{(#2) CHALMERS |

UNIVERSITY OF TECHNOLOGY

Grammatical Framework
For Multilingual Natural Language
Generation: The Weather Report Case

Master's Thesis in Computer Science: Algorithms, Languages, and Logic

GLEB LOBANOV

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden 2017

MASTER’S THESIS 2017

Grammatical Framework

For Multilingual Natural Language Generation:
The Weather Report Case

GLEB LOBANOV

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Grammatical Framework

For Multilingual Natural Language Generation:
The Weather Report Case

Gleb Lobanov

© GLEB LOBANOV, 2017.

Supervisor: Krasimir Angelov, Digital Grammars

Examiner: Aarne Ranta, Department of Computer Science and Engineering

Master’s Thesis 2017

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2017

v

Grammatical Framework For Multilingual Natural Language Generation:
The Weather Report Case

GLEB LOBANOV

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The thesis presents the multilingual natural language generation effort using Gram-
matical Frameworks and following the Reiter and Dale’s approach. Also, it provides
an outline for a type-theoretical procedure for document planning, which appears to
succumb to formalization as a proof search under a linear context. To demonstrate
the applicability of the method to various domains, we created a text robot, which

summarizes weather data in English and Russian.

Keywords: Computational linguistics; Multilingual natural language generation;

Type theory; Grammatical Framework; Functional programming; Haskell

Acknowledgements

I would like to thank Dr. Krasimir Angelov for his patient and inspirational guid-
ance through my study as well as allowing me to assist in some current research
projects. Also, I wish to thank Prof. Aarne Ranta for shaping my understanding of
type theory and its applications in computational linguistics. I am very grateful to
the Grammatical Framework research group and especially Prasanth Kolachina for
valuable advice.

Special thanks go to the Russian government for funding my education at
Chalmers.

I would not have been able to complete my master’s degree without the cease-

less support of my family.

Gleb Lobanov, Gothenburg, August 2017

vil

Contents

1 Introduction
1.1 Motivation Behind MLG
1.2 Ethical Considerations
1.3 An Outline Of The MLG Architecture
1.4 Results. e

2 Frameworks
2.1 Grammatical Framework
2.2 The MLG Framework

2.3 Related MLG Applications and Tools

Document Planning

3.1 The Standard GF Search
3.2 The Document Planning Search

3.3 Implementation

The Weather Report Case

4.1 Abstract Syntax

4.2 Implementation 0oL

Conclusion

5.1 Further Work

Bibliography

15
15
17
18

21
21
25

29
30

31

1X

Contents

Introduction

The ultimate goal of the project is to implement a solution for multilingual natural
language generation (MLG) in Haskell and GF, particular parts of which are reusable
for MLG enterprises in any domain. The case project is the weather report text
robot, which takes weather data from a remote repository and produces consistent

reports in English and Russian.

1.1 Motivation Behind MLG

MLG is a way of automatic information representation; others are graphical and
tabular which display some data with different kinds of charts and tables. Similarly,
texts could be used to facilitate access to compound data. Indeed, texts provide
information in a more accessible way because it does not require any additional
competence, for example, comprehension of visual descriptions. In other words, it
provides a human interface for complex systems which automatically process and

summarize a vast amount of information.

Multilinguality promotes diverse access to data sets among people of various
mother-tongues. Above all, it is important to provide numerical data or data with
complexly organized structure in an easy to understand way. Although English is
very popular and influential in the growing global communication, there are still
numerous other languages in the world. Thus, more and more people and orga-
nizations, both commercial and governmental, discover the need to publish their
documents and product information in multiple languages. For these reasons, the

development of MLG is a vital and felicitous enterprise.

1. Introduction

1.2 Ethical Considerations

Multilingual natural language generation (MLG) is a resource effective technology
because it reduces the cost of data summarization and its textual representation:
it takes less time and costs less money to produce texts in comparison with ap-
proaches involving utilization of human expertise. Besides, an MLG application,
which was developed using a functional programming language with dependent
types, allows creating proof-carrying documents, which represent information with-
out logical flaws.

On the other hand, MLG carries some threats for society, because it could
eventually cause a dismissal of human translators and data analysts. Besides, it
could spread misunderstanding across users, because any two words from different
languages, translation equivalents, might still represent slightly different concepts
in various contexts. Also, not carefully defined logical rules might lead to false
documents. It might be inappropriate in some fields, which require transferring a
meaning carefully.

MLG possesses a variety of advantages, but its mindless application could lead
to some significant problems of information transmission, which a careful study of
an application domain could eliminate. Other problems like dismissals of employee
and mistrust to text-robots could be solved by requalification of personnel to become
supervisors and discourse engineers of MLG systems. All in all, cooperation between

humans and assistant text robots is a plausible answer to this arising issues.

1.3 An Outline Of The MLG Architecture

The architecture of the solution is planned along the lines of the Reiter and Dale’s
framework and includes all three major stages of MLG: document planning, mi-
croplanning, and surface realization [34|. Besides, the application rests upon Dannélls’
project, aiming to unify, generalize, and extend her implementation of this stages.

Notably, Dannélls’ project generates summaries from several already existing
databases, but, in a more general case, the input data is series of numbers, which
must be analyzed and structured in some way: its artifacts, patterns, and trends
must be detected and formalized. Therefore, to establish the first stage—document
planning, we took into consideration some ideas from the project, which deals with
it effectively—the BabyTalk project [28].

BabyTalk is a natural language generation (NLG) project which attempts to

1. Introduction

develop a text robot that summarizes data from the Neonatal Intensive Care Units
(NICU). The units output information in several streams of raw data, what is similar
to the weather reports case. Then the information from the units goes through three
steps of document planning, distinguished by BabyTalks’ pipeline: signal analysis,
data abstraction, and content determination [28].

We implement this three MLG stages using Grammatical Framework (GF),
which is both a functional programming language and a grammar formalism, pos-
sesses some valuable features, which make it one of the most helpful tools for MLG
[32]. First, it allows programmers and linguists collaborate most effectively. Namely,
scholars concentrate on description and development of grammars of several natural
languages simultaneously for the same application, and developers use the results
through facilities, exhibited by GF as a programming language. Second, the GF is
suitable for capturing rhetorical structures, which facilitate text composition. Fi-
nally, GF is a logical framework, which allows creating proof-carrying documents,
which represent data in logically correct and unambiguous ways. In other words,
GF is an appropriate tool for performing the primary tasks of natural language
generation, which exhibits multilingual capabilities.

