axle
aYv1,ext m/s2 Extremum of lateral acceleration first unit
aYvn,ext m/s2 Extremum of lateral acceleration last unit
RAay - Rearward amplification

dRn1,ext, respectively. Here, n is the number of vehicle units. Ride comfort is characterised
by the extremum of the lateral acceleration of the first and last vehicle unit aYv1,ext and
aYvn,ext, respectively. Safety is characterised using maximum rearward amplification of
the lateral acceleration RAay .

Driver model gain factors

One possible approach to improving understanding of the model parameters is to assume
that the human sensorimotor heuristics are adapted to vehicle dynamics. An initial
approach to finding the parameters for the two-point model [106] from vehicle model
parameters is carried out by [74]. In the current study, two different parameter settings
are used, see Table 5.2. The first setting, A, is without sensory information from the rear
point and setting B is with sensory information from the rear point. The parameters are
chosen to show the conceptual effect and are not optimised for performance.

49



Table 5.2: Driver model parameters.

kf[−] kn[−] knI [1/s] kr [-] krI[1/s] sRn [m] sRf [m]
Setting A 1.0 10.0 1.0 0.0 0.0 5.0 vXv1 · 1.5
Setting B 1.0 10.0 1.0 2.5 1.5 5.0 vXv1 · 1.5
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Figure 5.16: Illustration of low speed, vXv1=30 km/h, maintain-lane manoeuvring. Steer-
ing wheel angle (left), lateral distance offset of first axle (middle) and lateral distance
offset of last axle (right) for A-double (top row) and tractor semi-trailer (bottom row).

Result of low-speed manoeuvring

To illustrate the effects of including a rear point in the driver model formulation for
low-speed maintain-lane manoeuvring, Fig. 5.16 shows simulation results for the vehicle
speed 30 km/h for an A-double (top row) and a tractor semi-trailer combination (bottom
row). Firstly, consider parameter setting A (without rear point) and the situation when
the vehicles are approaching the first corner at 10 s. Here, the lateral distance offset of the
first vehicle axle dR11 (middle panels) shows positive values, meaning that the vehicles
try to cut the corner. Due to off-tracking, this means the last vehicle axle will cut the
corner even more and possibly end up out of lane; see lateral distance offset of the last
vehicle axles dRn1 (right panels). A similar scenario is seen for the second corner at 40 s.
Secondly, consider parameter setting B (with rear point) and the first and second corner.
The contributions from the rear point cause the front axle of the vehicle to remain out
during cornering, resulting in lower magnitudes of dR11. Consequently, the last vehicle
axles end up closer to the lane centreline. In this example, this effect is most apparent in
the tractor semi-trailer combination.

The extremum of the lateral distance offset for first and last vehicle axles dR11,ext

and dRn1,ext, and extremum of the lateral acceleration of the last vehicle axle aYvn,ext,
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Figure 5.17: Low-speed maintain-lane manoeuvring.

are shown in Fig. 5.17 for the vehicle speeds 10-50 km/h. For both vehicles, dR11,ext

is less than 0.3 m for both parameter settings, see Fig. 5.17 (left column). The lateral
distance offset dR11,ext is reduced by approximately 0.1 m for parameter setting B (with
rear point) in case of the A-double and 0.2 m for the tractor semi-trailer. For the A-
double, both parameter settings show that dR41,ext is larger than 0.5 m for velocities lower
than 35 km/h, see Fig. 5.17 (middle column). None of the parameter settings were able
to keep the vehicle within the lane width. In general, the lateral distance offset dRn1,ext is
reduced by approximately 0.05 m for parameter setting B (with rear point) in case of the
A-double and 0.2 m for the tractor semi-trailer. For the tractor semi-trailer, parameter
settings A (without rear point) shows that dR21,ext is larger than 0.5 m for velocities lower
than 27 km/h. For parameter setting B (with rear point), the dR21,ext is maximum 0.45 m.
Considering aYv4,ext, there is no difference between parameter settings A and B, see
Fig. 5.17 (right column). In all cases the rearward amplification is close to 1.

Results of high-speed manoeuvring

As in the case of low-speed manoeuvring, we start by exemplify the effects of including the
rear point in the driver model formulation for high-speed maintain-lane manoeuvring. In
Fig. 5.18, simulation results are shown for the vehicle speed 80 km/h for an A-double (top
row) and a tractor semi-trailer combination (bottom row). Initially, when the vehicles
are approaching the first corner at 3 s, the lateral distance offset of the first vehicle axle
dR11 (middle column) shows negative values, meaning that the vehicles keep out of the
corner. Due to off-tracking, this means that the last vehicle axle will swing out even more
and possibly end up out of lane, see lateral distance offset of the last vehicle axles dR41

and dR21 (right column). The contributions from the rear point causes the front axle of
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Figure 5.18: Illustration of high-speed, vXv1=80 km/h, maintain-lane manoeuvring. Steer-
ing wheel angle (left), lateral distance offset of first axle (middle) and lateral distance
offset of last axle (right) for A-double (top row) and tractor semi-trailer (bottom row).
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Figure 5.19: High-speed maintain-lane manoeuvring.

the vehicles to keep out slightly more during the first corner, giving a higher magnitude
of dR11. Consequently, the last vehicle axles end up slightly further away from the lane
centreline. However, in the second corner at 15 s, the extremum of dR11 and dRn1 shows
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a slightly lower value in setting B (with rear point) than setting A (without rear point).
It should be noted that there is no major improvement when using the rear point in the
example shown.

The extremum of the lateral distance offset for first and last vehicle axles dR11,ext and
dRn1,ext, and the extremum of the lateral acceleration of the last vehicle units aYvn,ext,
are shown in Fig. 5.19 for the vehicle speeds 50-80 km/h. For both vehicles, dR11,ext is
smaller than 0.45 m for both parameter settings, see Fig. 5.19 (left column). The lateral
distance offset dR11,ext is reduced by approximately 0.07 m for parameter setting B for
the A-double and 0.03 m for the tractor semi-trailer. For the A-double, both parameter
settings show that dR41,ext is larger than 0.5 m for velocities greater than 70 km/h, see
Fig. 5.19 (middle column). None of the parameter settings were able to keep the vehicle
within the lane width. In general, the lateral distance offset dRn1,ext is similar for both
parameter settings in the case of the A-double, and reduced by approximately 0.06 m
for setting B (with rear point) for the tractor semi-trailer. Considering aYv4,ext, there
is no difference between parameter settings A and B, see Fig. 5.19 (right column). The
rearward amplification is close to 1.0 for the tractor semi-trailer and in the range 1.0-1.2
for the A-double.
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5.4 Traffic modelling

5.4.1 Background

In general, highway driving scenarios for articulated vehicles include surrounding traffic
such as passenger cars, buses, trucks and motorcyclists, see Fig. 5.20. To predict how
such driving scenarios will evolve in the future (as in the traffic situation predictions)
necessitates models of the surrounding traffic. Moreover, by using models of the subject
vehicle and surrounding traffic it is also possible to assess the risk of a collision associated
with a particular traffic situation. Common motion models for traffic predictions can
(according to Lefèvre et al. [66]) be categorised as either physics-based motion models,
manoeuvre-based motion models or interaction-aware motion models.

Physics-based motion models represent the surrounding vehicles as dynamic objects
controlled by the laws of physics. These are similar to the subject vehicle modelling,
see Section 5.2, but are often described with less complexity. The simplest models are
kinematic models assuming constant velocity, constant acceleration, constant turn rate
and velocity, or constant turn rate and acceleration. In the case of constant acceleration,
the motion of a vehicle can be described as

(
v̇

(o)
m,n

ṡ
(o)
m,n

)
=

(
0 0
1 0

)(
v

(o)
m,n

s
(o)
m,n

)
+

(
a

(o)
m,n

0

)
(5.57)

where s
(o)
m,n and v

(o)
m,n are the distance and velocity along the road for surrounding vehicle m

in lane n, see Fig.5.20. Moreover, a
(o)
m,n is a given constant acceleration. In the prediction

phase, it is possible to include uncertainties on the current surrounding vehicle state and
its evolution using normally distributed Gaussian noise. If no assumptions are made on
the Gaussianity of the uncertainties, Monte Carlo methods can be used to approximate
the uncertainty distributions [27]. Because of the harsh assumptions made in regard to
vehicle motion, the models are limited to short prediction intervals, often less than a
second [66].

Manoeuvre-based motion models represent the surrounding vehicles as a series of
manoeuvres executed independently from the other vehicles. By identifying the manoeuvre
intention of a vehicle, pre-calculated trajectories can be used to match the identified
manoeuvre. Even though there is a rough assumption that the surrounding vehicles move
independent of each other, the inclusion of manoeuvre intention identification generally
allows longer prediction intervals than the physics-based models [66].

Interaction-aware motion models represent the surrounding vehicles as a series of
manoeuvres that interact with each other. Obviously, the models can be more reliable
than the manoeuvre-based motion models as they account for dependencies between the
vehicles. However, a major drawback is that computing all potential combinations is very
expensive in computational terms, even for just a few surrounding vehicles.

One approach to assessing the risk of a collision during the prediction interval includes
these steps i) predict potential trajectories for all vehicles in the traffic situation and ii)
detect any collision between trajectories and derive a risk based on the overall chance of a
collision. Perhaps the simplest risk estimation is expressed by using simple physics-based
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Figure 5.20: How surrounding vehicles are addressed, based on lane and order.

motion models that allow analytical solutions for intersections between trajectories. The
risk of collision can then be expressed as a binary. However, for more complex motion
models, collisions can also can be checked iteratively at each discrete time step. Moreover,
the shape of the vehicle can be represented as polygons, ellipses or circles and risk
expressed as the overlap between those shapes.

Based on the motion characteristics of articulated vehicles, specific criteria for methods
and models for surrounding traffic and risk estimation are:

i) the method is valid in the range of typical subject vehicle manoeuvres. For example,
as mention in Paper D, the duration of a smooth lane-change manoeuvre for an
A-double is approximately in the range 6-8 s.

ii) the method can handle a large number of surrounding vehicles. Due to the LCV
length, the number of surrounding vehicles interacting in a traffic scenario can be
relatively large, see Fig. 5.20.

5.4.2 Design

In Papers B-D, the surrounding traffic motion of up to six vehicles was modelled using
individual constant acceleration models. The surrounding vehicles were not allowed to
change lane. Only single trajectories for each vehicle were simulated and no risk assessment
was carried out.

