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Combining Deep Learning with traditional algorithms in autonomous cars
An introductory exploration of combining some deep learning techniques with com-
puter vision based algorithms for decision making in autonomous vehicles

Albin Falk & David Granqvist
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
Research of autonomous technologies in modern vehicles are being conducted as
never before. For a long time, traditional computer vision based algorithms has
been the primary method for analyzing camera footage, used for assisting safety
functions, where decision making have been a product of manually constructed be-
haviours. During the last few years deep learning has demonstrated its extraordinary
capabilities for both visual recognition and decision making in end-to-end systems.
In this report we propose a solution of introducing redundancy by combining deep
learning methods with traditional computer vision based techniques for minimizing
unsafe behaviour in autonomous vehicles.

The system consists of a computer vision based lane detection algorithm in combi-
nation with a fully connected Deep Neural Network, and combines the advantages of
both technologies by constructing a control algorithm responsible for consolidating
the sub systems calculations of the correct steering angle, used to keep the vehicle
within the lane markings of the road.

The solution proposed show that we can increase the performance of our system by
applying a combination of the two technologies in a simulator resulting in a safer
system than we could achieve with the technologies separately.

Keywords: deep learning, computer vision, lane detection, autonomous vehicles,
deep neural networks.
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Deep Learning kombinerat med traditionella algoritmer i autonoma bilar
Introduktion och utforskning av hur några tekniker inom deep learning kan kombin-
eras med computer vision-baserade algoritmer för beslutsfattande i autonoma fordon

Albin Falk & David Granqvist
Institutionen för data- och informationsteknik
Chalmers Tekniska Högskola
Göteborgs Universitet

Sammanfattning
Forskning av autonoma teknologier i moderna fordon bedrivs i en allt ökande grad.
Under lång tid har traditionella algoritmer för datorseende varit den primära meto-
den för att analysera kameramaterial, som används för att bistå säkerhetsfunktioner,
där beslutsfattandet har varit en produkt av manuellt konstruerade beteenden. Un-
der de senaste åren har djupt lärande visat sig ha extremt bra förmågor för både vi-
suell igenkänning och beslutsfattande i system av typen end-to-end. I denna rapport
föreslår vi en lösning för att införa redundans genom att kombinera deep learning
med traditionellt datorseende för att minimera osäkert beteende i autonoma fordon.

Systemet består av en computer vision-algoritm för vägfils-lokalisering i kombina-
tion med ett helt anslutet Deep Neural Network. Systemet kombinerar fördelarna
med båda teknikerna genom att bygga en kontrollalgoritm som är ansvarig för att
konsolidera delsystemberäkningarna av rätt styrvinkel som används för att hålla
fordonet inom körfältet.

Den föreslagna lösningen visar att vi kan öka systemets prestanda genom att tillämpa
en kombination av båda teknikerna i en simulator, vilket resulterar i ett säkrare sys-
tem än vi kunde uppnå med teknikerna separat.

Nyckelord: deep learning, computer vision, vägfils-lokalisering, autonoma fordon,
deep neural networks.
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Foreword
This report was written as part of our bachelor’s thesis in Computer Science at
Chalmers University of Technology, Department of Computer Science and Engi-
neering, as the final part of our bachelor’s degree. This project was part of a larger
cross-functional project, the Sigma Project, where the goal was to build an au-
tonomous miniature car. The Sigma Project was initiated by Sigma Technology
and consisted of eight students from multiple disciplines working towards a common
goal. The goal of this project was to research and develop safe decision making for
a miniature car by using computer vision and deep neural networks. Albin Falk was
mainly responsible for developing the simulator and communication, whereas David
Granqvist was mainly responsible for developing the deep neural networks.
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1
Introduction

Background

Autonomous technologies is a highly attractive research field within computer sci-
ence and it consists of many areas, where artificial intelligence and machine learning
are at the forefront.

During the last few years Deep Learning (DL) has demonstrated its extraordinary
computational potential by transcending its abilities into more and more complex
areas, where pattern matching, image recognition and complex game play describes
a small selection of examples. This newly demonstrated computational potential
makes deep learning a highly desirable field of knowledge, competence and research
for many companies within many different fields of work.

An area that has started to express great interest for this technology is the automo-
tive industry, where deep learning is being applied as a mean of enabling autonomy
in vehicles. The benefit of autonomous cars are many, including less emissions due
to traffic flow, higher utilization due to car fleets, and safety due to less human
errors. As one of Sweden’s largest consultant companies, with consultants working
closely with the automotive industry, this technology presents a highly valuable area
of interest and competence for Sigma Technology and its partners. Therefore an in-
troduction to research regarding autonomous technologies and safety requirements
for vehicles that apply the technology is a highly valuable asset.