The dual structure of GF grammars, consisting of abstract syntax and multi-
ple concrete syntax, allows building MLG application according to the Reiter and
Dales’s approach. The abstract syntax describes the lexicon of an application do-
main, captures rhetoric structures, and encodes the system of shared linguistic con-
cepts common to several languages. Concrete syntax encode linguistic information
about certain natural languages, using one shared abstract syntax. The procedure of
linearization, defined in GF, produces texts for given sentences, which are encoded
in concrete syntax. Accordingly, abstract syntax is convenient for the formalization

of the document plan and the document structure.

1.4 Results

To demonstrate capabilities of Grammatical Framework for multilingual natural
language generation, we created a demo application, which extracts data from a web
database and generates textual weather reports. It summarizes data sets containing
information about the state of the environment during a specified period in English
and Russian.

Usually, weather information is provided either in tables or short sentences,

written by meteorologists, but there are also some benefits from the use of text

1. Introduction

robots. Automatization of the weather report summarization provides direct distri-
bution of information in an accessible form. Besides, it cuts down expenses since it
does not involve human expertise and supervision. The addition of multilingualism
could increase its user coverage and make it, even more, resource efficient, allowing
to leave out the expensive professional translation from the process.

To produce a report, a text robot must know its structure, a document plan,
in advance. It contains data as well as information about how to group it and can
be defined beforehand or generated automatically. It is a kind of template, which
carries semantics and logic of the text.

During the project, we created a mechanism for automatic production of docu-
ment plans. Before, GF MLG applications needed predefined templates of the whole
text. Now, to set the final communicative goal of the text generation, a programmer
needs only to describe semantics and short templates for sentences, building blocks
of the text. A document plan of the text, then, is constructed automatically with
regards to semantic and logical rules of the domain.

To accomplish this goal, we modified the standard proof-search algorithm of
GF'. Being essentially an implementation of Martin-Lof type theory, GF allows prov-
ing theorems. It is a functional programming language with dependent types, type
checking mechanism of which is used for this purpose. The communicative goal is a
theorem, and its document plan is its proof, so these facilities would do the job of
automatic document planning after some extensions.

The results of this experimentation were presented at the Workshop on Logic
and Algorithms in Computational Linguistics 2017 [22], and the shorter and partly

changed version of this thesis was published in its proceedings.

2

Frameworks

2.1 Grammatical Framework

Grammatical Framework is a functional programming language with dependent
types and a grammar formalism, which is being developed with the purpose of
defining natural language grammars in mind [32]. It is used in machine translation
and natural language generation applications. Aarne Ranta initiated its develop-
ment in his fundamental work Type-Theoretical Grammar [29], where he used it
as a notation to express the semantics of natural languages using Martin-Lof type
theory. Its first implementation was reported in [27], and, since then, it has been
evolving as a functional programming language. Now it is a fully fledged tool, which
is utilized for research on computational linguistics and application development.

The key feature of GF is the separation of abstract syntax from concrete syn-
tax, which makes the development of multilingual applications more efficient. Ab-
stract syntax describes semantics or the structure of a text, and concrete syntax de-
scribes the grammar of its languages. It allows division of labor among programmers
and grammarians, who can now pay special attention to their areas of responsibility.
Besides, GF can easily connect one abstract syntax to several concrete syntax, which
makes multilingualism accessible and effortless to scale.

GF focuses on linearization, which renders functional rules of abstract syntax
into strings as specified by rules of concrete syntax. This fact makes it a useful tool

for natural language generation tasks.

2.1.1 Abstract syntax

The GF facility for abstract syntax description is the implementation of Martin-Lof’s
intuitionistic type theory, which is essentially the lambda calculus with dependent
types or Logical Framework. For this reason, it allows not only to type check but

also design proof-carrying documents. This capacity can, for instance, be used

2. Frameworks

for natural language generation tasks associated with the essential requirement to
produce logically correct texts. Moreover, the way abstract syntax is connected to
concrete syntax preserves the meaning among multiple languages.

Abstract syntax consists of type declarations for functions and categories,
which represent semantic entities and relations among them. Below, the classi-
cal food grammar example illustrates the design of a regular abstract syntax, which
is taken from the Grammatical Framework Tutorial [31].
abstract Food = {

flags startcat = Phrase ;

cat

Phrase ; Item ; Kind ; Quality ;

fun
Is : Item -> Quality -> Phrase ;
This : Kind -> Item ;

These : Kind -> Item ;
Apple : Kind ;
Apples : Kind ;
Very : Quality -> Quality ;
Ripe : Quality ;
}
Here four categories, the basic types, are declared: Phrase, Item, Kind, Quality.
The type Phrase is the start category, which means that it will be used as the default
category for generation and parsing. These categories are used as the argument or
target types of the abstract syntax functions Is, Very, and so on. An example of
expression of type Phrase is the function application Is (This (Apple)) (Very
Ripe).

2.1.2 Concrete syntax

Concrete syntaxes are described with a purpose-built GF tool, which is lambda
calculus with records and is, also, kitted up with string processing functions. Also,
the GF Resource Grammars Library API can be used for assistance. It includes
basic lexis, morphology, and syntax of 32 languages [30]. Most important, the

concrete syntax functions firmly correspond to the abstract syntax functions of a

6

2. Frameworks

particular application and even keep their names and types from one concrete syntax
to another, so uniformity of grammars for all defined languages are retained for this
application.

Below is the concrete syntax for the food grammar, which determines how
the expression of its abstract syntax is linearized to a string or parsed. Thus, the
expression above will correspond to a line This apple is very ripe.

concrete FoodEng of Food = {
lincat

Phrase, Item, Kind, Quality = {s : Str} ;

lin
Is item quality = {s = item.s ++ "is" ++ quality.s} ;
This kind = {s = "this" ++ kind.s} ;
These kind

{s = "these" ++ kind.s} ;
Apple = {s = "apple"} ;

Apples = {s = "apples"} ;

Very quality = {s = "very" ++ quality.s} ;
Ripe = {s = "ripe"} ;

As can be seen from this example, the primary object of concrete syntax is not
a string but a record, which contains a string. A record can contain more than one
element, and this element can also be a table. Tables map grammatical parameters
into strings, other records, or tables. These capabilities allow detailed customization
of the linearization of abstract syntax functions.

