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Abstract: Iterative dynamic programming is a powerful method that is often used to solve
finite-dimensional nonlinear constrained global optimal control problems. However, multi-
dimensional problems are often computationally complex, and in some cases an infeasible result
is generated despite the existence of a feasible solution. A new iterative multi-pass method
is presented that reduces the execution time of multi-dimensional, loosely-coupled, dynamic
programming problems, where some state variables exhibit dynamic behavior with time scales
significantly smaller than the others. One potential application is the optimal control of a hybrid
electrical vehicle, where the computational burden can be reduced by a factor on the order of
100 – 10000. Furthermore, new regularization terms are introduced that typically improve the
likelihood of generating a feasible optimal trajectory. Though the regularization terms may
generate suboptimal solutions in the interim, with successive iterations the generated solution
typically asymptotically approaches the true optimal solution.
Note: Full source code is freely available online with an implementation of the solver, some usage
examples, and the test cases used to generate the results shown in this paper.

Keywords: Dynamic programming, Optimal control, Global optimization, Nonlinear control,
Bang-bang control, Efficiency enhancement

1. INTRODUCTION

Non-causal global nonlinear constrained optimal control
is a notoriously difficult problem which, in general, does
not have a known analytical solution. Hence, it is often
necessary to use numerical methods. One method that
is often used for finite-dimensional problems is dynamic
programming (DP). For example, DP is often used for
designing hybrid vehicle controllers, where DP is typically
used to benchmark the quality of simpler, suboptimal,
causal controllers (Liu and Peng (2008); Pérez et al. (2006);
Sciarretta and Guzzella (2007)). DP is guaranteed to
generate the global optimum for problems that can be
represented in a graph. However, DP is computationally
complex for multidimensional problems, where the required
number of computations scales exponentially with the
number of dimensions.

This paper presents a new DP method (and an imple-
mentation of it in Matlab) for multidimensional problems
that can be described as a loosely coupled set of ordinary
differential/difference equations with different time scales.
For problems of this type the presented method significantly
reduces the time required to generate a solution, and
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furthermore increases the likelihood of generating a feasible
solution. One example of an application that this method
works well for is that of hybrid vehicle control, where
performance gains on the order of the quotient of the
system’s time scales are realizable. Typically, this gives a
performance improvement on the order of 102 − 104.

In this paper DP is used to solve a discrete-valued, discrete-
time approximation of a continuous-value problem in
discrete- or continuous-time. The DP method used in this
paper starts with a backward-calculation phase where, for
a sample k, each element from a set of system inputs Uk
is exhaustively applied to each element of a set of system
states Xk. The best control uopt [k] and corresponding cost
copt [k] are stored for every system state, where the best
control and cost minimizes the total cost from the current
sample to the final sample. This process is repeated for all
samples starting from the next-to-last sample and working
backwards to the first sample. The optimal control and state
trajectories are generated in a forward-calculation phase,
where for a given initial state the best stored control signal
uopt [k] is successively applied to the system state x [k] for
all samples. Interpolation is used when the system state
x [k] does not exactly match one of the states evaluated
during the back-calculation phase. This directly gives the
optimal control and state trajectories uopt [k] and xopt [k].
A formal definition of DP for optimal control is beyond the



scope of this paper, curious readers are referred to any of
Bellman (1956); Bertsekas (2005); Sundström and Guzzella
(2009).

1.1 Problem definition

For many engineering applications, typical optimal control
problems are continuous-time, continuous-variable (CTCV )
problems. Here, we consider the case where the control
input function u (t) from time tk to time tk+1 is linearly
parameterized with an l-dimensional control variable u [k].
If the function is the step function this representation
is known as zero-order-hold sampling (Åström and Wit-
tenmark, 1997, p. 32). This optimal control problem can
then be represented as a discrete-time, continuous-variable
(DTCV ) problem, defined as

J∗0,Ns
= min

U
L0,Ns (U)

s.t.