Purpose

The main purpose of this project is to investigate how a combination of traditional
computer vision techniques and modern Deep Neural Networks can minimize unsafe
behaviour in autonomous vehicles.

The intended result will consist of a distributed system with multiple components
working in synergy, including a control server1 and multiple control units2 with a
supporting communication system. It will also consist of a customized simulator
and a Deep Neural Network (DNN) modified for this project. Furthermore, an eval-
uation of the solution and its performance will also be presented.

1Central server making the autonomous decisions
2Unit responsible for controlling the vehicle and collecting telemetry
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1. Introduction

Cross-functional project

This thesis project is part of a larger cross-functional project at Sigma Technology,
referred to as the Sigma Project throughout this report. The Sigma Project group
consists of the following four teams with two members in each team: Computer Vi-
sion (CV), Product Development (PD), Mechatronics (MT) and this team, Decision
Making (DM). The common goal for the Sigma Project was to build an autonomous
miniature car.

Delimitations

Since the Sigma project is cross-functional, it’s very important to separate the re-
sponsibilities. This project is solely focused on software development and our results
will therefore not include anything related to hardware, that area will instead be
part of the MT project. The results will also not consist of anything related to com-
puter vision, it will instead be part of the CV project. Furthermore, the simulated
and physical car will only be functional in the environment used during development
where there is good lighting conditions and clearly visible roads without too much
noise.

The software of this project will be developed using many existing frameworks and
some of the code will be continued work on existing open source projects. This
project will not be focused on performance so the result will not be optimized, this
applies to the simulator, communication and DNN. The DNN will only be trained
towards a level of accuracy sufficient for enabling the vehicle to follow lanes in a
slow speed.
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2
Theory

The theory consists of machine learning fundamentals, neural network theory, au-
tonomous car principles and safety requirements within the automotive industry.
The theory behind this thesis has had a heuristic focus, and has therefore mainly
been focused on knowledge about modern frameworks for building deep neural net-
works.

2.1 Artificial Intelligence
Artificial Intelligence (AI) is a field within computer science which defines itself as
the study of "intelligent agents". It is a broad field with many subsets, such as
machine learning for example [1].

1950 1960 1970 1980 1990 2000 2010 2020

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.1: Artificial intelligence timeline

Machine Learning
Machine Learning (ML) is a dominant field within artificial intelligence and it’s com-
monly defined as a "field of study that gives computers the ability to learn without
being explicitly programmed". The foundation of ML is to construct algorithms
that can learn and act upon given data sets [2].

Machine learning can be divided into two primary categories, supervised and unsu-
pervised learning. In addition it also have a less commonly known category called
Reinforcement learning [3].

Supervised learning The goal of supervised learning is to learn a mapping be-
tween inputs to outputs, that yields the desired output for all inputs used in a set
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2. Theory

of labeled input/output-pairs [3]. A supervisor is used to provide the correct values
of the output, used to compare with what the actual output of the mapping is. By
having a supervisor present, the mapping can be adjusted towards the correct input
to output mapping [4].

Unsupervised learning In unsupervised learning, the supervisor used in super-
vised learning is not present, and the only thing that is accessible is the input data
[4]. The goal of unsupervised learning is to discover structures of interest based on
the data, which is done by finding regular patterns in the input data. The learning
consists of an unconditional density estimation, i.e. a contexture of certain patterns
appearing with higher frequency than other patterns from the input data [4], which
is more generalizeable and complex than the supervised approach[3].

Reinforcement learning Reinforcement learning can be described as supervised
learning, where an intelligent agent makes decision while receiving rewards or penal-
ties based on the outcome of its decisions. The agent finds the decisions that maxi-
mizes its reward by running the network repeatedly, and thereby creating the net-
works policy for learning [4]. A single incorrect action is of minior importance in
reinforcement learning algorithms, it’s instead a sequence of correct actions that is
the desired behaviour of the algorithm [4].

End to End Learning In End to End Learning all steps required to obtain the
resulting output of the Artificial Neural Network (ANN) is carried out within the
network. An ANN that applies end to end learning doesn’t have any intermediate
steps or sub tasks performed outside of the network [5].

Neural Networks
An Artificial Neural Network(ANN) is a network composed of several simple pro-
cessing units, referred to as neurons, that is interconnected between each other [6].

Each neuron in the ANN produces a sequence of activations that propagates through
the network, activating neurons by weighted connections to itself and other previ-
ously activated neurons in the network. The output neurons of the ANN may
influence the surrounding environment by triggering actions, where learning of the
network is perceived when the weights of the network are adjusted in such a way
that the ANN approaches the desired behaviour when these actions are triggered [6].

The construct of a neural network and its structures takes inspiration from neuro-
science, where the neuron in an ANN is a simplified model of the biological neurons
in the brain [7].

