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Microscopic understanding of the photoconduction effect in graphene
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We investigate the photoresponse of intrinsic graphene in an in-plane electric field. Toward that end, we
employ a microscopic approach that allows us to determine the time- and momentum-resolved charge-carrier
distributions as a result of the interplay between the field-induced acceleration of optically excited carriers and
Coulomb- and phonon-driven carrier scattering. Calculating the generated photocurrent that is determined by
the asymmetry of the carrier distribution, we reveal the microscopic foundation of the photoconduction effect
in graphene. In particular, we discuss the possibility of tuning the photocurrent via externally accessible knobs,
such as electric field, temperature, and substrate. Furthermore, we study the impact of Auger-induced carrier
multiplication on the photocurrent in graphene.
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In recent years, a wide variety of photodetectors based on
graphene have been demonstrated showing several advantages
over conventional photodetectors, such as a broad spectral
range and ultrafast carrier dynamics [1,2]. However, the
underlying mechanism of the photodetection is not always
clear, since different mechanisms can potentially induce
a photocurrent [1,3]: (i) the photoconduction effect relies
on increased conductivity due to a photoenhanced carrier
density, (ii) the photovoltaic effect describes the separation
of photoexcited electron-hole pairs in an internal electric
field generated in a p-n junction or a Schottky barrier, (iii)
the bolometric effect allows the detection of light through
a conductivity change induced by heating the sample via
absorption of photons, and (iv) the photothermoelectric effect
occurs if a heat gradient is created by photon absorption that
is converted into a voltage difference via the Seebeck effect.

The first graphene-based photocurrents were measured in
graphene-metal and metal-graphene-metal junctions [4–8],
where the photovoltaic effect is important. In further studies,
the photothermoelectric effect was shown to be the dominant
mechanism in the case without external bias [9–12], while
under bias additional contributions due to the photoconduction
and the photobolometric effects arise [13–16]. This class of
photodetectors is characterized by an ultrafast response, but it
does not allow the detection of low intensity radiation. To
detect also small numbers of photons, a high responsivity
(ratio of photocurrent to incident optical power) is needed.
The highest responsivities have so far been achieved in hybrid
photodetectors based on the photogating effect, which is a
particular example of the photoconduction effect [17,18]. In
these detectors, the photons are absorbed in quantum dots or
another graphene sheet separated by a tunnel barrier, where the
created charge carriers are trapped and act as a gate changing
the conductance of the graphene sheet.

To exploit the full potential of the graphene-based pho-
todetectors, it is important to understand the carrier dynamics
in graphene in an electric field under illumination, i.e.,
the microscopic origin of the photoconduction effect. In
particular, the recently theoretically predicted [19–23] and
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experimentally measured [20,24–26] carrier multiplication is
a promising ultrafast phenomenon since it creates additional
charge carriers through internal Auger scattering.

In a recent study, we investigated the carrier dynamics of
graphene in an in-plane electric field, revealing that field-
induced Auger scattering results in a significant charge carrier
density enhancement that we denote as dark carrier multiplica-
tion. We have found an asymmetric quasiequilibrium electron
distribution resulting from an interplay of field-induced carrier
acceleration and carrier-carrier and carrier-phonon scattering
giving rise to current amplification [27,28]. In this work, we
investigate the photoresponse of graphene in an in-plane elec-
tric field, where the photoconduction effect is expected to be
dominant, while under the assumption of uniform illumination
of a homogeneous sample the photothermoelectric effect can
be ruled out. Based on a microscopic approach within the
density matrix formalism [29,30], we derive graphene Bloch
equations allowing us to track the photoexcited charge carriers
in momentum and time, as they are accelerated by the electric
field and as they scatter with one another as well as with
phonons.

