
Incremental Deductive Verification for a
subset of the Boogie language
Master’s thesis in Computer Science, algorithms, languages and logic

LEO ANTTILA
MATTIAS ÅKESSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Incremental Deductive Verification for a subset of
the Boogie language

LEO ANTTILA
MATTIAS ÅKESSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Incremental Deductive Verification for a subset of the Boogie language
LEO ANTTILA
MATTIAS ÅKESSON

© LEO ANTTILA, 2017.
© MATTIAS ÅKESSON, 2017.

Supervisor: Carlo A. Furia, Department of Computer Science and Engineering
Examiner: John Hughes, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Incremental Deductive Verification for a subset of the Boogie language
LEO ANTTILA
MATTIAS ÅKESSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
As computer programs and systems get larger and more complex, the conventional
method of ensuring system correctness by feeding it input data and analyzing the
output becomes harder and more time consuming, since the space of possible input
data becomes nearly infinite. Formal verification is a method of proving the cor-
rectness of a software or hardware system in accordance to a formal specification of
its intended behavior, proposed as a complement to regular testing to increase the
accuracy of detection of bugs in a system. An issue with formal verification today
is its scalability. The SMT-problem is known to be at least NP-hard, thus the time
required to verify a program increases rapidly as programs get larger.

This thesis presents the design, implementation and evaluation of an incremen-
tal deductive verifier for a subset of the intermediate verification language Boogie.
The technique is intended to speed up the verification of a program when moving
between different iterations by identifying and re-verifying only those parts of the
program that are affected by the modifications made since the last verification. This
reduces the size of the input to the SMT-solver and can therefore help mitigate the
issue of scalability in the verification process. The verifier is evaluated by running it
on a set of test programs, each with multiple versions to simulate realistic software
development, with incrementality turned on or off. The results show promise for
the technique with the majority of tests showing considerable time save with up to
15-49% time saved for most programs with three iterations when solved incremen-
tally compared to non-incrementally, and increased number of iterations generally
lead to further time savings.

Keywords: Computer science, formal verification, deductive verification, boogie,
incremental verification, verification, sidecar

v

Acknowledgements
We would like to thank our supervisor Carlo A. Furia for his assistance and guidance
during the project. We would also like to thank Antonio Filieri for his assistance
and allowing us to make us of the SiDECAR project, which has been key to the
success of our project.

Leo Anttila, Mattias Åkesson, Gothenburg, June 2017

vii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Goals and Challenges . 3
1.3 Limitations . 3

2 Tools and Environments 5
2.1 Boogie . 5

2.1.1 The Boogie Language . 6
2.1.2 The Boogie Verification Tool 8

2.2 SiDECAR . 8
2.2.1 Operator-Precedence Grammar 8
2.2.2 Attribute Grammars . 10

2.3 SMT-solvers . 10
2.3.1 Z3 . 10

3 Implementation 13
3.1 Transforming grammar to OPG form 13
3.2 The pre-processor . 14

3.2.1 Assistance with OPG . 14
3.2.2 Variable renaming . 16

3.3 Incremental verification condition generation 18
3.3.1 If-cases . 18
3.3.2 While-loops . 19
3.3.3 Procedures and procedure calls 20

3.4 Version control . 21

4 Results 23
4.1 Test cases . 23
4.2 Method of collecting results . 25
4.3 Results . 25

5 Discussion 29
5.1 Experimental testing . 29
5.2 Input language limitations . 30
5.3 Implementation . 31

6 Conclusion 33

ix

Contents

6.1 Future work . 33

Bibliography 35

A Appendix 1: Boogie Grammar subset I

x

1
Introduction

Formal verification is the process of proving or disproving the correctness of a soft-
ware or hardware system in accordance to some formal specification of its intended
behavior. There are two main approaches to this: model checking and deductive
verification. In model checking a model of the system to be tested is produced, for
example an automaton. The properties to be verified are specified through logic
formulas such as linear temporal logic and with those properties we can perform
exhaustive search on the model to look for states and transitions which might break
them. In deductive reasoning we instead generate a set of verification conditions,
i.e. mathematical formulas, which if proved establish that a component fulfills its
specification. This can be done for example by producing logic formulas and feeding
them to a satisfiability modulo theory (SMT) solver.

Today formal verification is mainly used in the hardware industry, with the software
industry lagging behind, although its use there is growing. It is not hard to imagine
why this gap came to exist: a hardware fault is difficult to correct after a compo-
nent has been produced, thus leading to potential mass recalls, significant economic
damage to the producers and inconvenience to its users. Software can in most cases
be patched to fix bugs or security issues as they are discovered. Therefore any fault,
as long as it does not put people or property in danger, is less severe.

One obstacle to the deductive verification of software is its algorithmic complexity.
The SMT-problem is a more general version of the SAT-problem which in turn is
known to be NP-complete. Progress in heuristics and an increase in raw computa-
tional power has allowed us to solve increasingly larger instances but the execution
time can still make it infeasible to use for larger, more complex projects.

The goal of the project is to design and implement incremental generation and
validation of verification conditions for the verification language and tool Boogie1.
With the current modular design of Boogie, when a procedure’s body is changed even
slightly, all the verification conditions determined by the procedure are re-verified
[16]. By contrast if only the verification conditions that are affected by the change
were regenerated then only those verification conditions would need to be re-verified.
Then small changes in a program would no longer yield full re-verifications, making
the modularity more fine-grained. This could reduce the average running time of

1https://github.com/boogie-org/boogie

1

1. Introduction

verification, thus contributing to the feasibility of deductive verification for software
systems.

In this introductory chapter the goal of the project is presented along with context
for the work and the limitations imposed to keep the project in scope. Chapter
2 contains a brief description, along with some examples, of the major tools and
environments used to develop the verifier. In chapter 3 we present the design and
implementation of the verifier, the obstacles encountered during development and
the solutions chosen to overcome them. Chapter 4 describes how the verifier was
tested, including a brief description of the test cases, and a presentation of the
results. In chapter 5 we discuss the results and implementation of the verifier.
Finally, chapter 6 closes with a conclusion on the project as a whole, and some ideas
for future work within the area.

1.1 Context

The project targets Boogie, which denotes both a language and a tool for verification
of that language. The Boogie language is an intermediate language used to gener-
ate verification conditions. It was developed to target imperative languages and is
therefore especially efficient to that purpose. This means that to efficiently verify
any program written in an imperative language it is sufficient to convert its code
into Boogie [17], a less extensive undertaking compared to directly generating the
verification conditions. Since Boogie can be used for all imperative languages, suc-
cessfully implementing incremental verification can improve the verification process
of all those languages.

Incremental verification can be built on top of incremental parsing, a currently active
research field [8]. Incremental parsers only regenerate parts of the syntax tree that
are affected by the code that has been changed since the previous parsing. By only
regenerating the verification conditions for the same parts of the syntax tree and
by reusing the already solved and unaffected verification conditions an incremental
verification scheme can be created.

Boogie does not currently support incremental verification; however, it does support
modular verification. The effects of a procedure call are limited to what is specified
in the caller’s specification (pre- and postcondition). Thus, each procedure’s body is
verified against its specification, but a caller’s code does not require re-verification
as long as the specification of the procedures it calls do not change [16]. Even
with this type of modularity it can take a long time to verify a program when a
procedure has been changed [18]. Being able to just re-verify a minimal part of
the procedure that has been changed would be a big improvement to the already
supported modular verification in Boogie, making verification less time-consuming
and thus making developing verified software significantly easier.

There have been some previous implementations of incremental verification. Bian-

2

1. Introduction

culli et al. made an incremental verifier for a fragment of the C language, KernelC,
and the results look promising [8]. In comparison with the state-of-the-art verifier
MatchC [23] their verifier outperformed MatchC in almost all cases, hinting toward
big potentials for future development in the field.