Feed-forward Neural Network A feed-forward neural network is defined as a
neural network where the connections only go in one direction; from the current layer
to the adjacent forward layer, but not the other way around [9]. It distinguishes itself
from recurrent neural networks by not having any feedback loops in its architecture.

4



2. Theory

(a) Biological neuron (b) Artificial neuron

Figure 2.2: Comparison of biological and artificial neurons, From [8]. Reproduced
with permission.

Fully-connected Neural Network A fully-connected layer is defined as a net-
work where every unit is connected to every unit of its adjacent forward layer [9].

Loss function A loss function is used in supervised learning for calculating the
difference between the output of an ANN and the correct output, specified by the
supervisor.

Gradient Optimization The value of the loss function defines a search direction
based on the ANN’s weights, that the weights are shifted towards. The size of the
shift is determined by a parameter known as the learning rate [10].

Backpropagation Backpropagation applies the gradient optimization by prop-
agating backwards through the network, adjusting the weight of the network to
compensate for the error calculated by the loss function [11].

Convolutional Neural Networks

A Convolutional Neural Network (CNN) have many similar features of regular neu-
ral networks, it consist of processing units that apply a process of learning that uses
weights and biases1 and process data by adjusting its connections. In some cases the
network thereafter sends the processed data through a squashing non-linearity that
maps the output value to a specified range, more commonly known as a squashing
function. It also employs a loss function as a measurement for observing and opti-
mizing the learning rate of the network [10].

What separates a CNN from a regular ANN is the fact that they are created specif-
ically for processing data represented as multi-dimensional arrays. Since a common
way of representing image data is by using an array of the dimensions height * width
* 32; CNN’s are often used for processing this type of data, when using neural net-
works [12].

1Biases are neurons with constant values, used for shifting the curve of the loss function to the
left or the right

2RGB channels
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2. Theory

The structure of a CNN consist of a series of stages with an input layer, an output
layer and one or more convolutional layer, pooling layer, squashing non-linearities
and fully connected layers [12].

Deep Learning
Deep learning is based on observations of how the brain processes information, where
it is believed that each level in the brain is learning features at increased abstraction
levels [3]. The goal of deep learning in a machine learning context is to mimic this
behaviour in the form of a computer architecture [3].

(a) Convolutional Neural Network

Figure 2.3: Image representing a Convolutional Neural Network, each layer intro-
duces a higher level of abstraction, From [13]. Reproduced with permission.

Deep Neural Networks Deep Neural Networks (DNN’s) are a sub-field of deep
learning where one of two main structures is a multi-layer perceptron and the the
other main structure is a deep auto-encoder. A multi-layer perceptron is more for-
mally described as a deep and fully-connected feed-forward neural network using a
supervised approach [3] and a deep auto-encoder is more formally described as a
feed-forward neural network with the goal of predicting the input to the network.
The deep auto-encoder takes a approach that is more closely related to unsupervised
learning [3].

The Nvidia Model
The NVIDIA model describes the architecture of a CNN proposed by researchers at
Nvidia in the paper End to End Learning for Self-Driving Cars [14]. The authors
of the paper proposes that this architecture demonstrates the advantages of using
end to end learning by optimizing all processing steps of the network simultane-
ously, while generating smaller systems by having self-optimization of the systems
components, rather than having criteria selected by humans, which does not always
guarantee the best performance of the system [14].

The architecture consists of 9 layers in total, consisting of one normalization layer
followed by five convolutional layers and three fully connected layers.

6



2. Theory

Figure 2.4: Layers in the NVIDIA model, From [15]. Reproduced with permission.
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2. Theory

2.2 Autonomy & Safety
A Automated Drive System (ADS) can be structured in many different ways and
have significant differences in the level of automation. Therefore, the SAE (The
International Society of Automotive Engineers) presented the classification standard
J3016, in 2014, that identifies six levels of automation, ranging from no to full
automation [16].

Figure 2.5: The six levels of automation, From [17]. Reproduced with permission.

The J3016 standard defines the different levels of automation based on the auto-
mated features of the vehicle, as well as to clarify what role the driver have with
regards to the operational parts of controlling the vehicle, for each level of au-
tomation. The standard also introduces definitions commonly used when discussing
autonomous vehicles, such as the dynamic driving task3, and driving mode4.

Safety Requirements

The international standard ISO 26262 is a widely accepted safety standard of soft-
ware in the automotive industry. The standard consists of ten main parts detailing
different areas of the development process [18].