In some cases, this grammar produces incorrect strings. Since both Apple and
Apples are of type Kind, the expression Is (This (Apple)) (Very Ripe) is well-
typed and linearized to the grammatically incorrect sentence This apples is very
ripe. Below is the extended and modified concrete syntax of the food grammar,
which illustrates how to use tables and records to solve this problem.

First, we determine a parameter Number. Then we define the linearization
of the category Kind to be a table, which maps the Number parameter to strings.
Also, to the record Item, we add the field n of type Number. Finally, we give new
definitions for the functions Apple and Is; we remove the separate function for the
plural form Apples. Using the bang operator, we get access to the values of tables,

like in the linearization of These.

2. Frameworks

param Number = Sg | Pl ;

lincat Kind = {s : Number => Str} ;

lincat Item = {s : Str ; n : Number} ;
lin Apple = {
s = table {
Sg => "apple" ;

P1 => "apples"

+
lin This kind = { s = "these" ++ kind.s ! P1 ; n = Sg } ;
lin These kind = { s = "these" ++ kind.s ! P1 ; n = P1 } ;
lin Is item quality =
{s = item.s ++ table {
Sg => "is" ;
P1 => "are"
} ! item.n ++ quality.s

s

2.1.3 Abstract Syntax For Document Planning

Also, we use the abstract syntax to model the discursive structure of the text, which
is called a document plan. Following the notation of Rhetorical Structure Theory
[23], it consists of text spans which are either nuclei or satellites combined in a
variety of relations. For example, the most common used relation in our project
is Background, which gives an account of a process, a state, or an action in the
main, nuclear, message. Functions, arguments of which are constituent messages,
represent such relations.

The messages, in turn, have the complex structure, which is too captured by
the abstract syntax. They could be either atomic or composite. The first denote
entities or abstract concepts; they are primitive building blocks. Every field of
a data object, received by the application corresponds to such message. From the
concrete syntax perspective, this messages catalog the lexicon of the weather domain.
Functions with only one argument, which is the numerical or string value of the

corresponding field, represent these messages.

8

2. Frameworks

Composite messages combine atomic messages and, after linearization to nat-
ural languages, are text spans, nuclei or satellites, which are bind together and form
rhetorical relations. More detailed exposition of abstract syntax organization is in
section 4.1 Abstract Syntazx.

The standard GF proof search algorithm, after some extensions, automatizes
document planning. Provided only a communicative goal and a list of atomic mes-
sages, it constructs a plan of a text, which is ready for linearization. This problem

is central to the current project, and its solution is presented in Chapter 3.

2.2 The MLG Framework

Our primary source for multilingual natural language generation (MLG) is Building
Natural Language Generation Systems by Reiter and Dale [34]. Although it was
published in 2000, it remains the only work bringing together all the key aspects
of the topic. Moreover, the authors present a comprehensive theoretical framework
for future natural language generation (NLG) projects. Later, Bateman and Zock
describe it in the reputable Oxford Handbook of Computational Linguists in the
chapter "Natural Language Generation” [9], and, also, Dannélls put it in practice for
the project that generates artwork descriptions [13], what demonstrates significance
and functionality of the approach.

Reiter and Dale distinguish three stages of NLG. The first stage, document
planning, determines the content and the structure of a document. The second stage,
microplanning, takes the document plan and constructs a document specification
of syntactical structures and lexicon of the document. The third stage, surface
realization, produces actual text using the document specification. Between stages,
trees, which store structural information in internal nodes and content information

in leaves, transmit the document plan and the syntactical specification.

2.2.1 The Weather Report MLG Pipline

The Weather Report MLG pipeline is an implementation of Reiter and Dale’s [34]
architecture, which Portet and his colleagues put into practice for generation of
textual summaries from neonatal intensive care data [28]. They analyze health
data: filter artifacts, recognize its patterns and trends. Then, following the standard
strategy, they abstract the data, determine the content of the final message. Then,

after microplanning, this message is realized. Taking into account that GF covers

2. Frameworks

the last two steps, we distinguish the following procedures in our system.

First, the system receives the data to analyze. We are going to use meteoro-
logical information in the form of some time series containing information about soil
and air temperature, humidity, wind direction and so on; the period taking into con-
sideration can vary. During the signal analysis stage, we detect artifacts, patterns,
and trends. Then this information is encoded regarding the meteorological domain
ontology, which is represented in the system as a Haskell algebraic data type.

Second, the captured and formalized data must be interpreted to produce
general observations of the state of affairs. This step involves reasoning based on
both ontological properties and explicitly defined rules. The properties and rules
are defined in Haskell, and the result of the interpretation is a refined local ontology
encoded using a respective Haskell functions and algebraic data types.

Third, the local ontology is transformed into the tree, the document plan, of
linked events and states. The processing is conducted according to the rules that
specify, what information is most valuable and in what sequence it must present.
Both the rules and the resulting tree are encoded using Haskell functions and alge-
braic data types.

Fourth, microplanning step transforms the events and states tree to the tree
that represents the syntactical structure of the documents, also carrying its lexicon.
The tree is encoded in GF abstract syntax in two passages: the transformation of
a document plan to the system of rhetorical structures and lexical items, and then
the transformation of the previous result to the system of the syntactical structures
using the GF resource grammar library [30].

Finally, the actual texts in several languages are generated utilizing GF lin-
earization using GF concrete syntax. The GF infrastructure entirely covers this
step. Indeed, our responsibility on this step is to provide concrete syntax of the
languages we want the system to generate the reports—English and Russian. Since
the lexical aspects of the meteorological domain have not been explored in GF re-
search yet, concrete syntax and lexicons of both languages were extended. As well,
some auxiliary syntactic functions were added for both languages to carry out some
markup actions. Also, GF Resource Grammar does not provide for the control of
the free word order in Russian, so some additional functions, which handle it, were

written.

10

2. Frameworks

2.3 Related MLG Applications and Tools

Here related MLG applications are listed. Some of them have MLG as only a
necessary phase, and the others have MLG as their primary purpose. Not all of
them use GF. More applications, which use GF, can be found on the dedicated page
of the GF website [12].

