
Thesis for the Degree of Licentiate of Engineering

Spatial Mixture Models with Applications in
Medical Imaging and Spatial Point Processes

Anders Hildeman

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg
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Anders Hildeman

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

Finite mixture models have proven to be a great tool for both modeling non-standard
probability distributions and for classification problems (using the latent variable in-
terpretation). In this thesis we are building spatial models by incorporating spatially
dependent categorical latent random fields in a hierarchical manner similar to that of
finite mixture models. This allows for non-linear prediction, better interpretation of
estimated model parameters, and the added possibility of addressing questions related
to classification.

This thesis consists of two papers. The first paper concerns a problem in medical
imaging where substitutes of computed tomography (CT) images are demanded due
to the risks associated with X-radiation. This problem is addressed by modeling the
dependency between CT images and magnetic resonance (MR) images. The model
proposed incorporates multidimensional normal inverse Gaussian distributions and a
spatially dependent Potts model for the latent classification. Parameter estimation is
suggested using a maximum pseudo-likelihood approach implemented using the EM
gradient method. The model is evaluated using cross-validation on three dimensional
data of human brains.

The second paper concerns modeling of spatial point patterns. A novel hierarchical
Bayesian model is constructed by using Gaussian random fields and level sets in a
Cox process. The model is an extension to the popular log-Gaussian Cox process
and incorporates a latent classification field in order to handle sudden jumps in the
intensity surface and to address classification problems. For inference, a Markov chain
Monte Carlo method based on the preconditioned Crank-Nicholson MALA method is
suggested. Finally, the model is applied to a popular data set of tree locations in a
rainforest and the results show the advantage of the proposed model compared to the
log-Gaussian Cox process that has been applied to the very same data set in several
earlier publications.

Keywords: Spatial statistics, Point processes, Finite mixture models, Bayesian
level set inversion, Substitute CT, Gaussian fields, Non-Gaussian
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1 Introduction

The thesis you are currently holding in your hand (or reading in the soothing
light of your screen) is a work made up of two articles in the field of spatial
statistics. Although the focus of them are quite different they share the common
notion of spatial modeling through mixture models with spatially dependent
class probability distributions.

The first paper concerns a prediction problem in medical imaging where
the usage of possibly dangerous X-radiation could be reduced by instead uti-
lizing magnetic resonance imaging and statistical analysis. The paper proposes
modeling images from magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) jointly utilizing a spatial model. By learning the parameters of the
model from available medical data, prediction is possible based on conditional
distributions given only MRI images.

The second paper introduces a spatial point process model that is able to
model several classes of point patterns observed on separate and unknown par-
titions of the observational window. It is particularly useful in settings where
some categorical and unknown covariate introduces bias in the standard point
process models. It can also be used to handle classification problems for point
pattern data. A well known data set of point locations of trees in a tropical rain
forest is analyzed in order to show the strengths of the model. Markov Chain
Monte Carlo methods are developed for the proposed model and theoretical
questions regarding the consistency of finite dimensional model approximations,
which are required for practical inference, are addressed.

In order to set the stage for the presentation of the articles we need to
know the background and main concepts on which the effort was based. The
remainder of this chapter is devoted to a brief introduction to the field of spa-
tial statistics. Chapter 2 introduces the important concept of a random fields,
Chapter 3 introduces the basics of spatial point processes, Chapter 4 finite mix-
ture models, Chapter 5 statistical inference and Monte Carlo simulations, and
finally Chapter 6 summarizes the content of the two papers.

1.1 History

Spatial statistics is a subfield of statistics that grew out of demands in the
industrial sectors of the early 19:th century. The purpose: to draw conclusions
or aid in decision making based on observed spatial data. The word spatial
means that data can be compared using geometrical concepts such as distance
and direction. The methodology originated, basically independently, from the
fields of forestry, agriculture, and mining (Gelfand et al., 2010). In agriculture
they studied the yield of cereal and recognized how spatial variations in yield
on a field could be attributed to soil constituents or other covariates. Stochastic
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models were needed that could explain these variations. In forestry they studied
the location of trees in forests and how these were distributed. Effects such as
repulsion between trees due to competition over sunlight and other resources,
and spatial dependency due to pollination paths and seed dispersal demanded
new modeling methods. Lastly, the mining engineers wanted to predict the
prevalence of certain minerals in the ground based on samples at specific points.

Spatial data can be characterized in to three main categories:

• Data sampled on a continuous spatial domain.

Between any two points in (continuous) space, s1 and s2, there is an
infinite number of other points. The data consists of values at some of
these points. The analysts interest is how these measurements relate to
the values on the entire spatial domain. Examples of such data sets are
surface air temperature and water salinity.

• Data sampled on a discrete spatial domain.