As an important part of ISO 26262 ASIL (Automotive Safety Integrity Level) pro-
vides a way of classifying the safety risks of an automotive system in an abstract way

3The operational and tactical aspects of the driving task (strategic aspects excluded)
4Driving scenario with distinct requirements
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2. Theory

by assessing three measurements of the system. These measurements consist of a
severity classification, the probability of the event occurring and the controllability
of the hazardous event [18].

9
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3
Hardware & Software

3.1 Hardware

Development boards

Two development boards operate as nodes in a distributed system on the physical
car. The main development board used for running the control server and Deep
Neural Network (DNN) is the Nvidia Jetson Tegra X2. It is equipped with an ARM
processor and a CUDA GPU. The other development board, used for the control
unit on the physical car, is a Arduino MEGA.

Table I: Specifications of the two development boards

Nvidia Jetson Tegra X2 Arduino MEGA 2560

CPU ARM Cortex-A57 @ 2GHz +
NVIDIA Denver2 @ 2GHz 16Mhz (ATmega2560)

GPU 256-core Pascal (CUDA) -
Memory 8 GB 128-bit LPDDR4 256 KB Flash
Storage 32 GB eMMC 5.1 -
OS Ubuntu 16.04 LTS -

Cameras

The system is equipped with two cameras; the Genius F100 with 120 degrees hor-
izontal field-of-view and the Intel RealSense R200 equipped with a regular RGB-
sensor as well as with two infrared sensors for depth perception.

Table II: Camera specifications

Camera Intel (3 sensors) Genius Webcam
Color sensor Infrared sensors Color sensor

Resolution 1920x1080 (Full HD) 640x480 (VGA) 1920x1080 (Full HD)
Aspect Ratio 16:9 4:3 16:9
FOV (DxVxH) 77x43x70 70x46x59 N/AxN/Ax120
Frame Rate 30FPS 30/60FPS 30

11



3. Hardware & Software

Sensors

The system is also equipped with ultrasonic sensors, which measure distance in a
single direction using sound waves. This functionality was also replicated in the
simulator.

Data link

Ethernet is used as the data link between the development boards.

3.2 Software
This section covers the software used during development.

TensorFlow

TensorFlow is an open source framework created for mathematical operations on
multidimensional data arrays (Tensors). Because of the flexible architecture of the
framework different hardware configurations can be run using the same API.

TFLearn

TFLearn is a modular high-level API for deep neural networks using TensorFlow,
which provides network-layers and helper functions for the most commonly used
deep learning models. Furthermore TFLearn enables fast prototyping and experi-
mentation by providing easy revision of implemented models while still providing
access to the underlying TensorFlow API.

Unity

Unity is a cross-platform game engine commonly used for developing ordinary video
games for platforms such as computers (Windows, Linux and Mac), mobile phones
and consoles (Xbox, Playstation etc). It was used to build the simulator of the
car and its environment. The two main reasons for choosing Unity was because of
previous experience as well as the fact that the project we used as a base for the
simulator was built in Unity.

Cuda

CUDA is a programming language which allows everyday programmers to access the
power of parallell execution in GPUs. The original purpose of GPUs was to make
visual calculations, but primarily thanks to Nvidia’s CUDA the GPU platform can
be used in areas such as finance and physics. CUDA is crucial for achieving high
performance in machine learning and deep learning. This project was developed
with CUDA enabled frameworks [19], [10].

12



3. Hardware & Software

Platform.IO

The native Arduino integrated development platform (IDE) is often fully sufficient for
small projects, but due to its limited functionality Platform.IO was chosen instead1.
The main reasons for this is that PIO supports cross-platform development platform
with a built-in dependency manager.

1http://platformio.org/

13



3. Hardware & Software

14



4
Methods

Software development
The software development was mainly done on laptops, in multiple operating systems
and programming environments, without built-in GPUs. To enable GPU access, a
remote desktop solution was set up on the main development board, the Jetson.

Training sessions
To enable fast training sessions of the network, a private machine was set up with
a training environment and remote access software, allowing remote training while
working on other parts of the project.

Evaluation of results
Evaluation of the performance differences between the DNN based approach, the
computer vision based approach and the approach of combining the two technolo-
gies was carried out by introducing a common performance based metric.

Since the metric of evaluating autonomy, proposed by Nvidia in the report End to
End Learning for Self-Driving Cars[14], were sufficient for this projects demands of
evaluating the systems performance, their methodology was applied.

autonomy = (1 − (Number of interventions) ∗ reaction time1/elapsed time)

Thereafter, a way of measuring the number of interventions of the system was re-
quired, where a twofold solution was chosen. The solution consisted of one measure-
ment that was proprietary to the simulator, and another measurement which could
be applied to the miniature car as well.

The proprietary measurement was conducted by applying a system using check-
points on the track combined with collision objects the outer edges of the track in
the simulator. When the simulated car collided with a collision object, one inter-
vention was added to the sum of interventions and the simulated car’s position on
the track was restored to the last checkpoint it passed.

