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Enhancing Privacy in the Advanced Metering Infrastructure:
Efficient Methods, the Role of Data Characteristics and Applica-
tions
Valentin Tudor
Department of Computer Science and Engineering, Chalmers University of Technology

ABSTRACT
Large quantities of data are produced and collected by computing and communication
devices in cyber-physical systems. Information extracted from these data opens new
possibilities but also raises privacy issues.

The characteristics of these data play an important role in the efficiency of privacy-
enhancing technologies thus grasping the former’s influence is a step forward in im-
proving the latter. Privacy-enhanced data can be employed in cyber-physical systems’
applications and their utility can be improved by fine-tuning the parameters of the
privacy-enhancing technologies applied to the data. This can be coupled with an anal-
ysis of the efficiency of applications that employ privacy-enhanced preprocessed data
for better insights on the trade-off between applications’ utility and data privacy. Or-
thogonal to this, privacy-enhanced data originating from cyber-physical systems can be
employed in monitoring solutions for cyber security. This is a step forward in fulfilling
both the confidentiality and privacy requirements for these complex systems.

This thesis focuses on privacy in the context of the Advanced Metering Infrastruc-
ture (AMI) in the smart electrical grid and it has three primary objectives. The first
is to study the characteristics of AMI datasets and how they influence the efficiency
of privacy-enhancing technologies. The second objective is to identify methods and
efficient algorithmic implementations, in connection to what can be deployed in con-
temporary hardware, as needed for Internet of Things-based systems. The third objec-
tive is to study the balance between confidentiality requirements and the requirement
to monitor the communication network for intrusion detection, as an example.

This thesis advances the current research by showing (i) how different AMI privacy-
enhancing techniques complement each other, (ii) how datasets’ characteristics can be
tuned in order to improve the efficiency of these techniques and (iii) how the need for
privacy can be balanced with the need to monitor the AMI communication network.

Keywords: Advanced Metering Infrastructure, data privacy, data characteristics, applied differ-

ential privacy, communication security, system security, intrusion detection.
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Chapter 1

Overview

Nowadays, large quantities of data are produced every minute [47] with the help of devices

connected to the Internet. Through their analysis, these large quantities of data can offer superior

understanding of the sectors where they are collected from, but this comes at a cost: “with big

data comes great responsibility” [49]. The information that can be extracted from these data

raises privacy and ethical concerns [12] which need to be addressed and alleviated in the data

collection process in order to minimize their impact on the data producers.

1.1 Motivation

Different sectors of our society are penetrated by interconnected lightweight devices which mon-

itor and control different aspects of our lives. All these devices form what is called Internet of

Things (IoT) [2], but the systems that the devices support are also commonly known as smart

environments [21], cyber-physical systems [61] or Industry 4.0 (Industrie 4.0) [50], depending

on their capabilities and the specific locations where they operate. The estimation is that by

2020 there will be around 20 billion IoT devices installed, a big portion being comprised of

consumer products.1 Internet of Things devices slowly appear in locations and near equipment

that were traditionally disconnected from the Internet. For example, the automotive industry is

promoting interconnected vehicles, and it is envisioned that Internet connected cars will become

standard in the future [41]. In the energy sector, cyber-physical systems bring advantages to

the process of monitoring the production and delivery of energy, provide easier integration of

1http://www.gartner.com/newsroom/id/3165317

3

http://www.gartner.com/newsroom/id/3165317


local renewable energy sources [81], and allow for a better management of the balance between

energy production and consumption. Internet of Things devices transform residences into smart

homes [19], improving comfort and making the dwellers more informed about their electrical

energy consumption patterns and helping to reduce their environmental footprint.

All these improvements and benefits come at a cost, as the large quantities of data collected

by IoT devices raise privacy concerns due to the sensitive information that can be inferred from

them. Historically, the medical domain is one of the most privacy sensitive, as patients’ data

need to be stored and processed following strict procedures [74]. With the introduction of med-

ical IoT devices and sensors, patients can be monitored in real-time, improving the health care

quality [27], but resulting data need to be collected, transmitted, stored and processed in a se-

cure and privacy-preserving fashion [80]. Similar concerns exist also in the vehicular sector,

as data produced and collected in vehicles can be used to infer sensitive information regard-

ing the users’ driving style and their whereabouts [93]. Data collected in the electrical energy

network also raises privacy concerns, as information regarding the customers’ lifestyles can be

extracted from the energy consumption patterns [69]. These are only a few examples, but they

stress the importance of understanding, studying and overcoming the privacy challenges [38]

raised by large data generated in the Internet of Things. Closely connected to the need for pri-

vacy is the one to secure and monitor the IoT devices and ensure their correct behavior as their

Internet connectivity makes them vulnerable and susceptible to malicious utilization.2 Devices

deployed in cyber-physical systems control infrastructures which are critical for the functioning

of our society and their failure or malicious utilization may affect the environment and human

lives [37, 68, 77]. This emphasizes the need for monitoring solutions tailored to the special char-

acteristics of the IoT environment in order to benefit the most from what the IoT devices have to

offer [44, 72, 102] and to detect possible misbehavior [101] in the communication network [14].

Besides the individual privacy and security challenges [38] of IoT environments, additional chal-

lenges arise when these two requirements are put together. One of these challenges relates to

the need to monitor devices that employ encryption in their communication as a confidentiality

and privacy measure. In this case the monitoring solutions need to attune the security and the

privacy requirements, and this becomes possible by harnessing the information extracted from

IoT environments [7].

2https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-
mirai-released/
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The work presented in this thesis is motivated by:

• The privacy concerns raised by the large quantities of data collected in different Internet

of Things environments.

• The need and the benefit of employing these data in practical applications while preserv-

ing the privacy of the data producers.

• The need to balance the privacy of the data producers with monitoring the behavior of the

devices that collect these data.

We focus on a specific Internet of Things environment, a section of the electrical grid called

the Advanced Metering Infrastructure (AMI), which exhibits the aforementioned privacy and se-

curity challenges. We formulate research questions, identify problems and propose and evaluate

solutions for the AMI. Due to the similarities in the data producing process, monitoring equip-

ment and privacy related solutions for the Advanced Metering Infrastructure are many times

applicable to other IoT environments.

The rest of this introductory chapter is structured as follows: Section 1.2 describes general

aspects of the Advanced Metering Infrastructure, outlines privacy issues of large scale AMI data

collection together with challenges of employing them in practical AMI applications and also the

requirement of balancing the need for privacy with the need to monitor the behavior of the AMI

devices. In Section 1.3 we formulate our research questions, Section 1.4 contains an overview of

our methodology and we present the main contributions of this thesis in Section 1.5. Section 1.6

contains the summary of the appended publications, and we present our conclusions, followed

by future research directions in Section 1.7. Parts II, III and IV contain the research articles

which present in detail the contributions and results of this thesis.