For the driving automation used in the simulator experiment described in Paper E,
the motion of the surrounding traffic was modelled using a concept of dependent and
independent vehicles. The term independent is used for a vehicle that is positioned far
enough, spatially and temporally, from another vehicle for its behaviour to be deemed
significantly unaffected by the actions of the other vehicles. Conversely, a dependent
vehicle is one that is close enough for its actions to be influenced by those of other vehicles.
This distance is denoted as the dependency distance. An illustration of independent and
dependent vehicles appears in Fig. 5.21. The motion for a dependent vehicle is assumed
to follow the Intelligent Driver Model (IDM) (5.58)-(5.59)[120], while the motion of an
independent vehicle is simulated using a constant acceleration model (5.57). The IDM
is a deterministic traffic model for longitudinal motion, originating from research into

55



dependency distance 

Figure 5.21: An illustration of dependent and independent vehicles. Blue vehicles are
dependant, and red vehicles are independent.

microscopic traffic simulation. The model is described as

v̇α = a(α) ·
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vα

v
(α)
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 (5.58)
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vα0
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v ·∆v
2 ·
√
a(α) · b(α)

(5.59)

where v̇α and vα are the acceleration and velocity of vehicle α. a(α) is the maximum

acceleration, v
(α)
0 is the desired velocity and δ is the acceleration exponent. s∗(vα,∆vα)

is the desired minimum gap and sα is the gap. s
(α)
0 and s

(α)
1 are jam distances, Tα is

the safe time headway and b(α) is the desired deceleration. The model behaves as if
accident-free and shows self-organised characteristics because of the inclusion of relative
velocity. It includes five parameters that are reasonable interpretable and empirically
measurable. Furthermore, in a traffic prediction an independent vehicle was modelled
using two constant acceleration levels. Either it maintained the current acceleration,
hereinafter called the expected scenario, or it braked with the maximum deceleration,
called emergency scenario. The results from the emergency scenario were used to set the
distance ∆ssafe, used in the driver acceleration model (5.45), see Section 5.3.2. To consider
one expected and one emergency scenario for each surrounding vehicle, N would lead to 2N

possible combinations. For the sake of simplicity, the work on driving automation (carried
out in connection with the manual driving described in Paper E) did not consider different
combinations. Instead, only one expected and one emergency scenario was used in the
traffic situation predictions. The subject vehicle state-trajectories from previous update
instant were included in the traffic predictions, so as to incorporate the interaction with
the subject vehicle motion. A possible improvement of this approach may be assumed if
the IDM parameters for each surrounding vehicle can be estimated online. More accurate
collision risk estimation can be made using tools such as Monte Carlo simulation.
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6 Traffic situation predictions

As mentioned in Section 4.2, traffic situation predictions (TSPs) refers to the complete set
of functions included in FA-TSP. As the name suggests, TSPs are generated to predict how
an observed traffic situation will evolve in the future. This includes the evolution of both
subject vehicle and surrounding traffic. The objective is to generate feasible manoeuvres
for the subject vehicle in such way that the vehicle motion fulfils requirements such as
safety, efficiency and ride comfort. The time horizon for TSPs, partially determined
by manoeuvre durations and the reliability of predicting surrounding traffic, are in the
range 0-10 s for long combination vehicles. Section 6.1 gives a brief background and
discuss possible approaches for TSPs. Section 6.2 presents the specific TSP design used
in Papers B-D. Section 6.3 presents the main results of Papers B-D.

6.1 Background

Fundamental terms are outlined and discussed by way of a review of possible approaches
for TSPs. A manoeuvre is a high-level characterisation of the vehicle motion [58]. In
this work, vehicle actuation refers to the front wheel steering angle and the longitudinal
acceleration of the first vehicle unit. Actuation capabilities are the upper and lower limits
of the actuation. A candidate actuation request is the actuation generated in the traffic
situation predictions, satisfying given constraints.

The attributes that uniquely define the position and orientation of the vehicle body
according to an inertial coordinate frame are termed the configuration vector [58]. A
configuration vector can be selected which is identical to the generalised coordinates, see
Section 5.2.2. All sets of configurations constitute the configuration space. A path [58] is
a geometric trace (including orientation) that a specific position of the vehicle, say, the
centre of the first or the last vehicle axle, should follow whilst satisfying given constraints.
The constraints are typically connected to the ODD, see Section 3.2, including traffic
rules, road and lane boundaries, surrounding traffic assumptions, static obstacles, vehicle
motion and actuator capabilities. Consequently, the path planning problem is to find a
path in the configuration space that starts at the initial configuration and reaches the
target region whilst satisfying the given constraints. The quality of the path is often
described using the terms feasible and optimal. Feasible means that the path satisfies the
given constraints while optimal refers to finding the best path according to a given cost
function.

In this context, a state trajectory [111] can be interpreted as a generalisation of a
path; prescribing the evolution of the states of a dynamic system in time. As an example,
typical states for a one-track single-unit vehicle model can be chosen as the yaw rate
and lateral and longitudinal velocities of the first vehicle unit’s CoG, see Section 5.2.2.
The path of first vehicle unit’s CoG can be calculated by integrating the state trajectory
given initial state values. Trajectory planning (also known as trajectory generation
or motion planning) is a generalisation of path planning, involved with planning the
state evolution in time while satisfying given constraints on the states and possibly the
actuation. In this work actuation trajectory planning refers to generating a sequence
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Figure 6.1: Examples of search spaces. Occupancy grid (top), state lattice (middle) and
driving corridor (bottom).

of feasible control signals for vehicle actuation, whereas state-trajectory planning is
unambiguous as per trajectory planning outlined above.

The scope and realisation of TSPs are likely to be different depending on the targeted
driving automation application. In many cases, methods of path, trajectory and actuation
trajectory planning are combined. In [119], local path planning was carried out within
estimated road boundaries to generate candidate paths. The candidate paths were run
through a vehicle model, meaning that state trajectories were calculated, to ensure
kinematic and dynamic vehicle constraints. Finally, vehicle actuations were calculated for
velocity control and steering control. In case of steering control, the control law is similar
to the driver model proposed by Kondo in 1953 [62]. For further details on the driver
model, see [12].

As mentioned in Section 4.1, a passive world model representing an instant observation
of a given traffic situation is generated by the perception component. In VeMFRA,
this is similar to functionalities associated with FA-TSO. Based on such observation, a
search space [63] can be formulated in which path or trajectory planning are carried out.
An overview of motion planning approaches is given in [58, 99]. Examples of discrete
search space formulations are occupancy grids [130] and state lattices [43], see Fig 6.1.
One example of continuous search spaces is driving corridors [72], see Fig 6.1. In an
occupancy grid, the environment is discretised into a grid, where each cell in the grid
can be associated with a probability of being occupied by an obstacle. State lattices are
constructed using segments that connect possible states of the vehicle whereas driving
corridors are represented as continuous collision-free spaces bounded by lane-boundaries
and obstacles.

The use of different methods of path and trajectory planning is coupled with the
chosen representation of search space. Given an occupancy grid or a state lattice, graph
search algorithms such as Dijkstra [69] or A* [44] can be used to explore the state space
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to find a relevant trajectory for the traffic situation. Possible drawbacks are that the
planned trajectories may requires smoothing and that the search algorithm may entail a
high computational cost, since the number of graph nodes grows exponentially with the
number of states [87]. In [43], a two-step trajectory planning is carried out using a state
lattice approach accounting for road geometry, obstacles and high-level directives. Based
on the result from the first-step state lattice optimisation, a second trajectory planning
step is carried out in which trajectories are selected that satisfy kinematic constraints for
a single-unit vehicle.

Incremental search methods avoid an explicit representation of the environment.
Instead, these methods build a graph based on random sampling. This relies on a
collision-checking module that provides information about the feasibility of candidate
trajectories [57]. The rapidly-expanding random tree (RRT) method, introduced by
LaValle et al. [64], can include both kinematic and dynamic constraints. In [55], an RRT*
algorithm [57] was implemented in combination with a single-unit one-track model for
autonomous high-speed driving.

In methods based on numerical optimisation, used in combination with driving
corridors, the trajectory planning problem can be formulated as a constrained optimal
control problem. If the constrained optimal control problem is solved online at each time
step to determine the actuation over a fixed horizon, the method is referred to as model
predictive control (MPC) [16]. In [38], a non-linear MPC was designed for lane-keeping
and obstacle avoidance for a passenger car. In [85], MPC was used for longitudinal and
lateral trajectory planning for a passenger car by formulating two loosely coupled MPC
problems. In this work, a non-linear MPC formulation was used for actuation trajectory
planning in connection with Papers C and D.

A heuristic approach to the actuation trajectory planning problem, used in combina-
tion with driving corridors, would be to use simulations of a vehicle model in combination
with steering and longitudinal acceleration control, by using the controllers described
in [119] for example. In the case of multiple-lane one-way roads, the lane centrelines con-
stitute possible reference paths for the driving. The planning problem can be approached
as how to execute maintain-lane driving and how and when to make transitions between
lanes (lane-change manoeuvres for example), such that the target destination can be
reached efficiently, safely and comfortably. A heuristic approach was used in this work for
actuation trajectory planning in Papers B-E.

To illustrate alternative TSP realisations, examples of two driving automation applica-
tions are given. Both assume the presence of traffic observations as well as strategic and
control functionalities; FA-TSO, FD-RSiM and FD-VMM. It is assumed that FD-RSiM
only provides sparsely separated waypoints. In other words, local path and trajectory
planning is carried out by the TSP. Moreover, the request interface to FD-VMM entails
actuation trajectories in longitudinal acceleration and the front wheel steering angle.

As a first example, consider automated low-speed manoeuvring of an articulated
vehicle in a logistics area, see Fig. 6.2a. In this example, the objective is to manoeuvre the
vehicle from its current configuration A to the target configuration B, without interfering
with static objects. It is preferable for the manoeuvring to be carried out using the
fastest route or the one with the shortest distance and a minimal amount of change in
driving direction, such as driving forward and reversing. For this type of application, it is
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A 

B 

(a) Illustration of driving automation at low-speed where the reference path, when driving from con-
figuration A-B, has to be planned. The planned path of the centre of the first axle is shown in solid
black.

A 
B 

(b) Illustration of driving automation at high-speed on a multiple-lane one-way road. The lane centrelines
constitute candidate reference paths.