1The amount of time required for a human driver to detect a hazardous event, perform action(s)
to achieve safety and giving back control to the autonomous system

15



4. Methods

The other measurement was applied by structuring the control unit after the concept
proposed by Wagner & Koopman2 in the report Challenges in Autonomous Vehicle
Testing and Validation[20], as an actuator/monitor-pair; where the actuator was
represented by the control unit of the system, and the monitor was represented
by a stand-alone test-module. The monitor was responsible for cross-checking the
actuator, by running tests that would ensure that the proposed action was not an
unsafe operation, where an unsafe operation was predefined as steering towards an
obstacle3. By counting the number of times the monitor had to intervene because
of an unsafe operation, the amount of interventions was thereafter multiplied by the
reaction time of a human4 and thereafter divided by the total amount of time the
system had been active.

Figure 4.1: Monitor/actuator model, From [21]. Adapted with permission.

Cross-functional implementations

Arduino control unit
The Arduino control unit on the physical car was implemented in collaboration with
the MT team, where the steering algorithm and cruise control was developed by the
MT team and the communication was developed as part of this project.

At the point in time when the development of the control unit and its communica-
tion began, the communication for the simulator control unit was already functional.
Due to this, the task was to implement a translated solution.

Inter-process communication
When running the control server in a computer vision mode, where the server uses
the computer vision algorithms, the work of tracking lanes is distributed to an
application developed by the computer vision team. To achieve this implementation,
a TCP socket implementation was made in collaboration with the computer vision
team. The control server sends images and retrieves calculated steering angles over
IPC.

2Different ASIL levels for the actuator/monitor have not been adopted in this project
3An obstacle register as detected when triggered by an ultrasonic sensor of a distance < 0.1 m
4The reaction time was calculated to be 3 seconds for the miniature car
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4. Methods

Figure 4.2: Inter-process communication flow.

Dataset
The dataset used in this project consist of images and car telemetry collected from
the simulated car, as well as the physical miniature car.

Documentation
During the course of the project there was continuous work on documenting all the
components of the project, simplifying future work on this project.
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5
Implementation

Udacity

Udacity is an educational website with online courses in many areas of computer
science1. Much of their learning material acted as a base for this implementation,
specifically material from their Self-driving car-engineer nanodegree program. As
part of this program, they have published an open source project under the MIT
license, containing a simulator and a control server.

Control server

Control server refers to the server which is responsible for reading input and gener-
ating decisions. The implementation was initially based on the implementation in
Udacity’s project called Behavioural cloning2, where a DNN is the main factor in
the decision making. During the course of this project the whole control server had
to be rewritten due to the change of communication method, see Communication.

The control server was also extended with functionality to read visual input from
multiple sources such as the Intel camera and video files whereas the Udacity version
only can read input from the simulator. The control server has two execution modes,
either training or running and is structured like a typcial socket server using TCP.
It also has functionality to run with different algorithms and neural nets, in our case
both the DNN and the CV team’s implementation of lane keeping, see Inter-process
communication for more on this.

1https://www.udacity.com
2https://github.com/dyelax/CarND-Behavioral-Cloning
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5. Implementation

c :\>python cs . py −h
usage :
cs . py [−h ] [ lane_algo ] [ camera_type ] [ model ] [ c l i en t_enab l ed ]

Control s e r v e r

p o s i t i o n a l arguments :
lane_algo Lane keeping a lgor i thm (dnn/cv )
camera_type Input video type (cam/vid /sim/sim2 )
model Path to model h5 f i l e .
c l i en t_enab l ed true / f a l s e

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t

Figure 5.1: Control server help printed with the -h command for an overview of
the run modes.

Control units
Control unit refers to the unit that is responsible for controlling the vehicle’s motor
and steering, but also collecting telemetry from the car. A control unit is im-
plemented as part of both the simulated and physical car, for a uniform way of
controlling both cars from the control server.

Simulator
The physical car was set out to be the main focus of the project, but to not be
dependent on working hardware we decided to develop a simulation environment.
The main reasons for this is to enable training, validation and fast development
iterations. It was decided that the goal was to develop a simulated environment in
a way that is interchangeable with reality.

Figure 5.2: Both the simulated car and physical car can be used to connect to the
control server, which runs the decision making. Both cars have a unified interface,
the control unit.

20



5. Implementation

Communication
The communication is one of the most critical parts of the project due to the fact
that it has to work efficiently in a cross-platform setting. This means that the com-
munication has to be functional in Python (control server), Mono (simulated control
unit) and C++ (physical control unit), all using Ethernet and TCP communication.