1.2 Background, challenges and related work

1.2.1 The smart electrical grid and the Advanced Metering Infra-
structure (AMI) - the challenges of large data

With the deployment of the Internet of Things, the electrical grid is transitioning to the so-called

smart [electrical] grid [97]. The European Commission Directorate General for Research de-

fines smart grids as “electricity networks that can intelligently integrate the behavior and actions

of all users connected to it – generators, consumers and those that do both – in order to efficiently

deliver sustainable, economic and secure electricity supplies” [97]. The objective of the smart

grid is to enhance the classical electric network through IoT devices installed in key locations.
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The European Commission portal3 offers an overview of the undergoing smart grid projects in

the European Union.

The electrical grid is divided in three main sections: the generation section (where electric-

ity is produced in power plants), the transmission section (electricity is transported over high-

voltage lines) and the distribution section (electricity is delivered to the consumers). The first

two sections already benefited from automated monitoring and control systems, while the last

one is currently undergoing the upgrade process. The generation and transmission sections are

monitored and managed by the Supervisory Control and Data Aquisition (SCADA) system, a

type of industrial control system. The concept of SCADA predates the smart grid one, but it is

continuously upgraded with the help of new IoT devices and by transitioning from the traditional

legacy systems to new ones based on commercial equipment and operating systems [53].

In the distribution section of the electrical grid, the classical electrical energy meters are

replaced with new ones, called smart meters [20]. A smart meter (SM) provides two-way com-

munication with the central system allowing efficient monitoring and control of the electricity

delivery process. Smart meters facilitate the data collection process which provides the system

operator with an important source of information. These devices, together with the communi-

cation network connecting them, form the Advanced Metering Infrastructure (AMI) [13]. The

AMI concept is relatively new and it brings together elements from electrical engineering and in-

formation technology. While in some countries the upgrade of the distribution network is almost

complete, in others the AMI deployments are in different stages, depending on the local rules,

regulations and technical implementations [94]. As a component of the electrical network, the

Advanced Metering Infrastructure becomes a critical asset of out society. Studying its properties

and particularities, finding solutions for its inherent problems and developing tools for the AMI

becomes extremely important from both a research and a practical perspective.

Large datasets - multiple possibilities: Similar to the Internet of Things, the prognosis is

that data produced by smart grid equipment will be considerable and the size of the smart grid

may become larger than the size of the current Internet.4 These data will play a key role in

the development of the smart grid, and analyzing and building applications on these data will

contribute towards improving electrical grid stability. Data collected in the Advanced Metering

Infrastructure will provide, among others, better management of the electrical energy consump-

tion and the integration of renewable energy sources [90]. Some of these improvements are

closely related to other developing IoT areas. For example, these data will facilitate a close in-

teraction with the vehicular domain, as electrical vehicles will have an active role in the electrical

grid as energy sources during peak periods [24, 91].

3http://ses.jrc.ec.europa.eu/sites/ses.jrc.ec.europa.eu/files/u24/
2014/project_maps_28_april_2014.html

4http://news.cnet.com/8301-11128_3-10241102-54.html
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As previously mentioned, the Advanced Metering Infrastructure is composed of smart me-

ters, i.e. devices that have two-way communication capabilities with a central system. Smart

meters are capable of providing fine-grained data regarding the electrical energy consumed at

the household level and the quality of electrical power delivered [13]. The electrical energy

consumed by the household is measured using the kWh unit of energy. The billing is usually

done over long periods of time (i.e. 1-3 months), but the fine-grained energy consumption data

can also be used for differential tariffs or even for customer re-imbursements when renewable

energy is produced locally [90]. Information regarding instantaneous values of voltage, current,

active and reactive power are used for grid operation purposes and they can be very useful for

a low-voltage SCADA system [83], especially when managing local renewable energy sources.

Grid operational data need to be collected very often (i.e. less than a minute) in order to give

an accurate overview of the electrical distribution network. Efthymiou and Kalogridis [30] use

the term high-frequency (HF) data for data which are used mainly for grid operational purposes

and low-frequency (LF) data for data used mainly for billing purposes. We will keep the same

definitions for these two types of data throughout this thesis.

The work in this thesis is focused on data produced and collected in the Advanced Metering

Infrastructure. Information from AMI data can be harnessed with the help of cloud process-

ing [66, 88], and after a thorough data validation process [46], will allow for the development

of a number of AMI applications such as peak energy consumption shaving [40], short-term

energy consumption forecast [92], prevention of energy-related fraud [16, 70], securing critical

infrastructures [6, 44, 45] and also educating the consumers towards efficient energy usage [71].

1.2.2 Large datasets - privacy issues, solutions and applications

As mentioned in Section 1.1, large quantities of data collected in the Internet of Things can raise

privacy concerns, especially when a person is behind the data production process. This also

applies to the Advanced Metering Infrastructure environment where energy consumption data

can be used to infer information about the lifestyle of people living at the premises. Peoples’

privacy can be preserved with the help of privacy enhancing technologies (PET:s) tailored to the

AMI environment.

Data recorded and reported by the smart meters can contain sensitive information such as

electrical equipment usage patterns [78], presence or absence from the premises [69] or even the

channel displayed on the TV set [43]. With the help of a technique called Nonintrusive Load

Monitoring [48] the type of the electrical appliances installed at premises may be inferred and

this process is simplified by AMI data collected with high granularity [31]. The energy load

profiles become distinctive biometric behavioral traits [8] and can be used to identify individuals

or group of persons based on their energy consumption patterns.
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Privacy-enhancing technologies for the Advanced Metering Infrastructure

The examples above show some of the privacy concerns raised by data collected in the Advanced

Metering Infrastructure. Thus, preserving data producers’ privacy is an important goal and em-

ploying PET:s in the AMI environment can help to achieve it. Before presenting the main PET:s

for AMI we briefly mention the legal framework covering the smart metering data. At the time

of writing, there is no enforced European Directive that covers smart metering data in particu-

lar and this type of data falls under the general incidence of the EU Data Protection Directive

95/46/EC [25]. The EU Data Protection Directive 95/46/EC is being replaced by the EU General

Data Protection Regulation (GDPR) [35], whose enforcement for all EU entities will take place

on 25th of May 2018. As a consequence, until the enforcement of GDPR, deployment of the

Advanced Metering Infrastructure can be significantly slowed down in countries where privacy

preservation of AMI data is not guaranteed by law [23]. Article 35 of the GDPR which refers

to Privacy by Design will become the legal requirement for implementing Privacy Enhancing

Technologies in all domains, including the process of developing and improving the smart grid.

The EU Commission also provides a Data Protection Impact Assessment Template for Smart

Grid and Smart Metering Systems [34] whose scope is “[...] to help ensure the fundamental

rights to protection of personal data and to privacy in the deployment of smart grid applications

and systems and smart metering roll-out [...]” [34]. In addition, the EU Smart Grid Task Force5

offers documentation containing guidance on data protection and privacy for smart grid investors

and data controllers6.

