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Abstract—We propose graph-defined IRSA (G-IRSA), a new
approach to design irregular repetition slotted ALOHA (IRSA)
uncoordinated multiple access schemes for a controlled-size
population of users that become active sporadically. The proposed
scheme considers a joint design of the distribution according to
which users select their repetition factors and the distribution
determining how many packet replicas are transmitted per slot,
as well as the connectivity of the underlying graph, i.e., to which
slots users transmit. This is in sharp contrast to standard IRSA,
where only the users degree distribution is optimized, while active
users place their packet replicas uniformly at random and thus
there is no control on how many replicas are transmitted per slot
and in which slots users transmit. The key idea is to establish
a link between the IRSA for the considered scenario and low-
density parity-check (LDPC) codes for transmission over the
binary erasure channel (BEC). Using this parallelism, the design
of a G-IRSA scheme can be cast as the design of a high-rate
LDPC code over the BEC. We show that the proposed scheme
achieves significantly lower error floors than the original IRSA
and very good decoding thresholds.

I. INTRODUCTION

Uncoordinated multiple access techniques (e.g., slotted
ALOHA and its variants [1]–[3]) are fundamental in scenarios
where users transmit over a shared channel and coordination
between them is not possible. Recently, research on unco-
ordinated multiple access techniques based on the classical
slotted ALOHA has been revived following the introduction
of contention resolution diversity slotted ALOHA (CRDSA)
in [4]. In CRDSA transmission is organized into frames, each
consisting of the same number of slots, M . Users transmit
a fixed number of copies of their packets within a frame, as
already proposed in [3] and, crucially, exploit the introduced
redundancy at the receiver side to resolve collisions by using
successive interference cancellation (SIC). This allows to
achieve significantly higher throughputs.

The idea in [4] was further developed in [5] by allowing
users to repeat their packets a variable number of times
according to a predefined probability distribution. To convey
the variable repetition rate principle, the scheme of [5] was
named irregular repetition slotted ALOHA (IRSA). In partic-
ular, it was shown that the IRSA scheme can equivalently
be represented by a bipartite graph and the SIC can be seen
as a peeling decoding on the bipartite graph, similar to the

The work of E. Paolini was supported by ESA/ESTEC under Contract no.
4000118331/16/UK/ND. The work of A. Graell i Amat was supported by the
Swedish Research Council under grant 2016-04253.

peeling decoding of codes on graphs over the binary erasure
channel (BEC). This connection allows borrowing tools from
codes on graphs to analyze and optimize IRSA: Its asymptotic
performance in the limit of infinitely large frame lengths,
as well as infinitely large population size, can be predicted
using density evolution (DE) and the typical error floor that
it appears in the packet loss rate for finite frame lengths
can be analyzed by performing a stopping set analysis [6]–
[8]. In [5], the distribution of the repetitions was optimized
using DE, leading to significant performance improvements
(for large frames) with respect to CRDSA. On the other hand,
since in IRSA users transmit their packet replicas in slots of a
frame chosen uniformly at random, the probability distribution
determining the number of transmitted replicas per slot is
not under the control of the system designer, but is fully
determined by the average number of repetitions and the load.

In this paper, we consider a radically different approach to
design an IRSA scheme. The proposed approach follows from
the observation that, in many actual systems, users go through
a login procedure to join the network. After this phase, we can
leverage on the fact that the population of users in the network
is known to the network access point. We hence exploit this
information to introduce a finer control on the IRSA access
protocol. In particular, we consider the scenario characterized
by a large (but controlled in size) population of users with
maximum size N � M . Users become active sporadically,
i.e., the number of users that are active in a given frame (in
the sense that they have a packet to transmit in that frame),
Na, is a small fraction of the total number of users. Given
a maximum number of supported users, N , the access point
can construct a bipartite graph with N variable nodes (one per
potential user) and M check nodes (one per slot). The graph
can be designed by controlling the degree distributions at both
node sides, hence enforcing control not only on the repetition
distribution, but also on the distribution of the number of
transmissions per slot. More importantly, girth optimization
techniques [9] can be used to limit the effect of small stopping
sets. Each user joining the network is assigned to a different
variable node of the graph (e.g., associated with the used ID),
which determines the slots in which the user will transmit,
whenever it is active.