Figure 6.2: Examples of two driving automation applications.

important that no pre-defined reference path exists that can be used in the navigation task.
Moreover, low vehicle speed means that a kinematic vehicle model can be appropriate
as a prediction model. A possible solution approach for this application would be to
combine path and trajectory planning (for generation of a local path and trajectory) and
convert the trajectory to vehicle actuation, which can be used as a request to FD-VMM.
Whether or not path and trajectory need to be updated during the manoeuvre execution
depends on the environment as well as on how the vehicle actually moves. Examples of
similar approaches used for articulated vehicles are found in [47, 102, 83]. In [47] a Nordic
combination vehicle is considered and the presence of surrounding objects is rejected. Pre-
defined clothoid path-segments are combined to find the shortest possible path between
initial and target configuration. The vehicle states and steering angle are calculated based
on the path, using an approximate method. Moreover, an LQ controller with feedforward
action is used to track the generated states. In [102], a B-double combination vehicle is
given as an example and the presence of surrounding static objects is possible. Pre-defined
path segments are used with a state lattice approach to find a candidate path. The path
is checked for collisions using vehicle model simulation and the path changed as necessary.
In [83], a bug-like path planning algorithm is used in combination with model predictive
control. The planning algorithm considers the vehicle kinematics as well as surrounding
objects and the model predictive control approach is used to transform the path into an
actuation trajectory.

As a second example, consider automated driving of an articulated vehicle on a
multiple-lane one-way road between an entry ramp and an exit ramp, see Fig.6.2b. One
important distinction compared with the first example is that the general path/trajectory
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planning problem is in some sense different. In this case, the road lanes constitute possible
reference paths for the driving. The planning problem can instead be considered as how
and when to make lane transitions, or lane-change manoeuvres, such that the target
destination can be reached efficiently, safely and comfortably. Furthermore, given the
uncertainties involved with the predicted motion of the surrounding vehicles (if manually
driven) any plan is assumed to be valid only for a short period of time. Furthermore, the
vehicle speed vary between zero and the maximum speed limit (in Sweden 80 km/h is the
maximum speed for articulated heavy vehicles). In the case of vehicle modelling this means
that a kinematic model is not sufficient for capturing the dynamic characteristics of an
articulated vehicle at high-speed. Instead, a model like the one described in Section 5.2.2
can be used. Additionally, the preferred manoeuvre in the first example often consists of
executing the fastest or shortest route. The preferred manoeuvre in the second example
is less obvious, given the vehicle speed and consequences in the event of a system failure.

6.2 Design

In this work, the driving under consideration is limited to one-way multiple lane roads
and subject vehicle speeds in the range of 0-80 km/h. The road curvature used in the
simulator experiments described in Papers D and E are given in Fig. 5.2. Furthermore,
the manoeuvres included are: maintain-lane, lane changes, non-evasive abort lane changes
and fall-back braking. Process and measurement noise are ignored and it is assumed that
FA-TSO can accurately estimate the signals given in the motion architecture, see Fig. 6.3.

The input to FA-TSP from FA-TSO consists of the road speed limit and observations
of surrounding traffic in terms of number of vehicles and their motion states. Also, road
data in terms of the subject vehicle position in lane, lane width, lane curvature in front
of and behind the subject vehicle, road slope and number of adjacent lanes. Moreover,
the input from FA-TSO consists of actual subject vehicle states. It is envisaged that the
input could also include actuation and motion capabilities and road friction. The signals
from the FA-TSP are one or more candidate actuations and their feasibility.

In Papers B-E, two main approaches for actuation trajectory planning have been used.
The first one is based on driver modelling and closed-loop simulations including constraint
verification. However, the driver model parameters used are fixed and represents a
professional driver during normal maintain-lane or lane-change manoeuvring. A limitation
of this approach is that if a specific candidate actuation is infeasible no re-planning is
made to generate a new possible solution. Instead, the FA-TSM is restricted using a
fall-back solution. In Papers B-D a trivial solution including hard braking was used as a
fall-back. This approach was further extended, with a gain factor search method for the
driver steering model based on particle swarm optimisation (PSO) [126]. The fundamental
idea was to find an acceptable set of gain factors for a given traffic scenario. The second
approach uses non-linear model predictive control. Both approaches follow the motion
architecture described in Fig. 6.3 and were implemented in C++. The approaches were
studied using desktop simulations in Matlab/Simulink in Papers B and C and in a driving
simulator environment with real-time performance in Papers D and E. Paper C compared
the performance of vehicle dynamics for the two approaches.
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Figure 6.3: Illustration of the motion architecture including functional domain traffic
situation management (FD-TSM).

As briefly stated in Section 6.1, the main concept of model predictive control (MPC) is
to use a model of the system to predict its future evolution. The system model and other
relevant constraints are used in conjunction with a cost function to formulate an optimal
control problem. The optimal control problem is solved on-line for a finite horizon. The
first such calculated optimal actuation is applied to the controlled system, at time t. At
the next controller update instant, time t+ ∆t, a new optimal control problem is solved
for a shifted finite horizon [16]. This process is then repeated. In this context, the benefits
of MPC are that it can factor in various control objectives as well as constraints [16].
The drawbacks are the computational burden involved in the numerical optimisation,
non-linear dynamics and constraints.

A simplified illustration of the two approaches and their components is given in
Fig. 6.4. This illustration does not claim to be complete but focuses on main similarities
and differences. In the MPC-based approach, the model consists of differential equations
representing the road and subject vehicle, see Section 5.2.1. The constraints are related
to vehicle motion, actuation limits and surrounding traffic. The components of the cost
function attempt to result in satisficing1 [113] solutions for the human occupant. This can

1Satisficing is defined here as the comfort zone in which the driver is content with good-enough
behaviour. Comfort here refers to attributes such as being relaxed, safe and the feeling of being in control.
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(b) Driver model-based actuation trajectory planning.

Figure 6.4: Simplified illustration of the two actuation trajectory planning approaches and
their components. The driver model-based actuation trajectory planning approach can be
used both with and without a cost function and optimisation.

lead to conflicting objectives in the cost function, such as tracking versus comfort. Using
an optimisation algorithm results in a search of candidate solutions within the solution
domain, where the candidate with lowest cost is selected.

In the driver model-based approach, the model consists of differential equations
representing the road, subject vehicle and the driver, see Sections 5.2.1-5.3.2. The model
constitutes a closed-loop system which can be simulated by choosing appropriate reference
parameters for the driver model. These parameters are based on heuristics as well as the
position of the surrounding vehicles. The constraints related to vehicle motion, actuation
limits and surrounding traffic are verified during the simulation. Regarding the extended
driver-model-based approach, a cost function is formulated which aimed to result in
solutions in which the driver steering model gain factors are as close as possible to the
desired gains. An optimization algorithm is used to search candidate solutions within the
solution domain and the candidate with lowest cost is selected.

In the driving simulator environment, the driver modelling approach used a prediction
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horizon of 3.75 s and was updated at 20 Hz. The non-linear model predictive control
approach used a prediction horizon of 100 m and was updated every 2 m. Driving at 20 m/s,
this corresponds to a prediction horizon of 5 s and a control rate of 10 Hz. The approaches
are described further in Sections 6.2.1-6.2.3.

The constraints for the subject vehicle actuation trajectory planning consist of:

i) keeping the vehicle motion within specified limits (6.1)-(6.5).

ii) keeping the actuation within capability limits (6.6)-(6.7).

iii) avoiding collisions with the surrounding traffic2 e.g. (6.8).

Using mathematical notation, the constraints for the subject vehicle actuation trajectory
planning can be written as:

vx ≤ vXv1 ≤ vx (6.1)

−ay ≤ aYv11 ≤ ay (6.2)

−ay ≤ aYvn1 ≤ ay (6.3)

d ≤ dR11 ≤ d (6.4)

d ≤ dRn1 ≤ d (6.5)

ax ≤ areq
Xv1 ≤ ax (6.6)

−δ ≤ δreq
11 ≤ δ (6.7)

∆s(o)
m,n ≤ ∆s(o)

m,n (6.8)

where vXv1 is the longitudinal velocity of the first unit’s centre of gravity. aYv11 and
aYvn1 are the lateral accelerations of the first unit’s first axle and the nth unit’s last
axle, respectively. dR11 and dRn1 are the lateral distance offset, perpendicular to the road
for the first unit’s first axle and nth unit’s last axle respectively. areq

Xv1 and δreq
11 are the

requested candidate actuation for acceleration and steering. In case of a lead vehicle,

∆s
(o)
m,n is the distance between the rear of the surrounding vehicle and front of subject

vehicle. In case of a lag vehicle, ∆s
(o)
m,n is the distance between front of the surrounding

vehicle and rear of the subject vehicle.

6.2.1 Driver model-based TSP

Traffic situation predictions are conducted using simulations, see Fig. 6.6, including models
of road, subject vehicle, driver and surrounding traffic. The model representations
are described in Section 5. In the implementation presented in Papers B-D, and in the
automated driving connected to Paper E, the longitudinal vehicle dynamics described under
Section 5.2.2 were simplified in respect of resistance, brake and propulsion forces. When
driving on roads with considerable horizontal or vertical curvatures, such simplifications
are less possible.

2The constraints used for collision avoidance are different in driver model-based TSP and MPC-based
TSP, see Paper D.
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Figure 6.5: Illustration of driving corridors (yellow areas) for adjacent left-hand lane
(top), current lane (middle) and adjacent right-hand lane (bottom), used in each TSP
update. White crosses and circles represent the initial far and near-points used in the
driver steering model. In case of a lane change prediction, the velocity and distance of the
closest lead vehicle is used in the driver acceleration model. The closest lead vehicle is
represented with a red area. The blue arrow illustrates the path of the first vehicle’s axle
centre.

Consider the highway traffic scenario given in Fig. 6.5. The subject vehicle is driving
in the middle lane and has one adjacent lane on either side. When the TSP calculation is
started or updated, observed signals are available from FA-TSO.

Firstly, the motion of the surrounding traffic is simulated. In Papers B-D, the motion
of surrounding traffic (up to six vehicles) is modelled using constant acceleration models.
Only single trajectories for each vehicle are simulated and no risk assessment is carried
out. In the driving automation carried out in connection to the manual driving described
in Paper E, the surrounding traffic is instead modelled using the concept of dependent
and independent vehicles, see Section 5.4.2.

