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Abstract
PAQR-2 is a transmembrane protein in C. elegans with seven transmembrane he-
lices and a zinc site. As a homolog to the human ADIPOR receptors, which are
involved in regulating membrane fluidity and are of importance when studying glu-
cose toxicity in diabetes patients, the mechanism of PAQR-2 holds many undis-
covered secrets to understanding membrane fluidity regulation. PAQR-2 has been
shown to be vital for survival in cold temperatures and in the presence of high
glucose levels. Other fluidity sensitizing proteins have been shown to change con-
formation in different membrane environments. In this study, molecular dynamics
simulations of PAQR-2 were done with the purpose of observing the structural re-
sponse of PAQR-2 to different membrane environments. Both simulations of only
the transmembrane domain and of the full protein were made. In addition, two
loss of function mutants (d282n and g533r) were simulated and compared with the
wild-type. Furthermore, the IGLR-2 protein that has been shown to be vital for
the function of PAQR-2 was simulated and docked with PAQR-2 yeilding a likely
structure for the PAQR-2:IGLR-2 complex. Simulations of PAQR-2 in a thick and
ordered DPPE membrane revealed an adaptation of the membrane thickness to ac-
commodate PAQR-2, rather than a structural change within the protein itself. The
g533r mutation introduced novel interaction sites between the helices. The d282n
mutation resulted in a loss of hydrogen bonds of the residue, which sits close to the
zinc site. Protein-protein docking and PMF calculations using umbrella sampling
revealed four possible PAQR-2:IGLR-2 complexes. The interactions of the highest
scoring complex were analyzed and classified as being primarily weak interactions.
The full protein model of PAQR-2 which includes both the transmembrane domain
and the cytosolic domain, shows most promise as a model of PAQR-2, as it captures
dynamics surrounding the zinc site predicted by the homolog model. Moreover, the
full protein model describes different behaviour between wild-type and the d282n
mutant not found in the model of only the transmembrane domain. Further opti-
mization of the full protein is required as an un-physical loss of secondary structure
occurs in the cytosolic domain when simulated close to the membrane.

Keywords: C. elegans, Molecular dynamics, Simulations, Transmembrane proteins,
Glucose toxicity, Cold sensitivity, Membrane fluidity
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1
Introduction

In 2015 there were 415 million people with diabetes worldwide and 12% of the
global health expenditure was spent on diabetes [1]. Elevated glucose levels in di-
abetes patients are associated with a large increase in mortality rate in connection
to cardiovascular disease [2]. However, the exact mechanism behind glucose toxic-
ity remains unclear. The hormone adiponectin is known to be involved in glucose
metabolism and interacts with two receptor proteins (ADIPORS) located in the cell
membrane [3]. In addition, a study on obese monkeys showed that a decrease in
adiponectin concentration was correlated to type 2 diabetes [4]. The receptor pro-
teins ADIPOR1 and ADIPOR2 are enzymes known to mediate the production of
sphingosine and free fatty acid though lipid metabolism of the lipid ceramide [5].
The crystal structure of the ADIPORS shows a transmembrane structure made out
of seven helices, with a zinc binding site close to the intracellular interface [6]. The
zinc binding site is believed to be important for the lipid metabolism activity of the
receptors.

A homolog to the ADIPORS in the model organismC. elegansis the PAQR-2 pro-
tein, which has been studied by the group of Marc Pilon [7] [8]. The homologous
genes which encode the proteins share the same ancestral gene.C. elegansis one of
a handful of organisms that have been used as model system in molecular biology.
Research onC. elegansbegan in the sixties, and has since led to many important sci-
enti�c discoveries. There are a number of advantages to usingC. elegansas a model
system, these include a three day life cycle, its small size (1.5 mm), and its small and
sequenced genome [9]. It is also transparent, hermaphroditic and possible to store
in stocks using cryo-preservation. In the lab it is typically grown on agar plates with
E. coli. It is inexpensive to maintain and easy to cultivate. In addition, 38% of the
protein encoding genes inC. eleganshave human homologs [10], meaning that they
share the same ancestral gene. Genes that are homologs through speciation typically
retain the same function. Furthermore, 40% of genes connected with diseases in
humans have homologs inC. elegans[11]. Therefore, studies onC. eleganscould be
useful for understanding the function of its human relatives, the ADIPOR receptors.

Similar to the ADIPOR receptor, PAQR-2 has a seven transmembrane domain,
with a zinc site close to the intracellular part of the membrane. The structure of the
transmembrane domain of PAQR-2 is shown in the right side panel of Figure 1.1.
Svensk et al. have isolated several loss of function mutations of PAQR-2 [7]. The
PAQR-2 mutants showed impaired growth at low temperatures, a withered tail tip,
an abnormal fatty acid composition and glucose intolerance. Their results suggest

1
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