The existing communication provided in the Udacity project was built in the high-
level framework Socket.IO (SIO)3. SIO was developed mainly for use in web appli-
cations and the choice to use it in the Udacity project was probably motivated by
its simple integration in high-level applications such as Unity games and Python
applications. During the research and experimentation with Socket.IO it was con-
cluded that an alternative communication method had to be used. The conclusion
was based on the fact that SIO had a huge overhead and that it took too much
control over the data flow with its event based system. During experimentations
with SIO on the physical control unit (Arduino) there was also a lot of problems
getting a stable connection up and running, probably due to differences in the pro-
tocol implementations.

The project group decided that a new communication method had to be developed
for the Udacity project, which was used as base for this project. This means that
both the control server and control units had to use the new communication method.
It was also decided that the most suitable communication method was TCP due to
its reliability, flexibility and extendability.

To achieve effective communication with a low overhead, but still enable fast mod-
ifications to the data sent over TCP, the data is encoded in the JSON-format and
sent using a custom protocol built on top of TCP. The custom protocol was needed
because TCP only guarantees that every byte should be transmitted in a correct
order, but no data regarding the message size. The custom protocol was structured
like the figure below. The first part of the message contains an integer representing
the size of the remaining message (except delimiter) which is followed by a delim-
iter character and then the message content. This way, the receiver can start with
reading until the delimiter and then parse those bytes into an integer which is used
to read the correct message content.

Figure 5.3: Visualization of the custom protocol built on top of TCP.

3https://socket.io/
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Neural network

Research and assessment of modern frameworks for creation and management of
Deep Neural Networks (DNN) were conducted where relevance, performance and
the learning curve of the framework were important factors. This led us to conclude
that TensorFlow for providing an effortless backend to manage neural networks,
in combination with TFLearn for providing an easy to use frontend for structures
and utilities in TensorFlow, was the best frameworks for our purposes. With these
frameworks we were able to utilize the GPU on the Nvidia Jetson TX2 development
board as well as use the GPU on the remote computers used to train the DNN. The
goal with this was to decrease time used for training and inference which was of great
significance since the time of this project was highly limited and since utilization of
the GPU on the development board is a key part of enabling real-time performance
of the system.

Furthermore, another key part of the decision of the frameworks was the ease of use
and as TFLearn consist of a high level API for DNN’s it enabled rapid development
and prototyping which was very important for trying different configurations and
having the ability to tweak and optimize significant parameters in a fast and easy
way. The DNN that we based the system’s DNN on had a similar approach and
used TensorFlow in combination with Keras, however after researching these frame-
works we chose TFLearn over Keras since TFLearn is a wrapper optimized for using
TensorFlow, while Keras is a wrapper optimized for using TensorFlow or Theano as
backend frameworks and was therefore not as optimized as using TFLearn.

During research of the frameworks another benefit of using TFLearn was discovered,
namely that TFLearn has support for TensorFlow’s graphical visualization tool Ten-
sorBoard enabled by default. With this tool, the structure of DNN’s, as well as the
parameters of the network over time could easily be tracked and adjusted.

Network Architecture

The project’s DNN was initially be based on an implementation used for a project
called behavioural cloning in the Udacity Self-driving car-engineer nanodegree pro-
gram4.

The underlying structure of the DNN is a fully connected Convolutional Neural
Network (CNN) known as the Nvidia Model[14] which is optimized for calculating
the steering angle of the car. The network structure adapted well to the requirements
of this project, and is optimal since the output from the network only consisted of
a steering angle.

4https://github.com/naokishibuya/car-behavioral-cloning
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Figure 5.4: Overview of the neural network running, From [22]. Adapted with
permission.

Since the research of frameworks for creating and managing DNN’s resulted in a
choice of using TFLearn and TensorFlow, the original Udacity implementation had
to be translated from using Keras to TFLearn instead.

Training

An overview of the training process can be seen in figure 5.5 below. Images from the
dataset were preprocessed by a series of augmentations consisting of random rota-
tion, shadows and brightness levels. The augmented images were then fed through
the network, resulting in a steering angle as the output. The steering angle of the
network were thereafter compared with the correct steering angle of the image from
the dataset, the difference between the steering angles were thereafter propagated
backwards through the network and was used to adjust the weights of the network
to decrease the value of the loss function.

Figure 5.5: Overview of the neural network in training, From [23]. Adapted with
permission.

Hyperparameters of the network Training of the DNN was initially performed
by using the default values of the hyperparameters5 taken from the DNN that the
systems DNN was based on, as seen in table 5.1 below. This was done to estab-
lish a base line for the evaluation of how the training of the network was progressing.