L0,Ns =

Ns∑
k=0

c (x [k] , u [k] , k)

x [k + 1] = f (x [k] , u [k] , k) , k = [0, Ns − 1]
bin (x [k] , u [k] , k) ≤ 0, k = [0, Ns]

x [k] ∈ Rm

u [k] ∈ Rl,
(1)

where x [k] is an m-dimensional vector of real-valued state
variables and u [k] is an l-dimensional vector of control
inputs. The total cost function L0,Ns is minimized with
respect to u [k], given the system dynamics f (. . . ) and a
set of inequality constraints bin (. . . ). Here, k is an index
that orders the state and control variable trajectories, and
for the cases considered here is directly proportional to
time.

DP cannot directly be applied to solve (1). Instead, the
problem is further approximated by quantizing the state
and control variables which yields a discrete-time, discrete-
variable (DTDV ) form, i.e. x [k] and u [k] must each
be members of a set with a finite number of elements,
denoted Xk and Uk respectively. Each element of Xk can
be viewed as a vertex in a directed graph (shown in
Figure 1) corresponding to sample k, where the existence
of an edge between an element x [k] ∈ Xk and an element
x [k + 1] ∈ Xk+1 implies that there exists a feasible control
u [k] ∈ Uk so that the constraints in (1) are fulfilled for
x [k], x [k + 1], and u [k].

In (1), the system dynamics model is given in implicit
form — x [k + 1] is generated with the function f (. . . )
given a state x [k] and control u [k] for sample k. This
particular representation is chosen as it is typically difficult
to generate a model in explicit form (i.e. of type u [k] =
g (x [k] , x [k + 1] , k)) in many applications. As a result of
this representation, there is no guarantee in the back-
calculation phase that applying a member of Uk to a
member of Xk will generate a value x [k + 1] ∈ Xk+1.
Similarly, during the forward-calculation phase, if x [k] /∈
Xk then there does not exist an associated stored optimal
control signal uopt [k] to apply. A method that resolves this
issue is to define the existence of on-demand pseudo-vertices
X̄k, where any x [k] /∈ Xk is defined to be an element of
X̄k, and whose numerical values are derived based on the

Fig. 1. Directed graph representation of a DTDV problem.
For the state configuration X 2

k , only the α’th, β’th
and γ’th elements from Uk are feasible and bring the
state to X 1

k+1, X 2
k+1, and X 3

k+1 respectively at the next
sample.

nearby elements in Xk using some suitable interpolation
method. Similarly, a pseudo-optimal control ūopt [k] can be
generated based on the nearby stored optimal controls Uk.
If the elements in Xk are carefully chosen this becomes a
computationally inexpensive gridded interpolation, e.g. nD
linear interpolation (Bellman and Dreyfus (2015); Elbert
et al. (2013)).

1.2 Iterative Dynamic Programming

Iterative dynamic programming (IDP), as defined by Luus
(1990), can be used to solve real-valued optimization prob-
lems, i.e. problems where the state and control variables
take values from the set of real numbers. IDP reduces
the state and control quantization to an arbitrarily small
amount by first searching over a relatively coarse but
large set of system inputs and states using DP, and then
successively generating a denser and narrower search range
centered about the previous result. This successive reduc-
tion in search range is then repeated, eventually allowing
for an arbitrarily small variable quantization. This method
has, for example, been used in the field of hybrid vehicles,
primarily as a solver for limited-horizon nonlinear MPC
control, see Wahl and Gauterin (2013).

IDP can also handle problems where the optimal control
trajectory lies along a boundary of the feasible set —
typically with successive iterations the generated trajectory
asymptotically approaches the optimal one. This is an
important advantage of IDP as compared to DP defined by
e.g. Sundström et al. (2010), which will generate trajectories
that avoid the edges of the feasible set, potentially resulting
in a suboptimal solution.

Recently, Elbert et al. (2013) implemented a non-iterative
DP method that correctly handles problems that lie
along a boundary of infeasibility. However, this method
does not have the additional benefit of reducing variable
quantization.

1.3 Current issues

IDP is a powerful method for solving many types of global
optimization problems. However, previously it has been
unsuitable for certain sub-classes of problems due to issues
with poor feasibility guarantees and large search spaces.
This paper presents a few extensions that can help resolve
these issues.