There are a number of surveys that cover the privacy enhancing technologies proposed for

the Advanced Metering Infrastructure [10, 56, 87]. Generally, there are two main types of PET:s

for AMI: techniques that operate on the personally identifiable information (PII) attached to the

energy data (i.e. data anonymization, data pseudonymization) and techniques that operate on

the energy consumption data (i.e. data aggregation, data obfuscation, verifiable computation).

Combinations of these technologies are also possible for additional enhancing of data’ privacy.

Data anonymization and usage of pseudonyms: We return to the two types of AMI data pre-

sented earlier: high-frequency (HF) data used for grid operational purposes and low-frequency

(LF) data used for billing. Efthymiou and Kalogridis [30] consider billing data to be privacy

neutral, as they are seldom collected (LF data), thus showing overall information about the en-

ergy consumption process over the time period considered. Also, for a correct billing, these

data need to be attributable to a specific customer. On the other hand, grid operational data

need to be collected often (HF data), thus they might show detailed information about the cus-

5http://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-
grids-and-meters

6https://ec.europa.eu/energy/sites/ener/files/documents/2014_dpia_
smart_grids_forces.pdf
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tomer’s lifestyle. For privacy reasons, the connection to the real identity of these data needs to

be severed. This can be accomplished with the help of third party entities which are responsible

of collecting, anonymizing and then delivering the sensitive data to its beneficiary [9, 30, 98].

Borges et al. [11] propose a similar solution based on anonymity networks where a customer

uses different identities for transmitting the billing and grid-operational data. Rottondi et al. [84]

propose a pseudonymization protocol which relies on a secret sharing scheme, enabling a set of

nodes in the network to perform pseudonymization without having access to the measurements

themselves. The protocol also provides a Identity Recovery phase which can be performed in

case of alarms or faults, which can be used to connect a pseudonym with the real identity of the

data producer.

Data aggregation and obfuscation: These methods can employ simple aggregation, when

the values are aggregated together, or data can be obfuscated with the help of noise addition. Ho-

momorphic cryptography methods can be employed to provide an extra layer of privacy for the

aggregated values [63, 69, 99] and they can also be combined with noisy aggregation [63]. Bohli

et al. [9] propose a solution where each meter adds a random value extracted from a known dis-

tribution to each of its reported consumption values. If enough smart meters participate, then the

energy provider which knows the parameters of the distribution can compute the (approximated)

aggregated consumption. Methods based on differential privacy [29] where noise extracted from

a Laplacian distribution is added to the aggregated consumption were also proposed for the Ad-

vanced Metering Infrastructure environment. Barthe et al. [3] propose a protocol which is able

to aggregate smart meter readings into statistics and bills in a privacy-friendly fashion. Ács and

Castelluccia [1] present a similar solution, relying on a different distributed noise generation

method. Shi et al. [86] propose a solution where homomorphic encryption is integrated with

differential privacy to prevent untrusted aggregators from gaining knowledge from the partic-

ipant’s data. Rottondi et al. [85] propose a technique inspired from differential privacy and

multiparty computation which is based on white noise addition. There are also methods that

provide obfuscation via technical means [59, 60], but they are outside the scope of this thesis.

Limitations of privacy-enhancing technologies for the Advanced Metering Infra-
structure

Recent studies showed that through adversarial means, the effect of privacy-enhancing technolo-

gies for the Advanced Metering Infrastructure can be diminished. Jawurek et al. [55] present the

problem of breaking smart meter privacy by employing a technique called de-pseudonymization.

They rely on support vector machines and present procedures that can be employed to link con-

sumption traces by correlating anomalies that happen at the same time (such as consumption

spikes or blackouts) or by finding similar customer behaviors in different consumption traces.
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Buchmann et al. [15] show that with the help of simple statistical tools such as mean and standard

deviation, individual houses can be identified based on their energy consumption records. Eibl

and Engel [31] describe how a characteristic of AMI data, called data granularity can influence

the efficiency of detection methods employed in nonintrusive load monitoring algorithms [48],

thus diminishing the effect of privacy-enhancing methods that hide appliance consumption pat-

terns. Faisal et al. [36] show how data granularity and the quantity of collected data affects the

re-identification efficiency. Their results show that even very low sampling consumption traces

(two samples per year) can still be viable to re-identify customers with an accuracy of 20%.

Studying the characteristics of the AMI data and especially how they influence the efficiency

of the privacy-preserving methods will help the improvement of these methods, the efficient

collection of AMI data and also the development of privacy-preserving smart grid services. We

further describe this problem and our research contribution in Research Question 1 (RQ1).

Enhancing the utility of privacy-enhanced data in practical applications

Aggregation and obfuscation solutions are successful in preserving the privacy of the customers

involved, but depending on how they are performed, some important information might be lost,

thus narrowing the applications where resulting data can be used. In Section 1.2.2 we pre-

sented some of the applications where data produced in the Advanced Metering Infrastructure

can be employed. Some of these applications require data which is unaltered and identifiable

with the real identity of the customer who produced it, while others can employ data that un-

dergoes privacy-enhancing processing. Due to privacy issues many applications are enhanced

and become privacy-preserving. Applications which employ obfuscated Advanced Metering

Infrastructure data may suffer a loss in accuracy caused by the extra noise introduced by the

privacy-enhancing methods employed. Limiting the accuracy loss while maintaining the cus-

tomers’ privacy is an interesting investigation venue.

Erkin and Veugen [32] indicate that AMI data collected for management purposes can also

be used by third parties and propose solutions to provide new personalized services for smart

homes while protecting the privacy-sensitive data. Gong et al. [42] propose a privacy-preserving

scheme for demand-response programs which also enables rewarding customers for reducing

their load during demand peaks. In the following we focus on obfuscation methods based on

differential privacy [29]. Ács and Castelluccia [1] propose an aggregation method based on

differential privacy which can hinder the adversary’s ability to infer customers’ activity during

a specific period of time. Their results show that the application’s utility increases together

with the number of participating customers. Barthe et al. [3] propose and evaluate a distributed

solution that can be used to aggregate smart meter readings into statistics and bills, but no ex-

periments based on real data are provided. Jelasity and Birman [57] assume the existence of a
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bound in order to limit the global sensitivity of the aggregation and discuss a method to prevent

differentially private queries run continuously over time from enabling the adversary to learn

the readings’ underlying distribution. Bounding the global sensitivity may reduce the quantity

of noise added, which will improve the utility of aggregation. We further describe the utility

enhancing challenge and our research contribution in Research Question 2 (RQ2).

1.2.3 Challenges in monitoring critical infrastructures

In addition to their benefits, Internet of Things devices also raise cyber security challenges.