5Hyperparameters are distinguished from standard model parameters by the fact that they
cannot be directly learned from the regular training process of the network
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Table III: Initial hyperparameters of the DNN

Loss function Mean squared error (MSE)
Gradient optimizer algorithm Adam6

Learningrate 0.001

The learning rate was the only hyperparameter that was adjusted during the train-
ing process since the results from using the default values for the gradient optimizer
algorithm and the loss function were found to be sufficient for this projects pur-
poses. This was decided by researching common adjustments and effects of different
hyperparameter values in ANN’s. Since the learning rate was found to be one of
the most commonly adjusted hyperparameters with a large impact on the results, it
was chosen as the primary hyperparameter to adjust for achieving desirable results
from the training. The different learning rates showed that the initial value of the
learning rate of 0.001 was the best, as can be observed in the graph below.

Figure 5.6: Loss of the DNN

Development boards

Two development boards were chosen as nodes in the distributed system on the
physical car.

The main development board chosen for running the control server and DNN is
the Nvidia Jetson Tegra X2. It is equipped with an ARM processor and a CUDA
GPU and was chosen mainly because of the GPU, making GPU acceleration of
the DNN possible.The GPU acceleration greatly decreases the compute time of
neural networks by enabling parallel computation of the different operations that are
applied through the network[25]. The other development board, or micro controller,
is the Arduino Mega which was chosen as the physical control unit, responsible for
controlling the vehicle and collecting telemetry.

6Adam is thoroughly described by Kingma & Ba in the paper Adam: A method for stochastic
optimazation[24]
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Cameras
To experiment with multiple techniques for analyzing the surrounding environment,
a stereo camera was chosen because of its depth perception. The initial plan was
to use the ZED Stereo Camera from Stereolabs, but another camera had to be used
due to shipping delays, the Intel RealSense R200. During development the group
came to the conclusions that the RealSense field-of-view was too narrow for some of
the road curvature, and that there was a need for another camera. For that reason
another camera was added, the Genius F100, which has a high field-of-view of 120
degrees and therefore works in sharp curves.

Sensors To complement the camera ultrasonic sensors were added, which measure
distance in a single direction with a pulse-echo. The sensors were chosen for stopping
the car in case of emergency, but were also considered for adding redundancy to the
system.

Data link
This choice of using Ethernet as data link was made during a discussion with one
of the supervisors, Alixander, where he motivated his recommendation based on
its universality and debuggability compared to the CAN bus, which was another
candidate. This choice was also motivated by the fact that the Jetson has built in
Ethernet and also that the Arduino can be extended with a cheap Ethernet shield.
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6
Results and Discussion

6.1 Results
The results of this project include successful implementations of all the components
in the distributed system, including the simulator, control server, control units and
DNN, all of which were crucial for achieving the purpose of this project.

Our findings from the investigation show that the performance in the simulator in-
creased slightly when applying the combination of the computer vision based lane
detection algorithm, the DNN and the system’s control unit. The results from the
physical miniature car was not evaluated, since the motor controller of the miniature
car performed unreliably at the time of evaluation.

In the simulator the following results were measured. The computer vision based al-
gorithm alone consistently accomplished a score of 55% level of autonomy, the DNN
based approach alone consistently produced a score of 94% level of autonomy, while
the solution of combining both techniques accomplished a 96% level of autonomy1.

Table IV: Level of autonomy for the different solutions

Level of Autonomy Technique(s)
55% CV
94% DNN
96% CV + DNN + Control Unit

6.2 Discussion

Learning curve
Machine learning and deep learning are huge research fields with complex math and
technicalities, historically there has been a high threshold of understanding before
reaching the ability to use neural networks. However, since the introduction of high-
level API’s such as TFLearn the knowledge threshold have been lowered significantly.

The most common neural network structures and algorithms can be applied by us-
ing these high-level API’s which provides a basis to start from in most projects, yet

1The results were obtained using a maximum speed of 20 km/h
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basic knowledge regarding the structural components of the neural network is still
needed to construct an effective solution.

During this project much of the time regarding theory has been dedicated towards
basic understanding of neural networks and it’s basic structures, which should be
accounted for by anyone that wants to utilize DNN’s to their full potential.

Hardware limitations
The use of deep learning has increased exponentially during the last few years and
it is thanks to development of both hardware and algorithms and of hardware.
Without Graphical Processing Unit (GPU) processing the training might still be
possible, but running the DNN in realtime would probably not be possible. This
means that the process of developing, testing and running the DNN was very GPU
dependent. The development was primarily done on laptops without GPUs and
therefore the performance was really bad and much of the training etcetera had to
be run on desktop machines in remote locations.