For the proposed scheme, the SIC process applied at the
receiver shares several similarities with the decoding of an
(N,N −M) high-rate low-density parity-check (LDPC) code
for transmission over the BEC, where the Na erased variable



nodes (VNs) correspond to the Na active users. We use this
analogy to optimize the VN and the check node (CN) degree
distributions of the (N,N − M) LDPC code ensemble to
maximize its belief propagation threshold over the BEC and
design an IRSA scheme by constructing a particular LDPC
code within the ensemble. For each user in the system the
designed LDPC code determines its repetition factor as well as
the slots in which it will transmit when it becomes active, i.e.,
the placement of packet replicas is completely deterministic
(even if users activate unpredictably). This is in contrast
to standard IRSA, where only the repetition distribution is
optimized and packet replicas are placed randomly. We show
that the proposed IRSA scheme, dubbed graph-defined IRSA
(G-IRSA), yields significantly lower error floors than the
original IRSA yet achieving excellent decoding thresholds.

II. SYSTEM MODEL

We consider a slotted random access scheme where slots
are grouped in medium access control (MAC) frames, simply
referred to as frames in the following, all with the same length
M (in slots). The time duration of each slot is Tslot and
the frame duration is Tframe, thus M = Tframe/Tslot. Users
contending for the medium access form a population of size
NP, where the maximum value of NP is N � M . Users are
slot- and frame-synchronous and each user attempts at most
one packet transmission per frame. Neglecting guard times,
the transmission time duration of a packet is Tslot. We say
that a user is active in a given frame if it has a packet to be
transmitted within the frame. In particular, we consider a sce-
nario where users become active sporadically, with activation
probability π. Since users become active independently of each
other, the number of active users within a frame is modeled
by a random variable Na that is binomially distributed with
mean E[Na] = πNP. The expected channel load (representing
the expected number of packet transmissions per slot) is

G =
E[Na]

M
.

The channel model considered in this paper is the collision
channel, widely adopted in analyzing random access protocols.
Accordingly, in each slot the receiver can always discriminate
between a “silence” (no active user has transmitted in that
slot), a signal corresponding to a unique packet, or a signal
being the result of a collision. In case a unique packet is
detected, it is always successfully decoded, while in case of
a collision the detected signal provides no information to the
receiver about the number and the content of colliding packets.
As soon as a packet is decoded, the interference contribution
of its copies is removed from the respective slots. We refer
to this process as SIC.1 The process is iterated until no more
clean packets can be found in the MAC frame.

III. GRAPH-DEFINED IRSA ACCESS PROTOCOL

In this section, we describe the proposed access scheme.
We start with a brief description of the original IRSA to

1We refer to [4], [5] for details on the accuracy of the model in practical
conditions.

better highlight the differences with respect to the proposed
scheme. The IRSA scheme works as follows. Every time a user
becomes active, it selects a repetition degree d randomly by
sampling a probability mass function {Λd}dmax

d=2 known to all
users, and generates d copies of its packet, called replicas. The
d packet replicas, each of duration Tslot, are then transmitted in
d slots chosen uniformly at random out of the M slots of the
frame. The system designer has full control of the distribution
Λ(x) =

∑dmax

d=2 Λd x
d, which can be properly optimized. On

the other hand, the distribution P(x) =
∑rmax

r=0 Pr x
r defining

the number replicas per slot is not a design parameter, but is
fully determined by Λ(x) and G.

The proposed G-IRSA access protocol allows controlling
both Λ(x) and P(x) and the graph connectivity. In the limiting
case where NP = N (i.e., full system setting), assume that
each of the N users of the population is represented by
a VN in a bipartite graph and each of the M slots of a
frame is represented by a CN. Furthermore, assume a given
connectivity between VNs and CNs according to the degree
distributions Λ(x) and P(x). The resulting bipartite graph
is equivalent to that of an (N,N − M) high-rate LDPC
code of length N and dimension (N −M) with VN degree
distribution Λ(x) and CN degree distribution P(x), both from
a node perspective. For ease of exposition, we will denote this
bipartite graph by GLDPC.