By exploiting their vulnerabilities, IoT devices can become part of a botnet and used in large-

scale network attacks.7 This becomes even more dangerous when these devices are part of

critical infrastructures which control physical processes. Equipment malfunction and malicious

activities need to be detected early by monitoring IoT devices and their communication network.

In recent years, the integration of commercial off-the-shelf solutions in critical infrastruc-

tures enabled cyber-attacks which can be carried out in the same way as in classical IT sys-

tems [72]. One of the attack techniques that were recently employed was that of malware tai-

lored for these types of systems. Stuxnet [79], Duqu [4] and Flame (sKyWIper) [64] are relevant

examples of ICS related malware discovered recently and their complexity shows the amount

of resources and effort that was put in their development. These pieces of malware, together

with a recent proof-of-concept called Irongate [52] show that some adversaries are willing to

allocate significantly more resources compared with many examples of malware for classical

systems [33]. Two recent attacks, one against a power station8 and one against a public heating

system9 give a glimpse of the effects of these attacks on critical infrastructures.

The research community is actively working towards identifying and mitigating vulnera-

bilities that affect critical infrastructures such as the Advanced Metering Infrastructure (AMI).

Carpenter et al. [18] present a number of vulnerabilities that exist in devices in the AMI together

with an attack methodology. Subsequently, Foreman and Gurugubelli [39] present the attack sur-

face of the AMI with respect to hardware and network configurations, protocols, and software.

McLaughlin et al. [73] and Grochocki et al. [44] describe possible attack scenarios for the Ad-

vanced Metering Infrastructure, starting from potential attacker goals covering denial of service,

energy fraud, and even targeted disconnect of electrical services. Distributed denial of service

(DDoS) against a power station [77] might affect the control equipment and the energy supply

in the area served by the targeted power station. Smart meters can be tampered with to report a

lower energy consumption in order to lower the electricity bill, thus committing fraud. A fraud

7https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/
8https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-

ukraines-power-grid/
9https://thehackernews.com/2016/11/heating-system-hacked.html
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case involving a large number of smart meters, which may have cost the utility several hundreds

of millions of dollars was reported in Puerto Rico [62]. A similar case occurred in Malta [68]

where the authorities discovered that at least 1, 000 smart meters had been tampered with, af-

fecting 10% of the total local generation of electricity and causing a loss of approximately $41

million in 2012 alone. Abusing the smart meters’ remote disconnect feature [22] may influence

the power quality, leading to negative effects on the devices connected to the electrical network.

These reported events and also the potential attacks described by the research community

reveal the need for monitoring solutions for the Advanced Metering Infrastructure. The moni-

toring is performed by a specialized system, called Intrusion Detection System (IDS) tailored to

the environment under observation. IDS:s [89] have three logical components: the sensors (data

collectors), the analyzers (data processors) and the user interface (presenting the information

to the operator). Depending on their location and on the type of data analyzed, the IDS:s can

be host-based (monitoring the events in a single host), network-based (monitoring the network

traffic) or distributed/hybrid (mix between host-based and network based).

Due to the large scale of the AMI environment, a distributed IDS is apparently the most

cost-effective in a long-lived deployment, according to Cárdenas et al. [17]. Zhang et al. [103]

propose a distributed architecture with multiple IDS nodes deployed at different points in the

AMI, while Grochocki et al. [44] recommend a distributed IDS model that can monitor traffic

between peers and also scales with the size of the AMI communication network. Besides moni-

toring network traffic, there is also a need to monitor devices’ internals, as some of the attacks’

manifestations may not reflect into exterior traffic. Raciti and Nadjm-Tehrani [82] present a

model for a host-based IDS which detects anomalies inside AMI devices. They build a module

based on this model and test four possible attack types against the smart meters’ internals: data

manipulation, recalibration (changing registers’ values), reset (deleting the records regarding

consumed energy) and sleep mode (the meter is put into sleep mode and the energy consumed is

not registered). If not detected in time, these attacks can cause serious economic loss.

Depending on the detection method employed, IDS:s can be signature based (detect attacks

by comparing current activity with specific patterns) or anomaly based (compare current ac-

tivity with a model of trustworthy behavior and alert for deviations) [89]. Due to the lack of

known attack signatures, Mitchell and Chen [75] stress that a behavior (anomaly) based IDS

is preferred in the Advanced Metering Infrastructure environment over a signature-based one.

Behavior models can be built with the help of large data collected in the AMI environment. As

mentioned in Section 1.2.2, AMI data undergoes privacy-enhancing processing in order to pro-

tect them against privacy invasive attacks. Therefore, network traffic between AMI devices is

usually encrypted to protect the confidentiality of the communication process and customers’

data privacy. One important source of information for behavior models comes from monitoring

the traffic between devices [51] but this process might become cumbersome, especially when
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the AMI traffic is encrypted [7]. Monitoring the AMI communication network while preserving

confidentiality and privacy becomes a major challenge in the process of developing security so-

lutions for the Advanced Metering Infrastructure environment. This shows that there is a need

to develop monitoring solutions that are also privacy preserving and the starting point for these

monitoring tools relies in the study of the large data produced in this environment. We further

describe this problem and our contribution in Research Question 3 (RQ3).

1.3 Research questions
The research presented in this thesis is based on the analysis of large quantities of data produced

in large scale environments such as large scale cyber-physical systems or Internet of Things and

we pose research questions which stem from the challenges presented in Section 1.2. Our study

has three primary objectives, filling some of the identified gaps and advancing the current state

of research. The first one is to identify relevant characteristics of the collected datasets and

study their influence on previously proposed anonymization techniques [15, 31, 36, 55]. The

second objective is to investigate how to enhance the utility of applications which employ data

that undergo privacy-enhancing technologies based on noise addition [1, 3, 57]. The third is

orthogonal to the first two and focuses on the balance between privacy requirements and the

requirement to monitor the communication network [7, 17, 75]. Next, we define and motivate

our research questions, while in the following sections we present the methodology employed

and the contributions of this thesis.

RQ1: Which dataset characteristics influence the efficiency of privacy-enhancing technologies

and what is their effect?

RQ2: How to enhance the utility of data that undergo privacy-enhancing technologies based on

addition of noise?

RQ3: How to balance the need for confidentiality and customers’ data privacy with the need to

monitor the communication network?

RQ1: Data gathered in different environments can be used to infer sensitive information

regarding the individuals that are behind the data producing process, raising privacy concerns.