Poor feasibility guarantees In general, there is no guar-
antee that a feasible control trajectory will be generated
during the forward-calculation phase. It is typically as-
sumed that interpolation of the state and control signal
between elements in Xk and Uk gives a feasible and close-
to optimal control sequence. However, it is possible that
selecting this interpolated control signal will lead to a state
leaving the feasible set. For problems where the optimal
state trajectory lies along the boundary of the feasible set
this issue is particularly problematic.

Large search space For problems where the state variable
dynamics have very different time scales, the search space
quickly becomes unreasonably large for the standard DP
algorithm. For example, consider a system where an electric
vehicle’s velocity and battery state-of-charge (SOC) are
modeled as state variables and the vehicle’s acceleration is
available as an input. Intuitively we expect the velocity to
exhibit dynamics on the order of seconds, while the SOC
shows dynamics on the order of minutes or hours. Solving
this problem directly with IDP requires;

• A time step, 1 second, which is sufficiently small to
resolve the fast dynamics of the vehicle velocity.
• That the set of control inputs is dense enough. For

a 1% discretization error 100 control signals must be
tested for each state configuration.
• A grid density for the vehicle velocity that is dense

enough to ensure reachability ; defined as the ability
to reach at least one feasible neighboring state —
the “nearest” state — at the next sample, given the
entire range of state configurations and control signals
applied to the system at each sample. In this problem,
assuming a velocity grid covering the range 0 – 30 m/s
and a maximum acceleration of 3 m/s2, 11 equidistant
points are required in the velocity grid with the chosen
sample rate. As it is crucial that reachability is ensured
it is generally good practice to inflate this value slightly
to take numerical precision into account. Assume a
grid density of 15 points is sufficient.
• A grid density for the vehicle SOC that is dense enough

to ensure reachability. Assuming a battery capacity
of 30 kWh = 108 MJ and a maximum power demand
of 90 kW, this implies that each grid point must be
separated by at most 90 kW/1 s = 90 kJ. This in turns
implies a minimum of 108 MJ/90 kJ = 1200 points for
the SOC grid. For some added headroom, assume a
grid density of 1400 points.

Solving this problem with IDP results in that for every
sample k there will be 100 · 15 · 1400 = 2.1 · 106 evaluations
of f , bin, and c — the equations that define the system
dynamics, constraints, and cost defined in (1). For a time
horizon of 1 hour, which captures the dynamics of the
SOC, this would imply that the total optimization problem
involves 2.1 ·106 ·60 ·60 ≈ 7.6 ·109 evaluations of the system
model for each IDP iteration.

Note that this problem is “only” a 2+1–dimensional prob-
lem (two state variables, one control variable), and higher-
dimensional problems grow exponentially in complexity. For
systems with radically different time scales this becomes
computationally exhausting as small time-steps are needed
along with a prohibitively large grid for the slowly varying
state variable(s).

2. MULTI-PASS ITERATIVE DYNAMIC
PROGRAMMING WITH REGULARIZATION (IDP-MP)

The following modifications to the standard IDP scheme,
collectively referred to as IDP-MP, mitigate the feasibility
and complexity issues described in Section 1.3.

2.1 Improving feasibility with trajectory regularization

Let Fk denote the feasible set of x [k], i.e. the set of
x [k] where there exists a control trajectory uopt (x [k])
that satisfies the problem’s constraints defined in (1). Let
Gk denote the infeasible set of x [k], i.e. the set of x [k]
where there does not exist a state trajectory satisfying (1).
Define J∗k,Ns

(x [k]) as the minimum total cumulative cost
from sample k to sample Ns when following the optimal
control trajectory from x [k] ∈ Fk. For convenience, define
J∗k,Ns

(x [k]) = ∞∀x [k] ∈ Gk. Finally, define Ok as the

set of values that x [k] is allowed to cover in (1), i.e. the
values of x [k] that satisfies bin (. . . , k). Define a recursive

regularized cost function Ĵ∗k,Ns
and constraint function

b̂in (. . . ) that replaces the terms J∗k,Ns
and bin (. . . ) in (1)

during the back-calculation phase in the DP algorithm as

Ĵ∗k,Ns
(x [k]) = min

u[k]∈Uk
[c (x [k] , u [k] , k)