Consider now a subset of Na active users and the resulting
bipartite graph consisting of the Na VNs of GLDPC correspond-
ing to the Na active users and their neighboring CNs. We
denote this bipartite graph by GNa . Also, consider transmission
of the (N,N −M) LDPC code over a BEC that erases the
VNs corresponding to the Na active users and the resulting
residual graph obtained by removing all nonerased VNs and
their adjacent edges from GLDPC. It is easy to see that this
residual graph is identical to GNa . Therefore, the IRSA for the
scenario with a large population of users of size NP = N that
become active sporadically within a frame may equivalently
be seen as using the (N,N −M) high-rate LDPC code for
transmission over the BEC.

A. Design of Λ(x), P(x), and the graph connectivity

The analogy with LDPC codes for the BEC established
above allows us to propose G-IRSA, a novel IRSA scheme
based on the design of an LDPC code. In particular, the
optimization of the G-IRSA system becomes equivalent to
optimizing an LDPC code for transmission over the BEC.
Indeed, the performance of the G-IRSA system corresponds
to the performance of the underlying LPDC code over the
BEC. More precisely, if the decoding threshold of the LDPC
code is ε∗ then the decoding threshold of the resulting IRSA
scheme, i.e., the maximum channel load for which all users
can be resolved in the limit of infinitely large population size
and block length (their ratio remaining constant), is

G? =
ε∗NP

M
.

To design the G-IRSA scheme, we first optimize the VN
degree and CN degree distributions Λ(x) and P(x) of the
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Fig. 1. Example of bipartite graph of a G-IRSA scheme with a population of N = 30 users, M = 10 slots, and Na = 7 active users corresponding to VNs
v2, v4, v9, v18, v19, v27, and v29. Effectively, the receiver sees the subgraph highlighted in black.

v7v6v5v4v3v2v1

c10c9c8c7c6c5c4c3c2c1

Fig. 2. Example of bipartite graph of a CRDSA scheme with Λ(x) = 2 and
Na = 7 active users that transmit over M = 10 slots.

LDPC code ensemble such that, in the limit of infinitely large
block length, it achieves a good decoding threshold ε∗. For
a given N and M a good (N,N −M) LDPC code within
the ensemble can then be constructed from the ensemble
defined by Λ(x) and P(x) using, e.g., the progressive edge
growth (PEG) algorithm [9] to avoid small stopping sets,
which dominate the performance in the error floor region [6],
[8]. Note that, again in the full system setting NP = N , in
terms of the IRSA scheme a given LDPC code implies that
each of the N users of the population is assigned to a column
of the parity-check matrix of the code, H.

In practice, this is possible by envisaging a login procedure
through which users join the system and during which an
association is established between a new user and a column
of H. In other words, the designed LDPC code determines
for each of the N users both the repetition factor and the
slots in which it will transmit through its edges. Thus, the
way users place their packet replicas in the slots of the frame
is completely deterministic (determined by the constructed
LDPC code and by the assignment of columns of H to the
users). This is in sharp contrast with the standard IRSA, where
the placement is completely random. Yet, the proposed scheme
exhibits features typical of uncoordinated protocols: After a
user is logged in, it activates unpredictably in each frame and,
although it must transmit in its assigned slots, the receiver has
no control on which users become active in the same frame.
Therefore, packet collisions are likely to occur.

Example 1. Consider a population of NP = N = 30
users that transmit over frames of M = 10 slots and the
representation of this scenario by the bipartite graph in Fig. 1
such that VN i corresponds to user i, i = 1, . . . , 30. Disregard
for the moment the connections between VNs and CNs. Assume
for a given frame that the set of Na = 7 active users is
{2, 4, 9, 18, 19, 27, 29}. In CRDSA and standard IRSA, the 7

active users would select their repetition factors according to
a given distribution Λ(x) and transmit their copies in slots
chosen uniformly at random. An example of the resulting
bipartite graph for a CRDSA scheme with Λ(x) = x2 is
depicted in Fig. 2. In the graph, VNs v3 and v4 form a stopping
set and thus, users 3 and 4 cannot be resolved. Since users
place their copies randomly, small stopping sets may occur.
For this example, the girth of the graph is 4 and therefore the
size of the smallest stopping set is 2 [10].