An electric field E pointing in the −x direction shifts carri-
ers in the kx direction in momentum space and induces a dark
current [27]. Scattering processes counteract the acceleration
and lead to a stationary carrier distribution ρ0

k [Fig. 1(a)],
which has an increased carrier density due to field-induced
dark carrier multiplication [27]. To study the photocurrent
dynamics, carriers are excited by a linearly polarized (in
the y direction) optical pulse of an exemplary energy of
0.6 eV, a temporal width of 1 ps, and a fluence of 1 μJ cm−2.
This creates a nonequilibrium carrier distribution with high
energetic electron-hole pairs [Fig. 1(b)]. These optically
induced charge carriers are accelerated in the electric field
and perform simultaneous Coulomb- and phonon-induced
scattering processes. This gives rise to an interesting carrier
and photocurrent density dynamics, which is the focus of this
work.

I. THEORETICAL APPROACH

To microscopically model the dynamics of optically excited
carriers in the presence of an electrical field, we derive
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FIG. 1. Electron acceleration and scattering in an electrical field.
Visualization of calculated electron distributions (blue areas) in
response to an in-plane electric field (a) before and (b) after an optical
excitation. Electrons become accelerated in the direction opposite
to the applied field. Carrier-carrier (c-c, red arrows) including
Auger processes (orange arrows) and carrier-phonon scattering (c-ph,
green arrows) counteract this field-induced acceleration until a
quasiequilibrium electron distribution is reached. Then, an optical
excitation (yellow arrows) creates a nonequilibrium distribution. The
excitation is asymmetric with respect to the Dirac point, since the
initial quasiequilibrium distribution is shifted and asymmetrically
broadened in the opposite direction of the field. As a result, the
optical excitation is weakened on this side of the Dirac point due
to the increased Pauli blocking. For the same reason, many-particle
scattering becomes also strongly asymmetric, reducing the initial
asymmetry of the quasiequilibrium electron distribution.

equations of motion for the electron occupation probability
ρλ

k = 〈a+
kλakλ〉, the microscopic polarization pk = 〈a+

kvakc〉,
and the phonon number n

j
q = 〈b+

qj bqj 〉. Here, we have
introduced a+

kλ, akλ (b+
qj , bqj ) as creation and annihilation

operators of electrons (phonons) in the valence or conduction
band λ = v,c (phonon mode j ) and the momentum k (q).
The derivation of the equations requires knowledge of the
many-particle Hamilton operator H . In this work, we take into
account the (i) free carrier and phonon contribution H0, (ii)
carrier-carrier Hc-c and (iii) carrier-phonon Hc-ph interaction
accounting for Coulomb- and phonon-induced scattering, (iv)
the carrier light coupling Hc-l that is treated on a semiclassical
level, and (v) the interaction of an external electric field E with
electrons Hc-f. The latter is given by

Hc-f = −ie0E ·
∑

k

a
†
kλ∇kakλ, (1)

with the elementary charge e0 and the electric field E.
Exploiting the Heisenberg equation, we derive graphene Bloch
equations in the second-order Born-Markov approximation,

ρ̇λ
k = �in

kλ

(
1 − ρλ

k

) − �out
kλ ρλ

k

±2 Im
(
�

vc,∗
k pk

) − e0

h̄
E · ∇kρ

λ
k , (2)

ṗk = i�ωkpk − i�vc
k

(
ρc

k − ρv
k

) − e0

h̄
E · ∇kpk, (3)

ṅj
q = �em

qj

(
nj

q + 1
) − �abs

qj nj
q − γph

(
nj

q − n
j

q,B

)
. (4)