2.3.1 The Météo system

The Météo system was a machine translation system for the weather forecasts, which
was being developed by the University of Montreal’s Automatic Translation Research
Team from 1975 to 1977. It was incorporated into the Canadian forecasts transmis-
sion network and translated from English to French. It processed several types of
forecasts from the eight regional meteorological offices. From then on, Environment
Canada used it successfully until 2001, when it was replaced by another application
[11] [36].

The system had some distinctive features. Its application domain model of
natural language for weather forecasts had restricted vocabulary and syntax, and
its dictionary and grammar were separated from the algorithm component of the
software. When the automatic translation was impossible due to the absence of a
word in the dictionary or ambiguity of syntactic structure, the system submitted a
phrase under consideration for human translation. Nevertheless, if it was possible,
the system tried to provide for its partial translations [35].

For its time, Météo was the unique and advantageous application. It pro-
vided reliable translation because professional translators were involved in its de-
velopments. They provided invaluable feedback during all phases of the application
construction: design, development, and refinement [35]. Besides, after more than
twenty years of continuous operation, its yearly throughput reached to 30 million
words during the final years [11]. Its success makes this system the primary reference

point for any further MLG weather report applications.

2.3.2 MLG for the Gothenburg City Museum

Dana Dannélls as part of her Ph.D. project created a text robot which generates
short descriptions of artworks in English, Swedish, and Hebrew for Gothenburg

City Museum [13]. It takes as input data base records containing information about

11

2. Frameworks

paintings: the artist, the name, its type, what does it depict, and so on. The output
is several sentences expressing this information in a nice human-readable manner.
GF is the core technology of Dannélls’ project. It follows Reiter and Dale’s [34]
NLG framework and uses static templates for the document planning phase. The
weather report application has a similar design; nevertheless, we have developed a

new approach to document planning, which is presented in Chapter 3.

2.3.3 Generation of a natural language formal proof of the

correctness of insertion sort

Thomas Hallgren provided a proof of the correctness of insertion sort, which was
constructed formally in the Proof Editor Alfa [4] and, then, translated automati-
cally to English [19]. With this experiment, Hallgren inquiries into the advantages
and disadvantages of automatically generated natural language proofs. Its positive
aspects are multilingualism, which could be easily achieved, consistent terminology,
and the close correspondence to the formal proof. However, the text could become

tedious to comprehend and abnormal expressions.

2.3.4 Translation of formal software specifications to natural

languages

As a part of the KeY system [2], Kristofer Johannison developed a tool, which trans-
lates formal software specifications in OCL [3] to natural languages|20]. This tool is
supplemented by a syntax-directed editor, which enables to develop specifications in
OCL and natural language simultaneously. The main motivation behind this project
is to make development and maintenance of software specification unchallenging to

the layman. GF is the core technology of the system.

2.3.5 WebALT: Multilingual Tests in Mathematics

The WebALT [10] is a system for generation of automatic interactive assessment
applications for mathematics education. Several types of questions are supported:
multiple choice, yes/no questions, and custom solutions, which are checked auto-
matically. Using a special language independent encoding, one can compose an
assignment, which is, then, translated into several natural languages in written and

verbal forms: English, Spanish, French, Italian, Swedish and Finnish. Also, there

12

2. Frameworks

exists the WebALT Excercise Repository, which makes it possible to construct an

international syllabus using some predefined learning objects.

2.3.6 GF Offline Translator

Krasimir Angelov, Bjorn Bringert, and Aarne Ranta de-

veloped a speech-enabled hybrid multilingual translation sl 168

application for mobile devices [8|[16] GF' Offline Trans-

Finnish
lator, which is available on Play Store [17] and has a web Hli::is “4 8
version [15]. It is a rule based alternative to statistical = s

Human Language Compiler

machine translation of Google Translate. It supports e :
que tu nous aimes

14 languages and 182 language pairs: Bulgarian, Cata-

my hovercraft is full of eels

lan, Chinese, Dutch, English, Finnish, French, German,
Hindi, Italian, Japanese, Spanish, Swedish, Thai. Both

min svavare ar full av alar

.. . . questo programma traduce
textual and audio input is available.

Its distinctive feature is the ability to indicate con- _

fidence of translation with colors as shown in figure 2.1. kaupassaonolutta

Green color indicates semantically correct translation.))
=) (- =

Yellow color indicates grammatically correct translation,

Figure 2.1: A screen-

_ shot of a mobile applica-
color indicates that the input string was split into chunks 5, aF Offline Transla-

but it does not guarantee the precision of meaning. Red

or even words, which is indicated by darker shade. It tor [16].
means that these pieces were translated one by one and
separately. In all cases, answers could be accompanied with alternative translations.

Another feature is the ability to work offline.

2.3.7 The online editor for simple multilingual grammars

The online editor was created for simple multilingual grammars. It makes it easier
to construct GF grammars for people without experience in programming [5]. It has
a straightforward interface, so a beginner could embark on grammar construction
without going through sometimes cumbersome software installation and setup. After
the completion of grammar, it can be tested in the web application, which allows
constructing sentences from the given lexicon and grammar, or with an automatically

generated quiz.

13

2. Frameworks

14

3

Document Planning

Document planning is the essential element of the MLG pipeline, which given the
communicative goal determines the content and the structure of an output docu-
ment. Other phases, which influence the shape of a document, are microplanning
and linearization (surface realization). Possible flaws of this latter phases do not
cause fatal errors. At the same time, users expect to receive a coherent text cover-
ing all essential details responding to a provided query. Thus, in our approach, we
see document planning as the central task. It is a search problem, which yields an
abstract expression, constituents of which represent complete and requisite informa-

tion. To solve it we revised the common GF proof search algorithm [6].

3.1 The Standard GF Search

The standard GF search consumes a target type and returns either a random subset
or all abstract expressions of that type. They can be used to check if their lineariza-
tions are semantically and grammatically correct. Additional regulation could be
imposed on the choice of abstract expressions. A statistical model is used to set se-
lection probability for an expression [7]. Regarding the exhaustive production of all
possible expressions, it gives the result in the decreasing probability order. Also, the
choice could be controlled by constraints encoded using dependent types since GF
uses a Logical Framework, a version of constructive (also known as intuitionistic)
type theory [24], for a description of the abstract syntax.