Consider now the connections defined by the bipartite graph
in Fig. 1 with the same set of Na = 7 active users. In this
case, effectively, the receiver will “see” the subgraph defined
by VNs {v2, v4, v9, v18, v19, v27, v29} and their neighboring
CNs (highlighted in black in the figure). It is easy to see
that the bipartite graph in Fig. 1 corresponds to that of an
(N,N −M) = (30, 20) LDPC code. If this LDPC is used for
transmission over the BEC such that the channel erases the
symbols corresponding to VNs {v2, v4, v9, v18, v19, v27, v29},
then the corresponding residual graph on which belief prop-
agation will be run is precisely the one highlighted in black
in the figure. This link between IRSA and LDPC coding for
transmission over the BEC suggests to optimize the underlying
LDPC code, i.e., the degree distributions Λ(x) and P(x) can
be optimized to yield the best decoding threshold over the
BEC, as well as the connectivity of the graph to avoid small
stopping sets. For this example, each of the 30 users is then
assigned to one of the columns of the parity-check matrix of the
designed LDPC code or, equivalently, to one of the VNs of the
bipartite graph in Fig. 1. Note that this assignment determines
also the slots in which each user will transmit through the
connectivity of the graph. This deterministic assignment allows
to avoid small stopping sets. For the example, the girth of the
graph in Fig. 1 is 6 and hence stopping sets of size 2 are
avoided. Therefore, one would expect that G-IRSA yields much
lower error floors, as demonstrated in Section V.

IV. SYSTEM ANALYSIS FOR INCOMPLETE GRAPH
ASSIGNMENT

In the previous section we explained how the design of an
IRSA access scheme for a population of users with maximum
size N may be tackled as the design of a high-rate LDPC
code. Since users may join the population and leave it, the
actual population size at the beginning of each frame is NP =
N −L, where the random variable (RV) L ≥ 0 represents the
number of users that have left the population or, equivalently,
the number of columns of the LDPC code parity-check matrix



H that are currently not assigned to any user. Due to the one-
to-one correspondence between active users and erasures, from
a coding viewpoint the presence of L unassigned resources is
equivalent to L “frozen” bits in the LDPC codeword which
cannot be punctured by the erasure channel. From another
perspective this is equivalent to the removal of L columns from
H, which may then be thought as a matrix of size M×(N−L).

The dynamic behavior of the users population size NP

legitimately raises some concerns about the effectiveness of
the system design proposed in Section III. In fact, since the
LDPC code design is tailored to the optimization of the system
performance when all N columns of H have been assigned to
users (equivalently, when NP reaches its maximum value N ),
it becomes of fundamental importance to assess the system
behavior when NP deviates from N . There are, in particular,
two events that deserve attention:
• A number `1 of new users join the population and

available resources are assigned to them;
• A number `2 of users logged in the system leave the

population and release their resources.
Note that while in the former case the resources to be

assigned to the new users may be scheduled based on some
algorithm, in the latter we have no control of the resources
being released. In terms of coding, in the former case we have
the freedom to choose which subset of `1 columns, out of a set
of available ones, should be added to the parity-check matrix to
obtain a higher-rate code with the best possible performance.
In contrast, in the latter case `2 columns “disappear” from
the H matrix with no possibility to select them. As resource
releasing by departing users represents a critical event, po-
tentially able to compromise the system performance, in the
following we propose a strategy to mitigate its negative effects.

A. Worst-Case Analysis for Released Resources

The approach we follow to prevent released resources from
jeopardizing the performance of the G-IRSA system consists
of analyzing the asymptotic worst case. Assuming that the
population size is NP = N − L, with L > 0, by asymptotic
worst case we mean the choice of the L VNs to be removed
from the graph GLDPC (together with all edges connected to
them) yielding a residual degree distribution pair characterized
by the lowest threshold G?. It represents the worst degree
distribution pair the system may inherit when, starting from a
state where the population size is N , users keep abandoning
the system until L users have logged out. The concept of
worst case is defined in terms of degree distribution pair
and asymptotic threshold (to be calculated via DE) since a
definition based on the finite frame length performance would
turn out to be computationally intractable.