+Ĵ∗k+1,Ns
(x [k + 1]) + µ]

Ĵ∗Ns,Ns
= min

u[Ns]∈UNs

c (x [Ns] , u [Ns] , Ns) + µ

s.t.

b̂in (u [k] , k) ≤ 0, k = [0, Ns]
x [k + 1] = f (x [k] , u [k] , k)

µ =

{
0 dmin > dthrs ∧ x [k] ∈ Ok

β otherwise
dmin = min

IG∈IG
‖Ix − IG‖ ,

(2)

where β is a sufficiently large additive penalization factor,
Ix is the grid coordinate of a given element x [k], IG
contains the grid coordinates for all elements in Gk, and

b̂in (. . . ) does not depend on x [k] but otherwise has
the same constrains as bin (. . . ) in (1). In essence, (2)
recursively generates the optimal trajectory by removing
any hard constraints on x and instead adding a penalty β
for every sample k ∈ [0, Ns] where the optimal trajectory
J∗k,Ns

(x [k]) either exceeds Ok (i.e. violates the original

constraints bin (. . . )) or the distance between x [k] and the
nearest infeasible state is less than dmin. The dmin > dthrs
term is akin to the use of a barrier function (Bertsekas,
1999, p. 370), though in this application there is no need
for it to be continuous or differentiable.

Figure 2 illustrates example values of dmin for a two-
state problem with a search space of six orthogonal and
uniformly distributed values for each state variable, using
the 2-norm for defining the distance dmin, where the
minimum distance between any two grid coordinates is
defined as 1. In this example, IG = {[1, 1] , [2, 2] , . . . }
(indicated by the red diamonds) and the feasible state grid
coordinates are {[2, 1] , [3, 1] , . . . } (indicated by differently
colored circles). For dthrs = 1.5 the dashed blue line
indicates the boundary between the penalized region (to
the left) and the unpenalized region (to the right).
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Fig. 2. Feasible (round) and infeasible (diamond) elements
for an exemplified Xk with two variables consisting
of six points each, with dmin’s value in (2) for each
feasible element using the 2-norm. The regions cor-
responding to µ = β and µ = 0 are indicated for
dthrs = 1.5.

As the hard constraints on x [k] in (1) are replaced by soft
constraints in (2), the problem feasibility is significantly
improved for problems where the only feasible state
trajectory lies near the state variable bounds (e.g. some
bang-bang-control problems, (E. Bryson and Ho, 1975, p.
112) among others). Note that there is no need to add
soft constraints to u [k] as these values can directly be
chosen, unlike x [k] which evolves over k. (Note that this
constraint replacement method is conceptually similar to
that of (Bertsekas, 1999, p. 281).)

Determining values for the regularization parameters dthrs
and β is not obvious; the examples in this paper use
β = cmax − cmin (where cmax = max c (. . . ) and cmin =
min c (. . . ), i.e. the maximum and minimum possible
sample costs respectively), and 2-norm grid index distances√

2 ≤ dthrs ≤ 5.

Typically, active regularization terms will generate sub-
optimal trajectories. However, with successive iterations,
the suboptimal path typically asymptotically approaches
the true optimal path as

• the suboptimal state and control trajectories intro-
duced by the dmin > dthrs condition generates a
path that is typically at most dthrs grid indices away
from the true optimal path, and with a decreasing
grid extent (i.e. a finer grid) the absolute deviation
decreases in proportion, and
• an optimal trajectory will only leave Ok+1 if there

only exists feasible, but penalized, trajectories from
x [k] (i.e. trajectories that violate the constraints in
(1)). With successive IDP iterations the elements
in Uk and Xk+1 will be more closely spaced and a
control u [k] that brings x [k] → x [k + 1] such that
x [k + 1] ∈ Ok+1 will typically be generated if it exists.

Essentially, with a sufficiently fine grid, and for problems
where the region of feasible trajectories is not pathologically
shaped, the penalization term β will not be applied, and
the initial problem’s constraints, (1), will not be violated.