It is a coupled system of differential equations describing
the dynamics of the time- and momentum-resolved electron
occupation probability ρλ

k (t), the microscopic polarization
pk(t), and the phonon number n

j
q(t). The dynamics of electrons

in the conduction and the valence band is symmetric in

the considered undoped graphene samples. The appearing
Rabi frequency is defined as �vc

k (t) = i e0
m0

Mvc
k · A(t) with

the free-electron mass m0, the vector potential A(t), and the
optical matrix element Mvc

k = 〈kv|∇k|kc〉. The + (−) sign
stands for λ = c (λ = v). Furthermore, we have introduced
h̄�ωk(t) = [εv

k − εc
k + iγk(t)] with the electronic dispersion

ελ
k and the dephasing rate γk(t). The time- and momentum-

dependent dephasing γk(t) and in- and out-scattering rates
�in/out

kλ (t) include carrier-carrier and carrier-phonon scattering
channels. The dynamics of the phonon number n

j
q is driven by

the emission and absorption rates �em/abs
qj (t) [31,32], nj

q,B is the
initial Bose distribution for the phonon number, and γph is the
experimentally determined phonon decay rate [33]. For more
details on the many-particle scattering and dephasing rates, cf.
Refs. [31,32,34].

Transforming the system to a moving reference frame
via the coordinate transformation k → k − e0

h̄
Et and d

dt
→

d
dt

− e0
h̄

E · ∇k, the field terms in the Bloch equations (2)–
(4) disappear [35]. Then, these equations correspond to the
standard graphene Bloch equations without electric field,
where the dynamics induced by the field is hidden in the
motion of the coordinates. Therefore, applying an electric field
induces a shift of ρλ

k and pk in k space. Numerically solving
the Bloch equations gives full microscopic access to the time-
and energy resolved carrier and phonon dynamics under the
influence of an electric field.

For two-dimensional materials, the current density is de-
fined as j(t) = − g e0

m0A

∑
if 〈f |p − e0A|i〉〈a+

f ai〉 with initial and
final states i,f , the sample area A, the momentum p = −ih̄∇r ,
and the degeneracy factor g, which equals 8 in graphene when
spin and valley degeneracy as well as electron-hole symmetry
are taken into account. Since we are interested in transport
properties, we consider only the intraband current density
together with a homogeneity assumption, such that state i

equals state f . The occurring quantity 〈f |∇r |f 〉 = im0

h̄2 ∇kε
c
k

can then be determined by solving the Schrödinger equation
for the Bloch functions |f 〉 yielding the current density [36]

j(t) = −g e0

h̄A

∑

k

ρc
k(t)∇kε

c
k. (5)

In conventional materials, the electronic dispersion is
parabolic, i.e., εc

k = h̄2k2/(2 m), and the current density is
proportional to the momentum k, such that the current diverges
with time in the case without many-particle scattering. The
linear band structure of graphene εc

k = h̄vF|k| with the Fermi
velocity vF leads to a qualitatively different behavior of the
current density. The latter is now proportional to the unity
vector ∇k|k| = ek = k/|k|. As a result, it is not affected by the
magnitude of the momentum but solely by its direction, and
thus in contrast to conventional materials the generation and
decay of the current density can be influenced by both carrier-
phonon and carrier-carrier scattering [37]. Field-induced shift
of the carrier occupation in the linear band structure induces an
acceleration of carriers up to the constant Fermi velocity, and it
results, in the case of no scattering, in a finite saturation current
for large times. The focus of this work lies in the photocurrent
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density that reads in graphene

jph(t) = j(t) − j0 = −g e0vF

A

∑

k

ρ
ph
k (t) ek, (6)

with the stationary current j0 before the optical excitation and
the photoinduced occupation change ρ

ph
k (t) = ρk(t) − ρ0

k.

II. CARRIER DYNAMICS

The crucial ingredient for understanding the generation and
decay of the photocurrent is the microscopic understanding
of the dynamics of optically excited carriers ρk(t). First, we
calculate the quasiequilibrium carrier distribution ρ0

k and a
dark current j0 in an electric field by solving the graphene
Bloch equations [Eqs. (2)–(4)] without optical excitation. This
situation has been thoroughly investigated in Ref. [27]. Once
a stationary distribution is reached, we optically excite the
system and study its optical response in terms of the generation
and decay of a photocurrent determined by the spectral
distribution of the electron occupation ρk(t); cf. Eq. (6).