The worst case analysis represents a very simple approach to
analyze system robustness to uncontrolled resource releasing
and to understand what is the maximum tolerable number of
departing users after which some action should be taken by
a system controller. A possible strategy consists of setting a
minimum acceptable threshold G?

min and of identifying the
largest value of L, denoted by L̂, such that the corresponding
worst case fulfills Ĝ? > G?

min. As long as L ≤ L̂, no action is

taken when users leave the population. On the other hand,
whenever some resources are released yielding L > L̂, a
scheduler may reassign some of the available resources to
some of the users in the population to “rebalance” the VN
degree distribution.2

To identify the worst case for a given starting distribution
Λ(x), a given maximum population size N , and a given
number of released resources L, we proceed as follows. We
start by calculating all possible VN degree distributions that
are compatible with the given input parameters Λ(x), N ,
and L. To this aim, let ñ = (ñ2, ñ3, . . . , ñdmax

), where for
d ∈ {2, 3, . . . ,dmax} ñd represent the residual number of VNs
of degree d after L VNs have been removed from GLDPC. Any
vector ñ must be a solution of the Diophantine equation

dmax∑
d=2

ñd = N − L (1)

subject to the constraints

0 ≤ ñd ≤ ΛdN for all d ∈ {2, 3, . . . ,dmax} . (2)

A VN degree distribution corresponds to each solution ñ
of (1) fulfilling all constraints in (2). In the sequel, we will
denote this distribution by Λ̃(x) =

∑dmax

d=2 Λ̃d x
d, where for

all d ∈ {2, 3, . . . ,dmax} we have

Λ̃d =
ñd

N − L
. (3)

Each polynomial Λ̃(x) represents one of the possible VN
degree distributions we may obtain after L users have de-
parted from the population. Associated with Λ̃(x) we have
a number ∆E(Λ̃) of edges that have disappeared from the
graph GLDPC, this number being expressed by ∆E(Λ̃) =
E − (N − L)

∑dmax

d=2 d Λ̃d, where E = N
∑dmax

d=2 dΛd is the
number of edges in GLDPC. The search for the worst case
may be implemented following the two different approaches
described in the following.

1) Exhaustive CN distribution search: The first approach
consists of performing, for each residual VN distribution Λ̃(x),
an exhaustive enumeration of all CN distributions P̃(x) that
are consistent with the initial distribution P(x) and with the
number ∆E(Λ̃) of removed edges. Operatively one should
proceed as follows. Let mr = Prm and m̃r be the number of
degree-r CNs before and after removal of the ∆E(Λ̃) edges,
respectively. The set of all distributions P̃(x) may be obtained
by first finding all solutions m̃ = (m̃0, m̃1, . . . , m̃ rmax

) of the
system of simultaneous Diophantine equations

rmax∑
r=0

m̃r = M and
rmax∑
r=1

r m̃r = E−∆E(Λ̃) (4)

subject to m̃r ≥ 0 for all r, and then by setting

P̃r =
m̃r

M
(5)

2In this paper we do not address this scheduling algorithm. We point out,
however, that a similar problem has been considered in [11] to design rate-
compatible LDPC codes.
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Fig. 3. PLR versus the load G for a G-IRSA scheme with degree distribution
pair (Λ(1),P(1)), a regular G-IRSA scheme with degree distribution pair
(Λ(2),P(2)), a standard CRDSA scheme with packet repetition factor 3, and
a standard IRSA scheme with packet replicas distribution Λ(4). Population
size N = 2000, frame length M = 200.

for each solution m̃.3 Out of all obtained pairs (Λ̃(x), P̃(x)),
where Λ̃(x) is obtained by (3) after solving (1) and P̃(x) by
(5) after solving (4), the pair characterized by the smallest
threshold G? represents the sought worst case.