2.2 Improving feasibility with heuristic increase of grid
search space

Despite the regularization terms used to improve the
feasibility of the problem, as described in Section 2.1, it is
possible that a feasible state/control trajectory is not found
after reducing the grid size (for example, an unfortunately
chosen grid may generate an Xk and/or Uk whose members
are poorly amenable to interpolation). For the p+1’th IDP
iteration, let µdec < 1 and µinc > 1 be the possible factors
to scale Xk and Uk with for each sample k. For a given
scaling factor, center Xk/Uk about the result for the p’th
IDP iteration, while leaving the number of grid elements
unchanged. Here µdec is analogous to 1− ε in Luus (1990).

In this event, a simple heuristic that attempts to eventually
generate feasible trajectories is to scale the grid size by
µdec if the previous iteration generated a feasible result
and by µinc if it did not. A good practice for this value is
to choose a value that only very slightly increases the grid,
i.e. 1 < µinc � 1/µdec, and selecting µinc such that µn

inc 6=
1/µdec ∀n ∈ Z, i.e. select µinc and µdec to inhibit repeating
cyclic sequences of grid sizes given continuously infeasible
iterations after an initially successful iteration. For example,
if µdec = 0.8, one appropriate value is µinc = 1.05
as µn

inc = [1.05, 1.1025, 1.1576, 1.2155, 1.2763, . . . ], which
does not contain 1/µdec = 1.25.

2.3 Solving the m-1-dimensional problem to reduce the
search space

For problems that display loosely coupled states (in the
sense that each state’s dynamics are relatively independent
of the other) and whose dynamics have very different
time scales, one can intuitively expect that the state
trajectory for the slowly varying state variable(s) is similar
to the trajectory generated by solving a simplified problem,
where the dynamics of the quickly-varying state variable(s)
is neglected. (Note that problems that are stiff and/or
chaotic — where the trajectory of the quickly varying state
variable(s) has a large effect on the slowly varying state
variable(s) — do not lend themselves to this method.)

For these types of problems, the execution time for the
optimal control problem can be significantly reduced by,

a solving an approximate lower-dimensional problem
using IDP with a possibly longer sample period,
where the dynamics of the quickly-varying states are
neglected (which is computationally much faster than
the full-dimensional problem with a short sample
period), followed by

b solving the full-dimensional problem with a sufficiently
short sample period and grid spacing density (the
latter due to reachability requirements) using IDP,
where the search space for the slowly varying variable
is limited to some region in the vicinity of the solution
from the low-dimensional problem a.

This procedure allows for significantly reducing the number
of elements in X that correspond to the slowly-varying
variable(s) in stage b, while maintaining optimality so
long as the true optimal control solution for the slowly
varying state variable(s) lies within the range of values
searched in stage b. This method can be easily extended



to m-dimensional problems with n different sets of state
variables with different time scales.

The following exemplifies how stages a and b can be applied
to the vehicle control problem defined in Section 1.3.

Apply stage a; Solve a 1-state/1-input problem using
an equivalent model where the SOC is modeled as a
state variable and the model input is the vehicle power
(corresponding to the power required to maintain a constant
speed). This approximation is equivalent to neglecting
the dynamics related to changes in vehicle velocity, i.e.
neglecting the vehicle’s kinetic energy and allowing the
vehicle velocity to be discontinuous. For a longer sample
period of 2 seconds (which shifts computational burden
from stage a to stage b) reachability implies that a grid
density of 108 MJ/ (90 kW · 2 s) = 600 points is required.
Assuming 700 points are used this gives a total of 700 ·
60 · 60/2 = 1.2 · 106 model evaluations per IDP iteration.
Doubling the sample period for this stage results in reducing
the number of computations in this stage by a factor of
four.