The spatial domains only has a countable number of points, and in be-
tween two of them there are only a finite number of other points. The
data consists of values at some of these points. Example of such data
sets are digital images (that are made up of a discrete set of pixels) or
experimental designs with “blocked” regions.

• Spatial point pattern data.

For point patterns, the location of events are studied. Here the question
of interest is not the values at points in space but at which points in space
that some event occurred. That is, the data is a countable collection of
points spread out over a continuous spatial region. Typical examples of
point patterns are locations of trees in a forest or location of robberies in
a city. See Chapter 3 for further explanation.

1.2 Purpose

Spatial statistical analysis of data is usually needed to answer one or more of
the following questions:

• What are the values at unobserved points in space? (Spatial prediction /
Kriging)

• What are the parameters values of our model? (Model estimation)

• Are our model assumptions reasonable? (Model validation)
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Spatial prediction, here meaning prediction of values at unobserved points given
the values at some observed ones, was of interest to the South African mining
engineer Danie Gerhardus Krige that first formalized the problem. In spatial
statistics, spatial conditional prediction is hence referred to as kriging as a
homage to him. Often kriging predictions are not just point values, but rather
conditional distributions given the observed data. This is more informative
and point estimates such as the expected value, median, or mode can then be
acquired from the probability distribution. Additionally, estimates of the uncer-
tainty such as the standard deviation or interquartile range will give important
information about the prediction error.

Model estimation is the act of fitting a model to the observed data. This
is typically needed in order to draw conclusions about the underlying process
that generated the spatial data. For instance, a parametric model represent-
ing tree growth in a forest might have a parameter representing the repulsive
effect between trees, an effect that might exist due to the competition for sun-
light among neighboring trees. Estimation of that particular parameter give
information about to what extent that repulsive effect is present among that
particular specie of trees. Estimating model parameters is also usually needed
in order to perform kriging.

Model validation assesses a models ability to explain the observed data.
Since any conclusions drawn are based on some model assumptions, it is im-
portant to assess whether these assumptions are reasonable given the observed
data. If the model does not explain the data well, the kriging estimates and
model estimation will not be useful.

In order to perform meaningful spatial analysis some model of spatial de-
pendence is often assumed. The model will usually be simplistic in its nature in
order to make model estimation reliable and computationally feasible. The true
unknown model on the other hand is not necessarily simple and some degree of
model misspecification will often be present. This is the constant balancing act
between what is possible and what is the truth. Closing this gap is one of the
main aims of research in spatial statistics. Hopefully the papers of this thesis
has helped closing this gap at least somewhat.

2 Random fields

In statistics, conclusions are drawn based on incomplete information using con-
cepts from probability theory. Probability theory concerns processes where the
outcome of an action is not determinstic, i.e. the same action can result in
different outcomes under exactly the same surrounding conditions. We will call
such an action an experiment and the outcome of the experiment a realization.
A random variable is a mapping between a realization and a real value, i.e.
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Fig. 1: Two realizations of the same stationary Gaussian random field on a
bounded domain in R

2.

X : Ω → R, where X is the random variable, X(ω) a real value, ω ∈ Ω a
realization, and Ω is the set of all possible realizations. A random field is a
mapping between a realization and a, possibly infinite, set of random variables,
X(s, ω). Here s denotes a point in space and can be defined either on a bounded
or unbounded spatial domain, D.

One can think of a realization of a random field as a function mapping each
point, s ∈ D to a value, i.e. a random field is a random function with the
domain D. An example of two different realizations of the same random field
on a bounded and continuous domain in R

2 can be seen in Figure 1. Note
how the two images show similar qualities even though they are completely
different. As was mentioned in Chapter 1, spatial statistics concerns analysis
of data observed on a spatial domain. In other words, the data can be seen as
observations (or partial observations) of a realization of a random field.

A random field can have a discrete spatial domain, s ∈ {si}Ni=1, or a contin-
uous spatial domain, s ∈ D ⊆ R

d. We will refer to a random field on a spatially
discrete domain as a spatially discrete random field and the contrary as a spa-
tially continuous random field. Likewise, the image of the random variables,
X(s), (all possible values attainable) at a point s can also be continuous or
discrete. We will refer to a random field where X(s) can only take on a discrete
number of values for any s as a discrete random field. The dependence on a
realization from the sample space will usually be omitted, i.e. X(s, ω) = X(s).

2.1 Potts model

A particular type of random field that will be used in Paper I is the Potts model
(Wu, 1982). It can be seen as a random field that is both discrete in space and
in value. Hence it can be viewed as a finite collection of random variables,
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Fig. 2: A first order neighborhood structure on a regular lattice in three dimen-
sions.