Secondly, three candidate actuation trajectories are calculated by simulating the road,
subject vehicle, and driver models. Each candidate actuation trajectory aims for one
manoeuvre, such as maintain-lane, lane-change to right and left. Each simulation is made
using observed data of initial states and driver model longitudinal and lateral reference
parameters corresponding to either the current lane, adjacent right-hand lane or adjacent
left-hand lane, see Fig 6.5. The reference parameters for lateral distance used in the
driver steering model are the centrelines of the relevant lane. The reference parameters
for distance and velocity used in the driver acceleration model are the relative distance
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Figure 6.6: Illustration of a simulation including models of road, driver and subject vehicle,
used in the driver model-based TSP calculation.

and velocity of the closest vehicle ahead in the relevant driving corridor, see Fig. 6.5. In
cases where there is no vehicle ahead, the driver acceleration model is shifted to speed
control. In Papers B-D, the safety distance used in the driver acceleration model is fixed.
In the driving automation carried out in connection with the experiment in Paper E,
the safety distance is calculated by assuming emergency braking of the closest vehicle
ahead in the relevant driving corridor. The simulations are conducted for a specified
prediction horizon Tp using the forward Euler integration method. For each time step in
a simulation, the solution is verified against the feasibility constraints (6.1)-(6.8). If any
constraint is violated, the specific simulation is stopped and the corresponding candidate
actuation request is considered infeasible. The outputs from the TSPs are candidate
actuation requests and their feasibility in three individual manoeuvres.

It is likely that using driver models inspired by human cognition in the calculation of
TSPs can enable high driver/operator acceptance, considering the manoeuvre execution.
If the TSPs are realised in a product aiming for driver-steering assist, such as a lane
guidance system, the included driver model can provide good intuitive performance [135].
A possible drawback and limitation of the method is that should a specific proposed
actuation be infeasible, no re-planning is made to generate a new prospectively feasible
solution. The FA-TSM is restricted to use a fall-back solution instead.
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Figure 6.7: Illustration of a traffic situation in which the candidate actuation-trajectory
for a lane change to the left adjacent lane is infeasible. The yellow area is the driving
corridor. Black solid and dashed lines are one the left and right sides of the first and last
vehicle unit respectively. The blue square represents a static obstacle.

6.2.2 Driver model-based TSP using driver-steering-model gain
factor optimisation

Driver steering and acceleration models, including their use in actuation trajectory
calculations for articulated heavy vehicles, were discussed in Section 5.3. Requirements
of such driver models include their ability to generate transparent, intelligible vehicle
behaviour for a set of targeted highway vehicle manoeuvres. Moreover, the models should
preferably include few physically interpretable parameters. This work hypothesises that
these requirements can be met by choosing driver models that include, or are correlated to,
primitive visual input cues and are based on human cognition. In the driver model-based
TSP calculation, discussed in Section 6.2 above, the gain factors of the driver models
are fixed and represent a professional driver during normal maintain-lane or lane-change
manoeuvring. However, if a candidate actuation is infeasible no re-planning for the
targeted manoeuvre is made during the FD-TSM update instant being considered.

One example of a traffic situation that would lead to a vehicle standstill (when using
the driver model-based TSP) is illustrated in Fig. 6.7. In the example, the vehicle is driving
at a speed of 80 km/h in maintain-lane state and the actuation trajectory calculation
seeks a feasible candidate actuation for a lane-change manoeuvre to the adjacent left-hand
lane. In this case, the candidate actuation for the lane-change manoeuvre is infeasible
due to a collision with a static obstacle positioned 90 m in front of the subject vehicle.
The vehicle will therefore continue in maintain-lane state and stop behind the obstacle.
However, in the current situation, there is enough space for the vehicle to maintain a
constant speed and pass the obstacle on the left-hand side if another, more aggressive,
steering actuation is considered.

From a driver behaviour perspective, the gain factors of the driver steering and
acceleration models are assumed to be interpretable as driver aggressiveness, given a
specific traffic situation [76]. Based on this assumption, a viable option to extend the
driver model-based TSP calculation and address actuation infeasibility is to test different
sets of driver model gain factors for a targeted manoeuvre.

In the driver steering model (5.46), see Section 5.3.2, the steering wheel angle rate
is calculated as a linear combination of three error terms that originate from the visual
angles of one near and one far point. The model expresses the steering wheel angle rate
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Figure 6.8: Simulations of a lane change to an adjacent left-hand lane using an A-double
at 80 km/h. The simulations are executed using different gains in the driver steering
model (5.46). Top row: steering wheel angle. Bottom row: lateral distance to the centre
of the first unit’s first axle.

that aims to reduce the near point angle to zero and keep the angles of both the near
and far point constant over time. As an example of the driver steering model behaviour,
a lane-change manoeuvre to an adjacent left-hand lane is simulated and illustrated in
Fig. 6.8. In the simulation example, the subject vehicle’s speed is 80 km/h. The driver
model’s near point is positioned 5 m ahead and initially 3.5 m to the left of the subject
vehicle. The driver model’s far point is positioned 44 m ahead and initially 3.5 m to the
left of the subject vehicle. In Fig. 6.8, the top row shows the steering wheel angle and
the bottom row shows the lateral displacement of the centre of first unit’s first axle. The
steering gain factors kf, kn and knI, are varied individually. The left-hand column shows
variations of kf, middle column kn and the right-hand column knI. By varying the gains,
different driver-vehicle behaviour can be achieved during the lane-change manoeuvre.

Returning to the discussion on the lane-change manoeuvre to the left-hand lane
illustrated in Fig 6.7. One possible approach to increasing the search for feasible actuation
trajectories in driver model based TSP calculation, would be to test the targeted manoeuvre
using tabulated driver model gain factors. The driver model gains could be chosen to
represent different driver aggressiveness levels. Another possible approach would be to
formulate the search for feasible actuation trajectories as a constrained optimisation
problem, defined as

min
x

=J(x)

s.t. gi(x) ≤ 0 i = 1, ...,m

where x ∈ Rn is the optimisation variable, J(x) is the cost function J : Rn → R and gi(x)
are the constraint functions gi : Rn → R, i = 1, ...,m.
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(a) Iteration 0 (b) Iteration 10 (c) Iteration 20

Figure 6.9: Illustration of driver steering model gain factor selection using PSO for a lane
change to the adjacent left-hand lane. The top row shows X and Y coordinates for the left
and right-hand side of first unit’s first axle (solid) and last unit’s last axle (dashed) at
iteration steps 0, 10 and 20. The bottom row shows the gain factors.

A proposed cost function for the optimisation problem is

J(x) =

√
(kf,des − x1)2 + (kn,des − x2)2 + (knI,des − x3)2

k2
f,des + k2

n,des + k2
nI,des

(6.9)

where x = [x1, x2, x3], x ∈ [x,x]. Furthermore, kf,des, kn,des and knI,des are the desired
gain factors for normal driving. The constraints gi(x) are vehicle motion and actuation
constraints (6.1)-(6.8).

In the lane change example illustrated in Fig 6.7, the driver model gain factor search
was carried out using a PSO algorithm [126] including a penalty method for handling
the inequality constraints. In the PSO algorithm (which is a stochastic optimisation
method) each candidate solution, often referred to as a particle, is encoded with a position
and a velocity in the defined search domain. Each candidate is evaluated against an
objective function to obtain a performance. Based on the particle performance, the
velocity and position are updated at each iteration step. Due to its highly parallel nature,
the PSO algorithm is well-suited to implementation in graphics processing units (GPUs),
see example in [124]. Fig. 6.9 shows the results from a PSO search which included 256
particles and 20 iterations. The top row shows the left and right-hand side paths of the
first unit’s first axle (solid) and last unit’s last axle (dashed). The different columns
illustrate the results at iterations 0, 10 and 20. The bottom row shows the gain factors
for each iteration.

In the driving automation carried out in connection to the manual driving described
in Paper E, an actuation trajectory search method (similar to the one described in the
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example above) was used [8]. The PSO optimisation was implemented on an external
GPU (AMD Radeon R9 380X), using the Open computing language (OpenCL) [80]. At
each FD-TSM update instant, the gain factors for two candidate actuation trajectories
were calculated using 2000 particles and 3 iterations.

6.2.3 Model predictive control-based TSP

Traffic situation predictions are carried out using simulations of the surrounding traffic
followed by actuation trajectory planning using non-linear model predictive control
(NMPC). The NMPC formulation includes models of the subject vehicle and road as
well as pre-calculated trajectories of the surrounding vehicles. In the implementation
presented in Papers C and D, the longitudinal vehicle dynamics described in Section 5.2.2
was simplified in regard to resistance, brake and propulsion forces.

When the TSP calculation is started or updated, observed entities are available from
FA-TSO. Firstly, the motions of the surrounding traffic are simulated using individual
constant acceleration models. Only single trajectories for each vehicle are simulated and
no risk assessment is carried out. Secondly, the candidate actuation trajectory is calculated
for one manoeuvre. For example, either maintain-lane manoeuvring or a lane-change
manoeuvre. A constrained optimal control problem (OCP) is formulated which describes
the desired motion of the vehicle for a finite future horizon. The OCP is transcribed
into a non-linear program using a multiple shooting integration technique [15]. The cost
function for the infinite dimensional optimal control problem is formulated as 3

min
ξ,u

Tp∫

t=0

(
KdR11

· (dR11 − dR11,ref)
2 +KdRj1

· (dRj1 − dRj1,ref)
2

+KvXv1 · (vXv1 − vXv1,ref)
2

+KjXv1 · (jXv1)
2

+KjYv1 · (jYv1)
2

+KaXv1
· (aXv1)

2
+Kδ̇ · δ̇2

11 +

3∑

k=1

K∆s ·
(
fdk

(
∆s(o)

m,n, vXv1

))2 )
dt (6.10)

where ξ and u are the vehicle state and actuation vectors. The first two terms in (6.10)
can be related to a lane-change efficiency or tracking objective. The reference trajectories
dR11,ref and dRj1,ref are the lane centreline (in case of maintain-lane manoeuvring) and
the analytical solution to a point-mass system minimising the lateral jerk (in case of a
lane-change manoeuvring). The reference trajectory vXv1,ref is based on heuristics that
include the speed limit, lateral acceleration caused by road curvature and comfortable
lead vehicle following. The variables jXv1 and jYv1 are approximations of the longitudinal
and lateral jerk, expressed relative to a local coordinate frame positioned at the CoG of
the first vehicle unit. The δ̇11 is the road wheel angle rate. These terms promote smooth

and comfortable driving. The term fdk(∆s
(o)
m,n, vXv1) is related to distance-keeping and

safety, see illustration of distance-keeping in a lane-change-to-right scenario in Fig. 6.10.