In order to alleviate these concerns, privacy-enhancing technologies can be applied during the

data collection process [30]. However the efficiency of these technologies may be influenced

by properties of the data itself. Recall from Section 1.2.2 that in the Advanced Metering Infra-

structure, information about customers’ lifestyle can be inferred from fine-grained energy data

collected by smart meters [69]. We identify and investigate AMI datasets’ characteristics [36]

and how they influence privacy-enhancing techniques which were previously proposed for this

environment.
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Figure 1.1: The research directions applied to the Advanced Metering Infrastructure
environment

RQ2: Large data produced in cyber-physical systems offer many advantages but they also

raise significant challenges regarding private data processing and enhancing privacy oblivious

applications. One technique that can be used to increase the resilience of these large data sets

against privacy violations such as de-anonymization and de-pseudonymization is to aggregate

individual data values with the help of privacy-enhancing technologies based on noise injec-

tion [1]. Recall from Section 1.2.2 that the quantity of injected noise can affect the utility of

these data, and might decrease the efficiency of the cyber-physical systems’ applications em-

ploying them [57]. Fine-tuning the noise addition process may improve data utility, but this

may come at a privacy cost. We investigate ways of enhancing the utility of data that undergo

privacy-enhancing technologies based on addition of noise.

RQ3: Monitoring solutions are required in order to ensure the correct behavior of CPS de-

vices. These monitoring solutions might often interfere with the privacy requirements by inspect-

ing sensitive data, hence they need to be adjusted accordingly. Please recall from Section 1.2.3

that in order to ensure confidentiality, devices in the Advanced Metering Infrastructure rely on

encryption in their network communication [5]. This makes the communication network more

resilient against malicious adversaries but at the same time reduces the monitoring capabilities

of the network operator, making it more difficult to detect any misbehaving user or equipment.

We investigate how to harmonize the privacy and confidentiality requirements with the devices’

monitoring requirements in the AMI environment [7]. This investigation is important in the con-

text of developing intrusion detection solutions for the Advanced Metering Infrastructure [6].
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Figure 1.1 depicts the research directions applied to the Advanced Metering Infrastructure

environment. In the following we present each research question in the context of the Advanced

Metering Infrastructure, where we describe the methodology employed and our contributions

1.4 Research methodology

In this section we present an overview of the methodology used in this thesis with regard to

the research questions formulated in Section 1.3. A detailed description of these methods and

their specific implementation is provided in Parts II, III and IV. Some of the methods employed

are shared (with small adaptations) between the different research questions, while others are

employed in close connection with each of the questions under study.

In our work we focus on the large quantities of data collected in the Advanced Metering

Infrastructure. In order to explore the possible answers to our research questions, we employ

methods that extract, analyze and process the useful information from the aforementioned data.

Data
Granularity

Data
Retention Time

Pseudonyms

Safe
Zone

Unsafe
Zone

Figure 1.2: Advanced Metering Infrastructure datasets’ characteristics

RQ1: Our first research question addresses the influence of dataset’s characteristics on the

efficiency of privacy-enhancing technologies [36]. Figure 1.2 (proposed by us in Paper I) depicts

three main characteristics we focus on: the usage of pseudonyms in the process of reporting/s-

toring data for the same customer, the retention time of data stored by the utility provider under

the same pseudonym for the same customer and the granularity [36] of reported/stored data. We

briefly describe them and motivate their influence on the data privacy:
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Pseudonyms: Using a pseudonym instead of the real identity is the first step in the data

anonymization process. This offers a privacy-preserving layer but the connection between the

real identity of the customer and the pseudonym needs to be kept secret. This protection can be

enhanced by increasing the number of pseudonyms used for each customer and changing them

frequently, thus shortening the period where each pseudonym is used, offering a better separation

between the real identity and the pseudonyms used.

Data retention time: A long period of stored data will help create an accurate energy con-

sumption profile, which can be used to extract sensitive information about the data producer’s

lifestyle. Shortening the data retention time or employing multiple pseudonyms over a long re-

tention period may help in enhancing the privacy of the participating customers, increasing the

difficulty of tracking them through the consumption pattern.

Data granularity: AMI data can be reported and stored under different granularities depend-

ing on their application utilization. Data used for billing needs to be reported using the exact

consumption values for accuracy and to prevent fraud, but it can be collected with a low fre-

quency, recording only the total quantity of energy consumed in a time period. High-frequency

data needs to be collected more often as some grid operation applications require a short re-

sponse time and fine-grained data. Decreasing the granularity of the data may help in improving

customers’ privacy, by hiding consumption artifacts.

We study the influence of these three characteristics on two previously proposed privacy

violation methods: de-anonymization [30] and de-pseudonymization [55]. We propose algo-

rithms describing a two-staged adversarial model which targets Advanced Metering Infrastruc-

ture datasets with the purpose of extracting sensitive information in relation to the data pro-

ducer. In each of the stages, the adversarial model employs one privacy violation method:

de-anonymization in the first stage and de-pseudonymization in the second one. For the de-

anonymization stage, we propose a framework based on probabilistic analysis (bins and balls) [76]

which assumes a specific distribution (Poisson) of the customers’ energy consumption values.

Based on the uniqueness of these values and using the probabilistic tools available for the bins

and balls problem [76] we estimate the expected number of customers that can be de-anonymized

by employing the adversarial strategy. For the de-pseudonymization stage, we estimate the ex-

pected number of customers that can be identified by randomly matching the pseudonyms use

for storing customers’ data. In addition to the probabilistic frameworks we perform a practical

experimental evaluation of the adversarial capabilities with the help of a dataset consisting of

smart meter readings from a large number of consumers in a medium-sized city. The data has

undergone a sanitization process where a number of data collection artifacts has been removed,

such as gaps in reporting, double conflicting records or decreasing consumption indexes.

RQ2: The second research question focuses on privacy-enhancing technologies which add

noise to sensitive values in order to protect them against privacy invasive adversaries. We fo-
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cus on differential privacy [28, 29], a state of the art privacy-enhancing noise addition method

which offers probabilistic guarantees on the privacy leaks of individual values when a statistical

result is released. Following the original definition of differentially private [29] and building

on previously proposed solutions for the AMI environment [1], the noise drawn from a Lapla-

cian distribution is proportional to the sensitivity of the function (given by the highest possible

contributing value) employed in the release mechanism. In the case of differentially private ag-

gregation of real values, the quantity of noise can be very large if the sensitivity is not bounded,

which reduces the utility of the aggregation result [57]. We analyze the bounding mechanism,

we propose applied practical methods which can be used to compute bounds and we investigate

their impact on the privacy of AMI customers. In addition to the bounded sensitivity we eval-

uate how other data collection parameters can be fine-tuned in order to maximize data utility,

by minimizing the mean absolute percentage error [1] between the differentially private and the

simple aggregation.

We build on the adversarial model employed in RQ1 [95] and we investigate the complemen-

tary protection offered by differentially private aggregation when combined with other privacy-

enhancing technologies, such as anonymization. We run an evaluation on a fine-grained AMI

energy consumption dataset in order to evaluate how differentially private bounded aggregation

reduces the adversarial efficiency in performing de-anonymization attacks and what is the effect

on the utility of the aggregated statistic. Furthermore, we study how data that undergo privacy-

enhancing technologies based on noise injection (differential privacy) can be employed in practi-

cal Advanced Metering Infrastructure applications such as short-term load forecasting [54]. We

propose a framework that can be used to enhance an AMI application with the help of differen-

tially private aggregated data and to evaluate the effect of this enhancement on the application’s

efficiency [96].