The search algorithm in GF employees the choice sequence interpretation of
type theoretical terms [25]. It takes a meta variable expression of the initial type.
Then, on every step the left most meta variable is substituted with a function ap-
plication expression, the target type of which must be unified with the type of this
meta variable. At the same time, arguments of this function application, new meta

variables, must saturate its type. On the first step, the left most meta variable is the

15

3. Document Planning

ffc(i?yZ)
f:A=>L—=S fx(gy) faeliy(?:C) [fa(hz)
g:B—L t t t
h:C—L fa(g(?:B)) [fa(i(?:B)7) fz(h(?:C))
1 :B—>C—1L
x: A fa(?:L)
y : B} messages t
e, f(:A)?7

s

Figure 3.1: An example of abstract syntax and its corresponding choice tree

initial one. Since for some meta variables, there could be choices, the algorithm con-
structs a choice tree, which represents all possible expressions, possible states. The

final states are complete expressions, which don’t have constituent meta variables.

Figure 3.1 illustrates a choice tree for abstract syntax without dependent types,
all functions of which have only first order types. Functions can also have as well
high-order types and take as arguments other functions, lambda abstractions. In
a linguistic domain, they are used for modeling anaphoric references [32]. As for
dependent types, they manifest complex semantic constraints. Since the presence
of this features does not affect the design of the planner, which also relies on their
existing implementation in Grammatical Framework, they are excluded from the

example.

In the example, first, we start with a meta variable of the type S, which is the
target type of expressions we are searching for. It is replaced with the application
f 7 7 because it is the only choice given in the grammar on the left hand of the
figure. Then, we continue picking the left most meta variable, annotated with its
type for convenience, until a complete term is reached. The resulting term is a leaf

of the choice tree.

The third step produces three alternatives for a function of type L and creates
three branches in the tree, leading to three different complete expressions. If our
goal is to generate a random expression, the existing GF search algorithm chooses
a branch randomly. Alternatively, for the exhaustive search, the algorithm uses

breadth-first priority traversal.

16

3. Document Planning

3.2 The Document Planning Search

In document planning, we search for subtrees consisting of a given list of messages,
representing information that we want to communicate. These messages correspond
to basic types of the abstract syntax: A, B, and C'; values x, y, and z of this types
carry their content (see 3.1). To make example simple, we provide here only one
value for each type, but it is not mandatory. The initial type S, from which we
start to construct a document is the communicative goal, which to some extent sets
a shape of the resulting expressions. To generate texts for different goals, we need
different initials types.

The query is expressed as a linear logic multiplicative conjunction, operands of
which are either pair of an expression and its message type (e.g., z : A) or negations
of a message type (e.g., 7A). The values specified in pairs are always used, while
the use of negated types is forbidden. Types that are not included in the query
are saturated with arbitrary functions which have them as their target types. Their
repetition in the resulting expressions is not restricted.

To fulfill a query is to find all complete expressions which consist of all expres-
sions provided in a conjunction and at the same time do not include any expressions
of negated message types. Since Grammatical Framework does not distinguish be-
tween ordinary basic types and message basic types, a query determines which of
them are considered as messages, but the framework processes them without priority.

Execution of the query (z : A) ® (y : B) treats types A and B as messages.
Values of these types are used in expressions f = (¢ y) and f x (i y z). The type
C' is not included in the query conjunction as a negated message type, so in the
second expression we are free to use z : C. On the other hand, if we would like to
treat C' as a message type, we can either provide a pair z : C' or a negation —C' to
a query. In the latter case a query is (z: A) ® (y : B) ® =C, and the only complete
expression satisfying it is f x (g y).

Aggregation of messages is conditional on the grammar and the query. To
place messages x, y, and z into the resulting expression simultaneously, we use the

following query:

(x:A)@((y: B)®(2:C)

17

3. Document Planning

It returns the expression f x (i y z) where the function ¢ uses y and z to
represent a completed sentence, which could communicate information embedded in

both messages.

3.3 Implementation

The extension of the GF search algorithm for document planning involves the ad-
dition of a mechanism that carries a query during the construction of the choice
tree. The query is used when the type of the meta variable under consideration
could be found in the query, and it must be paired with an expression in the query
conjunction. Then, instead of employing a free choice, this suitable expression re-
places the meta variable. In the final expression, every message must occur only
once; therefore, the related pair in the conjunction is replaced with the negation of
its type.

If the type of the current meta variable is negated in the query conjunction,
the current branch is abandoned, and traversal of an alternative branch begins. On
the other hand, if this type is not in the query at all, a value of the current meta
variable is chosen freely from alternatives provided by the structure of the choice
tree.

The search halts and returns the resulting complete expression if and only if all
types of the query conjunction are negated. If it halts with a complete expression,
but some pairs of expressions and types remain in the query, this expression is not
accepted.

Below is an outline of generation of f x (i y z) followed by the corresponding

query after every step:

7:8 (z:ARy:B)®(2:C)
FEAT @Ay B e(::0)
fxz(?:0) —“A®(y: B)® (2:0)
fr((:B)?) ~Ae(y: B)e(::C)
fa(iy((?:C) "A®-B®(z:0C)
fx(iyz) ~A®-B®-C

For one query, the search could output multiple complete expressions satisfy-
ing restrictions imposed by grammar and a conjunction of messages and message

types. In this case, the grammar must be designed in a particular way to avoid

18

3. Document Planning

ambiguity. All expressions must communicate the same information for the same
message arguments, but their linearization could vary. It could also depend on ad-
ditional arguments—syntactic categories. This feature adds variability for a planner

if it randomly chooses the resulting expression from the multiple search output.

19

3. Document Planning

20

4

The Weather Report Case

As an illustration for document planning, we have chosen the weather report case,
which is a practical application involving uncomplicated analysis of the data at
hand. It exhibits grammar-construction principles without distractions caused by
peculiarities of more different domains with hard-to-comprehend specific languages.
The application receives data in a JSON format from DarkSky and builds a doc-
ument plan, which is according to [34] a tree, consisting of information-bearing
messages and discourse relations between them.

In GF a document plan is a tree built from applications of functions in the
abstract syntax of the weather report grammar. The concrete syntax define rules for
linearization (surface realization) of a document plan, a process resulting in the final
text, a weather summary, in English and Russian. They use GF Resouce Grammar
APIT [30] calls, a library which covers morphology and basic syntax of 32 languages,

and the application domain lexicons.