1.2 Goals and Challenges

The goal of this thesis project is to design, implement, test and evaluate an incre-
mental verifier for a suitable subset of the Boogie language. If a speed-up, with
respect to non-incremental verification, is achieved this can stand as a proof of con-
cept to support further development of incremental verification for Boogie. This
could contribute to the applicability of deductive verification so that its use can
become more widespread in the future.

An appropriate breakdown into sub-goals is:

1. Research and investigate the theory of incremental parsing and incremental
verification.

2. Design an incremental verification system for a suitable subset of the Boogie
language.

3. Implement the incremental verification technique in a fitting tool.

4. Perform experimental testing and evaluation with regards to the speed of the
incremental verifier.

The main challenge of the project, making up its core, is the design of the incremental
verifier. This includes determining what method to use for logically structuring
program configurations and their contracts, as well as how to perform syntax driven
reachability checking. A key aspect of the design is constructing the generation of
verification conditions such that it minimizes the amount that are regenerated in
case of local changes. To increase efficiency it is also important to take full advantage
of the stateful SMT-solver interface used to pass the verification conditions.

1.3 Limitations

The main goal of the project is to investigate the viability and potential gain from
incremental verification, and as such only a subset of the Boogie language is tar-
geted. Since Boogie is a well-developed language with some complex structures and
features, it would not be possible to implement the entire language within the time
frame of this project.

3

1. Introduction

The main features omitted from the Boogie language:

• Advanced types - Only boolean and integer types are supported

• Bitvectors

• Labels and gotos

• Procedures that returns multiple values

• Maps and Arrays

• Existential and universal quantifiers

Additionally, overloading of variables names will not be supported. For instance, if
the global variable x exists, the variable name x can not be re-used as a parameter
for a procedure.

Very little typechecking exists in the verifier. Essentially this prototype will assume
the user is writing syntactically correct code that just needs to be verified. As
a consequence of this, writing syntactically incorrect code can cause crashes, and
tracing the fault can be difficult.

4

2
Tools and Environments

In this chapter an overview of the tools, structures and environments used in the
thesis work is presented. In section 2.1 we describe Boogie, the verification environ-
ment whose language is targeted by the verifier developed in this project. Section
2.2 describes SiDECAR, a tool developed as a framework for incremental verification
and used in this project to create an incremental parser for the language. Finally
section 2.3 gives a brief description of SMT-solvers and the specific solver used in
this project: Z3.

2.1 Boogie

As discussed in section 1.1, Boogie denotes both a programming language and a tool
for verification of that language, developed by the RiSE team at Microsoft Research
[2]. Together they are intended to function as a layer on top of which program
verifiers for other languages can be developed.

The task of verifying a modern programming language is complex, but by separat-
ing the task into two parts the work required can be greatly reduced [17]. The first
step is converting the program and its proof obligations into an intermediate lan-
guage. The second step is to transform the program from the intermediate language
into verification conditions and feed those to an SMT-solver. Differences in seman-
tics between different source languages are handled by encoding the behavior with
primitive constructs, for example by recording any properties guaranteed during an
execution of a program as assumptions.

Boogie serves as both the intermediate language and the tool that transforms the
intermediate program representation into verification conditions and checks their
validity. As such, only the first step has to be redone for different program languages,
saving a lot of work. Translations into the boogie language has been done, at least
partly, for a number of languages: Spec# [4], C [9] [22], Dafny [19], Eiffel [24] and
Jimple (an intermediate representation of Java) [1].

5

2. Tools and Environments

1 var counter : int;
2 procedure incrementCounter ()
3 requires counter >= 0;
4 ensures counter == old(counter) + 1;
5 modifies counter ;
6 {
7 counter := counter + 1;
8 }

Figure 2.1: Simple Boogie program incrementing a counter by one

2.1.1 The Boogie Language

The Boogie language is a procedural intermediate verification language. It allows
the formal specification of a program through certain language constructs, a set
of verification-specific statements and native support for a typed first-order logic.
These are used to generate the verification conditions required to prove or disprove
the correctness of the program.

Formal specification of the behavior of a procedure is constructed by associating
it to a collection of preconditions, postconditions and mutable variables, called a
contract. The conditions are expressed in first-order logic formulas and the mod-
ifiable variables are declared by their identifier. The precondition must hold at a
procedure call, the postcondition must hold after the called procedure has been
executed and only variables declared as modifiable may be changed during its exe-
cution. This is an extension of the design by contract method [20], introduced by
Bertrand Meyer in the Eiffel programming language 1986, based on earlier work
such as the pre/postcondition technique and invariable reasoning originating from
work by Tony Hoare [13][14].

Figure 2.1 shows an example of a procedure which increments the value of a counter
by one. The counter is defined to be inactive if its value is less than zero, thus the
requires clause establishes the precondition that the counter must be active for the
procedure to be legally run. The ensures clause establishes the postcondition that
the value of the counter after the execution of the procedure should be equal to the
value of the counter at the start of the procedure plus one. Finally the modifies
clause establishes that the procedure may only modify the value of the counter
variable.

In comparison to other language constructs, the verification of loops is more complex.
Complications arise from the fact there is no easy way to know, except in trivial
cases, how many iterations of a loop will be executed. Every iteration changes
the program state and consequently the postcondition of the loop. Therefore, the
verifier has no choice but to execute the loop until termination, called loop unrolling,
a very inefficient and often impossible feat. To solve this Boogie supports the use of
loop invariants, a method for reasoning about the behavior of loops, introduced, as
previously mentioned, in 1969 by Tony Hoare [14]. A loop invariant is a first-order
logic formula which must hold at the start and end of each iteration of the loop,

6

2. Tools and Environments

1 while (x < y) invariant x <= y; {
2 x := x + 1;
3 }

Figure 2.2: Simple loop incrementing x until it is equal to y

including when the loop is first reached and when it is terminated. The goal is to
construct the invariant such that it, together with the loop exit condition, implies the
postcondition of the loop. Then it is sufficient to prove that the invariant holds for
the loop and let the effects of the loop be determined by the implied postcondition.

Figure 2.2 shows an example of a simple while-loop that increments the variable
x until its value equals the value of y. As long as x is smaller than y when the
loop is reached the invariant will hold, since x will at most be equal to y (at loop
termination). By combining the negation of the loop condition and the invariant
the effects on x can be inferred: ¬(x < y) ∧ x <= y =⇒ x == y.

Quantifiers raise another complication for the verifier, as most possible instantiations
of them will not bring us closer to proving or disproving the formula. Many SMT
solvers can infer the possible instantiations by analyzing the body of the quantifier
but as of yet this is often crude and inefficient. It is therefore better to use user-
defined triggers to more accurately limit the space of possible instantiation. To this
end Boogie supports the addition of triggers when coding quantifiers which can be
passed directly on to the SMT-solver.

In addition to the above, Boogie supports the following language features:

• Where-clauses, applied to variables, which are first-order logic formulas used
to define the allowed scope for the variable.

• Axioms, which are first-order logic formulas that must hold at any point in
the program.

• Assert statements, which checks that an input formula holds at the execution
of the statement.

• Assume statements, which holds the input formula as true for the rest of that
procedure.

• Havoc statements, which assigns a non-deterministic value to one or more
variables such that the assignment satisfies all program axioms and where-
clauses if possible.

Finally, Boogie allows non-deterministic execution of condition guarded statements
(if-statements and while-loops). For if-statements this constitutes randomly choos-
ing which branch to execute, or randomly choosing to enter the if-statement body
should no else branch be provided, for while-loops it executes the loop body a non-
deterministic number of times.