RQ3: Our third research question addresses the capacity of monitoring solutions for the

Advanced Metering Infrastructure communication network to handle encrypted communication

without affecting the data privacy. Employing encryption makes the communication network

more resilient against malicious adversaries but at the same time reduces the monitoring ca-

pabilities of the network operator, making it more difficult to detect any misbehaving user or

equipment [7]. We start from a previously proposed command recognition methodology [51]

and we refine and adapt it to the AMI environment. We analyze the properties of the AMI com-

munication network and we identify features [65] that characterize the communication protocols

used. In the feature selection process we analyze and motivate the relevance of each individual

feature for the problem considered. The selected features reflect aspects related to commands’

timing and duration, making them applicable also to other IoT protocols. We employ supervised

learning and we propose an AMI command classifier based on k-nearest-neighbor algorithm,

a fast and accurate solution for the problem at hand [100]. We evaluate the efficiency of our
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classifier on two Advanced Metering Infrastructure protocols currently used in EU AMI deploy-

ments. One of the protocols, called DLMS/COSEM [26], uses encrypted communication while

the other, called M-BUS [67], is difficult to parse due to its proprietary implementation. In our

evaluation we assess the efficiency of both individual and combined features, while for the com-

bination we also apply dimensionality reduction [58] and analyze its effect on the classification

method. In our analysis we also cover the case of commands that can only be differentiated based

on their payload, which circumvents the privacy requirement of our solution and we investigate

solutions for this special case taking into account the commands’ impact on security.

1.5 Thesis contributions

In this section we present an overview of the contributions of this thesis, with regard to the

research questions formulated in Section 1.3. We start by enumerating the main contributions,

followed by a short summary. A full description of these contributions is provided in Parts II, III

and IV.

Main contributions and advancement on existing research:

RQ1: Advanced Metering Infrastructure data characteristics and anonymization efficiency

• We study the effects of AMI dataset characteristics (data granularity [36], retention

time, usage of pseudonyms) on two privacy violation methods: de-anonymization [30]

and de-pseudonymization [55].

• We define and refine an adversary model [15, 55] and present her methodology

which covers both privacy violation methods in order to assess her limitations.

• We demonstrate both through probabilistic estimation and evaluation on a real

dataset how small changes in the data collection process [36] can scale down the

efficiency of the adversary.

RQ2: Efficient applications of differential privacy in AMI data processing

• We provide a method that can maximize the utility [57] of a differentially private

statistic by controlling its aggregation parameters, allowing for differential privacy

to be practically [1] deployed in similar cyber-physical systems such as AMI

• We provide a thorough evaluation, based on a real prototype [3] and conducted

with events collected from a real-world Advanced Metering Infrastructure, show-

ing the accuracy [57] of differentially private aggregation based on our proposed

method.
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• We present a methodology that can be employed to enhance an existing appli-

cation with data that is processed with privacy-enhancing technologies based on

noise addition [1] and qualitatively and quantitatively evaluate the effect of this

enhancement on the application’s utility.

• We apply this methodology to an AMI short-term load forecasting application [54]

and we demonstrate that the error introduced by the noisy aggregated data does not

have a major effect on the accuracy of the forecast algorithms in question.

RQ3: Monitoring Advanced Metering Infrastructure devices by analyzing encrypted traffic

• We perform an analysis of the AMI communication network and its properties in

order to identify features important from a security perspective [51].

• Based on these features, we propose a methodology to identify the type of com-

mands [51] exchanged between AMI devices, which can handle proprietary and/or

encrypted AMI protocols [7].

• We provide a validation of our approach using collected traffic [7, 51] from two

testbeds using different AMI protocols currently used in EU AMI deployments.

Summary of contributions:

RQ1: We focus on two types of data that can be collected in the AMI. The first type is called

Low-Frequency (LF) data [30] and is seldom (sometimes yearly) collected and has billing as a

primary application utility. The second type is called High-Frequency (HF) data [30], which is

collected very often, and is mainly used in grid operation applications. LF data is somewhat

privacy neutral and, because of the legal implications of the billing process, needs to be iden-

tifiable with the data producer’s real identity. On the other hand, fine-grained HF data raises

privacy concerns, thus needs to be collected and stored under a pseudonym in order to preserve

the privacy of the customer that produced the data.

We identify, couple together and investigate the three data characteristics presented in Sec-

tion 1.4: the usage of pseudonyms, the retention time and the granularity. In adition, we build

upon two previously proposed privacy-enhancing methods that operate on the personal identifi-

able information (PII) stored in AMI datasets: anonymization [30] and usage of pseudonyms [84].

We advance the current state of research by defining an adversarial model comprising of two

stages, each covering a different privacy violation: de-anonymization and de-pseudonymization.

In addition to existing literature covering these privacy violations [15, 55], we propose a

probabilistic framework to better define the adversarial capabilities and methods that allow eval-

uation on large AMI datasets. In the de-pseudonymization stage HF datasets originating from

the same customer but stored under different pseudonyms are linked together using a method
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based on distances in a multi-dimensional feature space which employs features extracted from

the energy consumption data, broadening the work presented in [15]. In the de-anonymization

stage customers’ HF and LF datasets are linked using a probabilistic method [76] based on the

uniqueness of LF energy consumption values. We employ this framework and we evaluate how

changes in the data collection procedure [36] which modify the datasets’ characteristics can help

mitigate the outcome of privacy violations such as de-anonymization and de-pseudonymization.

Our findings show how tuning the aforementioned characteristics of the data collection process

can reduce the efficiency of the adversary. Our proposed methodology and results can be used

by data custodians to better understand the properties of their Advanced Metering Infrastructure

datasets and provide a foundation for developing privacy-preserving release methods.

RQ2: We focus on differential privacy [28, 29], a method which offers probabilistic guaran-

tees on the privacy leaks of individual values when a statistical result is released and we extend

the existing research on employing differential privacy in practical AMI applications [1, 3]. We

present practical solutions to one problem previously raised in the literature, that of enhanc-

ing the utility of the data by bounding the sensitivity of the release mechanism [57]. We show

the strong complementary protection offered by differentially private aggregation when com-

bined with other privacy-enhancing technologies, such as anonymization [30]. Our results show

that differentially private bounded aggregation reduces the adversarial efficiency in perform-

ing de-anonymization attacks while enhancing the utility of the aggregated statistic compared

with unbounded differentially private aggregation [95]. Our solution, based on a state-of-the-art

stream processing engine, can be efficiently deployed in environments similar to existing AMI

environments.