3In Paper C and [25], the dynamic models are reformulated from the temporal domain to a spatial
domain. For the sake of simplicity, the formulation here is in the temporal domain.
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Figure 6.10: Illustration of the driving corridor (yellow area) in a lane-change-to-the-right
situation using NMPC. The corridor is calculated using the lead vehicle in the current
lane and lead and lag vehicles in the target lane. For further details see [123]. The blue
arrow illustrates the path of the centre of the first vehicle’s axles.

The balance between efficiency, comfort, and safety is weighted with the following factors:
KdR11

, KdRj1
, KvXv1

, KjXv1
, KjYv1

, KaXv1
, Kδ̇ and K∆s.

In direct multiple shooting integration technique, both state trajectory and control
input are discretised for the prediction horizon. The system is separately integrated for
each interval between the discretisation nodes and continuity constraints between the
intervals are introduced. Using the models of the subject vehicle and road, the non-linear
system dynamics are discretised using the Euler method to the form

ξ(t+ 1) = fdt(ξ(t),u(t)) (6.11)

A cost function for the finite time optimal control problem is formulated as

J0(ξt|t,U0) =

N∑

k=1

‖ξt+k|t − ξref
t+k|t‖2QMPC

+

N−1∑

k=0

‖ut+k|t − uref
t+k|t‖2RMPC

(6.12)

where, using standard MPC notation according to [16], U0 = [u′0, ...,u
′
N−1] is the

optimisation vector and N is the prediction horizon. ξt+k|t and ut+k|t are the state

and actuation vector at time t + k measured at time t, respectively. ξref
t+k|t and uref

t+k|t
are the corresponding reference vectors. QMPC and RMPC are weighting matrices of
appropriate dimensions constituting the gain factors in (6.10).

At each time step t the following constrained finite time optimal control problem is
solved

J∗0 = min
U0

J0(ξt|t,U0) (6.13)

s.t ξt+k+1|t = fdt(ξt+k|t,ut+k|t), k = 0, ..., N − 1 (6.14)

h(ξt+k|t,ut+k|t) ≤ 0, k = 0, ..., N − 1 (6.15)

ξt|t = ξ(t) (6.16)

where h(ξt+k|t,ut+k|t) are state and actuation constraints (6.1)-(6.8). In the NMPC
formulation (6.13)-(6.16), neither stability nor feasibility are ensured. The proposed
NMPC framework uses the real-time iteration scheme [23]. This is implemented in the
open-source ACADO toolkit [2]. Further details on the NMPC are found in [25].
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The presented method, referred as model-predictive control-based TSP, was used
in Papers C and D. In this method, the candidate actuation is the solution to the
optimisation problem (by comparison with the driver model based-TSP in which the
actuation is generated by the driver models). If the aim is for human-like behaviour in the
MPC approach as well, one solution is to study how the manual drivers prioritise their
driving according to the defined cost function and then adjust the weighting parameters
accordingly. Another option would be to include the driver models in the MPC formulation,
cf [137, 135].

6.3 Results

In Paper B, the combined longitudinal and lateral driver model proposed in Paper A was
included in a real-time framework for highway driving automation. Referred to as driver
model-based TSP, this framework was used for candidate actuation calculations and the
evaluation of constraints related to the subject vehicle dynamics, road boundaries and
distance to surrounding traffic. The framework was evaluated using desktop simulations
for lane changes at varying constant velocities and during braking. The results showed
that the framework could execute lane-keeping and lane-change manoeuvres at constant
and varying longitudinal velocities in the range of 20-80 km/h. Moreover, the results
showed that the framework can perform abort manoeuvres back to the initial lane or a
fall-back manoeuvre, if the feasibility of the initiated lane-change manoeuvre was not
fulfilled.

In Paper C, the driver model-based TSP and the model predictive control-based TSP
were compared, based on vehicle dynamics performance in lane-change manoeuvring.
Desktop simulations showed that both approaches generated feasible lane-change ma-
noeuvres at constant vehicle speed. In addition, lane changes were successfully executed
when combined with retardation due to braking by the leading vehicle. In general, the
non-linear model predictive control-based TSP showed shorter lane change durations
(LCDs) and lower utilisation values for absolute magnitude of longitudinal and lateral
acceleration. Paper D evaluated a driving simulator experiment including manual and
automated driving. The experiment included three different highway lane-change scenar-
ios, with and without lead vehicle braking. The first scenario was without lead vehicle
braking and designed to study driver preferences regarding lane-change initiation and
manoeuvring. The second and third scenarios included lead vehicle braking and were
constructed to study driver preferences regarding brake initiation and manoeuvring and
combined steering and braking respectively. In all scenarios, the subject vehicle was
initially prevented from starting a lane-change manoeuvre by two blocking vehicles in the
adjacent target lane. The adjacent right-hand lane vehicles were programmed to displace
and open a gap once the driver switched on the turn indicator to request a lane change.

The driving automation feature consisted of maintain-lane manoeuvring and lane
changes upon the driver’s request. In the driving automation, both the driver model-based
TSP and the model predictive control-based TSP were used for actuation calculations.
One example of actuation and vehicle motion in driving automation for a lane-change
manoeuvre in the second scenario is given in Fig. 6.11. The top rows show requested and
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(a) Driver model-based actuation trajectory planning.
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(b) Model predictive control-based actuation trajectory planning.

Figure 6.11: Example of actuation and vehicle motion in driving automation, see Paper D.
Top rows: requested and actual front wheel angle and longitudinal acceleration. Bottom
rows: lateral distance offset perpendicular to the road for the first unit’s first axle and last
unit’s last axle and longitudinal velocity of the first unit.

actual front wheel angle and longitudinal acceleration. The bottom rows show lateral
distance offset perpendicular to the road for the first unit’s first axle and last unit’s last
axle and longitudinal velocity of the first unit. Note that the actuation and vehicle motion
from the driver model based TSP and the model predictive control based TSP should not
be directly compared since they occur at different positions along the road.

A similar finite-state machine was used for manoeuvre decision in both approaches.
A back-to-back performance comparison of performance characteristics for lane-change
manoeuvres and braking were carried out using manual and automated driving obser-
vations. The results showed that the mean value of a manual cooperative LCD was
approximately 8 s. The driving principle implemented in driver model-based TSP natu-
rally resulted in the same LCD. However, the corresponding value for the model predictive
control-based TSP was 4 s. The noticeably lower LCD for the model predictive control-
based TSP resulted in a higher extremum for lateral acceleration and lateral jerk. The
rearward amplification was similar for both manual and automated driving. Furthermore,
evaluation of the second driving scenario showed that the manual drivers braked later and
harder than both automated driving approaches. The mean value of the manual drivers’
minimum deceleration during braking was −2.2 m/s2. The corresponding values for the
driver model-based TSP and the model predictive control-based TSP were −1.4 m/s2

and −0.9 m/s2 respectively. The mean value of the manual drivers’ time gap at brake initi-
ation was 1.1 s. The driving principles used in brake initiation for the driver model-based
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TSP and the model predictive control-based TSP resulted in 2.4 s and 2.3 s respectively,
which leads to lower deceleration values for the driving automation than the manual
drivers.

When evaluating the third driving scenario, including combined braking and steering,
the results showed that manual drivers often separated braking and steering. This was
not the case in automated driving. The interpretation was that the manual drivers were
missing the lead vehicle brake onset due to shifted visual focus towards their rear-view
mirror, during the first part of the lane change.
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7 Traffic situation manoeuvres

As mentioned in Section 4.2, the term traffic situation manoeuvres (TSMs) refers to
the complete set of functions included in FA-TSM. TSMs are perhaps best described
as decision-making on the tactical levels of driving principles and control. Section 7.1
gives a brief background and discuss possible approaches for TSMs. Section 7.2 presents
the specific TSM design used in Papers B-D and in the automated driving connected to
Paper E. Section 7.4 presents the human-machine interface used in the driving simulator
experiments to illustrate the decision-making to the driver. Section 7.4 presents the main
results of Papers B-E.

7.1 Background

As an example to illustrate TSM, consider the proposed driving automation design in
Paper D. In this case, the FA-TSP generates candidate actuations and their feasibilities
for a set of defined manoeuvres such as maintain-lane and lane changes to left and right.
However, the FA-TSP does not determine why or when to change between maintain-
lane and a lane change manoeuvre, in case both are feasible. Rather FA-TSM makes
the manoeuvre planning and manoeuvre decision to achieve both tactical and strategical
goals.

Important criteria for TSM are: the methods should be computationally efficient to
allow real-time execution; the manoeuvre decisions are consistent in such way that the
methods should not frequently change their mind about the choice of manoeuvre; the
manoeuvre decisions should be predictable in such way that the function can be evaluated
according to functional safety requirements. Major challenges for the manoeuvre decision
problem are incomplete and noisy perception and uncertain knowledge about how the
traffic situation will evolve over time. Firstly, the intentions of the surrounding traffic is
unclear and their behaviour is difficult to predict, see Section 5.4. Secondly, some of the
environment may be occluded and sensor measurements may include errors.

Methods of tactical decision-making can vary from being fully deterministic (no
uncertainties included) to probabilistic (uncertainties included). The necessary scope and
realisation likely depends on the driving automation application. In [42, 141] finite-state-
machines (FSMs) were used to handle the decision-making. In [141] predictions of the
surrounding traffic were included in the trajectory planner. However, uncertainty in the
observation was not considered. In [122, 18], a probabilistic framework was used for lane
change decisions and merging manoeuvres.

Another option (proposed by [86]) is to divide methods of tactical decision-making
into the groups: rule-based approaches, utility-based approaches and learning approaches.
The rule-based approaches are often implemented for specific scenarios using simple
heuristics. The drawback is their applicability in more complex traffic scenarios [86].
In utility-based approaches [127], the utility function is used as a common currency for
weighting multiple-criteria decisions. Hence, the method might be able to handle more
complex traffic situations by selecting appropriate weighting factors. In [4], a utility-
based approach was used for highway-driving. The utility was described by means of a

75



probability distributed stochastic variable. This allows uncertainties of the perception
to be regarded in the decision-making process. The learning-based approaches [84, 109]
are promising for complex traffic situations, but they require off-line/on-line training and
may suffer from non-traceability.