2) Average CN distribution: The second approach consists
of developing, for each residual VN distribution Λ̃(x), a
unique average residual CN distribution P̃(x). This approach
consists of first calculating an approximated average proba-
bility %(k) that the generic CN looses k edges when ∆E(Λ̃)
edges are removed from the graph, and then combining this
probability with the initial distribution P(x) to obtain the
residual CN distribution P̃(x). The calculation of %(k) relies
on two simplifying assumptions. The first assumption is that,
when a user leaves the population, the corresponding edges are
detached from CNs chosen uniformly at random. The second
one is that up to L edges may be detached from each CN.

Under these assumptions, for a given CN let Xi, i ∈
{1, 2, . . . , L}, be a Bernoulli RV which takes value 1 if the
CN degree is decreased by one when the i-th departing user
logs out and takes the value 0 if it does not. The L RVs are
independent and identically distributed with Pr{Xi = 1} =
∆E(Λ̃)/L/M . This is because the average number of edges
removed per departing user is ∆E(Λ̃)/L and there are M CNs.
For each k ∈ {0, 1, . . . , L}, the probability %(k) is given by

%(k) =

(
L

k

)(
∆E(Λ̃)/L

M

)k(
1− ∆E(Λ̃)/L

M

)L−k

.

The probability distribution %, obtained under the simplifying
hypotheses mentioned above, is now exploited to develop
the residual CN distribution P̃(x). To calculate the residual
fraction P̃r of CNs of degree r, we proceed as follows. Let
R = {r : Pr > 0} be the set of nonzero CN degrees in the
original distribution P(x). Moreover, let the elements of R be
r1 = rmax, r2, . . . , r|R| such that r1 > r2 > · · · > r|R|.
We initialize a variable c as c = r1, the largest degree in R.

3All integers m̃r depend on Λ̃(x), although not explicitly indicated.
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Fig. 4. PLR versus the load G for regular and irregular G-IRSA schemes in
an incomplete resource assignment regime. Population size N = 2000, frame
length M = 200.

Furthermore, for each r ∈ {0, 1, . . . , c} we initialize m̃r as
m̃r = 0. Next, for all r ∈ {0, 1, . . . , c} we increase m̃r by a
quantity given by

∆m̃r = mc
%(c− r)∑c
j=0 %(j)

(6)

i.e., the original number of CNs of degree c multiplied by the
probability that a CN of degree c looses c − r edges. This
latter probability is obtained by truncating and renormalizing
the probability distribution % to account for the degree c of
the CNs being processed. After all m̃r variables have been
updated, c is updated as c = r2, the increments ∆m̃r are
calculated again based on (6) and, based on them, the variables
m̃r are updated again. The procedure terminates after the case
c = r|R| has been processed. At the end of the procedure the
residual CN distribution is constructed according to (5). Out
of all obtained pairs (Λ̃(x), P̃(x)), the one characterized by
the smallest threshold G? is returned as the worst case.

Although the approach based on the exhaustive search is
more effective in identifying the degree distribution pair char-
acterized by the lowest asymptotic threshold G?, the second
approach is much more efficient to implement as it avoids
the enumeration of all possible CN distributions P̃(x) for a
given VN distribution Λ̃(x). Moreover, although it relies on
approximations, the second approach returns reliable results,
as illustrated in the following example.

Example 2. Consider the case Λ(x) = x3 and P(x) = x30,
corresponding to an LDPC code with rate R = 9/10 and
whose VNs are all of degree 3. In the case L = 0 (i.e., when
all resources have been assigned) the system threshold is G? =
0.82833. Since all users have the same repetition factor, even
if L > 0 users leave the system, we expect very small G?

variations. Next we show how the results obtained by applying
the average CN distribution approach are coherent with this
expectation. To develop the example, we choose N = 2000
and M = 200. In this case there is only one solution to (1)
for any L, namely, ñ3 = N −L, and we always have Λ̃(x) =



x3. Let L = 100, so ∆E(Λ̃) = 300 and ∆E(Λ̃)/L/M =
0.015. We have R = {30}, hence (6) is computed only for
c = rmax = 30. We obtain P̃(x) = 0.001x23 + 0.003x24 +
0.014x25 + 0.047x26 + 0.126x27 + 0.253x28 + 0.336x29 +
0.221x30, where all fractions are rounded to three decimals.
The corresponding threshold is G? = 0.82831. For L = 200
and L = 300 we obtain G? = 0.82822 and G? = 0.82803,
respectively.