7

2. Tools and Environments

2.1.2 The Boogie Verification Tool

The Boogie verification tool is the default verifier for the Boogie language; it gener-
ates verification conditions from some input code and feeds these to an SMT-solver,
Z3 by default, in order to verify the correctness of the program. Different techniques
are employed to increase the efficiency of verification, some of which are presented
here.

Instead of generating one big verification condition for the whole program, Boogie
creates verification conditions for each procedure. Each procedure’s body is indepen-
dently verified against its contract, creating a collection of verification conditions,
the conjunction of which represents the entire program. The main benefit of this is
that it supports modular verification: when a procedure call is performed the effects
of that procedure are limited to the specification in its contract. Thus, a callee of a
procedure whose body has been changed does not require re-verification unless its
contract has been modified as well.

Had Boogie not used the modular verification method, and instead created a single
verification condition for a program, it would require the inlining of all procedure
calls. This would blow up the input size for the verification immensely, making
deductive verification infeasible. As such, this method is adopted by practically all
deductive verifiers today. This could lead to programs being very large if there are
a lot of procedure calls, or possibly infinite for certain recursive designs. Generally,
since the SMT-problem is NP-Hard, it is beneficial to keep the input size small.

2.2 SiDECAR

SiDECAR is a framework developed by Bianculli et al. [7] which provides a plat-
form for incremental verification. It builds an incremental parser from an Operator
Precedence Grammar (OPG) [12] representation of a language, on top of which in-
cremental verification can be built. Between different versions of a program the
parser identifies which part(s) of the abstract syntax tree (AST) need to be up-
dated, the minimal context, and only revisits the nodes that belong to those parts.
Attribute grammars [15], specifically synthesized attributes, are used to allow each
node of the AST knowledge, not only of its own semantics, but also those of its
children. By encoding the verification condition generation and verification process
into these attributes, the incrementality of the parser can be used for the verification
itself.

2.2.1 Operator-Precedence Grammar

A context-free grammar (CFG) consists of four elements: a finite set of terminal sym-
bols, a finite set of non-terminal symbols, a set of productions defining non-terminals

8

2. Tools and Environments

Figure 2.3: OPG for a simple arithmetic expression

value(Expr) ::= value(EMul)
| value(EAdd)

value(EAdd0) ::= value (EAdd1) + value(EMul)
| value(EMul0) + value(EMul1)

value(EMul0) ::= value (EMul1) * value('n ')
| value('n')

Figure 2.4: Attribute grammar for a simple arithmetic expression

as a combination of terminal and non-terminal symbols and finally a starting symbol
defining the root of the grammar. The sets of non-terminal and terminal symbols
must be disjoint. Producing a CFG is relatively easy; however CFGs make no state-
ments pertaining to the precedence relations between terminal symbols, making the
task of parsing a language whose grammar is defined as a CFG more arduous.

Operator precedence grammars (OPG), first introduced by R.W. Floyd in 1963
[12], are a subset of CFGs obtained by applying stricter rules to how the grammar is
constructed, specifically all productions must be in operator form. A production is in
operator form if the right hand side is nonempty and has no adjacent non-terminals.
These restrictions make it possible to define binary precedence relations between
terminals; given two terminals one can yield precedence to the other, take precedence
over the other or they can have equal precedence. The precedence relations can be
calculated in an automatic fashion, reducing the ambiguities that need to be handled
when designing the parser. OPGs also have the locality property, allowing parsing
to start from any point of a sentence making it ideal for incremental parsing.

Figure 2.3 shows an OPG representation of a simple arithmetic expression containing
addition and multiplication. In this example Expr is the starting symbol, Expr,
EMul and EAdd are non-terminals and ‘+’, ‘*’ and ‘n’ are terminals, where ‘n’
represents integer numbers. Precedence relations are calculated between any two
terminals a, b that can be adjacent to each other if non-terminals are ignored. If a
and b exist in the same production, such as ‘n’ and ‘*’ they have equal precedence
(‘n’ = ‘*’), if a exists in a production that is called before b such as ‘*’ and ‘+’
a takes precedence over b (‘*’ > ‘+’) and in the reverse situation, such as ‘+’ and
‘*’, a yields precedence to b (‘+’ < ‘*’).

9

2. Tools and Environments

2.2.2 Attribute Grammars

Attribute grammars are an extension to CFGs, introduced by Donald Knuth [15],
where semantic and context-sensitive information can be attached to each produc-
tion in the grammar. The attributes are divided into two categories: synthesized
attributes and inherited attributes. Synthesized attributes are passed from child
nodes to parent nodes and inherited attributes are passed from parent nodes to
child nodes. Figure 2.4 shows the attributes of the grammar from Figure 2.3, de-
scribing the semantic evaluation of the productions. Subscripts are used to differ-
entiate between different occurrences of the same non-terminal. The attributes of
every production is dependent only on information from non-terminals that will be
children of the production, thus all attributes in the example are synthesized.

SiDECAR parses a program in a bottom-up fashion, as such it only uses synthesized
attributes, since those attributes will always be available at the time it traverses a
node. To support inherited attributes, the whole AST would have to be available
before any semantic evaluation can be done. Using only synthesized attributes
allow a high degree of concurrency, which helps speed up the parsing. Additionally,
it makes it possible to parse different independent branches at the same time, since
the computation of any node can be started as soon as the attributes of its children
are available.

2.3 SMT-solvers

The most common method to verify that a program conforms to its specification is
to translate it into verification conditions, logical formulas constructed from the code
in such a way that proving their validity proves the validity of the entire program.
SMT-solvers take one or more logic formulas and check whether they are satisfiable
or not, i.e. if there is any set of values for all variables such that the formulas hold.
For verification of programs it is not enough to check that they are satisfiable, they
must be valid, i.e they must hold for all possible variable assignments. To check
for validity the formulas are negated before they get fed to the SMT-solver. If the
SMT-solver is unable to find a set of assignments to satisfy the negated verification
condition it is considered valid. In essence the check ensures that there are no
combination of assignments that break the formula (satisfies its inverse).

2.3.1 Z3

Z3 is the SMT-solver that is used in this project. It is developed by the RiSE team
at Microsoft Research and specifically targeted at solving problems arising from
software verification and software analysis, and consequently has integrated support
for a wide selection of theories [10]. Z3 supports the reuse of proofs, or partial proofs,
which is essential to the incrementality of the verification process. By manipulating

10

2. Tools and Environments

1 (declare -const x Int)
2 (declare -const y Int)
3 (assert (> x 10))
4 (assert (< y x))
5 (check -sat)
6 (get -model)

(a) Input code

sat
(model

(define -fun x () Int
11)

(define -fun y () Int
10)

)

(b) Model satisfying the input
formula

Figure 2.5: Input and output for a simple Z3 verification task

the stack and reusing proofs it is likely possible to make very efficient incremental
verification although Z3 will reuse proofs or partial proofs as long as they exist in
the current session of the solver.

Z3 follows the SMT-LIB standard for SMT-solvers, an initiative to standardize the
functionality and structure of different solvers such that they can more easily be in-
terchanged [5]. The SMT-LIB standard provides a common language for input and
output with a program library that supports the constructs of many different pro-
gramming languages. It also provides a rigorous benchmark to test the correctness
and speed of a verifier.

The input language uses prefix notation for example + 5 4 instead of the more
common infix notation: 5 + 4. Figure 2.5 shows a simple Z3 verification task and
the output that it generates. As can be seen in Figure 2.5a the formulas we are
trying to satisfy are x > 10 and y < x and as can be seen in Figure 2.5b the solver
satisfies these formulas by setting the value of x to 11 and y to 10. Because of the
prefix notation it becomes necessary to include a lot of parentheses for any non-
trivial verification condition, so to increase readability in future examples involving
Z3 code the infix notation is used instead.