4.1 Abstract Syntax

The abstract syntax of the weather report grammar is modular, reflecting the com-
positional structure of the text. It comprises three modules: atomic messages,
composite messages, and rhetorical structures. Atomic messages are functions with
one or no arguments, which stand for one value or an abstract concept from the raw
data source. The type of the value is the target type of the corresponding function.
Composite messages represent phrases or sentences in the text and are functions
with several arguments which are applied to either atomic messages or other com-
posite messages. The target types of the composite messages depend on their roles
in the rhetorical structures. The latter is defined in the third module, which con-
sists of functions bringing together text spans and producing the schemata of the
Rhetorical Structure Theory [23].

21

4. The Weather Report Case

4.1.1 Atomic messages

As we said atomic messages stand for a value from the raw data source. They could
also represent abstract concepts, qualities or other bits of information which aren’t
supported by values but are necessary constituents of discourse. For example, the
following are two of the atomic functions which correspond to values from Table 4.2,
which shows the main data values used in the weather report production:

TemperatureVal : Float -> Temperature

ExtremelyHot : TempType

Here, function TemperatureVal takes a real number and returns a value car-
rying message of type Temperature. In contrast, function ExtremelyHot does not
require any arguments and has target type TempType denoting human perception of

temperature levels.

4.1.2 Composite messages

When linearised, composite messages are phrases or sentences. They consist of
atomic messages, and they use them to deliver a complete utterance about some
state of affairs, action or process. In the abstract syntax, they are formalized as
functions with one or more arguments, where the types of the arguments must be
target types of functions for atomic messages. Target types of composite messages
are either Nucleus or Satelite — concepts from Rhetorical Structure Theory, as
will be discussed later. An example of a composite message is InfoPrecipType:
InfoPrecipType : Preciplntensity -> PrecipType -> Satellite

It takes an atomic message PrecipIntensity, which is a short description of
precipitation intensity together with its value (millimeters of water), and an atomic
message PrecipType, which stands for a precipitation type, e.g., snow, rain, and so
on. The target type Satellite signifies the role of the composite message which it

plays in more complex rhetorical structures defined in the abstract syntax.

4.1.3 Rhetorical Structures

The next structural level after the messages is the rhetorical structure. Rhetorical
Structure Theory (RST) [23] describes text structure regarding relations between
its constituents. Each relation holds between a core element, a nucleus, and a
set of supporting elements, satellites. A theory exhibits a comprehensive system

of schemata describing different combinations of relations, nuclei, satellites, and

22

4. The Weather Report Case

Circumstance Solutionhood
Elaboration Background
Enablement Motivation

Evidence Justify

Volitional Cause Non-Volitional Cause
Volitional Result Non-Volitional Result

Purpose Antithesis
Concession Condition
Otherwise Interpretation
Evaluation Restatement
Summary Sequence
Contrast

Table 4.1: The list of RST relations [23].

constraints on them. Table 4.1 enumerates the full list of relations as presented in
[23].
Below, there is an example of a schema formalization, which has Background

as a core relation:

cat Nucleus
Satellite
Satellitelist

Schema

fun
BSat : Satellite -> SatellitelList
CSat : Satellite -> Satellitelist -> SatellitelList

Background : Nucleus -> Satellitelist -> Schema

We have settled on RST because it does not depend on any particular language
and text type or purpose. This feature is beneficial because the weather report
case produces weather summaries in English and Russian. Besides, it has a wide
recognition in an NLG community [18]. Alternatively, [26] outlines and formalizes a
document structure using a type theory with dependent types. His results combined
with RST could be appropriate and practical for our approach, taking into account
that GF is essentially a logical framework — a lambda calculus with dependent
types. However, for the weather report case, we confined ourselves with some basic

RST concepts.

23

4. The Weather Report Case

4.1.4 Dependency groups

The proof-search algorithm employed for the document planning has a property that
it selects a composite message to use in text generation only if all of its constituents
are present in a generation environment or context, which is a list of available and
yet unused atomic messages. For instance, if PrecipIntensity is absent in an
environment, InfoPrecipType will not be chosen. Then, if PrecipType is present
in an environment, it is left to be used by other composite functions. Besides, if
no composite messages which use it are found, the algorithm returns nothing. In
other words, to produce text, all atomic messages must meet whichever composite
message functions which take them as arguments.

This behavior of the algorithm leads us to group atomic messages according to,
first, our wish to see them in one composite message simultaneously, and, second,
interdependency of their appearance in an environment. The former assertion is
grounded in mechanics of the algorithm and is evident from the earlier example.
The latter one is because some atomic messages are computed from others. Thus,
in some cases, they could either be excluded from data by a data provider or just
be meaningless and, therefore, undefinable. For instance, a type of precipitation
PrecipeType depends on a value embedded in PrecipIntensity in a sense that if
the intensity is equal to zero, a type of precipitation is unidentifiable. Moreover,
in our case, the data provider marks it as an optional field, and we could have a
situation in which PrecipeType is undefined while PrecipIntensity is present. A
workaround is to join them to a dependency group and allow them to appear in the

list of available messages only when both of them are present.

4.1.5 Requirements of grammar completeness

For a grammar to be complete, it must comply with the main rule which guarantees
its robustness: each dependency group must be represented by at least one composite
function which has all elements of this group as arguments. At the same time, all
arguments of a composite function must be members of the same dependency group.
Regarding independent atomic messages, they are regarded as singleton dependency
groups and, thus, must be supplied by a composite function of one argument each.

If there is a need to make use of several dependency groups in a composite
message simultaneously, they should be combined into one group, which could be
interpreted as a disjoint union. Since it is possible to ignore atomic messages during

linearization, it will not restrict granularity. Instead, it makes possible to produce

24

4. The Weather Report Case

texts, which communicate only subsets of dependency groups. Another feature,
increasing flexibility, is that every dependency group can be represented by more

than one composite message.

4.2 Implementation

The implementation consists of three parts: a GF grammar, the new document
planning algorithm in the GF runtime, and a host Haskell application, which receives
weather data, constructs, calls the planner and produces output text. Below are
example fragments in English and Russian followed by the corresponding abstract
syntax tree.

On Sunday, 16 April 2017 at 16:08 in Gothenburg it is snowing.

It is very cold: the temperature is 4.22 °C, and it feels

like 0.95 °C.