7.2 Design

As stated in Section 6.2, the driving in question is limited to one-way, multiple-lane roads
and subject to vehicle speeds in the range of 0-80 km/h. Furthermore, the manoeuvres
included are: maintain-lane, lane changes, non-evasive abort lane changes and fall-back
braking. Noise from perception is ignored and it is assumed that FA-TSO can accurately
estimate the signals given in the motion architecture, see Fig. 6.3. The input to FA-TSM
consists of candidate actuation trajectories and their feasibilities for a set of manoeuvres
calculated by FA-TSP, see Fig. 6.3. Moreover, FA-TSM also acquires input from FD-
RSiM, in terms of distance and relative lane to the next waypoint. Furthermore, inputs
to FA-TSM are subject vehicle speed, surrounding traffic observations and turn indicator
activation from FA-TSO and FA-DCM respectively. The requests from FA-TSM to
FD-VMM are a single vehicle actuation request relating to the front wheel steering angle
and longitudinal acceleration of the first vehicle unit. The functionalities of FA-TSM are
divided into manoeuvre planning and manoeuvre decision as discussed in Sections 7.2.1-
7.2.2.

7.2.1 Manoeuvre planning

In the simulator experiment described in Paper D, the targeted driving automation
included the features maintain-lane and (upon driver’s request) lane-changes. In this case,
the manoeuvre planning component consisted of the instructions from the manual drivers.
The driving automation was started in maintain-lane and the drivers communicated their
order to change lane by using the turn indicator switch.

In the driving automation carried out in relation to manual driving (as described in
Paper E) the target was to include driving automation which enabled both tactical and
strategical goals. The driving automation feature was responsible for maintain-lane driving
as well as lane-change manoeuvres, in order to reach the target destination. In this case, it
was not possible for the manual operator to influence the manoeuvre planning. Manoeuvre
planning was based on a utility-function method in which utility values were calculated for
the current and nearest adjacent lanes. The purpose of the utility function was to plan the
driving by incorporating properties such as traffic behaviour, efficiency and route-following.
Firstly, the subject vehicle preferred driving in the rightmost lane of the road which is the
expected driving behaviour for heavy vehicles in Sweden. Secondly, the subject vehicle
preferred the lane which had the highest permitted speed, but avoided unnecessary lane
changes. Finally, at a specified distance ahead of the next global waypoint, the subject
vehicle preferred driving in the target lane. This behaviour was implemented by adapting
the lane reference speed in regard to the remaining distance to the upcoming waypoint,
see Fig. 7.1. The utility function was customised to work properly in the experiment and
was limited to only consider the current and nearest adjacent lanes. The purpose of the
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Figure 7.1: Illustration of lane reference speed, used in the utility calculation, when
approaching an upcoming global waypoint. The utility calculation was included in the
simulator experiment described in Paper E.

simulator experiment was to study manual drivers’ actions prior to lane changes in dense
traffic. The utility Un is calculated as

Un =
ṽn

vXv1 · (u0 + u1 ·
√
n) + clc

n = 1, 2, 3 (7.1)

ṽn = min
(
v(o)

aver,n, vref,n

)

vref,n =

{
vx,n : ∆swp ≥ ∆swp

∆swp

Tlc·(Nrel+1) : 0 ≤ ∆swp < ∆swp

where n = 1, 2, 3 corresponds to the right-hand, middle and left-hand lanes. ṽn is the
minimum of the average speed of the lead vehicles at a specified distance ahead of the

subject vehicle v
(o)
aver,n, and the lane reference speed vref,n. The lane reference speed is

calculated using the legal speed limit vx,n and the distance and relative lane in regard to
the targeted global waypoint, ∆swp and Nrel, respectively. Tlc is a typical lane change
duration. vXv1 is the longitudinal velocity of the subject vehicle’s first unit, whilst u0 and
u1 are tuning parameters. clc is the cost associated with a lane-change manoeuvre.

7.2.2 Manoeuvring decision

In Papers B-E, the manoeuvring decisions were carried out using a FSM consisting of
states and conditional transitions between those states, see Fig. 7.2. The FSM executes
the actuation connected to the current state until a transition condition forces it to jump
to another state, whose actuation is then executed. Twelve driving states are defined,
in order to handle the combination of actuations required to carry out the different
manoeuvres. The driving states used for right-side manoeuvres are shown in Fig. 7.2.
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Figure 7.2: Finite-state machine for manoeuvre-decision making. Conditions for transi-
tions valid for solid lines. Only right-hand side manoeuvres are illustrated. Manoeuvres to
the left-hand side are mirrored.

A simple driving scenario is given to illustrate the FSM. Consider the driving automa-
tion described in Paper D, where the driver was responsible for the manoeuvre planning
by using the turn indicator switch. The driving automation is started in the maintain
lane state and the candidate actuation A0 is executed. Once the driver switches the turn
indicator, say, to the right, the state is shifted to lane-change-right-requested. In this
state, the candidate actuation A0 is also executed. If the candidate actuation for lane
change to the right is feasible and the fixed margin value for lane change initiation is
valid, the state is shifted to lane-change-right-phase 1 and the candidate actuation A1
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(a) Yellow flashing arrow and display
indicating that a lane-change is ordered by
human driver or utility function.

(b) Green flashing light and display indicating that
lane change is started.

Figure 7.3: Visual HMI used to inform the driver of manoeuvre planning and decision.

is executed. When the centre of the first axle of the first vehicle unit passes into the
target lane, the state is shifted to lane-change-right-phase 2 and the candidate actuation
A0 is executed. Finally, when the last unit enters the target lane, the state is shifted
to maintain-lane. There are two states for the complete-lane-change manoeuvre due to
the definition of which lane the vehicle is currently in. If the state is shifted to fall-back
braking a relatively hard braking is executed. However, there is a possibility to return to
the previous state within a short time period if the previous state becomes feasible. This
is represented with dashed lines in Fig. 7.2.

If considering the driving automation carried out in connection to Paper E, a utility
function method (see Section 7.2.1) was used for manoeuvre planning. The utility function
replaced the manual lane-change order executed by the operator/driver. Once a lane
change was requested, the utility function was no longer used until the state returned to
maintain-lane.

7.3 Human-machine interface

In the simulator experiments described in Papers D and E, a visual and audible human-
machine interface was developed by Volvo GTT to support the driver in regard to the
status of requested and actual manoeuvre, see Fig. 7.3. A yellow flashing arrow (normally
green) in combination with a ticking sound (at half the frequency compared to normal),
communicated that a lane-change manoeuvre had been ordered but not started.

Furthermore, the information was also given as text on a display, see Fig. 7.3. When
a lane change was started, the flashing arrow shifted to green and the frequency of the
ticking sound increased to normal and text information appeared on the display.

7.4 Results

In Paper D, a back-to-back performance comparison of manual and automated lane-
change manoeuvres was carried out using characteristics variables. The characteristic
variables addressed lane change and brake initiation. The comparison included both the
driver model-based TSP and the model predictive control-based TSP, see Sections 6.2.1
and 6.2.3. The first scenario studied the time gaps to adjacent lane lead and lag vehicles
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Figure 7.4: Manual drivers’ vehicle speed at lane-change start (black dots). The solid thin
black line shows fitted sigmoid function. The solid and dashed thick black and grey lines
show the lane reference speed used in the utility calculation.

at lane-change initiation. For the manual drivers, the mean time gaps at lane-change
initiation with respect to adjacent lead and lag vehicles were 0.9 s and −0.8 s respectively.
This should be compared with the driver model based-approach in which the margin
values for lane change initiation regarding time-gaps were ±2 s. Furthermore, it was found
that the time gap at lane-change initiation relating to the lead vehicle in manual driving,
varied with the relative speed difference between the subject and target lead vehicle. The
time gap at lane change initiation was increased when the relative speed difference was
low compared to the time gap when the relative speed difference was high. The results
suggest that manual drivers adapt the time gap margin value for lane-change initiation
with the relative speed difference. This was not considered in the initial back-to-back
automated driving implementation, which used fixed time gap margin values. However,
the influence of relative speed difference on time gap margin is a candidate driving
principle for automation.

In Papers B-D, it was assumed that the inter-vehicular distances between the traffic in
the adjacent target lane were either large enough to allow a lane change, or that the traffic
cooperated by displacing to open a gap and allow a lane change. However, it is known
that normal highway driving does not always fulfil these assumptions. In many cases, the
inter-vehicular distances between the adjacent lane vehicles are shorter than required (see
Fig. 1.3) and the traffic does not always cooperate. In Paper E, drivers’ actions prior to
mandatory lane changes in dense highway traffic were studied using observations from a
driving simulator experiment. The studied driver actions were turn indicator activation,
speed reduction and lateral intrusion. The experiment consisted of two driving sessions
and each session included two lane-change events. The settings of the surrounding traffic
were varied for the differing events. The variations consisted of the level of qualifying
actions needed by the subject vehicle driver to make the surrounding traffic cooperative.
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Cooperative surrounding traffic means that the vehicles displace and open the necessary
gap for the subject vehicle’s lane-change manoeuvre. Furthermore, the results were
categorised in regard to the level of urgency. In this context, urgency was based on the
remaining distance to a targeted exit ramp. The results show that, in all started and
completed lane-change events, the drivers used their turn indicator prior to starting their
lane-change manoeuvre. Moreover, when the subject vehicle was close to the exit ramp
the drivers used speed reduction significantly more than when the vehicle was further
away. No significant difference was found for the use of lateral intrusion, considering the
distance to the exit ramp. Regarding traffic cooperation, significant differences were found
for both speed reduction and lateral intrusion. The drivers’ speed reduction and lateral
intrusion were significantly greater when cooperation by surrounding traffic was low.

In Fig. 7.4, the manual drivers’ speeds at lane-change start are compared to the lane
reference speed used in the utility function (7.1). The data points of the manual drivers
(black dots), are fitted to a sigmoid function using a least-square approximation (thin
solid line). The manual drivers’ speed at lane change start supports initial back-to-back
automated driving implementation, with the driving principle of using speed reduction
when approaching a mandatory road exit in an adjacent lane.

81



82



8 Concluding remarks

This chapter concludes the thesis with sections on: scientific contributions, appended
papers, industrialisation and future research directions.

8.1 Scientific contributions

Driving automation is likely the next revolution to improve the productivity and safety
of road transport systems. A primary driving automation application for articulated
heavy-vehicle goods transports is in highway driving. Important aspects of highway
driving are maintain-lane and lane-change manoeuvres, which have substantial impact on
both traffic safety [108] and traffic flow characteristics [139].