{Xi}Ni=1, where Xi = X(si). It is defined through the conditional probability

P (Xi = k|X−i) =
exp

(
−αk −∑K

l=1 βklfil(X−i)
)

W (α,β,X−i)
, (1)

where X−i = {Xj}j �=i denotes the set of all random variables except the i:th,
and fil denotes the number of points in the neighborhood of si that has the
value l. The value of X(si) can be referred to as the class that si belongs
to in a particular realization. The β-parameters controls the amount of attrac-
tion/repulsion between points of classes. The α-parameters control the marginal
probabilities of the classes for any point si.

The concept of a neighborhood defines which point in space that are con-
nected to a specific point. This needs to be defined for every point in order to
establish a Potts random field. An example of a first order neighborhood on a
regular lattice in three dimensions can be seen in Figure 2 where the white ball
denotes a point, si, and the black balls corresponds to the neighborhood of si,
that is, the points that has the smallest euclidean distance to si.

The Potts model in Paper I is used to model classification of points on a
three dimensional lattice grid. There Xi = 2 would correspond to point si
being a member of class 2. Figure 3 show three realizations of a Potts random
field where the first having no spatial interaction, βk = 0, the second having an
attractive effect, βk = 1, and the third figure having an even greater attractive
effect, βk = 10. As can be seen, the βk parameters control the average size of
the class regions.

The conditional probability of the random variable Xi in (1), P (Xi|X−i) =
P (Xi|XN i

), does only depend on its neighbors, {Xi}i∈N i
. Here, N i denotes
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(a) β = 0 (b) β = −1 (c) β = −10

Fig. 3: Example of realizations of a 3-class Potts field using three different values
of the attraction parameter.

the neighborhood of si. That is, given the values of all neighbors, the value at
a specific point is completely independent of the remaining point in the random
field. This is known as the local Markov property and the Potts model is hence
a Markov random field (Winkler, 2003, chapter 3). The Markov property is
used in Paper I in order to acquire a more computationally efficient prediction
algorithm.

2.2 Gaussian random fields

A Gaussian random field (GRF) is a continuous random field such that any
finite set of points on the spatial domain has a joint Gaussian distribution. A
multivariate Gaussian distribution can be characterized by the mean value and
covariance matrix. Likewise, a Gaussian random field can be characterized by
the mean- and covariance-functions. The mean function, μ(s) = E [X(s)], is a
first-order characteristic (only dependent on one point) describing the expected
value at s. The covariance function is a second-order characteristic (dependent
on two points) describing the dependency between two points by their covari-
ance, C(s1, s2) = E [(X(s1)− μ(s1))(X(s2)− μ(s2))]. Often it is easier to work
with a centered Gaussian random field, i.e. μ(s) ≡ 0. Such a field can easily be
attained by subtracting the mean function from the original random field.

A common assumption used in Paper II is that of a stationary covariance
function. This means that the covariance function is only dependent on the
difference between two points, i.e. C(s1, s2) = C(0, s2 − s1). Since the depen-
dency structure of a Gaussian random field is completely determined by the
covariance function, a stationary covariance function will lead to a stationary
Gaussian random field (if the GRF is centered).

If the covariance between points diminishes with distance such that spatial
regions separated by a large enough distance behave as if they were from differ-
ent realizations of the random field, the field is ergodic. If a random field satisfy
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this ergodicity property it is possible to estimate the covariance function from
only one realization of the random field as long as the practical correlation range
is much smaller than the observed domain. Here, practical correlation range is
loosely defined as the distance between two points at which the dependency is
negligible.

2.2.1 Matérn covariance structure

In applications, the amount of data is limited and estimating an arbitrary co-
variance function is often not reliable. Therefore it is often necessary to assume
that the covariance function is from a parametric class with only a small number
of parameters. One such popular parametric class of stationary and isotropic
covariance functions used frequently in spatial statistics are the Matérn class
(Matérn, 1986; Handcock and Stein, 1993). This class can be parametrized by
the marginal variance σ2, the smoothness ν, and the practical correlation range,
r. The smoothness parameter, ν, controls the differentiability of the covariance
function at the origin. For a Gaussian random field this controls the smoothness
of the realizations of the field itself in the sense that the field is almost surely
Hölder continuous and ν is the corresponding Hölder constant. The practical
correlation range, r, corresponds to the spatial distance between two points at
which the correlation is 0.1. The marginal variance, σ2, is the variance of the
marginal distribution of X(s) for any s. The covariance function is defined as

C(h) =
σ2

2ν −1Γ(ν)
(κh)νKν(κh),

where κ =
√
8 ν
r , h = ‖ s2 − s1 ‖, Γ is the gamma function, and K is the modified

Bessel function of the second kind.
The popularity of the Matérn class of covariance functions is due to that it

allows for a great flexibility in dependency structures while still keeping a small
amount of easily interpretable parameters.