Software dependencies
The goal of the project was to implement neural nets rather than developing ev-
erything from scratch. To achieve this we examined existing solutions and tried to
use as many frameworks and libraries as we could. Though this has helped us a
lot and heavily reduced the development/implementation time, this approach came
with another issue. Many of the libraries/frameworks/solutions required a lot of
dependencies. Many of the dependencies could be installed easily, but some of them
had to be compiled manually, which in some cases took a lot of time or didn’t even
work. Unfortunately we had to spend a significant amount of time upon managing
software dependencies during the course of this project.

Simulator
During initial phase of the project we decided to work with a simulator to not be
dependent of hardware, and this was probably the most important decision we took.
It took us a lot of time to develop the simulator and its communication, but without
it the project would probably not have been finished since the physical car wasn’t
fully functional until the last week of the project.

Cross-functional team
The Sigma Project, which this thesis is a part of, introduced a way of working that
combined the expertise of several different fields which in turn yielded a product with
a broader scope than the project would have done with a single engineering discipline.
However, it did also introduce a greater complexity in project management since
tools and methods differ between the different areas of expertise. Another factor
that greatly influenced this complexity was the increase in size of the team, which
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affects organizational parts of the project and reflect the importance of the project
manager.

Improvements
Much of the code that was developed as part of this project is unfortunately not very
parallel in execution. The reason for this was because the main focus of the project
was optimizing the DNN rather than spending time on perfecting a non-existing
solution.

Sustainable development
During the course of this project we have come to several understandings regarding
how autonomous cars can impact a sustainable development.

Social development, where autonomous cars probably will have the biggest impact,
has been the main focus to study. Safety of humans is the most critical area and
our understanding is that these new technologies will decrease the number of traffic
accidents by a tremendous amount, if developed and validated in a correct way. An-
other effect that autonomous cars can have within social development is improved
accessibility of transportation for the elderly, handicapped and the youth; given
that drivers might not need to be active or even have a drivers license if the tech-
nological and juridical challenges behind making a vehicle fully autonomous are met.

Environmental development is another area which will probably be affected by au-
tonomous cars, where the two main areas are less emissions and less amount of
vehicles. Less emissions will be the effect of cars driving effectively and having a
much better flow in the traffic, so less energy is wasted. Much points towards a
decreased demand for owned cars, if fully autonomous cars will be available, mainly
because of fleet models where one autonomous car can be shared between a group
of people.

Conclusion
This project set out to investigate how a combination of traditional computer vi-
sion techniques and modern Deep Neural Networks (DNN) can minimize unsafe
behaviour in autonomous vehicles. Much of the development time was spent on
setting up the environment and everything needed to conduct the investigation.

Our results indicates that the DNN was the greatest contributor to the results ob-
tained from running the system in the simulator. However, when the different tech-
niques were applied on the hardware of the physical miniature car in a real world
environment, the shortcomings of the separate DNN were highlighted, demonstrat-
ing the fact that DNNs cannot be relied upon in environments for which they have
not been explicitly trained on. In that setting, our initial findings indicate that the
separate computer vision based approach outperforms the separate DNN.

29



6. Results and Discussion

Since both systems have their weaknesses, a combination of both computer vision
and deep learning is more accurate and safe than running any of the techniques
by itself when considering multiple environments. We therefore believe that this
combination is the safest way to develop autonomous behaviour, and that future
projects will benefit greatly from introducing a system that combines and utilizes
the strengths of traditional computer vision based techniques with the computational
potential of DNN’s.
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Acronyms

ADS Automated Drive System. 8, 32
ANN Artificial Neural Network. 4, 5, 32
API Application Programming Interface. 32
ASIL Automotive Safety Integrity Level. 8, 32

CNN Convolutional Neural Network. 5, 6, 22, 32
CUDA Compute Unified Device Architecture. 32
CV Computer Vision. 2, 32

DL Deep Learning. 1, 32
DNN Deep Neural Network. 1, 15, 19, 22–24, 27–30, 32

GPU Graphical Processing Unit. 28, 32

TCP Transmission Control Protocol. 16, 32
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Glossary

Backpropagation Backward pass of the network to adjust weights. 32

Caffe A deep learning framework. 32
Conda Package management system for maintaining dependencies. 32
cross-functional Multidisciplinary collaboration. 32

Ground Truth Term used to refer to direct observation. 32

Tensor Flow A deep learning framework. 32

Unity Game engine for game development. 32

Vagrant Tool for maintaining virtual environments. 32
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A
Tools

This appedix is an overview of the tools used during development process.

Git Used for version control.

Trello For providing access to the different sub-teams backlogs.

Slack An accessible communication plattform.

Google Drive Common file storage solution.

Conda A package management system for maintaining dependencies in Python
and other languages. Conda was chosen to have a shared development environment
for the control server.

Vagrant A tool for maintaining virtual environments. Vagrant was chosen for the
purpose of having a shared development environment while developing towards the
Jetson board.
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