
Poster: Network Bootstrapping and Leader Election
Utilizing the Capture E�ect in Low-power Wireless Networks

Beshr Al Nahas
beshr@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Simon Duquennoy
simon.duquennoy@ri.se

RISE SICS, Sweden
Inria Lille - Nord Europe, France

Olaf Landsiedel
ola�@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
Many protocols in low-power wireless networks require a root node
or a leader to bootstrap and maintain its operation. For example,
Chaos and Glossy networks need an initiator to synchronize and
initiate the communications rounds. Commonly, these protocols
use a �xed, compile-time de�ned node as the leader. In this work,
we tackle the challenge of dynamically bootstrapping the network
and electing a leader in low-power wireless scenarios, and we focus
on Chaos-style networks.
ACM Reference format:
Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. 2017. Poster : Net-
work Bootstrapping and Leader Election Utilizing the Capture E�ect in
Low-power Wireless Networks. In Proceedings of SenSys ’17, Delft, Nether-
lands, November 6–8, 2017, 2 pages.
DOI: 10.1145/3131672.3137002

1 INTRODUCTION
Context and Challenge. Many protocols in low-power wireless
networks require an entity to bootstrap and maintain the opera-
tion, which we denote a leader. For example, RPL networks need a
network root to build the routing tree, TSCH networks need a time-
source root to synchronize the network and Glossy/Chaos/LWB
networks need an initiator to synchronize and initiate the com-
munications rounds. In applications that build their operation on
consensus; e.g., two-phase commit, the leader is responsible for
proposing and committing transactions. In the recent work [1, 3],
the common solution was to use a �xed, compile-time de�ned node
to be the leader.

The use of a statically de�ned leader exhibit the following weak-
nesses; (a) it assumes a known network deployment; thus, it does
not suit random deployments; e.g., throwing nodes from the air;
(b) it assumes a static network; thus, mobility is limited, and, (c)
initiator failure means a network failure and might require manual
intervention to restart the network operation. While the problem
of clustering and leader election is not new as it was tackled by
Heinzelman et al. in LEACH [2] and subsequent work, there is a
need for an approach that both suits and bene�ts from the low
latency of recent approaches to synchronous transmissions, such
as Glossy and Chaos.
Approach. In this paper, we tackle the challenge of dynamically
electing a leader in low-power wireless networks. We propose

SenSys ’17, Delft, Netherlands
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in Proceedings of
SenSys ’17, November 6–8, 2017 , https://doi.org/10.1145/3131672.3137002.

mechanisms that achieve (a) network bootstrapping; i.e., network
synchronization, and clustering; (b) leader election and ensuring
the convergence toward one leader and (c) leader failure recovery.
We build on top of our workA2 [4] and its lower layer, Synchrotron,
the synchronous transmission protocol that is inspired by Chaos.
Outline. We provide the required background on A2 and synchro-
nous transmission in §2. Then we explain the design in §3 and
conclude with preliminary results in §4.

2 BACKGROUND: A2 AND SYNCHROTRON
A2 builds on top a synchronous transmissions kernel, Synchrotron,
and utilizes in-network processing to provide primitives for
network-wide, all-to-all dissemination, collection, aggregation, vot-
ing, consensus (two- and three-phase commit) and membership
services. A2 operates in rounds where nodes send packets syn-
chronously and receive data thanks to the capture e�ect.
Synchrotron: Synchronous transmissions and capture e�ect.
Synchrotron roots in approaches to synchronous transmissions,
such as Chaos, where multiple nodes synchronously transmit the
data they want to share. Nodes overhearing the concurrent trans-
missions receive one of them with high probability, due to the
capture e�ect. For example, to achieve capture with IEEE 802.15.4
radios, nodes need to start transmitting within the duration of the
preamble of 160µs [3].

Synchrotron operates as a time-slotted protocol. The minimum
time unit is a slot, which �ts one packet transmission/reception
and processing. Slots are grouped in rounds, where a designated
function, such as collect or disseminate is run network-wide. Within
each slot, a node transmits, receives or sleeps according to the
transmission policy of the application.
In-network aggregation. In A2, each packet contains so-called
progress �ags, where one bit is assigned to each node in the network.
The coordinator node starts an A2 round by sending a packet with
only its own �ag set. Upon successful reception, a node sets its �ag
and merges the received packet with its own. It transmits in the
next time slot when it received new information, i.e., new �ags, or
when it sees that a neighboring node is transmitting messages with
fewer �ags set, i.e., a neighbor knows less than the node itself. The
process continues until all nodes have set their �ag.

Similar to Chaos, the rules for merging are application speci�c.
With the Max operation, for example, A2 identi�es the maximum
value: Next to the �ags, the only payload is the maximum value
collected so far. Upon reception, nodes compute the max between
their local value and the payload, write it to the packet payload,
merge the �ags, and set their �ag before transmitting in the next
time-slot.

https://doi.org/10.1145/3131672.3137002


SenSys ’17, November 6–8, 2017, Del�, Netherlands Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel

3 DESIGN
To start a proper network operation inA2, there shall be an initiator
node or a leader that (a) ensures network-wide synchronization; (b)
joins the nodes that wish to participate in the network and assigns
each of them a unique ID; and (c) initiate the communication rounds
and ensures the application objectives are met.