11

2. Tools and Environments

12

3
Implementation

In this chapter we present the design and implementation of our incremental verifier,
the challenges faced along with the solutions. In section 3.1, we show the process
of transforming the Boogie grammar into OPG form. Section 3.2 describes the
implementation of our pre-processor, while section 3.3 describes the use of SiDECAR
to generate verification conditions. Finally, section 3.4 describes the version control
that enables the use of incrementality in the verifier.

3.1 Transforming grammar to OPG form

SiDECAR requires that the input grammar is in OPG form, as such once the lan-
guage subset had been chosen the grammar was converted, the result of which can
be found in Appendix A. The subset was chosen so that the language would retain
most of its major features, such as if-then-else cases, while-loops, and procedure
calls. This allows the creation of realistic test scenarios, which should be adequate
to provide a proof of concept for incremental verification, while still being feasible
to implement during the time frame of the project.

Rewriting the grammar into OPG form is a challenging process in which rules have
to be rewritten such that no production has two adjacent non-terminals. In Figure
3.1 the process of translating the rule E0 from the original Boogie grammar is shown.
Figure 3.1a shows the original rule, where E1, EquivOp and E0 are all adjacent non-
terminals. This rule is simple to fix since EquivOp is only reduced to one terminal,
which therefore can be inlined as ’<==>’, the result can be seen in Figure 3.1b.
Most rules are not this easy to fix however, and may therefore need to be split into
several new rules, but the same process as described above applies.

Transforming the Boogie grammar into OPG is not enough in order to use it with

1 E0 ::= E1 | E1 EquivOp E0
2 EquivOp ::= '<==>'

(a) The original rule

1 E0 ::= E1 | E1 '<==>' E0

(b) The translated rule

Figure 3.1: Translating the E0 rule into OPG form

13

3. Implementation

Stmt ::= havoc Id,+

(a) Original Boogie rule

Stmt ::= havoc idList
idList ::= idList ',' Id | Id

(b) Rewritten rule

Figure 3.2: An example of translating the havoc statement to remove the
superscript notation from Id,+

'procedure ' ID pSig ')' specList '{' stmtList '}'

Figure 3.3: procecureDecl rule after being rewritten into operator form

SiDECAR, since SiDECAR lacks support for some grammar notations commonly
used for context free grammars, including Boogie. The original definition of the
grammar rules in Boogie uses superscript symbols such as * to denote zero or more
repetitions, + for one or more repetitions, ,* for zero or more comma-separated
symbols, ,+ for 1-or-more comma-separated symbols, and ? for optional symbols.
SiDECAR does not support this syntax; instead, productions have to be multiplied
to cover the different cases. Figure 3.2 shows an example where this is done for the
havoc statement rule, where the original rule can be seen in Figure 3.2a. To convert
it into a format that SiDECAR accepts it has to be split into two productions,
the result of which can be seen in Figure 3.2b. This process of multiplying and
expanding rules severely impacts the readability of the grammar and subsequently
makes it harder to work with. The full grammar used in this thesis can be seen in
Appendix A.

3.2 The pre-processor

For the incremental parser created using SiDECAR, described in section 3.3, to
work a lexer is needed to tokenize the input source code. This is because SiDECAR
requires all the code to be inserted as tokens rather than raw source code. As a
result the ANTLR41 framework was used to create a lexer that prepares the input
before it is sent to SiDECAR.

As the project has grown so has the functionality of the lexer. At first, it was only
supposed tokenize the input, but now also assists with variable renaming and with
some of the challenges faced when dealing with OPG, and as such it acts like a
pre-processor.

3.2.1 Assistance with OPG

As mentioned in section 3.1, converting the grammar to an OPG was a challenging
process. After the final grammar had been selected and inserted into SiDECAR, two

1http://www.antlr.org/index.html

14

3. Implementation

1 program ::= 'assert ' expr
2 expr ::= e0
3 e0 ::= e1 | e0 '==' e0
4 e1 ::= IDENTIFIER
5 | INTEGER

(a) Simple example grammar

1 program ::= 'assert ' e0
2 | 'assert ' e1
3 e0 ::= e0 '==' e0 | e0 '==' e1
4 | e1 '==' e0 | e1 '==' e1
5 e1 ::= IDENTIFIER
6 | INTEGER

(b) Extension of the grammar from
Figure 3.4a to deal with reductions

Figure 3.4: Example of a simple grammar translated using one method of dealing
with reductions

program ::= 'assert ' expr
expr ::= 'exp ' e0
e0 ::= 'exprJump ' e1 | e0 '==' e0
e1 ::= IDENTIFIER | INTEGER

Figure 3.5: Extension of the grammar from Figure 3.4a with additional terminals
added by the pre-processor to prevent reductions

issues were discovered: instances of parser ambiguities and unwanted reductions.

The ANTLR parser had no issues dealing with the grammar; however, SiDECAR
did with certain rules. One instance of this was with the procedureDecl rule, seen
in Figure 3.3, where SiDECAR detected ambiguities with the ’)’ character of the
procedureDecl and pSig reductions. The information SiDECAR has when parsing
such a rule is insufficient to know which production it should reduce to. One sim-
ple way of solving this was to introduce a special terminal character after the ’)’
character for the procedureDecl rule in SiDECAR, solving the ambiguity between
the productions. The special character is added by the pre-processor and as such
the internal grammar used by SiDECAR is slightly different from the grammar of
the Boogie language while still behaving in the intended way. As a result minor
grammatical changes can be made to the internal representation of the grammar
without impacting how a program is constructed by the user.

Another issue faced was that SiDECAR immediately reduces non-terminals as much
as possible, rendering grammar rules that only refers to other rules being reduced
to an incorrect form. To illustrate this, consider the example found in Figure 3.4.
Figure 3.4a shows a simple example of a grammar in OPG form, where IDENTIFIER
represents a variable name. With the input assert foo one would normally expect
it to be evaluated to ’assert’ expr, but because of the aforementioned behavior
SiDECAR reduces it to ’assert’ e1. This causes a mismatch since that production
does not explicitly exist. To overcome this initially, every permutation that could
occur for the affected rules were created. The result of such an approach is illustrated
in Figure 3.4b, as can be observed the resulting grammar now consist of eight rules
instead of the original six. With a more complex chain of expressions this blow-
up is significant, since each new level of expression would yield a new production
for every rule containing expressions. This makes the method unscalable since the

15

3. Implementation

1 x = 0;
2 x = x + 1;

(a) Original code

1 x0 = 0;
2 x1 = x0 + 1;

(b) The code with variables
renamed

Figure 3.6: Variable renaming for a simple piece of code

number of rules grew too big, making the grammar complicated and cumbersome to
work with. To avoid this problem a solution where the pre-processor inserts dummy
terminal tokens into the code was adopted, similar to solution for the ambiguity
issues described earlier in this section. This hinders SiDECAR from immediately
reducing the rules so that they can be properly matched instead.

The resulting grammar from inserting terminals can be found in Figure 3.5. Now the
grammar is back to its original six rules, and since this is done in the pre-processor,
it will not affect the grammar used when constructing a program. The user input
will still follow the grammar listed in Figure 3.4a, but internally it will be converted
to the grammar in Figure 3.5.