Apply stage b; Solve the full 2-state/1-input problem
(i.e. model SOC and velocity as states with acceleration
as an input) with a reduced SOC search range. For
a 1 second sample rate reachability yields a SOC grid
separation of 90 kJ, though now a smaller SOC range can
be searched compared to the original problem in Section 1.3.
A conservative lower bound for the SOC variable extent is
to require the permissible variation in battery energy ∆E
to be able to accelerate/decelerate the vehicle from zero to
maximum speed or vice versa. For equal sample rates in
stages a and b and a vehicle mass of 1000 kg, this results in
a battery search range of ±∆E ≥ 1

2 · 103 (30)
2

= ±450 kJ
centered about the SOC trajectory determined in stage a.
In this example, the sample period in stage a was twice the
sample period of this stage, suggesting that a search range
on the order of ±450 · 2 = ±900 kJ is sufficient, giving a
minimum of 2 · 900 kJ/90 kJ = 20 grid points (i.e. doubling
the sample period in stage a doubles the computational
burden in this stage). For some added headroom, assume 24
grid points are used. This gives a total of 100·15·24 = 36·103

state/control combinations to test at each sample, which
causes the final two-dimensional problem to consist of
36 · 103 · 60 · 60 = 130 · 106 calls to the system model.

In this example, IDP-MP requires 1.2 · 106 and 130 ·
106 model evaluations in stage a and b respectively, in
contrast to the 7.56 · 109 model evaluations per iteration
for the standard IDP method. The total number of model
evaluations is reduced by a factor of 58, with a similar
reduction in execution time.

In fact, for this particular problem, shifting computational
burden from stage a to stage b worsens the net performance,
as ±∆E is “only” two orders of magnitude smaller than
the total battery capacity. For a 1-second sample rate
in both stages, stage a and b would require 4.8 · 106

and 65 · 106 model evaluations respectively, reducing the
total number of model evaluations by a factor of 108
compared to the standard IDP method. Naturally, the
reduction in computational time is a result of the chosen
numerical values in this example, and it will be shown in

Section 3.2 that some problems may exhibit a much greater
performance improvement.

Note that, in general, determining the minimum search
range for stage b and optimally balancing the computa-
tional burden between stages a and b is beyond the scope
of this paper.

3. RESULTS

This section highlights the benefits of the method presented
in Section 2 by solving two optimal-control problems
using a Matlab implementation of the presented IDP-MP
algorithm.

3.1 Double-integrator

Assume the goal is to optimally control a sampled con-
strained double integrator with different time scales given
by

x2 [k + 1] = x2 [k] + αTsu [k]

x1 [k + 1] = x1 [k] + Tsx2 [k] + αu [k]
T 2
s

2

c [k] =

(
|x1 [k]|+

∣∣∣∣ 1

10
x2 [k]

∣∣∣∣)Ts
s.t.

Ts = 0.125
Ns = 3/Ts
α = 4

u [k] ∈ [−1, 1]
x2 [k] ∈ [−1, 1] x1 [0]

−x2 [0]
x1 [Ns]
x2 [Ns]

 ≥
 1

0
1
0

 ,

(3)

where α is the difference in time scales between x2 and x1,
Ts is a constant sampling period, and the magnitudes of x1
and x2 are penalized. The penalization terms are selected
so that the resulting optimal trajectory is identical to that
of a problem using the cost function c [k] = |x1 [k]|Ts, while
ensuring numerical stability in regions where this simpler
cost function displays singular control. Several attributes
make this problem a suitable example that illustrates
the benefits of the presented method: the optimal control
solution is known analytically, the state trajectory of the
optimal solution lies on the boundary of the feasible set (as
x2 will be ±1 for some time), and with α = 4 this problem
is relatively loosely coupled with respect to x1 and x2.

Using the IDP-MP method defined in Section 2.3, some
reduction in the search space for x1 is possible if an
approximation of (3) can be generated where the quickly
varying state variable is replaced by a control signal. One
example of a system that does this is

x [k + 1] = x [k] + Tsu [k]
c (x) = |x [k]|Ts s.t.

u [k] ∈ [−1, 1][
x [0]
x [Ns]

]
≥
[

1
1

]
, (4)

where x2 has been directly replaced with an input u. This
system is a good approximation of the dynamics of the
slowly changing state variable in (3), i.e. a constrained
integrator. Furthermore, (4) is easy to solve using an
ordinary IDP algorithm; define x̂ [k] , k = [0, Ns] as the
solution given by IDP.