B Bockpecerne, 16 amnpena 2017 16:08 B I'éTebopre cHexHO.

Ouens xomomuo: TemunepaTypa 4.22 °C u 0.95 °C mo omymeHuaM.

Background (InfolLocation Gothenburg
(DayVal "16") April (YearVal "2017")
Saturday (TimeVal "16:09")
IconClearDay)
(BSat (InfoTemperature VeryCold
(TemperatureVal 4.22)
(ApparentTemperatureVal 0.95)))

The grammar is compiled to a PGF file, which contains a portable grammar,
accompanied with a Haskell interface. This file is automatically generated source
code. Together with the PGF Haskell library [6], the interface facilitates abstract
syntax tree manipulations. The library also contains the document planning algo-
rithm, a modified proof search algorithm.

The host application receives, verifies, and processes raw data from [14], a
weather forecasting cloud service. A user inputs the name of a location, weather
conditions of which are to be displayed. The application queries Google Maps API
[1] for its coordinates. Then, these coordinates are used to get a JSON object with
weather information from DarkSky. Future, current, and historical data are stored

there, which accessible by accompanying the coordinates with a particular date.

25

4. The Weather Report Case

If some fields of the JSON object are absent, we mark that by using a negative
term in the query. The presence of a negative term in a dependency group will not
allow using the whole group in the discourse. Granular partitioning of dependency
group makes the application sustainable in case of some failures in the weather data.

Some values undergo processing; for example, temperature or wind speed, are
translated from imperial units to metric. Some JSON fields that we use in the
current implementation are listed in Table 4.2. Then, values are transformed to
atomic messages and supplied to the document planning algorithm, which returns
an abstract syntax representation of a weather report ready to be linearized to
English or Russian using the standard PGF API.

Since there are no predefined templates, which fully cover the text structure,
the composition of reports varies on every run of the application. The first sentence,
which contains information about a location, remains the same, but the order of
other sentences defers. During one run, the compositions of English and Russian
texts are identical.

The source code of the application is published on GitHub [21].

26

4. The Weather Report Case

Field Description
temperature The air temperature in degrees Fahrenheit
cloudCover The percentage of sky occluded by clouds, between 0 and 1,
inclusive.
dewPoint The dew point in degrees Fahrenheit.
humadity The relative humidity, between 0 and 1, inclusive.
icon A machine-readable text summary of this data point, suit-
able for selecting an icon for display.
ozone The columnar density of total atmospheric ozone at the given
time in Dobson units.
precipIntensity | The intensity (in inches of liquid water per hour) of precipi-
tation occurring at the given time.
precipProbability | The probability of precipitation occurring, between 0 and 1,
inclusive.
precip Type The type of precipitation occurring at the given time.
pressure The sea-level air pressure in millibars.
time The UNIX time at which this data point begins.
windBearing The direction that the wind is coming from in degrees, with
true north at 0° and progressing clockwise.
windSpeed The wind speed in miles per hour.

Table 4.2: Some fields of a JSON-response object provided by the API of [14]. We
list those that are used in the current implementation of a text robot. Some of them are
optional or belong to a data-point object, and the application handles their faulty absence.
All listed fields are transformed to related atomic messages after the data is received,
verified, and processed. Descriptions are taken from The DarkSky’s API documentation.

27

4. The Weather Report Case

28

D

Conclusion

This work has demonstrated that a small-scale modification of the standard GF
proof search algorithm could facilitate the document planning phase of the natural
language generation pipeline. Its automatization saves from labor intensive descrip-
tion of conditional rules for template population, which could become exhausting
when they are comprehensive and numerous. For the same reason, it also makes
available variability of the output text at no cost because several proof objects could

be found for the same target type.

By using randomized search and some redundancy in the abstract syntax of the
grammar, we could also achieve variability in the generated text. Not only wording
but also the order of sentences and rhetorical relations can vary. The variability
could be beneficial in the case when texts, which convey similar information, are
generated repetitively and in large quantities. Without monotonous wording, the

overall user experience becomes more satisfactory.

During the weather application grammar construction, its general and feasible
architecture together with the requirements for its completeness have been outlined
and formulated. We classified all messages to atomic and composite and grouped the
atomic messages according to their appearance in the data source. Consequently,
the obligation was imposed on the composite messages to contain atomic messages
from only the same dependency group. This regulation organized the data and

secured coherent communication of information.

The framework is multilingual, so it also allows the same report to be rendered
in several languages at once with the preserving of the meaning across them. We
showed it by the example of parallel linearization of the same information to Russian
and English. Moreover, being a rule-based system, it gives predictable output. In
comparison with systems, which use statistical methods, such as Google Translate,
it guarantees a publishing quality and targets producers rather than consumers [33].

The weather report production is an example of such task.

29

5. Conclusion

The weather report case illustrates practical details of the approach and is an
evidence of its straightforward implementation. It will be published online and serve

as a demonstration of how GF could be employed for MLG tasks.

5.1 Further Work

Our next objective is to transform the apparatus that underlies the weather re-
port application to a Haskell general library for MLG. It will provide programmers
with GF utilities and resources through API, which does not require them to be
acquainted with GF internals. Its architecture will reflect common assumptions on
how texts should be structured discursively, semantically, and syntactically. As a re-
sult, programmers could transparently bring expected functionality to the end users
of the application, developed using this library.

Another task is to upgrade the document planning algorithm. Now, to get
a document plan, we must supply to the algorithm a communicative goal together
with a list of atomic messages, which carry information to be conveyed. A different
approach, which we believe is possible to carry out, is to supply only the list of
atomic messages, and the refined algorithm will figure out what function will express
the communicative goal. It will use types of atomic messages and try to find the
appropriate function from a prespecified inventory. Then, it will apply it to this
atomic messages and random or default values, and, finally, constructs the document

plan.

30

1

2l

3]

4]

[5]

(6]

17l

8]

19]

[10]

[11]

Bibliography

Google maps APIs | Google Developers. https://developers.google.com/
maps/. (Accessed on 07/31/2017).

The key project. https://www.key-project.org/. (Accessed on 08/23/2017).

OCL Portal. http://www-st.inf.tu-dresden.de/ocl/. (Accessed on
08,/23/2017).

The Proof Editor Alfa. http://www.cse.chalmers.se/ hallgren/Alfa/.
(Accessed on 08/23/2017).