3.2.2 Variable renaming

The Z3 SMT-solver used in this project does not support variables, as such constants
are used in a single static assignment scheme to simulate their functionality. This
requires each variable assignment in the program to use a fresh variable and each
reference to refer to the last declared instance of that variable. Variable renaming
is done by the pre-processor, again to not impact how a program is constructed.
Figure 3.6 shows an example of how a simple procedure is converted to single static
assignment by the pre-processor. In Figure 3.6a the variable x is used in the regular
fashion, and in Figure 3.6b x has been duplicated so that each variable is only
assigned to once and so that each reference to a variable points to the last one
declared.

In the ANTLR4-powered pre-processor each variable is renamed. For an assignment,
first any references to variables on the right-hand side is replaced with references to
the last generated instance of those variables, then a new fresh variable is assigned
to the left-hand side.

For items such as if-cases, renaming variables within them becomes more compli-
cated, since at the next reference of that variable, after the if-case, it is not know
which instance of the variable should be use. To illustrate this issue: Figure 3.7
shows the original code. When the variables are renamed the program does not
know which instance of x to use at the y:=x; statement. The solution adopted in
this project is to keep track of whichever variables are used within the if-cases and
afterwards create a new variable that is assigned the correct instance, based on the
original condition of the if-case. This is illustrated in Figure 3.8.

16

3. Implementation

Figure 3.7: Example of a program with an if-case

Figure 3.8: Example program from Figure 3.7 rewritten to use single static
assignment

17

3. Implementation

Table 3.1: Weakest precondition of predicate Q through a statement S for Boogie

Statement S W(S,Q)
x := e Q [x 7→ e]
havoc x Q [x 7→ x’]
assert e e ∧ Q
assume e e =⇒ Q
S ; T W(S,W(T,Q))
if (b) then {T} else {E} (b =⇒ W(T,Q)) ∧ (¬ b =⇒ W(E,Q))

while (b) invariant J {b}


J

W(havoc t(B); assume J ∧ b; b, J)
W(havoc t(B); assume J ∧¬ b, Q)

call t := P(a) W(assert p(P(a)); havoc t, f(P); assume q(P(a)), Q)
procedure P(a)
requires R ensures E {B} R(a) =⇒ W(B,E(a))

3.3 Incremental verification condition generation

To generate a minimal verification condition the tool SiDECAR, presented in section
2.2, is used for its incrementality. The pre-processor prepares the input for the
SiDECAR-powered parser, which handles the generation of verification conditions
that can be passed to the SMT-solver for verification. Verification conditions are
generally generated in the same manner as in Boogie, shown in Table 3.1 [3]; however,
the implementation chosen in this project differs slightly for some statements, which
are described in this chapter.

For assignments, rather than using the backwards substitution from Table 3.1, a
separate assertion is added outside of the main formula, establishing that the value
for a given variable can only be a specific value. This approach works due to the
already performed variable renaming into single static assignment form described in
section 3.2.2.

3.3.1 If-cases

In Figure 3.9 the conversion of an if-case is displayed, from the Boogie form in
Figure 3.9a to the VC in Figure 3.9b. The final VC is slightly different from the one
displayed in Table 3.1; however, the end result is equivalent due to the line <ite for
any assignments> in the figure. The ite command chooses between two effects
based on some input condition, this makes it possible to choose between instances of
a variable depending on which branch was taken in the particular verification path.
As described in section 3.2.2, any assignments to a variable within one or both of
the two branches for the conditional creates an additional ’if-then-else’ conditional
that ensures that any side effects T or F might have will carry over to the rest of
the program Q. As an end result, the final result from the verification condition ends

18

3. Implementation

1 if (c) {
2 T;
3 } else {
4 F;
5 }
6 Q;

(a) Simple if-case

1 (c => (T and Q))
2 and
3 ((not c) => (F and Q))
4 and
5 <ite for any assignments >
6 and
7 Q

(b) The generated verification condition

Figure 3.9: The transformation of a common if-case (a) into a verification
condition (b)

up the same.

3.3.2 While-loops

As discussed in section 2.1.1, loops are harder to reason about since there is no way
for the verifier to know how many times the loop will be executed, except in the
most trivial cases. To solve this, a loop invariant is attached to each loop to help
understand how its execution affects the loop target, i.e. all variables modified by
the loop [14]. The loop invariant must hold before and after each iteration of the
loop and be designed in such a way that it, together with the negation of the loop
condition, provides a postcondition for the loop.

Verification of a loop is done in three steps: first the loop invariant is checked to hold
initially, i.e. before any iteration of the loop as been executed, called the initiation.
The second step, called consecution, checks that the invariant is indeed invariant. All
variables of the loop target are assigned non-deterministic values, the loop condition
and the invariant is assumed and the loop body is executed once. This corresponds
to an arbitrary execution of the loop, after which the loop invariant should still
hold. When initiation and consecution is done, the execution of the loop can be
symbolized by assigning non-deterministic values to the loop target and assuming
the invariant as well as the negation of the loop condition, this is called continuation.
If the loop invariant is sufficiently specified this assumption should give the solver
no ambiguities over which values to assign the variables of the loop target.

1 while (x < y)
2 invariant x <= y;
3 {
4 x := x + 1;
5 }

(a) Simple while loop

1 (x_0 <= y_0) and
2 ((x_1 <= y_1) and (x_1 < y_1)
3 => (x_2 = x_1 + 1) and
4 (x_2 <= y_1)) and
5 ((x_3 <= y_2) and
6 not(x_3 < y_2)) => Q)

(b) The generated verification condition

Figure 3.10: Verification generation from a simple while loop

19

3. Implementation

(a) Non-incremental solving of
two iterations of a program

(b) Incremental solving of two
iterations of a program

Figure 3.11: Two different ways of interacting with a verifier.

Figure 3.10 shows the verification condition generated from the loop example dis-
cussed in section 2.1.1 (repeated in 3.10a) with some syntax simplifications to in-
crease readability. x_0 and y_0 are bound variables and dependent on whatever
value they might have been assigned earlier in the program, while x_1, x_3, y_1
and y_2 are free variables. The first row of Figure 3.10b represents the initiation
step of the verification process, rows 2-4 represent the consecution and rows 5-6
represent the continuation. Q in the continuation step is the verification condition
generated for the rest of the procedure.

3.3.3 Procedures and procedure calls

The original Boogie verifier uses modular verification for procedures [17], to achieve
modular verification for this project multiple solvers are used. For each procedure
a new solver is created, allowing for procedures to be solved individually, without
interfering with each other, and will only be required to be re-checked if there has
been a change to them between iterations.

As can be seen in Table 3.1, the verification condition for a procedure is very straight-
forward and it ends up being: precondition =⇒ body =⇒ postcondition. As such,
the program can be considered invalid if there is an assertion in the body that does
not hold, or if there is an assignment in the body that causes the postconditions to
not hold.

Calling a procedure from another one will use the contract of the called method, as
can be seen for the call entry in Table 3.1. This means that when procedure P is
called, only its preconditions, p(P(a)), are checked to be correct, and any effect the
procedure P might have is assumed from its postconditions, q(P(a)). Only using
the contract works since the called procedure will be checked separately regardless
of whether it has been called or not, and is required to be valid for the program to
be considered valid.

20

3. Implementation

1 assert (=> version0 VC0)
2 assert (=> version1 VC1)
3 (check -sat (not version0) version1)

Figure 3.12: Example of how an updated verification, VC1, can be checked
without the older version, VC0, interfeering

3.4 Version control

Figure 3.11 illustrates two different ways of feeding verification inputs to the SMT-
solver, depending on what method of verification is used, incremental or non-
incremental. Typically, non-incremental verifiers are rerun between each iteration,
as shown in Figure 3.11a, while the verifier developed in this project is designed
to continue running between verifications so that the instance of the SMT-solver
is reused, as shown in Figure 3.11b. In this project the target SMT-solver is Z3,
which can be used to incrementally solve a provided model [11], this design where
the same instance is reused allows for the incremental support within Z3 to reuse
previously computed proofs. However, this requires that the stack be modified so
that previous iterations of a program does not interfere with the solving of the new
one.