The microscopic background of the photocurrent genera-
tion, defined as the current change in response to an optical
excitation, is illustrated in Fig. 2 for different electric field
strengths. To gain a better understanding of the underlying
carrier dynamics, we first study snapshots of the carrier
distribution ρkx

(t0) at the fixed time of 0.2 ps after the
excitation pulse [Fig. 2(a)]. The carrier distributions resemble
the stationary distribution ρ0

kx
, which are similar to Fermi

distributions that are shifted and distorted along the field
direction. The impact of optically excited carriers can be
seen in Fig. 2(b), where the photoinduced occupation change
ρ

ph
kx

= ρkx
− ρ0

kx
is plotted along the direction of the applied

field. Since the initial carrier distribution is shifted to the
positive side of the Dirac cone due to the presence of an
electric field, the Pauli blocking is stronger on this side such
that asymmetric optical excitation and many-particle scattering
occurs (Fig. 1). This causes a larger peak in ρ

ph
kx

on the left side
of the Dirac point, and this peak height difference decreases
with the field. A measure for the photocurrent density is the
asymmetry of the photoinduced carrier distribution �ρ

ph
k =

ρ
ph
|k| − ρ

ph
−|k| that is plotted in Fig. 2(c) for the exemplary field of

0.32 V μm−1. The blue (red) area corresponds to the region in
momentum space where the asymmetry is positive (negative),
i.e., more carriers are found on the right (left) side of the
Dirac point with respect to the quasiequilibrium distribution
without the optical excitation. Although the blue region is
spectrally broader, the amplitude of the red area is much larger,
resulting in an overall negative photocurrent density, as shown
in Fig. 2(d). Note that the negative photocurrent density stems
from asymmetries in both the scattering toward the Dirac point
and the optical excitation. However, the ultrafast carrier-carrier
and carrier-phonon processes dominate over the asymmetric
excitation in most situations.

A stronger electrical field induces a larger shift of
the carrier distribution in momentum space and enhances
the asymmetry of the entire distribution with respect to the
Dirac point. Although this induces an enhancement of the
asymmetric optical excitation and many-particle scattering,
the photocurrent actually increases due to the stronger impact

μ
μ
μ

ρ ρ

Δρ

FIG. 2. Microscopic view on photocurrent generation. (a) Snap-
shot of the carrier distribution ρkx

at the fixed time of 0.2 ps after
the excitation pulse (linearly polarized into the y direction, centered
at an energy of 600 meV corresponding to a carrier momentum
of 0.5 nm−1) for three different electrical fields. (b) Photoinduced
occupation change ρ

ph
kx

= ρkx
− ρ0

kx
in the field direction. (c) To

illustrate the impact of the excitation on the current generation, the
asymmetry of the distribution is quantified by �ρ

ph
k = ρ

ph
|k| − ρ

ph
−|k|

for the exemplary field 0.32 V μm−1. (d) Resulting photocurrent
density j

ph
kx

for different electric fields with the excitation pulse in
the background.

of the field-induced shift of optically generated charge carriers.
This leads to a less pronounced negative amplitude with
increasing electric fields [Fig. 2(a)]. Approximately 0.4 ps
after the optical excitation, we observe for the strongest applied
field that the photocurrent density even becomes positive; cf.
the blue line in Fig. 2(d). Again, this is due to the faster
acceleration of carriers in comparison to the backscattering
toward the Dirac point, which results in more carriers at the
right side of the Dirac cone and a positive asymmetry in the
carrier distribution [in analogy to Fig. 2(c)], giving rise to a
positive photocurrent density.