Now, the two-dimensional problem in (3) can be solved
and the search space can be reduced for x1 by letting

X 1
k =

{
x̂ [k] + ∆x1

n
Ng1

}Ng1

n=−Ng1

. Here, X 1
k is a set of

2Ng1 + 1 linearly distributed elements corresponding to
x1 that will be tested at sample k, ∆x1 is the extent
of the values to test, and x̂ [k] is the generated solution
of the 1-state optimal control problem in (4). The par-
ticular choice of linearly distributed elements in X 1

k is
convenient, but ultimately arbitrary; the range-reducing
method works well for other choices. Xk can be generated
in a number of ways, one practical method is to set Xk ={

(a, b) |a ∈ X 1
k and b ∈ X 2

k

}
, where X 2

k =
{

n
Ng2

}Ng2

n=−Ng2

.

Setting ∆x1 = (2 · range (x1)) /α = 1.5 results in reducing
the number of model evaluations by a factor of two, and
the reduction is primarily limited by the quotient of the
time scales, α.

The reduced search space decreases the computational
burden of the problem, however, this also reduces the
feasible set. If reduced too aggressively, the optimal solution
will not be completely contained in the search space and
solution optimality may be lost. The feasibility of the
problem can be improved by introducing the regularization
terms defined in Section 2.1. For β = cmax − cmin =
max c (. . . )−min c (. . . ) = 1.1−0 = 1.1, dmin =

√
2, using

the 2-norm for distance, and an increased search space of
x2 ∈ [−1.25, 1.25] the feasibility issues are mitigated in this
example. It is beyond the scope of this paper to determine
the minimum range that can be searched that is guaranteed
to contain the optimal solution.

Solving this problem using IDP-MP gives the state tra-
jectory shown in Figure 3 after 50 iterations, taking
approximately 10 minutes on a typical desktop computer
(primarily CPU-bound, single-core execution on an AMD
FX-6300). The feasible set and optimal trajectories for
sample k = 10 for the first two-dimensional iteration is
shown in Figure 4. As can be seen, the results in both
figures match the well-known optimal bang-bang control
and state space trajectory (E. Bryson and Ho, 1975, p.
112).

Some noteworthy attributes are:

• the optimal control trajectory for states near the
infeasible region tend to exhibit a larger magnitude
(i.e. the system is more quickly brought to a state at
least dmin grid indices away from the infeasible bound
if such a control exists),
• for states where x1 = −0.7 the optimal control

exceeds the soft constraints x2 ∈ [−1, 1], implying
that these states would belong to the infeasible set
had the allowable range not been extended to x2 ∈
[−1.25, 1.25],
• the state [x1, x2] = [−0.6, 1.1] has an optimal tran-

sition to [x1, x2] ≈ [−0.5, 1], i.e. the optimal control
brings the state out of soft constraint violation (i.e.
keeps x2 ∈ [−1, 1]) if there exists a trajectory that
does this.

For more details on the numerical values used and the im-
plementation of the IDP-MP solver, see https://github.
com/lerneaenhydra/dpm.
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Fig. 3. The state and control trajectory solution for the
double integrator (3). This result asymptotically ap-
proaches the analytic solution.

Fig. 4. Optimal trajectory map for the first iteration of the
system defined by (3) for sample k = 10. Each arrow
indicates the optimal state transition from the current
sample to the next sample. The feasible set is shown
in the greyscale region, with darker areas indicating
a larger cost J∗13,Ns

.

3.2 Hybrid vehicle example

Determining the optimal control policy for hybrid vehicles
is one application that often utilizes DP (Liu and Peng
(2008); Pérez et al. (2006)). Typically, this problem is solved
for one state variable, namely the SOC, as the search space
grows prohibitively quickly with additional state or control
variables. However, for a multi-dimensional problem with
loosely coupled states with different time scales, the IDP-
MP method defined in Section 2 can be effectively used.

Consider a passenger car series-hybrid where the combus-
tion engine crankshaft velocity, ω, and SOC are modeled
as state variables. A block diagram illustrating the model
is shown in Figure 5, where the internal combustion engine
torque, generator torque, and total power demand are
model inputs; SOC and ω are state variables; and the SOC
and instantaneous fuel consumption ṁ are model outputs.