In SMT-solvers a common way of changing the stack is to use push, which will mark
a point on the stack, and pop which will remove instructions from the stack to the
last point marked by push [6]. However, this only allows for modifications of the
top of the stack.

Another method presented by Niethammer [21] is to instead use assumptions for
version control, where an implication is used with a boolean on the lefthand side and
the verification condition of a program on the righthand side so that the verification
condition can be toggled as active or inactive. An example of this can be seen
in Figure 3.12, VC0 and VC1 are verification conditions for different iterations of
a program. The downside of this method is that the stack grows with each new
version, and therefore uses more memory. This is the method used in this project.
Once the verification condition has been generated by the incremental parser an
implication and version flag is added to it before being passed to the SMT-solver.

21

3. Implementation

22

4
Results

This chapter describes how the final product from the project was tested, and dis-
plays the results from those tests. In section 4.1, we present the cases, how they
are constructed, and how they are used. Section 4.2 describes the method behind
collecting the test results, and section 4.3 presents the results and some interesting
outliers.

4.1 Test cases

The test cases were selected to contain all features of the Boogie language supported
by our tool. For most of the tests they were made artificially larger by duplicating
the content of their main procedure (or equivalent) to make them run longer. This
was done after it was discovered that the initial tests ran very quickly, usually
around 1-2 second, making the measured times brittle. With the longer tests the
quality of the results increased and the fluctuations disappeared. For most of the
test cases, changes between iterations were made to feel realistic, sometimes large
and sometimes small.

All tests were constructed to consist of three iterations. This decision was made to
be able to construct a large number of tests that are comparable to each other. The
first four test cases were also extended with an additional two iterations to examine
how more iterations would affect the results. All iterations of the different test cases
are invalid, except the last iteration, which is valid.

The degree of modification between iterations for cases with three iterations and
five iterations can be seen in Table 4.1 and Table 4.2 respectively. Following is a
brief description of the test cases1:

• Test0 contains a large set of if-then-else cases following each other in one
procedure.

• Test1 contains a large number of assignments, with eight procedures. The
value of each assignment is completely changed between iterations.

1Full tests available at: https://github.com/anttila/incrementalBoogie/tree/master/testprograms

23

4. Results

Table 4.1: The changes between each pair of iterations for test cases with three
iterations

Test name: 1-2: 2-3:
Test0 80% 1%
Test1 98% 98%
Test2 98% 98%
Test3 3% 13%
Test4 11% 1%
Test5 29% 24%
Test6 90% 70%
Test7 3% 57%
Test8 80% 84%

Table 4.2: The changes between each pair of iterations for test cases with five
iterations

Test name: 1-2: 2-3: 3-4: 4-5:
Test0 80% 2% 1% 75%
Test1 98% 98% 98% 98%
Test2 98% 98% 98% 98%
Test3 3% 62% 1% 3%

• Test2 is the same test as Test1, but it has double the amount of procedures.

• Test3 contains a large number of while-loops in one procedure.

• Test4 contains an arithmetic test with five procedures. The test uses a large
number of the language constructs: procedures, calls, havoc, asserts, assumes,
assignments, while-loops and if-cases.

• Test5 contains an alarm clock with seven procedures. Similar to Test4 it
essentially uses all language constructs.

• Test6 contains a large number of cascaded if-cases in one procedure. The
difference between the iterations is very large: 90% and 70%.

• Test7 contains a large number of cascaded if-cases as well. However, in this
test the difference is not as large as in Test6: 3% and 57%.

• Test8 is the same as Test0 but with much larger changes between iterations 2
and 3, 84% as opposed to 1%.

24

4. Results

4.2 Method of collecting results

Test results were collected by running each test ten times for both incremental and
non-incremental verification, and then reported using the median result. Time was
measured using a Python script that measured time from execution of the program,
to finish. The time measured contains the total time for all iterations. Between each
pair of test cases the solver is restarted to clear its cache.

The computer used for testing was an i5-4690K processor, with 16 GB of RAM,
using Windows 10 with minimal processes running. Java 1.8.0_131 and Z3 version
4.5.0 were used, both using their 64-bit versions.

4.3 Results

The results of the collected test data can be found in Table 4.3 for the cases of three
iterations, visualized in Figure 4.1. For the tests with five iterations the results can
be found in Table 4.4, visualized in Figure 4.2.

As can be seen in the "Time saved"-column in Table 4.3, in most cases there is a
performance gain of at least 30% when using the incremental solver on programs with
three iterations. There are a couple of particularly interesting results: Test6 and
Test8 have a similar degree of change between iterations yet Test8 runs considerably
faster than the Test6, which interestingly sees a marginal increase in runtime. A
similar situation is present in Test3 and Test4 where Test3 runs considerably faster
than Test4. Finally, in test Test1 and Test2 the values of the assignments are
completely changed yet we still see a considerable speed-up in verification. Possible
reasons as to why this is the case is discussed in chapter 5.

When running Test0, Test1, Test2 and Test3 using five iterations, seen in Table 4.4,
the results are around 10 percentage points higher in the "Time saved"-column than
the results for three iterations seen in Table 4.3, with the exception of Test0 which
had a decreased time-save by 20 percentage points.

25

4. Results

Test8Test7Test6Test5Test4Test3Test2Test1Test0

0

20

40

60

80
Se
co
nd

s

Incremental Non-incremental

Figure 4.1: Visual representation of the results for programs tested with three
iterations, gathered in Table 4.3

Table 4.3: Results from running the test suite against the final program for the
project with three iterations for each Boogie program, displaying the difference

between using the incremental and non-incremental modes

Test name: Incremental time (s): Non-incremental time (s): Time saved:
Test0 19.46 29.00 32%
Test1 18.81 25.81 27%
Test2 57.80 92.35 37%
Test3 13.28 26.27 49%
Test4 30.63 40.28 24%
Test5 18.29 27.92 34%
Test6 20.10 19.22 0%
Test7 11.42 17.81 36%
Test8 31.92 37.40 15%

26

4. Results

Test3Test2Test1Test0

0

20

40

60

80

100

120

140
Se
co
nd

s

Incremental Non-incremental

Figure 4.2: Visual representation of the results for programs tested with five
iterations, gathered in Table 4.4

Table 4.4: Results from running the test suite against the final program for the
project with five iterations for each Boogie program, displaying the difference

between using the incremental and non-incremental modes

Test name: Incremental time (s): Non-incremental time (s): Time saved:
Test0 38.33 43.49 12%
Test1 25.90 41.21 37%
Test2 80.13 151.47 47%
Test3 15.51 39.79 61%

27

4. Results

28

5
Discussion

In this chapter we discuss different aspects of the project in its entirety. In section
5.1, we look at and analyze the results from the evaluation in chapter 4. Section
5.2 discusses the limitations on the test cases we could build, as imposed by the
restricted language that the verifier supports. Finally, in section 5.3, we propose a
different method of handling the grammar when interacting with SiDECAR.

5.1 Experimental testing

The results, presented in chapter 4, show promise for incremental verification as a
technique for formal deductive verification. As expected, smaller changes between
iterations lead to an increased time save when comparing incremental verification
to non-incremental. In our experience, when programming it is quite typical that
modifications are relatively small between different versions of a program, especially
when debugging.