3 Spatial point processes

A spatial point pattern is a countable set of locations, Y = {x1, x2, ...}, xi ∈ D
for some continuous spatial domain, D. Often the point pattern is observed in
an observational window, W . That is, the point pattern exists in D but is only
observed in W ⊂ D. Here one can consider two types of point patterns, the
finite and the infinite. The infinite point patterns consists of an infinite number
of point and are typically defined on an open domain such as Rd. Practically it
is impossible to observe such a pattern on its full domain and the observational
window will include only a strict subset of all the points. The finite point
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Fig. 4: (a) Observations of galaxies in the Shapley supercluster. (b) Location
of centres of observed biological cells observed under optical microscopy.

patterns on the other hand will have a bounded spatial domain including all of
the point locations. Hence, in applications, the observational window is more
often the same as the spatial domain for finite point patterns.

Examples of spatial point patterns can be for instance the locations of galax-
ies in the Shapley super cluster as seen in Figure 4a (Drinkwater et al., 2004;
Baddeley and Turner, 2005), locations of cell centres observed under optical mi-
croscopy as seen in Figure 4b (Baddeley and Turner, 2005; Ripley, 1977). Also
the data set from paper II containing locations of the tree specie Beilshmiedia
Pendula in a tropical rainforest is a point pattern, see Figure 11.

A point pattern can be defined as a counting measure, N , on the spatial
domain D, where N(A) counts the number of points in the spatial region A ⊆ D.
A point process is a stochastic model for point patterns. Since a point pattern
could be described as a counting measure, a point process can be described as
a random counting measure. Statistical analysis of point patterns corresponds
to analyzing the properties of the point process from which the point pattern
was generated.

3.1 The Poisson process

One of the most important cases of a point process is the homogeneous Poisson
process. This is the model of complete spatial randomness (CSR), i.e. unstruc-
tured point patterns. That is, locations of points are independent of each other
and the number of point in a specific region is proportional to the measure of
that region. In this work we will only consider spatial domains in euclidean
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spaces with corresponding Lebesgue measure, L. Hence, for a homogeneous
Poisson process, P (N(A)) ∝ L(A), where A ⊆ W . Moreover, the counting
measure of CSR is Poisson distributed with N(A) ∼ Pois(λ · L(A)), where
λ ≥ 0.

Historically, most methods in point process statistics have been focused on
differentiating between CSR and structured patterns. A structured pattern
can either differ from CSR due to interaction between points and/or by spatial
dependencies due to some available or unknown covariates. The differences
between the two effects lies in the generative process more than the actual
observed pattern. For example, assume that a seed is planted on a spatial
region. The seed grows in to a tree and then a new seed is planted. If the
second seed is planted too close to the, now fully grown, first tree it will be
shaded and the possibility of growing in to a large tree is inhibited. This is
an example of a repulsive interaction between points. On the other hand, the
possibility to grow in to a large tree might also depend on the topography and
soil constituents of the spatial region. Planting a seed close to a stream or in a
dry desert will affect its chances of growing in to a large tree as well. This is an
example of a dependency on covariates.

Definition 3.1 (Intensity measure). The intensity measure, Λ, of a point pro-
cess is a deterministic measure defined as the expected value of the random
counting measure, i.e.

Λ(A) = E [N(A)] , A ∈ D .

If Λ is absolutely continuous with respect to the Lebesgue measure it can be
described by the intensity function λ as Λ(A) =

∫
A
λ(s)d s. For the homoge-

neous Poisson process, λ(s) = λ, ∀ s ∈ D, i.e. a constant intensity function. The
inhomogeneous Poisson process is a point process which behaves as a homoge-
neous Poisson process on infinitesimal subregions of D. Due to the additivity
of Poisson distributed random variables, the counting measure of an inhomo-
geneous Poisson distribution is Poisson distributed as N(A) ∼ Pois(Λ(A)).
Hence, a Poisson process (homogeneous or not) is characterized solely by the
intensity measure. The Poisson process assumes no interaction between points,
a feature inherited from the CSR model due to the additivity of Poisson ran-
dom variables. If an intensity function exists, covariates can be included in
the model by letting λ be a function of the covariate values. In Paper II a log
linear relation is consider where log λ(s) =

∑
j Bj(s)βj for covariates Bj and

coefficients βj .
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3.2 Cox processes

A further extension of the Poisson process is that to a Cox process. A Cox
process is defined using a positive random field, λ(s). Conditioned on a given
realization of λ(s, the point process is an inhomogeneous Poisson process with
λ as its intensity function. Hence, the model is doubly stochastic in the sense
that it defines a generative process based on two steps of random objects. Cox
processes can also be considered as Bayesian models of a Poisson processes
where the latent intensity field, λ is given a prior probability distribution. A
popular Cox process model is the log-Gaussian Cox process (LGCP) for which
λ(s) = eX(s), where X is a Gaussian random field. The popularity of the LGCP
model is due to its marriage of point processes with the well-studied Gaussian
random fields.