We contribute to the process of developing practical privacy-preserving applications for the

AMI environment [32] and we study how data that undergo privacy-enhancing technologies

based on noise injection can be employed in practical Advanced Metering Infrastructure ap-

plications. We propose a methodology that can be used to enhance an AMI application with

the help of differentially private aggregated data and to evaluate the effect of this enhancement

on the application’s efficiency. We use this methodology on an application that relies on fine-

grained AMI energy consumption data in order to compute accurate predictions of short term

energy consumption, building on and expanding the work presented in [54]. We identify differ-

ent information sources that can be employed by this application and make an analysis of their

characteristics with respect to the trade-off between application’s accuracy and their privacy im-

pact. We identify privacy neutral sources of information which enhance the accuracy and we

use them in the prediction process. We provide a quantitative evaluation in which we compare

the accuracy of a differentially private enhanced prediction application with its non-enhanced

counterpart. Our results show that there is a minor trade-off between the differentially private

aggregation privacy benefits and the loss in accuracy.
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RQ3: So far our contributions covered privacy issues and applications of privacy-enhanced

data for cyber-physical systems. Orthogonal to this, we focus on and advance the current state

of research concerning monitoring solutions for the CPS environment which need to handle en-

crypted traffic [7]. Building on the work on encrypted industrial control traffic [51], we provide

solutions in employing information extracted from encrypted AMI traffic, without affecting the

privacy of customers.
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Figure 1.3: An Encrypted Command Recognition Sensor as an AMI IDS module

We develop one essential component for an AMI Intrusion Detection System (IDS) [82],

which we call the Encrypted Command Recognition (ECR) sensor (depicted in Figure 1.3 and

proposed by us in Paper IV). The ECR sensor can accurately determine individual AMI com-

mands exchanged between AMI devices, commands relying either on an encrypted protocol or

one that is difficult to parse. The command identification is performed in a privacy-preserving

fashion, without decrypting the traffic and without accessing the sensitive customer data reported

via the AMI communication network. The command identification is performed with the help of

a classifier which employs features based on side-channel information [51] and can be applied

to both encrypted or hard to parse protocols. We also cover the special case of commands that

can only be differentiated based on their payload contents and we offer solutions for this special

case based on the commands’ impact on security.

Our main contribution to already existing research is the ECR module, which can become

an important component of a distributed Intrusion Detection System for the Advanced Meter-

ing Infrastructure environment [103]. It will help in early detection of misbehaviors and at-

tacks [7], giving the network operator a better overview on the AMI communication network’s

status, while preserving the privacy of customers’ sensitive data [69]. We expect that the features

identified for the two protocols we have studied will facilitate the study of other proprietary or

encrypted protocols employed in the IoT, while preserving the privacy of the exchanged data.
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1.6 Summary of appended research articles

1.6.1 Paper I: The Influence of Dataset Characteristics on Privacy
Preserving Methods in Advanced Metering Infrastructure

In the first paper we investigate RQ1 in detail. We focus on previously proposed privacy-

enhancing technologies and we study how their efficiency is affected by the characteristics of

the datasets they are applied to. We present the first steps towards an analytical framework

which models a privacy-invasive adversary, a framework that can be used to estimate the effect

of the datasets’ characteristics and the conditions under which such datasets can be released to

third parties.

Our main focus is on datasets collected from the AMI environments and on two privacy

violations they are susceptible to: de-anonymization and de-pseudonymization. We start from

formalizing the process of creating low-frequency and high-frequency datasets which are em-

ployed in different Advanced Metering Infrastructure applications. Next we define an adversary

model and present her methodology for each of the two privacy violation techniques to better

understand her limitations. We propose a formalization for the two privacy violations based on a

probabilistic framework and we compare the theoretical model estimation results with evaluation

results obtained from a large dataset of energy consumption data captured in a live Advanced

Metering Infrastructure environment. Our results show how Advanced Metering Infrastructure

datasets’ characteristics (data retention time, data collection granularity and the frequent changes

of pseudonyms) can be tuned in order to mitigate the efficiency of an adversary that intends to

perform de-anonymization and de-pseudonymization.

1.6.2 Paper II: BES: Differentially Private Event Aggregation for
large-scale IoT-based Systems

In the second paper we investigate the first part of RQ2 and we focus on enhancing the utility

of previously proposed privacy-enhancing technologies for the Advanced Metering Infrastruc-

ture. We study how differential privacy, a privacy-enhancing technology offering probabilistic

guarantees, can be used to complement other technologies to allow for controlled disclosure of

statistics computed on sensitive data.

We propose methods to limit the noise introduced by differential privacy in real-world ap-

plications, by bounding the parameters of differential privacy based on information extracted

in a differentially private fashion from the system under study or from other similar systems,

thus keeping the differential privacy’s guarantees. We provide an evaluation based on a fully

implemented prototype using real-world data from the Advanced Metering Infrastructure. We
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show how a large number of events can be aggregated in a private fashion with low process-

ing latency by a single-board device, similar in performance to the devices deployed in the

Advanced Metering Infrastructure. With the help of a previously published de-anonymization

scenario (presented in Paper I), we also study the complementary protection offered by differ-

entially private aggregation when compared to other privacy-enhancing technologies. We show

that differentially private aggregation can reduce the efficiency of an adversary whose goal is to

perform de-anonymization of Advanced Metering Infrastructure datasets.

1.6.3 Paper III: Employing Private Data in AMI Applications:
Short Term Load Forecasting Using Differentially Private
Aggregated Data

In the third paper we continue the investigation of RQ1 and RQ2 and we focus on the need

to balance the privacy requirements with utility benefits in practical applications that rely on

sensitive information. More specifically we study the possibility of employing in practical ap-

plications data that undergo privacy-enhancing technologies.

We propose a methodology which can be used to analyze and enhance an Advanced Me-

tering Infrastructure application with data that was preprocessed with privacy-enhancing tech-

nologies. This methodology facilitates an analysis of privacy concerns raised by the different

sources of information that could benefit the application. We apply this methodology to Short

Term Load Forecasting, an Advanced Metering Infrastructure application that relies on sensitive

AMI data to perform accurate prediction of electrical energy consumption. We conduct an ex-

ploratory study focused on the effects of differentially-private aggregation on linear Short Term

Load Forecasting methods that can be employed in the Advanced Metering Infrastructure. We

show that the noise introduced, in the case of a bounded sensitivity, has a minor effect on the

forecast accuracy.