From the results of our tests with an increased number of iterations it can be seen
that more iterations of a program often lead to quite substantial increases in the
time saved for each program, which was an expected result. The first iteration of a
program being verified will always be completely fresh, meaning that it receives no
benefits from the incrementality of the verifier. The more iterations of a program the
less significance the time of the initial iteration has on the overall result. However,
more iterations also consume more memory, so at some point it is likely that the
increase in memory usage might cause issues and result in diminishing returns on
the incremental technique.

Something we did not formally test was the possible impact of the end result of the
verification, i.e. whether the program was valid or not. We expect that it takes more
time to prove that a program is valid rather than invalid, since in the latter case the
solver only has to find one set of assignments that breaks the verification conditions,
whereas in the former it has to make sure there are no such cases at all. Some
informal testing showed no indication that this impacts the speed-up gained using
the incremental technique. This makes sense to us since the solver still has to do
the same task for both techniques, but nevertheless it would have been interesting

29

5. Discussion

to perform formal testing of these scenarios as well.

In the following couple of paragraphs a discussion regarding the cause of the outlying
results, shown in section 4.3, is presented. It is important to note that these are
speculations, it would require a more deep-going analysis to confirm that this is
the case; this is made more difficult by the amount of heuristics and back-end
optimizations involved in the SMT-solver.

Test6, which is the test with cascading if-cases and large changes between iterations,
is the only test that sees an increase in run time with the incremental technique.
We speculate that there are two reasons for this result. First, the changes between
iterations are so significant that the overhead gets proportionally larger since very
few previous proofs can be reused. However, Test8, which is the test with a series
of if-cases, has a similar degree of change between iterations and still manages a
discernible performance increase, leading us to the second reason: the complexity of
nested ifs make it harder to reuse proofs.

Test3, containing a large number of loops in a single procedure, has a considerably
larger speed-up than Test4, which tested different arithmetic properties, again with
a similar degree of change between iterations. In this case it is harder to justify this
behavior; it could be that the complexity of the while-loops in Test3 is low enough
that they are easy for the verifier to check, or that the multiple procedures in Test4
have a larger impact on the effectiveness of the incrementality.

Test1 and Test2, which are the same tests consisting of a set of assignments except
that Test2 has twice as many procedures, both have the values in their assignments
completely changed between iterations but still give rise to a considerable increase
in verification speed using incrementality. Thus, it seems that the structure of a
program has a big impact on the degree to which proofs can be reused. Additionally,
Test2 has a somewhat larger speed-up compared to Test1 which seems to undermine
the argument made in the last paragraph. However, most procedures in Test4 are
a lot smaller than those in Test1 and Test2, so it is possible in this case that the
incrementality gained inside the procedures overtake the performance lost by the
overhead of verifying different procedures. But, again, since the SMT-solver is more
or less a black box, this kind of analysis is highly speculative.

Finally, Test0, a number of if-cases following each other, with five iterations had a
significant decrease in speed-up when compared to the three iteration version. We do
not know, or even have an idea with enough credibility to present as a speculation,
on why this is. Further testing could give some clues as to why this is the case but
even then it would be hard to determine the exact cause.

5.2 Input language limitations

In order for the project to be finished within the given time frame some limitations
on which language constructs to support had to be done, shown in section 1.3.

30

5. Discussion

Consequently, this limited the space of possible test cases, making it harder to
produce realistic test programs. In particular, arrays and quantifiers are used in lots
of algorithms, for example binary search or bubble sort, which are typically useful for
testing. Since loops are often used to iterate over lists and arrays, and quantifiers are
required to reason about much of the behavior of loops, our syntactic restrictions
also limit the complexity of the while loops used in testing. However, while it
would be interesting to be able to handle and build tests using these constructs, we
believe the tests that were performed to be rigorous enough to show that incremental
verification holds potential for future research and development.

5.3 Implementation

As an afterthought, the method of using the pre-processor, mentioned in section
3.2.1, to insert terminals could have been used to create a simpler grammar. While
SiDECAR requires the grammar to be in OPG form, ANTLR does not, meaning
that the original grammar for Boogie could have been used as it was, without being
rewritten to OPG form. If the grammar had been used as-is, the internal SiDECAR
grammar could have had dummy characters inserted between any non-terminals,
which would be handled by the pre-processor. This would have resulted in a much
simpler grammar to read and work with.

An observation that was made during testing is that the parsing of the program is
very fast, often no more than a couple of percent of the overall verification time. This
brings into question the necessity of using an incremental parser for the verification
condition generation. Since the produced VC will be the same by either method and
regular parsers are a lot easier to work with, it is possible that using incremental
parsing might not be worth the extra work. However, we do not use SiDECAR to
its full potential, so it is possible that the incremental parser gives access to some
optimization techniques that could not be implemented in a regular parser.

31

5. Discussion

32

6
Conclusion

In this thesis we have presented the design, implementation and evaluation of an
incremental verifier targeting a subset of the Boogie language. The incrementality is
built on top of an incremental parser, built using the SiDECAR tool for incremental
verification, by creating verification conditions through the parsing and feeding these
to the Z3 SMT-solver. In this way, only the verification conditions for the parts of the
AST that has changed are regenerated and old proofs can be reused when verifying
a new iteration of a program.

The resulting incremental verifier has been evaluated using a series of test cases
designed to incorporate all different constructions of the subset language in realis-
tic test scenarios, as well as some extreme cases to evaluate how the tool performs
for certain constructs that generate more complex verification conditions. The re-
sults are promising, with time saves ranging from 15% to 49% when comparing
incremental to non-incremental verification for three iterations, with the exception
of one test scenario where the performance was slightly reduced. Using additional
iterations seem to improve the results further in most of the tested cases.

A long term goal for formal verification is to have an environment where verification
can be done in real time, much like syntax checking in a development environment,
such as Eclipse or Visual Studio. While this is not feasible with the tool developed
in this project it would be possible, for smaller projects, to do the verification with
each new build of the program. However, as programs become larger it’s likely that
verification using our tool is only feasible as part of the process of integrating a piece
of code into the larger project.

The results of this thesis gives motive for further research in incremental verification
as a promising method to speed up the process of deductive verification.

6.1 Future work

It would be interesting to further develop this project to add the missing language
features that were mentioned in chapter 1.3 as limitations, to see how the project
would scale. Additionally, looking into possible performance optimizations could
render the run time shorter. One such case would be to fully implement backward

33

6. Conclusion

substitution as mentioned in section 3.1, which would essentially remove assignments
from the verification condition.

34

Bibliography

[1] Stephan Arlt and Martin Schäf. Joogie: Infeasible Code Detection for Java,
pages 767–773. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rus-
tan M Leino. Boogie: A modular reusable verifier for object-oriented programs.
In International Symposium on Formal Methods for Components and Objects,
pages 364–387. Springer, 2005.

[3] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’05, pages 82–87,
New York, NY, USA, 2005. ACM.

[4] Mike Barnett, Rustan Leino, and Wolfram Schulte. The Spec# Programming
System: An Overview. In CASSIS 2004, Construction and Analysis of Safe,
Secure and Interoperable Smart devices, volume 3362, pages 49–69. Springer,
January 2005.

[5] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[6] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB Standard:
Version 2.0. In Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), volume 13, page 14, 2010.

[7] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. A syntactic-semantic
approach to incremental verification. arXiv preprint arXiv:1304.8034, 2013.

[8] D. Bianculli, A. Filieri, C. Ghezzi, D. Mandrioli, and A. M. Rizzi. Syntax-
driven program verification of matching logic properties. In Formal Methods in
Software Engineering (FormaliSE), 2015 IEEE/ACM 3rd FME Workshop on,
pages 68–74. IEEE, 2015.

[9] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Raka-
marić. A Reachability Predicate for Analyzing Low-Level Software, pages 19–33.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[10] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver, pages
337–340. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

35

Bibliography

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[12] Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM,
10(3):316–333, July 1963.