The Cox process can model not only the effects of covariates but also clus-
tering effects (attractive interaction effects). Regions with higher intensity in λ
would correspond to cluster regions. A Cox process is however not enough to
characterize all point processes. For instance, repulsive interaction effects, such
as trees competing over sunlight, cannot be explained by such a model.

3.3 Characterizations of point processes

Just as moments, pdf’s, and cdf’s characterizes a random variable, point pro-
cesses can be characterized by some statisticas. Generally, point processes are
usually characterized by different kinds of measures and function valued statis-
tics.

The moment measures characterizes the k-th order moments of N(A) anal-
ogously to how the intensity measure was defined.

Definition 3.2 (k-th moment measure). The k-th moment measure of a spatial
point process is defined as

μ(k)(A1 × ...×Ak) = E [N(A1)...N(Ak)] .

Here, A1, ..., Ak are arbitrary and possibly equal spatial regions in D.

Note that Λ(A) = μ(1)(A) and higher order moment measures can character-
ize interaction behavior. Just as with random fields, the concepts of stationarity
and isotropy are defined for point processeses as well.

Definition 3.3 (Stationarity). A point process with counting measure N(A) is
said to be stationary if,

P (N(A1) = n1, ..., N(Ak) = nk) = P (N(B1) = n1, ..., N(Bk) = nk) ,

for any finite set {Al}kl=1 where Bl = Al+t = {s : s−t ∈ Al}, i.e. a translation
of Al.
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Definition 3.4 (Isotropy). A point process is isotropic if,

P (N(A1) = n1, ..., N(Ak) = nk) = P (N(B1) = n1, ..., N(Bk) = nk) ,

for any finite set {Al}kl=1 where Bl = {s : Rθ s ∈ Al}, i.e. a rotation with angle
θ of the points of Al around the origin.

The concept of ergodicity is also an important one. For an ergodic point
process, the dependency between N(A) and N(B) will be neglible if the clos-
est points in the two regions are sufficiently far away. This property means
that if an ergodic point pattern is observed on a sufficiently large observational
window, W , subregions far away from each other will have point patterns dis-
tributed as if from different realizations of the underlying point process. The
implications being that, as long as the observational window is large enough,
one point pattern can be used for statistical analysis of the underlying process
parameters since it acts as having observed several independent realizations of
point patterns.

For point processes it is sometimes useful to work with a probability distribu-
tion conditioned on that one of the points are located at some specific location.
It shifts the viewpoint from “an absolute frame of reference outside the process
under study, to a frame of reference inside the process” (Daley and Vere-Jones,
2003). Such conditional probability distributions for point processes are known
as Palm distributions.

Definition 3.5 (Palm distribution). The Palm distribution is a probability dis-
tribution of a point process conditioned on that one of the points of a realization
is located at a location o. For a stationary point process with intensity λ, the
probability measure Po of the Palm distribution is

Po(Y ∈ A) =
1

λL(W )
E

[ ∑
x∈Y ∩W

I (Y − x ∈ A)

]
,

for some event A, some arbitrary spatial region W such that L(W ) > 0. Here,
Y − x denotes a translation of the points in the point pattern Y by x.

We will denote the expectation with respect to the Palm distribution as Eo

in contrast to the regular expectation with regards to the absolute frame of
reference, E.

In point process literature, some functional characteristics have been given
particular attention. Here, functional characteristic refer to a function char-
acterising aspects of the point process. Originally they were mostly used to
test if point patterns behaved as the CSR model but it is nowadays common
to use them to evaluate the goodness-of-fit where some observed point pattern
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are compared to some null hypothesis model based on the functional character-
istic of the two. In Paper II, a point pattern is compared to simulations from
several assumed models. Evaluation of the models performance are based on
the similarity of the functional characteristics between the real pattern and the
simulated ones.

In the case of a stationary point process, Ripley’s K-function (Ripley, 1977)
(or estimates thereof) has been used extensively in order to investigate depar-
tures from complete spatial randomness.

Definition 3.6 (Ripley’s K-function). For a point process with counting mea-
sure N(A), the K-function is defined as,

K(r) =
1

λ
Eo [N(b(o, r) \ {o})] ,

where b(o, r) is the ball with center in point o and radius r, and Eo is the
expectation with respect to the Palm distribution with a point in o.