In a simplified picture, the generation and decay of a
photocurrent density in graphene in the presence of an electric
field can be understood as a four-step process: (i) The direct
response stems from the asymmetric optical excitation giving a
negative contribution to the photocurrent density. This effect is
important for small excitation energies and large temperatures,
where the Pauli blocking on the right side of the Dirac cone
strongly reduces the optical excitation on this side. (ii) The
many-particle scattering bringing charge carriers to the vicinity
of the Dirac point is also asymmetric due to the initial asym-
metric carrier distribution in the presence of an electric field.
This effect induces a negative contribution to the photocurrent
and is the dominant mechanism for the investigations per-
formed at room temperature in Fig. 2. (iii) The optically excited
charge carriers are shifted by the electric field. This results
in a positive photocurrent contribution and dominates the
photocurrent density when the many-particle scattering is sup-
pressed via strong screening (e.g., in high-dielectric substrates)
or Pauli blocking (e.g., at high temperatures). (iv) Finally, the
photocurrent density decays within a few picoseconds, which
is caused by carrier-phonon and carrier-carrier scattering
bringing the system back to its quasiequilibrium carrier
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distribution in the electric field. The negative and positive con-
tributions to the photocurrent density build up on a time scale
given by the pulse duration and decay within a few picosec-
onds, suggesting the possibility of ultrafast photodetection.

III. PHOTOCURRENT DEPENDENCE ON
TEMPERATURE AND SUBSTRATE

Having understood the microscopic mechanisms that gov-
ern the photocurrent, we now investigate how it can be
controlled by external experimentally accessible quantities,
such as temperature and substrate. Our calculations reveal that
at enhanced temperatures, the amplitude of the photocurrent
density becomes smaller; cf. Fig. 3(a). Increasing the temper-
ature corresponds to a much broader distribution with a less
pronounced asymmetry in the stationary carrier distribution
ρ0

k before the optical excitation [Fig. 3(b)]. Hence, the
photocurrent density, which mainly results from asymmetric
scattering, becomes smaller. At very large temperatures, we
observe the emergence of a positive photocurrent density
component approximately 0.2 ps after the optical excitation
[blue line in Fig. 3(a)]. Analogous to the field dependence,
the sign of the photocurrent density is determined by the
interplay between field-induced acceleration of the optically
excited carriers away from the Dirac point and counteracting
many-particle scattering processes bringing the carriers toward
the Dirac point.

To study this in detail, we define rates �i = d
dt

j |i ∝
ρ̇k|i = i

h̄
[Hi,ρk] with i = f,c-c,c-ph allowing us to distinguish

between the field (f), carrier-carrier (c-c), and carrier-phonon
(c-ph) contribution to the temporal evolution of the carrier
density. According to Eq. (6), the photocurrent is determined
by the underlying carrier distribution ρk(t). The latter is found
by solving the Bloch equations (2)–(4), where the different
contributions enter additively and can thus be distinguished
without switching off individual processes. Furthermore, the
resulting contribution to the photocurrent is defined as ji =∫

dt �i . In Fig. 3(c) the photocurrent is split into two parts,
j ph = jf + js, where jf describes the direct influence of the
electric field (in the presence of the other contributions) to
the photocurrent density, i.e., the shifting of optically excited
charge carriers generating a positive photocurrent density.
The second part js = jc-c + jc-ph includes carrier-carrier and
carrier-phonon scattering acting against the electric field and
inducing a negative contribution to the photocurrent.

At high temperatures, the field contribution jf becomes
dominant and gives rise to the observed positive photocurrent.
While the initial rise of jf and the underlying field rate �f re-
mains nearly unchanged with increasing temperatures, the de-
crease of the scattering rates �s in the first 0.2 ps due to higher
symmetry in the carrier occupation and therefore weaker Pauli
blocking is crucial [Fig. 3(d)]. Since carrier-carrier scattering
is more sensitive to Pauli blocking (two electronic scattering
processes), the rate decrease with increasing T is more pro-
nounced than in the case of carrier-phonon scattering. In fact,
the carrier-phonon rate almost stays constant, since the phonon
occupation becomes larger at higher T , compensating for the
general reduction of the scattering efficiency to a large extent.
Note that scattering with K-TO phonons is crucial here, since
the strength of the corresponding matrix element is the largest