As the crankshaft velocity is loosely coupled and exhibits
dynamics several orders of magnitude faster than the SOC,



Fig. 5. Simple model of a series-hybrid vehicle.

this problem is amenable to IDP-MP. Solving for model
parameters that are representative of a typical passenger
car, power requirements given by the US-06 drive cycle
(US Environmental Protection Agency (2008)), a 50% SOC
at the start and end of the cycle, and solely penalizing fuel
consumption gives results shown in Figure 6. (See https://
github.com/lerneaenhydra/dpm for a full definition of
the model set-up.)

0 50 100 150 200 250 300

Angular speed (rad/s)

0

50

100

150

T
o
rq
u
e
(N

m
)

ICE operating point trajectory

250

300

350

400
B

S
F

C
 (

g
/k

W
h
)

ICE BSFC

Operating points and occurance frequency

Optimal efficiency locus

0 100 200 300 400 500 600

Time (s)

-100

-50

0

50

100

P
ow

er
(k
W

)

Instantaneous power

P
tot

P
ICE

P
batt

Fig. 6. Internal combustion engine (ICE) operating point
and instantaneous subsystem power for the vehicle
topology defined in Figure 5 subjected to the US-
06 drive cycle. The upper plot shows isolines of
the engine’s brake specific fuel consumption (BSFC)
and operating point at each sample. More frequent
points are colored yellow while less frequent points
are colored blue. The engine is operated mostly along
the optimal-efficiency locus, where the most frequent
operating point is 71 Nm and 164 rad/s. The lower
plot displays the total, battery, and generator power
over time.

This example was solved using both the IDP-MP method
as well as a standard IDP method. Here, IDP-MP used
32 times fewer model evaluations than IDP per iteration,
and the calculation time was reduced by a similar factor
for each iteration. The computational reduction is limited
primarily by the quotient of time scales between the two
state variables. In this example the battery capacity has
been kept as small as possible to let the standard method
generate a solution in a reasonable time frame, and a
battery time scale on the order of 42 seconds was sufficient
(i.e. the battery was sized so that, at maximum power draw,
completely depleting the battery from a full SOC takes 42
seconds). The crankshaft displays a time scale on the order
of one second, so the state variables time-scales differ by a
factor of 42, which matches well with the difference in the
number of model evaluations between IDP-MP and IDP.
Had the battery time scale instead been on the order of

an hour, which is more physically realistic, each IDP-MP
iteration would approximately use 1/ (32/42 · 60 · 60) ≈
1/2700 as many system model evaluations as the standard
IDP method (as reachability implies the battery energy grid
density must be constant while the grid range is increased
by a factor of approximately 60 · 60/42 ≈ 86).

The IDP-MP method has been verified for this particular
example by comparing the results to those given by a
standard IDP method. Figure 7 displays the total cost J∗0,Ns

for successive IDP iterations. The mean relative difference
between the state trajectories of the 7’th iteration of IDP-
MP and 5’th iteration of IDP (which have been selected
due to their similar total cost) is 0.764% and is believed to
primarily be due to the inherent variable quantization of the
states and controls. Even though IDP-MP generates inferior
results for a given number of iterations the significantly
reduced computation time ensures that a result equally
good as that given by IDP is generated after a shorter
execution time.

Fig. 7. Net cost (fuel consumption) for the system topology
shown in Figure 5 for successive iterations. IDP-MP
gives a slightly worse trajectory than IDP for a given
iteration, but eventually surpasses IDP while using
1/32 as many model evaluations per iteration. Only
five IDP iterations are shown due to the prohibitive
execution time, taking approximately ten times as
long to calculate as all the IDP-MP iterations.

4. CONCLUSIONS

It has been shown that the IDP-MP method can greatly
decrease the computational time required to solve optimal
control problems for systems where the system dynamics
are both loosely coupled and display significantly different
time scales. Typically, the execution time is decreased
by a factor on the order of the quotient of the system’s
time scales. As problems with very different time scales
are computationally difficult to solve using IDP, this
method is a significant improvement over IDP as these
problems are where the largest performance gains with
IDP-MP are found. Broadly speaking, the IDP-MP method
described in this paper increases the range of optimal
control problems that DP/IDP is suited for and, as a result
of the large performance improvement, significantly more
complex problems can be considered.
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