Today’s professional drivers of articulated heavy-vehicle goods transports are skilled in
driving and accounting for the size and dynamic characteristics of these vehicles. Similarly,
driving automation features which target articulated heavy vehicles also need to account
for these characteristics. In the proposed algorithms for traffic situation predictions,
models of the subject vehicle, driver, road and surrounding traffic have been formulated;
contribution C1, see Section 1.4. These models capture both subject vehicle dynamics and
predicted motion of surrounding traffic. A unique driver steering model for articulated
vehicles has been formulated, contribution C1a, see Section 5.3.3. Furthermore, it has
been possible to derive traffic situation predictions for multiple-lane one-way road driving
by using driver steering and acceleration models in a closed loop with the subject vehicle
model; contribution C2. Also, a second approach to calculate actuation trajectories has
been developed and evaluated using a MPC framework including on-line optimisation,
see Papers C-D. Manoeuvre planning and manoeuvring decisions are made so as to
achieve both tactical and strategic goals. The derived traffic situation manoeuvres include
maintain-lane, lane changes and non-evasive abort manoeuvres for multiple-lane one-way
road driving; contribution C3, see Papers B-E. It is envisaged that studying the important
characteristics of manual driving will give insight into how to design driving automation
especially in regard to mixed traffic with both manually driven and automated vehicles.
Driving principles for driving automation are derived by using back-to-back comparisons
of manual and automated driving in simulator experiments; contribution C4. Driving
principles for initiation and execution of lane-change manoeuvres with surrounding traffic
are studied in Paper D, contribution C4a. Managing mandatory road exits and lane
changes in dense traffic are studied in Paper E, contribution C4b.

Paper A - A driver model using optic information for longitudinal and lateral
control of a long vehicle combination

In this paper, driver models based on optical information and a one-track vehicle model are
used to study a combined lane-change and braking scenario for an A-double combination.
The gain factors of the driver steering model were estimated using driving data from a
transport mission between Gothenburg and Malmö, measured from an A-double combina-
tion during actual lane-changes. Numerical simulations show that the driver models can
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generate safe and conservative deceleration and steering for the studied scenario.

Paper B - Driver model based automated driving of long vehicle combinations
in emulated highway traffic

This paper presents a framework for highway driving automation, including an A-double
combination. Driver models for steering and acceleration are used for the generation of
vehicle actuation requests. The behaviour of the driver models is inspired by human
cognition and optical flow theory. Traffic situation predictions are calculated using
the driver models, in combination with prediction models of the subject vehicle and
surrounding traffic. The traffic situation predictions are used for evaluation of constraints
relating to vehicle dynamics, road boundaries and distance to surrounding objects. The
framework is implemented in a simulation environment, including a high-fidelity vehicle
plant model and models of surrounding traffic. Simulations show that the framework can
handle both maintain-lane and lane-change manoeuvres at constant speed, as well as and
lane changes combined with leading vehicle braking.

Paper C - Automated highway lane changes of long vehicle combinations: A
specific comparison between driver model based control and non-linear model
predictive control

This paper compares the vehicle dynamics performances of two approaches for automated
lane-change manoeuvres. This is achieved by using an A-double combination in simulated
highway driving. One of the two approaches is based on non-linear model predictive
control and the other on driver modelling. Simulations show that the approach based
on non-linear model predictive control includes shorter lane-change durations and lower
values for the absolute magnitude of the longitudinal and lateral accelerations. However,
when compared to the driver modelling approach, the specific objective function leads to
unnecessary variation of longitudinal speed.

Paper D - A Simulator study comparing characteristics of manual and auto-
mated driving during lane changes of long combination vehicles

This paper presents a back-to-back performance comparison of lane-change manoeuvres
using two driving automation approaches and manual driving. The lane changes were
executed in a moving-base truck driving simulator using an A-double combination. One of
the approaches for driving automation was based on driver modelling and the other used
an MPC framework including on-line optimisation. The comparison addresses lane change
and braking (both initiation and execution) from the perspective of driver behaviour and
defined characteristic variables.

Paper E - On actions of long combination vehicle drivers prior to lane changes
in dense highway trajectory - a driving simulator study

In this paper, we address drivers’ actions prior to mandatory lane changes of an A-double
combination in dense highway traffic. The studied driver actions were turn indicator
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activation, speed reduction and lateral intrusion. We categorised and compared the
drivers’ actions with respect to the surrounding traffic cooperation and level of urgency.
Urgency was based on the remaining distance to a targeted exit ramp. The results show
that when the subject vehicle is close to the exit ramp, drivers used speed reduction
significantly more than when the vehicle is further away. No significant difference was
found for the use of lateral intrusion, considering the distance to the exit ramp.

8.2 Industrialisation

Within goods transport logistics, automated guided vehicles including driving automation
features are currently in use on private property, taking over the tasks of human drivers.
Such applications often comprise tailored solutions for perception and control that include
relatively costly investments. It is envisaged that recent and upcoming developments
within driving automation for series-produced road vehicles have great potential to reduce
this investment cost.

Moreover (considering the use of driving automation for goods transports on public
roads), the first features are expected to target highway applications as highways offer a
well-structured environment. High-level or full driving automation features (SAE level
4-5 [104]) have the most promising potential to improve goods transport productivity,
since the cost associated with the driver can be removed. However, it is likely that the
level of driving automation will instead be gradually increased from driver assistance
(SAE level 2 [104]) to ensure road safety.

It is not clear how the instrumentation and potential responsibility split for environment
sensors will be handled for articulated vehicles. Today, most truck manufacturers only
produce and offer the first vehicle unit whereas the articulated units are produced
and offered elsewhere. The proposed algorithms for traffic situation predictions and
manoeuvres are expected to undergo initial in-vehicle evaluation and testing using silent
mode and then be gradually introduced as product features, when the necessary maturity
has been reached.

8.3 Future research direction

The most straightforward way to test driving automation features is through physical
vehicle testing. The drawback is that vehicle environment sensors need to be in place
and surrounding physical traffic needs to be controlled and included in the test scenarios.
To avoid these problems, a high-fidelity moving-base truck driving simulator has been
used throughout this work. Driving simulators offer great control and reproducibility,
but may have limited physical, perceptual, and behavioural fidelity [10, 101]. Based
on the limitations included in driving simulator testing, the proposed functionalities for
traffic situation predictions and manoeuvres should be subjected to extensive testing in
real-world traffic situations for various highway traffic scenarios.

The algorithms that have been developed for traffic situation predictions and manoeuvres
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have only been evaluated for the A-double combination. The performance of these algo-
rithms should be studied using additional vehicle combinations.

The algorithms for traffic situation predictions have assumed certain observed quan-
tities. A realistic sensor instrumentation and sensor fusion might call for changes in these
algorithms.

The algorithms for traffic situation predictions and manoeuvres have been evaluated
using computing capacity that exceeds that of a current standard vehicle. Even though
developments in computer hardware are impressive, the algorithms should be adapted to
more limited computational resources.

In case of mixed traffic with both manually driven and automated vehicles, the in-
tention and motion prediction of surrounding traffic is a vital component of the traffic
situation predictions. Further development of surrounding traffic predictions using real-
world traffic observations is envisaged.

Manoeuvring decision-making in complex traffic situations is a major challenge for
human drivers as well as driving automation features. Combining probabilistic methods,
including uncertainties from perception and surrounding traffic, with prediction models
for articulated vehicles is an area of interest

Using parametrised driver models inspired by human cognition to generate actuation
requests is a promising direction for achieving a high level of driver acceptance in regard
to manoeuvre execution in lane changes. This should particularly be taken into account
for driving automation features which target shared control, or in human driver take-over
situations. The used parametrisation was based on one driver in smooth driving conditions
and should be extended by using additional drivers and manoeuvres.

The MPC framework that was used showed difficulties in handling both tracking and
driving comfort objectives but offers a direct and structured way to include motion and
actuation constraints. A promising approach would be to combine the driver model
approach with the MPC approach and use the driver models for reference trajectory
generation in the MPC framework.

The study of human drivers’ actions prior to mandatory lane changes with a final
distance to a targeted road exit ramp showed use of speed reduction and lateral intrusion.
Imitating the human driver’s use of speed reduction can be included relatively easily
in a driving automation framework, by using a utility approach for example. However,
imitating human drivers’ use of lateral intrusion is not obvious and is far more compli-
cated. Additional studies on how to handle mandatory lane changes in driving automation
features are envisaged.
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Appendix I

Vehicle models

The vehicle body models for a tractor semi-trailer and an A-double are derived using
the Lagrange equations, see Section 5.2.2.1. The equations include a linear tyre model
and are simplified using an assumption of small steering and articulation angles. The
simplifications are in general valid when considering vehicle cornering in high speed and
moderate lateral acceleration levels. For each vehicle type, two models are presented. The
first model, referred to as the non-linear model, includes the equation for longitudinal,
lateral and rotational motion. The second model, referred to as the linear model, assumes
constant longitudinal velocity and neglected body-forces. All terms including the time
derivative of vXv1 are consequently zero in the linear models. Further, assuming that the
longitudinal forces can be approximated to zero, the equation for longitudinal motion can
be neglected. (The character × is here used for multiplication.)

Tractor semi-trailer

The non-linear and the linear model are expressed using the vehicle parameters defined
in Table 8.1 and Fig. 8.1.
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ψ1 

δ11 

vXv2 vYv2 

l12 
l11 

l1r 

l2f 

l21 

XE 

YE 

vYv1 vXv1 

Fgrav,2 
 

Fgrav,1+Fair,1 
 

FYw21 

FYw12 

FYw11 

FXw21 

FXw12 

FXw11 

Figure 8.1: One-track model of tractor semi-trailer combination.