In words, K(r) is the expected number of other points found inside a ball
of radius r conditioned on that there is a point in the center of the ball. For
the CSR model, K(r) = bdr

d, where bd is the value of the unit ball in R
d and

d is the spatial dimension of the point pattern. Hence, by estimating the K-
function from the point pattern it is possible to study the deviations from the
theoretical K-function of the CSR model. For a point process with attractive
spatial interaction (clustering), K(r) > bdr

d. Likewise, a point process with
repulsive spatial interaction (regularisation), K(r) < bdr

d.
A variant of the K-function that represents the same information but is

easier to interpret is Besag’s L-function (Ripley, 1977, Besags comments),

L(r) =

(
K(r)

bd

)1/d

.

The L-function is a modification ofK such that for the CSR model L(r) = r and
estimations tend to be homoscedastic with respect to r. A further modification
as L∗(r) = L(r) − r transforms the L-function in to the centered L-function
for which the CSR model would have L∗(r) ≡ 0. It is hence easier to interpret
deviations from CSR.

The pair correlation function, g(r), is another functional characteristic which
relate to the K- function,

g(r) =
K ′(r)

dbdrd−1r
,

where K ′ denotes the derivative of K. For the CSR model, g(r) ≡ 1. Values
of g(r) larger than 1 means that there are clustering effect at those distance
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Fig. 5: Estimated pair correlation functions. (a) Estimated g for the Shapley
galaxy supercluster. (b) Estimated g for the cell data.

while g(r) < 1 mean that there are repelling effect. Typically, a point process
might have attractive effects on some intervals and repulsive effects on others.
Taking the example with tree locations, a repulsive effect exists for points very
close to each other due to the competition for sun and the fact that the stem of
the trees actually has a radius, however at medium distances there should be
an attractive effect since the seed dispersal has a limited range. A realistic pair
correlation function of such a point process would hence have a value lower than
1 for small r and then a value higher than 1 and finally a value approximately
1 for long distances. Figure 5 shows estimates of the pair correlation function
for the two point patterns shown in Figure 4. The galaxy data set shows a
clustering effect on short distances seen by g(r) > 1, while the cell data seem
to be regularly spaced, seen by the peak above 1 at the range of 0.11 − 0.20.
This fits intuitively with the visual perception of the two point patterns seen in
Figure 4.

Both the pair correlation function, K-function and L-function are second
order characteristics since they are characterizing the behavior between two
different points. The empty space function used in Paper II on the other hand
characterizes first-order properties.

Definition 3.7 (Empty space function). The empty space function F is for a
stationary point process with counting measure N(A) defined as

F (r) = P (N(b(o, r)) > 0) .
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In words, F (r) is the probability of observing a point in a ball of radius
r centered at the origin, o. Of course, since it is assuming an isotropic and
stationary point process, the origin can be interchanged with any point in the
observational window. Once again, under CSR, N(b(o, r)) ∼ Pois(λbdr

d) and

hence F (r) = 1− e−λbdr
d

.
In the setting of Paper II we have used estimates of the L-, g-, and F -

functions in order to compare our point pattern with simulations from the fitted
models. In that setting we did neither assume isotropy nor stationary of the
point process. However, we still expect the fitted model to yield estimated
functions similar to the ones estimated from the actual point pattern. Hence,
even though the interpretation of the functional characteristics is not clear in
the non-stationary case, they can still be used for comparison. For details
about estimating the functional characteristics mentioned above, see Illian et al.
(2008).

4 Finite mixture models

A finite mixture model (Everitt and Hand, 1981) can be defined in two different
but equivalent ways. Let us start by defining K classes; each associated with a
random variable Xk with corresponding probability distributions Dk. Assume
a random variable, Z, with probability distribution D0, on a discrete sample
space, {1, 2, ...,K}. The K different values that Z can assume corresponds to
the K classes. The random variable Y will be distributed according to a finite
mixture model if it is generated by first acquiring a realization z from Z, then
assigning Y the value from a realization of Xz. Hence

Y =
K∑

k=1

I (Z = k)Xk.

The finite mixture model can be viewed as a doubly stochastic model since
it requires evaluation of random variables in two steps. If a probability den-
sity function (or probability mass function) exists, the mixture distribution can
equivalently be defined by

fY (x) =

K∑
k=1

πkfk(x),

where fY is the pdf (or pmf) of Y , πk = P (Z = k), and fk is the pdf (or pmf)
of Xk.

Typically the first definition is used when the properties of the latent variable
Z is of interest, which is the case for classification problems. The second defini-
tion is more often used when a probability distribution should be approximated
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by a set of simple ones. For instance explaining a multimodal distribution as a
superposition of unimodal ones as in Figure 6.

Fig. 6: Example of a finite mixture distribution (black) defined as the superpo-
sition of two Gaussian distributions (blue and red).

From here on out, finite mixture models will simply be referred to as mixture
models.