ρ
Γ

Γ
Γ
Γ

FIG. 3. Temperature study. (a) Photocurrent density j ph
x for three

different temperatures T . (b) Snapshot of the carrier distribution ρkx

at the fixed time of 0.2 ps after the excitation pulse illustrating a
reduction of the asymmetry with respect to the Dirac point at large
T . Since the difference of the carrier distribution is very small in
the range between 100 and 400 K, we also show the extremely
high temperature of 700 K. (c) The ratio of the field- (jf) and
scattering-induced (js) photocurrent density determines the sign of the
photocurrent. At higher T , the field contribution becomes stronger
than the scattering contribution, resulting in a positive current. (d)
Temporal evolution of the field rate �f as well as the carrier-carrier
�c-c and carrier-phonon �c-ph scattering rate contributing to the
generation of the photocurrent density for two different temperatures.
The broader carrier distribution at higher T gives rise to a stronger
Pauli blocking and therefore considerably less efficient carrier-carrier
�c-c scattering.

and since its angular dependence favors backscattering across
the Dirac cone having the largest impact on the asymmetry
of the carrier distribution [32]. Having in mind that scattering
induces the negative photocurrent contribution in Fig. 3(a)
via carrier-phonon (green arrows in Fig. 1) and carrier-carrier
(red arrows in Fig. 1) scattering across the Dirac cone, the
reduced many-particle scattering explains the suppression
of the negative photocurrent contribution and the eventual
emergence of a positive current as the temperature increases.

As we have seen so far, carrier-carrier scattering has a strong
impact on the photocurrent density in graphene. It is thus inter-
esting to investigate how the photocurrent density changes for
different substrates, since the Coulomb scattering strength can
be controlled via the substrate-induced dielectric screening.
A higher dielectric constant of the substrate corresponds to
a stronger background screening and a weaker carrier-carrier
scattering. In this work, the substrate is assumed to be only
on one side of graphene. Here, we introduce an averaged
dielectric background constant εbg = 1

2 (εs + 1), where εs is
the static screening constant of the substrate (the standard
substrate is SiC) and 1 describes the dielectric constant
of air. The screening is determined by the static Lindhard
formula [30]:

ε(q,t) = 1 − 2
Vq

εbg

∑

k,λλ′

ρλ
k (t) − ρλ′

k−q(t)

ελ
k − ελ′

k−q

∣∣Cλλ′
q (k)

∣∣2
, (7)
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Γ

Γ
Γ
Γ

FIG. 4. Substrate study. (a) Photocurrent density j ph
x for three dif-

ferent substrates characterized by the dielectric background constants
ε

SiO2
bg = 2.45, εSiC

bg = 5.33, and an exemplary high-dielectric substrate
with εbg = 10. (b) Snapshot of the carrier distribution ρkx

at the fixed
time of 0.2 ps after the excitation pulse illustrating a higher asymmetry
for larger εbg. (c) The sign of the photocurrent density is determined by
the interplay of the counteracting field- (jf) and scattering-induced
(js) contributions. We find that the field contribution exceeds the
scattering contribution for large εbg explaining the appearance of a
positive current density. (d) Temporal evolution of the underlying
field rate �f as well as the carrier-carrier �c-c and carrier-phonon
�c-ph scattering rate for two different substrates. The carrier-carrier
scattering becomes considerably weaker for high dielectric substrates.

with the Coulomb potential Vq and the prefactor Cλλ′
q (k) =∫

dr 
∗
λ (k)e−iq·r
λ′(k) with the tight-binding wave functions


λ(k). The time dependence of the carrier distribution ρλ
k (t)

is explicitly taken into account by solving the graphene Bloch
equations.