To be able to communicate, we need to synchronize the nodes.
We start by forming clusters that ensure neighborhood synchroniza-
tion. Then, we merge the clusters gradually to form one network-
wide cluster with a single leader.

3.1 Bootstrapping and Clustering
We start by having two assumptions (a) the nodes are homogeneous
and any of them could be a leader. This assumption is by no means
compulsory, but it simpli�es the discussion; and (b) the maximum
number of nodes is known before hand.

Every node start by listening to the radio and generates a random
timeout. It keeps listening until it hears a valid A2 message to
synchronize on. If it times out without hearing, then it proposes
itself a leader and starts sending join announcements such that
other nodes hear them and join it to form a cluster. At this phase,
multiple clusters could form as di�erent nodes might not hear each
other. The next step is to converge towards one leader in one cluster.

3.2 Leader Election
To ensure the convergence toward one leader, we put a quorum
stability condition: A stable cluster is the one that has more than
half of the nodes. Given that the nodes cannot join more than one
cluster, we can ensure convergence.

Until a cluster is stable, it keeps running join rounds, and its
members keep sampling the medium between the communication
rounds looking for bigger clusters to join. When a node hears
another cluster, it saves the synchronization information of the
largest foreign cluster it heard. Each node shares this information
in the next join round with its cluster, and use the Max primitive
to �nd the information about the largest cluster. At the end of the
join round, nodes drop their cluster, their IDs and jump to join the
new cluster if it is bigger than their current cluster. With time, only
the largest cluster survives, and only one leader exists.

3.3 Failure Recovery
Upon leader failure, nodes no longer hear packets, and the random
timeout mechanism kicks in. This restarts the whole process and
elects a new leader as illustrated in §3.1 and §3.2.

4 PRELIMINARY RESULTS AND
CONCLUSION

Implementation. We implement the algorithm explained in §3
in C for the Contiki OS targeting wireless nodes equipped with
a low-power radio such as TelosB and Wsn430 platforms which
feature a 16bit MSP430 CPU @ 4 MHz, 10 kB of RAM, 48 kB of
�rmware storage and CC2420 radio compatible with 802.15.4.

Figure 1 illustrates an example run on a network of 5 nodes.
Figure 2 summarizes the results of running on the testbeds FIT-
IoTLAB Euratech and Flocklab. First, we vary the maximum timeout

Time

Link

A
B
C
D
E

D

A

B

C E

Announcement Node Joining Overhearing Idle Listening

Figure 1: An example run with �ve nodes. Nodes A and C pro-
pose themselves as leaders. Due to the network setup, two clusters
form. E and C keep listening between rounds since their cluster has
less than half of the nodes. E overhears A’s cluster and noti�es its
cluster members. The network converges to select A as the only leader.

0 10 20 30 40 50 60 70
Timeout [s]

0

5

10

15

20

25

T
im

e 
to

 C
ov

er
ag

e 
[r

ou
nd

s]

(a) Election timeout does not
a�ect convergence time. The
Euratech network always converges
within 23 rounds or 41 seconds on
average. Each round is 1.8 seconds
long.

29 216
Number of Nodes

0

5

10

15

20

25

T
im

e 
to

 C
ov

er
ag

e Flocklab

Euratech

(b) Leader election on a sparse
and a dense testbeds; repec-
tively, Flocklab and Euratech.

Figure 2: The time it takes the leader election procedure to
converge to one cluster and join all the nodes in thenetwork.

period and run on Euratech. We �nd that the choice of the timeout
has minimal e�ect on the time to convergence to one cluster that
inlcudes all the nodes. Second, we compare the performance when
running on sparse and dense testbeds. The network converges to
one leader and all the nodes join the leader within 41 seconds for
216 nodes (on Euratech) and 21 seconds for 29 nodes (on Flocklab).

ACKNOWLEDGMENTS
This work was supported by the Swedish Research Council (VR)
through the project ChaosNet, the Swedish Foundation for Strate-
gic Research (SSF) through the project LoWi, CPER Nord-Pas-de-
Calais/FEDER DATA and Sweden’s innovation agency (VINNOVA).

REFERENCES
[1] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. 2012. Low-

Power Wireless Bus. In Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys).

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. 2000. Energy-e�cient
communication protocol for wireless microsensor networks. In Proceedings of
the Annual Hawaii International Conference on System Sciences.

[3] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. 2013. Chaos: Versatile
and E�cient All-to-All Data Sharing and In-Network Processing at Scale. In
Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys).

[4] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. 2017. Network-wide
Consensus Utilizing the Capture E�ect in Low-power Wireless Networks. In
Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys).


	Abstract
	1 Introduction
	2 Background: A2 and Synchrotron
	3 Design
	3.1 Bootstrapping and Clustering
	3.2 Leader Election
	3.3 Failure Recovery

	4 Preliminary Results and Conclusion
	Acknowledgments
	References