V. NUMERICAL RESULTS

To assess the improvement in terms of PLR (especially in
the error floor region) provided by G-IRSA with respect to
standard IRSA, we designed the degree distribution

Λ(1)(x) = 0.100x2 + 0.781x3 + 0.119x12

P(1)(x) = 0.126x38 + 0.076x39 + 0.797x40

characterized by a threshold G? = 0.904. The distribution pair
was designed by placing a constraint on the rate (R = 9/10),
on the maximum VN degree (dmax = 12), and on the
fraction of degree-2 VNs to not exceed the ratio M/N , this
latter constraint being often adopted in irregular LDPC code
design. The graph GLDPC was constructed for a maximum user
population size N = 2000, and for a MAC frame length
M = 200. The graph hence possesses 2000 VNs and 200 CNs.
The PEG algorithm was used to draw the edge connections in
order to limit the number of short cycles. The performance
of the G-IRSA scheme based on the so-obtained graph was
compared with those achieved by other graphs having the same
number of VNs and CNs. In particular, the following degree
distributions were considered:
• a G-IRSA scheme with regular distribution Λ(2)(x) = x3

and P(2)(x) = x30, with threshold G? = 0.828;
• a standard CRDSA scheme with repetition-3, i.e.,

Λ(3)(x) = x3, with threshold G? = 0.818;
• a standard IRSA scheme from [5] with Λ(4)(x) =

0.50x2 + 0.28x3 + 0.22x8, with threshold G? = 0.938.
The PLR of the four random access schemes under SIC-

based decoding is shown in Fig. 3 as a function of the system
load G. For both the irregular and the regular G-IRSA schemes,
the PLR reported in Fig. 3 is the one corresponding to L = 0,
i.e., to the case where all columns of the 200×2000 matrix H
are assigned to users. We observe an impressive improvement
of the error floor of the PLR both in the irregular case and in
the regular one. Note that the slightly better performance of the
standard IRSA scheme with respect to the irregular G-IRSA
for PLRs above 10−2 (a region of limited interest) is due to its
slightly better threshold. For the regular G-IRSA scheme based
on the pair (Λ(2),P(2)), the application of the PEG algorithm
allows enforcing a girth equal to 6 in the graph GLDPC, resulting
in a very low error floor and no loss in waterfall performance.

While Fig. 3 addresses the case in which all system re-
sources have been assigned to users, Fig. 4 illustrates PLR
curves corresponding to worst cases identified with the average
CN distribution method described in Section IV. The analy-
sis was conducted for the G-IRSA scheme with the degree
distribution pair (Λ(1),P(1)), for L ∈ {100, 200, 300}. The
relevant worst case distributions and thresholds are reported

TABLE I
WORST-CASE THRESHOLD DEGRADATION DUE TO INCOMPLETE GRAPH

ASSIGNMENT, FOR THE DEGREE DISTRIBUTION PAIR Λ(1),P(1)

L
Worst-case VN d.d.

G?

Λ̃(1)(x)

100 0.105x2 + 0.823x3 + 0.072x12 0.882

200 0.111x2 + 0.869x3 + 0.020x12 0.845

300 0.080x2 + 0.920x3 0.827

in Table I. Coherently with the asymptotic analysis, a gap
arises between the PLR curve corresponding to a complete
resource assignment and the ones corresponding to worst cases
in incomplete resource assignment conditions. Notably, even
for L = 300 (corresponding to 15% of the users leaving the
system with no action taken by a scheduler) the penalty is
very limited both in the waterfall and error floor regions.

VI. CONCLUSIONS

We have presented G-IRSA, an uncoordinated access proto-
col based on user packet repetitions and SIC decoding, which
exhibits a better performance than standard IRSA in terms of
PLR, especially in the error floor region. The main features
of G-IRSA are represented by a full control not only of the
distribution according to which users select their repetition
factors (as for standard IRSA) but also of the distribution
determining the number of packet replicas transmitted per slot
and of the connectivity of the underlying graph. This is made
possible by the introduction of a login procedure enabling a
finer control of the users access activity.
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