4.1 Spatial mixture models

In the papers of this thesis, mixture models are used in spatial models where Z
is no longer a random variable but instead a random field, Z(s). Likewise, Xk

are no longer random variables but random fields as well, Xk(s). In Paper I,
a spatial mixture model was used to model the distribution of voxel values in
medical images. A Potts model was used to model the latent classification for
each voxel. Given this classification, each voxel was assigned a value from the
distribution of the corresponding class.

In Paper II, a spatial finite mixture model was used to model the distribution
of the intensity function of a Cox process. The latent classification field, Z(s),
was acquired from level sets of a Gaussian random field using the approach of
Iglesias et al. (2016) and Dunlop et al. (2016). Compared to the Potts model,
this model has the advantage that it defines a classification field in a continuous
spatial domain.

Iglesias et al. (2016) and Dunlop et al. (2016) stated a probabilistic model
for solutions to continuous geometric level set inversion problem observed with
additive Gaussian noise. In a geometric level set inversion problem, some func-
tion known as the level set function, defines a partition of the spatial domain
through its level sets. That is, Ak = {s : ck−1 < X(s) ≤ ck} , where {Ak}k is
the partition and {ck}k are threshold values.

The aim of the inversion problem is to estimate the partitioning of the
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Fig. 7: (a) Observed data corrupted by noise, Y . (b) Corresponding level set
function, X. (c) Classification field.

domain given observations,

Y (si) =

K∑
k=1

akI (X(si) ∈]ck−1, ck]) + εi,

where εi are Gaussian i.i.d random noise and ak are parameters.
Figure 7 show the observed field, Y , the underlying (latent) field, X, and

the classification field, Z, acquired from thresholding X in a realization of the
level set model.

In paper II the Gaussian likelihood of Dunlop et al. (2016) is replaced by
the more complicated scenario of point process data.

5 Inference

Statistical inference is the art of drawing conclusions based on the available
data with the aid of some probabilistic model. In spatial statistics this is usu-
ally associated with estimating parameter values of a model or acquiring some
prediction based on such parameters. Inference philosophies are divided in to
either Bayesian or frequentistic.

From a frequentist’s perspective there exists some true parameter values of
the assumed model. The aim is to find the best estimate of these parameters
given the observed data. Once the parameters have been estimated, prediction
can be made using the model.

5.1 Maximum likelihood estimation using the EMG algorithm

Maximum likelihood (ML) estimation is a common frequentist approach to pa-
rameter estimation. The ML estimates are obtained as, Θ̂ML = argmaxθ L(Θ;x),
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where L is the likelihood function, Θ are the parameters, and x the observed
data. The ML estimators are consistent, asymptotically unbiased and asymp-
totically most efficient among all estimators (Olofsson and Andersson, 2012).
Sometimes it is possible to find explicit analytical solutions to ML estimators but
often numerical methods are required. The Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977) is an iterative method to find a local maximum
of the likelihood function. This method is commonly used for finding Θ̂ML

when no analytic solution is achievable due to missing information such as la-
tent variables. Mixture models could be viewed as latent models where the
classification values are the missing information, hence the EM algorithm is
very often utilized to find ML estimates of mixture models.

The EM algorithm starts with some initial parameters values, Θ(0). Then,
in each iteration, an E-step is performed followed by an M-step. The E-step
corresponds to computing the expected value of the latent variables given the
current parameter values. The ensuing M-step maximizes the likelihood con-
ditioned on the latent variables being equal to their expectation found in the
E-step. The method is shown to converge for a very general class of problems
(Wu, 1983).

In paper I the EM algorithm was not applicable since the M-step was not
computationally feasible to compute, or even approximate, even with the latent
variables known. Instead the EM gradient (EMG) algorithm of Lange (1995)
was utilized. This method is based on the same concept as EM but the M-step
is replaced with one step of the Newton-Raphson method,

Θ(i+1) = Θ(i) +H−1(Θ(i))E
[
∇ logL(Θ(i))

]
.

That is, the M-step is replaced by one step in an iterative optimization proce-
dure. Any strict local maximum point of the likelihood locally attracts the EM
and EMG algorithm at the same rate of convergence.

5.2 Bayesian inference

The maximum likelihood approach to parameter estimation yields a point esti-
mate of the “true” value of the assumed model. An alternative is the Bayesian
perspective where the parameters of the model are considered random them-
selves. A distribution of the parameters is chosen prior to the analysis of the
data, which should include all known information about the parameters. This
distribution is known as the prior distribution. Inference can later be drawn
from the, so called, posterior probability distribution which is the probability
distribution conditioned on the observed data. This is acquired using Bayes
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theorem and thereof the name, Bayesian inference,

f(Θ|X = x) =
f(X = x|Θ)f(Θ)

f(X = x)
∝ f(X = x|Θ)f(Θ),

where f denotes pdf:s. Bayes theorem can be generalized to handle more ab-
stract probability spaces where no pdf:s exist if instead stated in terms of prob-
ability measures (see e.g. Stuart (2010)), this is used in Paper II.