Non-linear model

The non-linear model (8.1) includes the vehicle states ξ = [vXv1, vYv1, ψ̇1, ∆ψ̇1, ∆ψ1]
and the control inputs u = [δ11, FXw11, FXw12, FXw21].
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Table 8.1: Vehicle model parameters, tractor semi-trailer

Parameter Symbol Value Unit
Mass, unit 1 m1 8491 [kg]
Mass, unit 2 m2 31900 [kg]
Inertia z-axis, unit 1 JZ1 37e3 [kgm2]
Inertia z-axis, unit 2 JZ2 420e3 [kgm2]
Distance from COG to front axle, unit 1 l11 1.45 [m]
Distance from COG to connection point front, unit 2 l2f 5.27 [m]
Distance from COG to rear axle, unit 1 l12 2.24 [m]
Distance from COG to rear axle, unit 2 l21 3.14 [m]
Distance from connection point rear to rear axle, unit 1 l1r 1.19 [m]
Front axle cornering stiffness, unit 1 CY11 3.0e5 [N/rad]
Rear axle cornering stiffness, unit 1 CY12 8.6e5 [N/rad]
Rear axle cornering stiffness, unit 2 CY21 1.1e6 [N/rad]

d

dt
vXv1 =2.48×10−5·(Fair,1 +

2∑

j=1

Fgrav,j + FXw12 +

2∑

i=1

FXwi1) + ψ̇1·vYv1

d

dt
vYv1 =

1

vXv1

(
vXv1·(∆ψ1·(−1.93×10−5·(Fair,1 + Fgrav,1 + FXw11 + FXw12)+

1.68×10−5·(Fgrav,2 + FXw21)− 3.28)− ψ̇1·vXv1 + δ11·(1.02×10−4·FXw11 + 30.74))−

27.58·∆ψ̇1 + vYv1·(−0.78·∆ψ1·ψ̇1·vXv1 − 53.63)− 19.91·ψ̇1

)

d

dt
ψ̇1 =

1

vXv1

(
∆ψ1·(8.65×10−6·(Fair,1 + Fgrav,1 + FXw11 + FXw12)−

7.50×10−6·(Fgrav,2 + FXw21) + 1.47) + δ11·(4.60×10−5·FXw11 + 13.81)+

12.34·∆ψ̇1 + vYv1·(0.35·∆ψ1·ψ̇1·vXv1 + 3.17)− 46.16·ψ̇1

)

d

dt
∆ψ̇1 =

1

vXv1
·
(
vXv1·(∆ψ1·(−1.65×10−5·(Fair,1 + Fgrav,1 + FXw11 + FXw12)+

8.35×10−6·(Fgrav,2 + FXw21)− 9.34) + δ11·(−4.44×10−5·FXw11 − 13.32))−

78.57·∆ψ̇1 + vYv1·(−0.67·∆ψ1·ψ̇1·vXv1 − 3.79)− 18.20·ψ̇1

)

d

dt
∆ψ1 =∆ψ̇1

(8.1)
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Linear model

The linear model is described in a linear time-invariant state space form ẋ = Ax + Bu.
The model includes the vehicle states x = [vYv1, ψ̇1, ∆ψ̇1, ∆ψ1] and the control input
u = δ11. The matrices A and B are defined in (8.2).

A =




−53.63

vXv1
−vXv1 −

19.91

vXv1
−27.58

vXv1
−3.28

3.17

vXv1
−46.16

vXv1

12.34

vXv1
1.47

− 3.79

vXv1
−18.20

vXv1
−78.57

vXv1
−9.34

0 0 1 0




B =




30.74

13.81

−13.32

0




(8.2)
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A-double combination

The non-linear and the linear model are expressed using the vehicle parameters defined
in Table 8.2 and Fig. 8.2.
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Figure 8.2: One-track model of A-double combination.

Non-linear model

Table 8.2: Vehicle model parameters, A-double

Parameter Symbol Value Unit
Mass, unit 1 m1 9841 [kg]
Mass, unit 2 m2 33601 [kg]
Mass, unit 3 m3 2700 [kg]
Mass, unit 4 m4 33801 [kg]
Inertia z-axis, unit 1 JZ1 20e3 [kgm2]
Inertia z-axis, unit 2 JZ2 543e3 [kgm2]
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Vehicle model parameters, A-double

Parameter Symbol Value Unit
Inertia z-axis, unit 3 JZ3 2e3 [kgm2]
Inertia z-axis, unit 4 JZ4 546e3 [kgm2]
Distance from COG to front axle, unit 1 l11 1.45 [m]
Distance from COG to connection point front, unit 2 l2f 4.43 [m]
Distance from COG to connection point front, unit 3 l3f 4.55 [m]
Distance from COG to connection point front, unit 4 l4f 4.65 [m]
Distance from COG to rear axle, unit 1 l12 2.23 [m]
Distance from COG to rear axle, unit 2 l21 3.27 [m]
Distance from COG to rear axle, unit 3 l31 0.65 [m]
Distance from COG to rear axle, unit 4 l41 3.05 [m]
Distance from connection point rear to rear axle, unit 1 l1r 0.28 [m]
Distance from connection point rear to rear axle, unit 2 l2r 2.70 [m]
Distance from connection point rear to rear axle, unit 3 l3r 0. [m]
Front axle cornering stiffness, unit 1 CY11 4.07e5 [N/rad]
Rear axle cornering stiffness, unit 1 CY12 2.07e6 [N/rad]
Rear axle cornering stiffness, unit 2 CY21 1.24e6 [N/rad]
Rear axle cornering stiffness, unit 3 CY31 1.17e6 [N/rad]
Rear axle cornering stiffness, unit 4 CY41 1.42e6 [N/rad]

The non-linear model (8.3) includes the vehicle states ξ = [vXv1, vYv1, ψ̇1, ψ1, ∆ψ̇1, ∆ψ1,
∆ψ̇2, ∆ψ2 ∆ψ̇3, ∆ψ3] and the control inputs u = [δ11, FXw11, FXw12, FXw21, FXw31, FXw41].

d

dt
vXv1 =1.25×10−5·(Fair,1 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1 + FXw12) + ψ̇1·vYv1

d

dt
vYv1 =

1

vXv1
(vXv1·(∆ψ1·(−1.29×10−5·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

7.25×10−5·(
4∑

j=2

Fgrav,j +

4∑

i=2

FXwi1) + 1.93) + δ11·(1.13×10−4·FXw11 + 51.71)+

∆ψ2·(2.43×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

5.33×10−6·(
4∑

j=3

Fgrav,j +

4∑

i=3

FXwi1) + 0.78)+

∆ψ3·(7.23×10−9·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

2.99×10−8·(FXw41 + Fgrav,4)− 2.24×10−3))+

21.0·∆ψ̇1 − ψ̇1·v2
Xv1 + 71.24·ψ̇1 + 4.02·∆ψ̇2 − 1.73×10−2·∆ψ̇3 − 108.1·vYv1)

91



d

dt
ψ̇1 =

1

vXv1
(vXv1·(∆ψ1·(1.23×10−5·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

2.77×10−5·(
4∑

j=2

Fgrav,j +

4∑

i=2

FXwi1)− 1.85) + δ11·(6.17×10−5·FXw11 + 28.24)+

∆ψ2·(−2.33×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

5.12×10−6·(
4∑

j=3

Fgrav,j +

4∑

i=3

FXwi1)− 0.75)+

∆ψ3·(−6.94×10−9·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

2.87×10−8·(Fgrav,4 + FXw41) + 2.15×10−3))−
20.15·∆ψ̇1 − 336.4·ψ̇1 − 3.86·∆ψ̇2 + 1.66×10−2·∆ψ̇3 + 95.46·vYv1)

d

dt
∆ψ̇1 =

1

vXv1
·(vXv1·(∆ψ1·(−1.84×10−5·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

2.54×10−5·(
4∑

j=2

Fgrav,j +

4∑

i=2

FXwi1)− 4.28) + δ11·(−6.26×10−5·FXw11 − 28.65)+

∆ψ2·(7.10×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

1.56×10−5·(
4∑

j=3

Fgrav,j +

4∑

i=3

FXwi1) + 2.27)+

∆ψ3·(2.11×10−8·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

8.73×10−8·(Fgrav,4 + FXw41)− 6.56×10−3))−
15.04·∆ψ̇1 + 370.3·ψ̇1 + 11.75·∆ψ̇2 − 0.05·∆ψ̇3 − 125·vYv1)

d

dt
∆ψ1 =∆ψ̇1
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d

dt
∆ψ̇2 =

1

vXv1
(vXv1·(∆ψ1·(9.19×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

9.99×10−6·(
4∑

j=2

Fgrav,j +

4∑

i=2

FXwi1) + 4.74) + δ11·(1.36×10−6FXw11 + 0.62)+

∆ψ2·(−1.68×10−5·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

3.09×10−5·(
4∑

j=3

Fgrav,j +

4∑

i=3

FXwi1)− 21.04)+

∆ψ3·(3.04×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

1.26×10−5·(Fgrav,4 + FXw41)− 0.94))−
136.4·∆ψ̇1 − 249.1·ψ̇1 − 116.1·∆ψ̇2 − 7.27·∆ψ̇3 + 48.92·vYv1)

d

dt
∆ψ2 =∆ψ̇2 dt

d

dt
∆ψ̇3 =

1

vXv1
·(vXv1·(∆ψ1·(−3.07×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

3.34×10−6·(
4∑

j=2

Fgrav,j +

4∑

i=2

FXwi1) + 2.02) + δ11·(−4.55×10−6·FXw11 − 0.21)+

∆ψ2·(1.20×10−5·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)−

7.04×10−5·(
4∑

j=3

Fgrav,j +

4∑

i=3

FXwi1) + 20.08)+

∆ψ3·(−6.32×10−6·(Fair,1 + FXw12 +

4∑

j=1

Fgrav,j +

4∑

i=1

FXwi1)+

1.98×10−5·(Fgrav,4 + FXw41)− 7.20))+

123.5·∆ψ̇1 + 168.1·ψ̇1 + 53.68·∆ψ̇2 − 55.43·∆ψ̇3 − 19.95·vYv1)

d

dt
∆ψ3 =∆ψ̇3

(8.3)
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Linear model

The linear model is described in a linear time-invariant state space form ẋ = Ax+Bu. The
model includes the vehicle states x = [vYv1, ψ̇1, ψ1, ∆ψ̇1, ∆ψ1, ∆ψ̇2, ∆ψ2, ∆ψ̇3, ∆ψ3]
and the control input u = δ11. The matrices A and B are defined in (8.4).

A =




−108.1

vXv1

71.24

vXv1
− vXv1 0

21.0

vXv1
1.93

4.02

vXv1
0.78 −0.017

vXv1
−0.0022

95.46

vXv1
−336.4

vXv1
0 −20.15

vXv1
−1.85 − 3.86

vXv1
−0.75

0.017

vXv1
0.0022

0 1 0 0 0 0 0 0 0

− 125

vXv1

370.3

vXv1
0 −15.04

vXv1
−4.28

11.75

vXv1
2.27 −0.050

vXv1
−0.0066

0 0 0 1 0 0 0 0 0

48.92

vXv1
−249.1

vXv1
0 −136.4

vXv1
4.74 −116.1

vXv1
−21.04 − 7.27

vXv1
−0.94

0 0 0 0 0 1 0 0 0

−19.95

vXv1

168.1

vXv1
0

123.5

vXv1
2.02

53.68

vXv1
20.08 −55.43

vXv1
−7.20

0 0 0 0 0 0 0 1 0




B =




51.71

28.24

0

−28.65

0

0.62

0

−0.21

0




(8.4)
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virkesfordon p̊a vägarna. Resultat fr̊an Skogforsk nr 17 2010. Skogforsk.
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