[13] C. A. Hoare. Proof of correctness of data representations. Acta Inf., 1(4):271–
281, December 1972.

[14] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, October 1969.

[15] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, 1968. Correction: Mathematical Systems Theory 5(1):
95-96 (1971).

[16] D. Kroening and C.S. Păsăreanu. Computer Aided Verification: 27th Inter-
national Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings. Number del 1 in Lecture Notes in Computer Science. Springer
International Publishing, 2015.

[17] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML, 178:131, 2008.

[18] K. Rustan M. Leino and W. Schulte. Verification Condition Splitting. January
2008.

[19] Rustan Leino. Dafny: An automatic program verifier for functional correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning, pages 348–
370. Springer Berlin Heidelberg, April 2010.

[20] Bertrand Meyer. Applying "design by contract". Computer, 25(10):40–51, Oc-
tober 1992.

[21] P. Niethammer. Syntax-directed incremental verification of java modeling lan-
guage contracts. unpublished thesis, 2016.

[22] Zvonimir Rakamarić and Michael Emmi. SMACK: Decoupling source language
details from verifier implementations. In Armin Biere and Roderick Bloem,
editors, Proceedings of the 26th International Conference on Computer Aided
Verification (CAV), volume 8559 of Lecture Notes in Computer Science, pages
106–113. Springer, 2014.

[23] A. Stefanescu. Matchc: A matching logic reachability verifier using the K
framework. Electronic Notes in Theoretical Computer Science, 304:183–198,
2014.

[24] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Veri-
fying eiffel programs with boogie. CoRR, abs/1106.4700, 2011.

36

A
Appendix 1: Boogie Grammar

subset

declList : axiomDecl
| constantDecl
| varDecl
| functionDecl
| procedureDecl
;

axiomDecl :
'axiom ' expr ';'
| 'axiom ' expr ';' declList
;

constantDecl :
'const ' idType ';'
| 'const ' idType ';' declList
;

idType :
id ':' type;

functionDecl :
'function ' ID fSig '{' expr '}'
| 'function ' ID fSig '{' expr '}' declList
;

fSig:
'(' fArgList ')' 'returns ' ')' fArg ')'
| '(' ')' 'returns ' '(' fArg ')'
;

fArgList :
fArgList ',' fArg
| fArg;

fArg:
idType ;

varDecl :
'var ' idType ';'
| 'var ' idType ';' declList

I

A. Appendix 1: Boogie Grammar subset

;

procedureDecl :
'procedure ' ID pSig ')' specList '{' localVarDeclList ';'

stmtList '}'
| 'procedure ' ID pSig ')' specList '{' localVarDeclList ';'

stmtList '}' declList
| 'procedure ' ID pSig ')' specList '{' stmtList '}'
| 'procedure ' ID pSig ')' specList '{' stmtList '}'

declList
| 'procedure ' ID pSig ')' '{' localVarDeclList ';' stmtList

'}'
| 'procedure ' ID pSig ')' '{' localVarDeclList ';' stmtList

'}' declList
| 'procedure ' ID pSig ')' '{' stmtList '}'
| 'procedure ' ID pSig ')' '{' stmtList '}' declList
| 'procedure ' ID pSig ')' '{' '}'
;

pSig:
'(' idTypeCommaList ')' outParameters
| '(' ')' outParameters
;

outParameters :
'returns ' '(' idType
| 'returns ' '('
;

localVarDeclList :
'var ' idType
| 'var ' idType ';' localVarDeclList
;

idTypeCommaList :
idTypeCommaList ',' idType
| idType ;

specList :
'requires ' expr ';'
| 'requires ' expr ';' specList
| 'modifies ' ID ';'
| 'modifies ' ID ';' specList
| 'ensures ' expr ';'
| 'ensures ' expr ';' specList
;

idCommaList :
idCommaList ',' id
| id
;

type:
mapType
| typeAtom
;

II

A. Appendix 1: Boogie Grammar subset

typeAtom :
'int '
| 'bool '
;

mapType :
'[' 'int ' ']' type
;

exprCommaList :
expr ',' exprCommaList
| expr
;

expr: e0
;

stmtList :
'assert ' expr ';'
| 'assert ' expr ';' stmtList
| 'assume ' expr ';'
| 'assume ' expr ';' stmtList
| 'havoc ' idCommaList ';'
| 'havoc ' idCommaList ';' stmtList
| lhs ':=' expr ';'
| lhs ':=' expr ';' stmtList
| 'call ' callLhs ID '(' exprCommaList ')' ';'
| 'call ' callLhs ID '(' exprCommaList ')' ';' stmtList
| 'call ' ID '(' exprCommaList ')' ';'
| 'call ' ID '(' exprCommaList ')' ';' stmtList
| ifStmt
| 'while ' '(' expr ')' loopInv '{' stmtList '}'
| 'while ' '(' expr ')' loopInv '{' stmtList '}' stmtList
| 'break ' ';'
| 'break ' ';' stmtList
| 'return ' ';'
| 'return ' ';' stmtList
;

lhs:
id '[' expr ']'
| id
;

callLhs :
id ':='
;

ifStmt :
'if ' '(' expr ')' '{' stmtList '}'
| 'if ' '(' expr ')' '{' stmtList '}' else_
| 'if ' '(' expr ')' '{' stmtList '}' stmtList
;

else_:
'else ' ifStmt

III

A. Appendix 1: Boogie Grammar subset

| 'else ' '{' stmtList '}'
| 'else ' '{' stmtList '}' stmtList
;

loopInv :
'invariant ' expr ';'
;

// Expr:
e0:

e1
| e1 '<==>' e0
;

e1:
e2
| e2 '==>' e1
;

e2:
e3
| e2 '||' e3
| e2 '&&' e3
;

e3:
e5
| e5 '==' e5
| e5 '<' e5
| e5 '>' e5
| e5 '!=' e5
| e5 '<=' e5
| e5 '>=' e5
;

e5:
e6
| e5 '+' e6
| e5 '-' e6
;

e6:
e7
| e6 '*' e7
| e6 '/' e7
;

e7:
e8
| '!' e8
;

e8:
e9
| e9 '[' expr ':=' expr ']'
| e9 '[' expr ']'

IV

A. Appendix 1: Boogie Grammar subset

;

e9:
'false '
| 'true '
| integer
| id #EId
| id funcApplication
| 'old ' '(' expr ')'
| '(' 'forall ' idTypeCommaList '::' expr ')'
| '(' 'exists ' idTypeCommaList '::' expr ')'
| '(' 'forall ' idTypeCommaList '::' triggerList '}' expr ')

'
| '(' 'exists ' idTypeCommaList '::' triggerList '}' expr ')

'
| '(' expr ')'
;

triggerList :
'{' exprCommaList
| '{' exprCommaList '}' triggerList
;

funcApplication :
'(' exprCommaList ')'
| '(' ')'
;

V

	Introduction
	Context
	Goals and Challenges
	Limitations

	Tools and Environments
	Boogie
	The Boogie Language
	The Boogie Verification Tool

	SiDECAR
	Operator-Precedence Grammar
	Attribute Grammars

	SMT-solvers
	Z3

	Implementation
	Transforming grammar to OPG form
	The pre-processor
	Assistance with OPG
	Variable renaming

	Incremental verification condition generation
	If-cases
	While-loops
	Procedures and procedure calls

	Version control

	Results
	Test cases
	Method of collecting results
	Results

	Discussion
	Experimental testing
	Input language limitations
	Implementation

	Conclusion
	Future work

	Bibliography
	Appendix 1: Boogie Grammar subset