John Camilleri Ramona Enache Aarne Ranta, Thomas Hallgren. D2.2 grammar
ide. MOLTO Deliverable, 2011.

Krasimir Angelov. The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology, 2011.

Krasimir Angelov. Probability Distributions in Type Theory with Applications
in Natural Language Syntax, pages 279-296. Springer International Publishing,
2017.

Krasimir Angelov, Aarne Ranta, and Bjorn Bringert. Speech-enabled hybrid
multilingual translation for mobile devices. In Furopean Chapter of the Asso-

ciation for Computational Linguistics, Gothenburg, 2014.

John Bateman and Michael Zock. Natural language generation. In The Ozford
handbook of computational linguistics. 2003.

Olga Caprotti and Mika Seppéla. Multilingual delivery of online tests in math-
ematics. Proceedings of Online Educa Berlin, 2006.

S.W. Chan. Routledge Encyclopedia of Translation Technology. Taylor & Fran-
cis, 2014.

31

https://developers.google.com/maps/
https://developers.google.com/maps/
https://www.key-project.org/
http://www-st.inf.tu-dresden.de/ocl/
http://www.cse.chalmers.se/~hallgren/Alfa/

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22|

23]

32

The GF community. Grammatical Framework Demos. http://www.

grammaticalframework.org/demos/index.html. (Accessed on 08/09/2017).

Dana Dannélls, Mariana Damova, Ramona Enache, and Milen Chechev. Mul-
tilingual online generation from semantic web ontologies. In Proceedings of the
21st International Conference on World Wide Web, WWW ’12 Companion,
pages 239242, New York, NY, USA, 2012. ACM.

DarkSky. The Dark Sky database. http://www.darksky.net/, 2017.

Digital Grammars and the GF community. Demo: GF Wide Coverage Trans-
lation. http://cloud.grammaticalframework.org/wc.html. (Accessed on
08/09/2017).

Digital Grammars and the GF community. GF Offline Translator - a mo-
bile speech and text translation app for Android and iOS. http://www.
grammaticalframework.org/demos/app.html. (Accessed on 08/09/2017).

Digital Grammars and the GF community. GF Offline Translator — Android
Apps on Google Play. https://play.google.com/store/apps/details?id=
org.grammaticalframework.ui.android. (Accessed on 08/09/2017).

Eva Forsbom. Rhetorical structure theory in natural language generation,
Spring 2005.

Thomas Hallgren. The correctness of insertion sort, 2001. Manuscript, Chalmers

University.

Kristofer Johannisson. Formal and informal software specifications. Citeseer,
2005.

Gleb Lobanov. GitHub - gleblobanov/gf-mlg: The Weather Report in En-
glish and Russian. https://github.com/gleblobanov/gf-mlg. (Accessed on
07/31/2017).

Gleb Lobanov and Krasimir Angelov. Planning for natural language generation
in gf. In Proceedings of Workshop on Logic and Algorithms in Computational
Linguistics 2017 (LACompLing2017), 2017.

William C Mann and Sandra A Thompson. Rhetorical structure theory: Toward
a functional theory of text organization. Tezt-Interdisciplinary Journal for the
Study of Discourse, 8(3):243-281, 1988.

http://www.grammaticalframework.org/demos/index.html
http://www.grammaticalframework.org/demos/index.html
http://cloud.grammaticalframework.org/wc.html
http://www.grammaticalframework.org/demos/app.html
http://www.grammaticalframework.org/demos/app.html
https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android
https://play.google.com/store/apps/details?id=org.grammaticalframework.ui.android
https://github.com/gleblobanov/gf-mlg

Bibliography

[24]

[25]

[26]

27]

28]

29]

130]

[31]

[32]

[33]

[34]

[35]

Per Martin-Lof. Intuitionistic Type Theory. Napoli: Bibliopolis, 1984.

Per Martin-Lof. Mathematics of infinity. In Per Martin-Lof and Grigori Mints,
editors, Conference on Computer Logic, volume 417 of Lecture Notes in Com-

puter Science, pages 146-197. Springer, 1988.

Bengt Nordstrom. Towards a theory of document structure. In Yves Bertot,
Gerard Huet, Jean-Jacques Levy, and Gordon Plotkin, editors, From Seman-
tics to Computer Science: FEssays in Honor of Gilles Kahn, pages 265-279.
Cambridge University Press, 2008.

P Petri Maenpéad and Aarne Ranta. The type theory and type checker of gf.
In Colloguium on Principles, Logics, and Implementations of High-Level Pro-
gramming Languages. Workshop on Logical Frameworks and Meta-languages,
Paris, 1999.

Francois Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada,
Yvonne Freer, and Cindy Sykes. Automatic generation of textual summaries
from neonatal intensive care data. Artificial Intelligence, 173(7-8):789-816,
2009.

Aarne Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

Aarne Ranta. The GF resource grammar library. Linguistic Issues in Language
Technology, 2009.

Aarne Ranta. Grammatical Framework Tutorial. http://www.
grammaticalframework.org/doc/tutorial/gf-tutorial.html#toc18,
December 2010. (Accessed on 08/08/2017).

Aarne Ranta. Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI Publications, Stanford, 2011. ISBN-10: 1-57586-626-9 (Paper),
1-57586-627-7 (Cloth).

Aarne Ranta. Molto: Multilingual on-line translation. FreeRBMTI11,
Barcelona, 2011.

Ehud Reiter and Robert Dale. Building Natural Language Generation Systems.
Cambridge University Press, New York, NY, USA, 2000.

Benoit Thouin. The meteo system. Practical experience of machine translation,
pages 39-44, 1982.

33

http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.html#toc18
http://www.grammaticalframework.org/doc/tutorial/gf-tutorial.html#toc18

Bibliography

[36] Canadian International Trade Tribunal. JOHN CHANDIOUX EXPERTS-
CONSEILS INC. File Nos. PR-2001-029 and PR-2001-032, July 2002.

34

	Introduction
	Motivation Behind MLG
	Ethical Considerations
	An Outline Of The MLG Architecture
	Results

	Frameworks
	Grammatical Framework
	The MLG Framework
	Related MLG Applications and Tools

	Document Planning
	The Standard GF Search
	The Document Planning Search
	Implementation

	The Weather Report Case
	Abstract Syntax
	Implementation

	Conclusion
	Further Work

	Bibliography