1.6.4 Paper IV: Harnessing the Unknown in Advanced Metering
Infrastructure Traffic

In the fourth paper we investigate RQ3 and we study how to balance the need for privacy and

confidentiality with the need to monitor the communication between devices in the Advanced

Metering Infrastructure environment. We develop a component for an Intrusion Detection Sys-

tem which can recognize the type of individual commands exchanged between Advanced Me-

tering Infrastructure devices which might employ encrypted or hard to parse communication

protocols.
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We identify a number of features which summarize Advanced Metering Infrastructure traffic

characteristics and we propose a traffic recognition methodology that employs them. We show,

for two different Advanced Metering Infrastructure protocols, that our methodology and iden-

tified traffic characteristics can be employed in order to identify a set of commands exchanged

between devices. This component can be used in an Intrusion Detection System and it is one

important source of information for building and maintaining a behavior model for each and

every device that the Advanced Metering Infrastructure is comprised of. The operator will get a

better view of the network’s status and early insights of possible attacks and misbehaviors.

1.7 Conclusion and future research directions

The proliferation of Internet of Things (IoT) with many small devices and their communica-

tion capabilities will produce large quantities of data which can be processed and transformed

into valuable information, opening the path for new applications and improvement of the IoT

environment. The work presented in this thesis tackles three data related challenges previously

raised by the research community and focuses on one instantiation of an IoT environment, the

Advanced Metering Infrastructure (AMI), a critical infrastructure. The first challenge is to study

the characteristics of AMI datasets and their influence on the efficiency of privacy enhancing

technologies (RQ1). The second one is to enhance the utility of applications which employ

AMI data that undergo privacy-enhancing technologies based on noise addition and to better

understand the effect of the noise added (RQ2). Orthogonal to the first two, the third challenge

(RQ3) is to investigate the balance between data confidentiality and the requirement to moni-

tor the AMI communication network, with practical applications. This thesis addresses these

three challenges and proposes new methods for solving and analyzing the problems, as well as

presenting extensive experimental evaluations in real usage scenarios.

We begin our study by focusing on RQ1 where we propose a framework to analyze the effect

of data characteristics on the efficiency of two currently proposed privacy-preserving methods

for the AMI: anonymization and usage of pseudonyms. Here, we identify and investigate three

main characteristics of AMI data: the granularity of the data reported, its timespan and the

number of pseudonyms used for reporting these data. Based on our results we provide practical

means to tune these characteristics in order to enhance the efficiency and strengthen the resilience

under adversarial hindrance of the two AMI data privacy-enhancing technologies under study.

Our methodology can be employed by AMI data custodians to better understand the utility and

the properties of their datasets and provides a stepping stone for developing and testing privacy-

preserving release methods.
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Without losing RQ1 from sight, we focus on RQ2 by investigating how to improve the

utility of AMI data that undergoes privacy-enhancing technologies based on noise addition, such

as differential privacy. Here we propose methods that can be used to tune the quantity of noise

added in real-world AMI applications which employ differentially private aggregation. Based

on our investigation, we demonstrate the complementary protection offered by differentially

private aggregation when combined with other privacy-enhancing technologies, complementing

our study on RQ1. In a particular example, we validate with the help of an adversarial scenario

that the effect of de-anonymization can be mitigated if AMI data is aggregated in a differentially

private fashion.

Moving onwards with RQ2, we propose a methodology which can be employed to analyze

the different sources of information present in datasets which can benefit Advanced Metering

Infrastructure applications. We focus on sources of information which can be privacy enhanced

with the help of differentially private aggregation and we evaluate the effect of this enhancement

on the applications’ efficiency. We apply this methodology on an energy consumption prediction

technique and our results show that, with proper tuning, the noise introduced by the differentially

private aggregation has a negligible effect on the accuracy of the prediction. This opens the path

for further possible applications’ extension which enable extended use of data collected in AMI

in a privacy-preserving fashion.

Orthogonal to RQ1 and RQ2, we continue with RQ3 and we investigate how to balance the

need for confidentiality with the need to monitor the Advanced Metering Infrastructure commu-

nication network. We propose a methodology for an encrypted command recognition compo-

nent, based on side-channel information, which can be used in an Intrusion Detection System

for the AMI. Our results show that statistical information extracted from network traffic can be

used to correctly identify AMI commands, even when they are sent over an encrypted channel or

embedded in a protocol that is hard to parse. This is especially useful in environments where the

network operator employs encrypted traffic, both for security reasons and for customers’ privacy.

Our proposed solution can successfully complement already existing monitoring techniques or

it can be employed as a command recognition component in future developing ones.

Throughout this thesis, by harnessing the information contained in the large AMI data col-

lected, we show how the security and the privacy of the entities can be enhanced, we pose and

answer new questions, we validate previous findings, and we provide means to aid further ex-

tensions of this work. One important outcome of the exploratory work presented in this thesis

is that it can complement the Article 35 regarding Privacy by Design, of the EU General Data

Protection Regulation, for implementing Privacy Enhancing Technologies in the smart grid do-

main. Furthermore, our findings can be extended to other similar large scale Internet of Things

deployments such as sensor and vehicular networks which share many common characteristics

through the large data produced by similar IoT components.
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Future research directions

The work presented in this thesis advances the current state of the research regarding privacy and

security issues in the Advanced Metering Infrastructure. Based on the knowledge and technical

resources available we have provided thorough answers to the research questions presented at

the beginning of this chapter. Furthermore, our work stands as a starting point to further extend

some of these answers while also identifying a number of new challenges. We briefly present

these open challenges with respect to the research questions considered.

RQ1: In our first research question we have addressed the influence of Advanced Metering

Infrastructure datasets’ characteristics on the efficiency of privacy-enhancing technologies. One

direction for future work is extending and improving the adversarial model in order to explore her

full range of capabilities in performing de-anonymization and de-pseudonymization. Another

research direction is to analytically bound the success rate of the adversary with respect to the

characteristics of the targeted dataset. These will give a better understanding of the adversary

while offering privacy-preserving options for releasing and processing AMI datasets.

RQ2: In our second research question we have focused on enhancing the utility of data

that undergo privacy-enhancing technologies based on noise addition. Our study is focused

on differential privacy and it can be extended by considering other distributions for the noise

addition process and studying their effect on the utility of the data. Our study on short-term load

forecasting applications employing noisy aggregated data can be extended to cover also other

Advanced Metering Infrastructure applications in order to examine the benefits and possible

limitations of privacy-enhancing based on noise addition. This will help in improving current

and further developing applications based on AMI data.

RQ3: Finally, to answer the last research question we have investigated the possibility

to balance the need for confidentiality and customers’ data privacy with the need to monitor

the communication network. In our study we have considered two protocols currently used

in EU Advanced Metering Infrastructure deployments. Two limitations of our study are the

classification method used and the number of commands considered. Our classifier is based on

the k-nearest-neighbor algorithm, with a complexity linear in the size of the learning set. Other

classification algorithms also need to be considered in order to obtain a good performance on the

limited capabilities hardware installed in the AMI, especially in the case of protocols comprising

a large set of commands. We have taken into consideration commands available in the current

implementation of the studied protocols, and in the future our solution can be easily extended by

considering larger datasets comprising of multiple commands.
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