Figure 4(a) shows the temporal evolution of the pho-
tocurrent density j

ph
x for three different substrates including

SiO2 (εbg = 2.45), SiC (εbg = 5.33), and an exemplary high-
dielectric substrate (εbg = 10). The larger εbg is, the stronger
is the substrate-induced screening of the Coulomb interaction
and the larger is the asymmetry in the carrier occupation ρkx

[Fig. 4(b)], resulting in a more pronounced negative amplitude
of the photocurrent density. For substrates with εbg > 5, we
observe the appearance of a positive photocurrent density
component approximately 0.5 ps after the optical excitation—
similarly to the observation at high temperatures in Fig. 3(a).
This behavior is due to the counteracting contributions of the
electric field and the many-particle scattering. The sign change
is directly mirrored by the ratio of the field- (jf) and scattering-
induced (js) photocurrent density contribution [Fig. 4(c)]. We
find that jf exceeds js for large εbg approximately 0.5 ps after
the optical excitation, explaining the positive current density
in Fig. 4(a).

While carrier-phonon scattering becomes more efficient
for large εbg due to a higher asymmetry in the carrier
occupation, the carrier-carrier scattering is generally strongly
reduced through the substrate-induced screening, resulting
in a considerable weakening of the scattering contribution
js. In particular, the Coulomb-induced asymmetric scattering

across the Dirac cone (red arrows in Fig. 1) is strongly
suppressed, explaining the significant decrease of �c-c in
Fig. 4(d). Additionally, Auger processes are also reduced,
leading to a smaller field rate (due to a smaller carrier density)
especially during the duration of the optical excitation, such
that the scattering dominates up to 0.5 ps. This is expressed in
Fig. 4(c) by small ratios of jf to js for large dielectric constants.
Moreover, carrier-phonon scattering, which competes with
carrier-carrier scattering, is enhanced. In total, the reduction
of the field rate and the increased phonon scattering explain
the more pronounced negative part of the photocurrent density
for high dielectric constants.

IV. TUNING THE PHOTOCURRENT

The amplitude of the photocurrent density determines
the responsivity of a photodetector, while its rise and
fall time determine the detector bandwidth. Since the origin of
the negative photocurrent is a result of an interplay between
the field-induced acceleration and many-particle scattering, its
rise is not exponential and therefore it is difficult to define a
rise time. However, we find that the temporal position of the
negative amplitude of the photocurrent density is independent
of temperature and substrate, since the behavior is governed by
asymmetric scattering. For higher substrates the asymmetry is
larger, but the scattering strength is reduced. The same holds
for increasing the temperature. The position of the minimum
can be tuned with the field, which is acting against the
asymmetric scattering by accelerating carriers away from the
Dirac point. The strength of the electric field defines the time
window for asymmetric scattering, i.e., a stronger field induces
a smaller time window resulting in an earlier appearance of
the minimum.

The description of the decay time of the photocurrent
is also complicated due to the presence of a zero crossing
under certain conditions. Starting from negative photocurrent
densities, field and relaxation processes compete with the
asymmetric scattering and determine the decay. When the
photocurrent density becomes positive, relaxation processes
and asymmetric scattering lead to a decay. Overall, the
photocurrent density decays faster for negative (∼2 ps) than for
positive current contributions (∼8 ps), reflecting the difference
between scattering- and field-dominated regions. In the first
case, the field supports the decay of the negative photocurrent,
while it acts against the relaxation processes and asymmetric
scattering in the second case.

The amplitude of the photocurrent and therewith the
responsivity of the photodetector (operating in the photo-
conductive regime) can be tuned with the electric field E,
substrate εbg, and temperature T ; cf. Fig. 5. The largest
amplitude can be reached at relatively small E [Fig. 5(a)],
relatively large εbg [Fig. 5(b)], and low T [Fig. 5(c)]. The
higher the temperature, the broader is the carrier distribution
and the weaker is the asymmetric scattering, resulting in
a smaller negative amplitude. For large substrate-induced
dielectric screening, the carrier-carrier scattering is strongly
suppressed, resulting in a more asymmetric carrier distribution,
enhanced asymmetric carrier-phonon scattering, and larger
(initial) current amplitudes. At later times (>0.5 ps), the
field-induced contribution to the current becomes dominant
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FIG. 5. Tuning the photocurrent amplitude. The photocurrent
amplitude and the photodetector responsivity can be controlled as a
function of (a) electrical field E, (b) substrate εbg, and (c) temperature
T . The dashed lines show the behavior without taking into account
the enhancement of the carrier density through Auger scattering.
The largest amplitude can be reached at low T , relatively small E,
and relatively large εbg. (d) Impact of carrier multiplication (CM) in
dependence of E, εbg, and T .

and gives rise to a positive amplitude (not shown) for large εbg.
Finally, smaller electrical fields allow a larger time window for
asymmetric scattering enhancing the current amplitude.

Finally, we discuss the impact of carrier multiplication
(CM) on the photocurrent in graphene. The photoconduction
effect relies on an increased conductivity due to a photoen-
hanced carrier density. Here, Auger scattering processes are
expected to play an important role, since they can increase
the carrier density via carrier multiplication and thereby are
expected to have a positive effect on the photocurrent density;
cf. Fig. 1(a). The carrier multiplication is defined as CM(t) =
n(t)−n0
nopt(t)

with the stationary carrier density before the optical
excitation n0, the optically induced carrier density nopt(t), and
the total carrier density including the optical excitation as well
as all scattering processes n(t). CM takes place, i.e., CM > 1,
when the impact excitation exceeds the inverse process of
Auger recombination resulting in an increased carrier density
and an enhanced field-induced contribution to the photocurrent
density. We find this situation for relatively small electrical
field strengths [Fig. 5(d)]. The CM decreases with the field
and drops below 1 for E ≈ 0.5 V μm−1. The reason for this
behavior is the spectrally broader stationary carrier distribution
ρ0

k at larger fields [Fig. 2(a)] resulting in an enhanced Pauli

blocking of Auger processes. A larger CM supports a stronger
field rate �f, since more carriers can be shifted. As a result,
we would expect the photocurrent to become positive or at
least the negative component to be reduced at lower electrical
field strength. However, at low E, the field rate �f also
becomes slower, opening a larger time window for asymmetric
scattering, which enhances the counteracting scattering rates
�c-c and �c-ph. As a result, we find an even larger negative
amplitude for smaller E in spite of the stronger CM; cf. the
solid versus dashed line in Fig. 5(a) directly comparing the
case with and without the impact of CM, respectively.

The dependence of the negative photocurrent amplitude
on substrate and temperature basically follows the behavior
of the CM [Fig. 5(d)]. Increasing the dielectric screening
leads to a weaker Coulomb-induced scattering resulting in
less CM, such that the difference between the amplitude of the
photocurrent density with (solid) and without CM (dashed)
vanishes for high substrates [Fig. 5(b)]. CM is also tunable
via temperature, since the initial stationary carrier density
before optical excitation is temperature-dependent. The latter
becomes larger at lower temperatures due to field-induced dark
carrier multiplication [27], providing larger Pauli blocking. As
a result, the conventional CM, i.e., multiplication of optically
excited carriers, becomes larger at enhanced temperatures.

In summary, we provide a microscopic view on the genera-
tion of photocurrent in intrinsic graphene in an in-plane electric
field. Treating the time- and momentum-resolved interplay
of field-induced acceleration of optically excited carriers
and carrier-carrier and carrier-phonon scattering on the same
microscopic footing, we reveal the microscopic foundation
of the photocurrent generation in graphene based on the
photoconduction effect. In particular, we discuss the impact of
Auger-induced carrier multiplication, and we demonstrate the
tunability of the responsivity of graphene-based photodetec-
tors with experimentally accessible quantities, such as electric
field, temperature, and substrate.
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