The prior probability is hence weighted by the likelihood function to acquire
the posterior probability. The posterior probability distribution is not only a
point estimate but a whole probability distribution. Hence, more information
is given since questions about uncertainties in the parameter estimation can
be answered as well. How to choose the prior distribution depends on what is
known about the problem. If nothing can be assumed there are two philoso-
phies, either to choose an uninformative prior or chose a prior that penalizes
the complexity of the model (Simpson et al., 2017). The first philosophy will
let the data explain more of the behavior in lack of known information. The
second philosophy assumes that a simpler model is better since it is more eas-
ily understood and is less prone to overfitting. Hence, in lack of information
indicating the opposite, the simpler model should be preferred.

5.3 Monte Carlo simulation

The distribution can be known up to a normalizing constant through Bayes the-
orem but acquiring the normalizing constant is not always possible. Obtaining
it through explicit integration of the posterior pdf is usually impossible, and Θ
does often include a large set of parameters and are therefore high dimensional.
In particular, in spatial statistics, Θ often includes latent random fields which
are very high dimensional. The high dimensionality makes numeric integration
computationally infeasible but Monte Carlo (MC) integration is often a viable
alternative.

Monte Carlo integration is a method of approximating expected values by
simulating samples from the correct probability distribution and computing the
sample mean as a proxy for the true expectation. For instance, the probability
of finding Θ ∈ A can be written as an expectation and estimated using MC
simulation as

P (Θ ∈ A|X = x) = E [I (Θ ∈ A)|X = x] ≈ 1

N

N∑
i=1

I

(
x(i) ∈ A

)
,

where x(i) are sampled from the distribution of Θ|X = x. Hence, the posterior
distribution can be approximated arbitrarily well if it is possible to sample from
it.
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Of course, MC simulation is not only applicable for Bayesian inference. For
instance in Paper I, MC simulation was used to approximate some expectations
that were infeasible to compute explicitly.

5.3.1 The Metropolis-Hastings algorithm

A Markov chain Monte Carlo (MCMC) simulation is a MC simulation where
the samples are distributed as a Markov chain with stationary probability dis-
tribution equal to the target distribution. The target distribution meaning the
probability distribution of interest, typically a posterior probability distribution.

Hence, there exists dependence in between consecutive samples but if the
dependency declines fast enough compared to the number of iterations of the
simulation, the MCMC integration will produce consistent estimates of the true
expectation.

The main archetype of MCMC algorithms is the Metropolis-Hasting (MH)
algorithm. It is based on suggesting a new sampled value, y, distributed ac-
cording to some given probability distribution conditioned on the most recently
sampled value, x(i−1). This probability distribution is known as the proposal
probability distribution and we denote its pdf as q(y|x(i−1)). Then given y, y is
chosen as the new sample, x(i), with a probability α. This trial is known as the
accept/reject step and α is known as the acceptance probability and is given by

α = min

{
f(y)

f(x(i−1))

q(x(i−1)|y)
q(y|x(i−1))

, 1

}
.

Here, y is the proposed new sample, x(i−1) is the sample from the prior iteration,
and f denotes the pdf of the target distribution. Of course, f is often only
known up to a normalizing constant but that is no problem since in the ratio
the normalizing constants are being canceled out. The first ratio weights the
probability of accepting y with how probable y is compared to x(i−1) with
respect to the target distribution. However, since there might be a higher
probability of realizing y conditioned on x(i−1) than the opposite in the proposal
distribution, the second ratio is needed to balance this. If y is accepted in the
accept/reject step, then the former sample value is used instead, x(i) = x(i−1).

Due to the Markovian structure, the initial value of the samples, x(0), will
affect the distribution at later iterations. The first couple of iterations can
be highly dependent on x(0) and the iterations until the dependency on the
initial value has become insignificant is known as the burnin phase. How many
iterations that the Markov chain spends in the burnin phase varies upon the
choice of initial value, the target distribution and the proposal distribution. It
is important that the chain is run for sufficiently many iterations as to leave
the burnin phase and generated enough samples outside of the burnin phase to
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Fig. 8: Example of a parameter path during MCMC simulation.

be able to estimate the true expectation well. This is a common dilemma in
Bayesian inference since it is not always obvious when the Markov chain leaves
the burnin phase. Typically the burn in phase is identified visually using plots
of the parameter paths for some of the parameters. When a parameter path no
longer shows a clear trend, as it does in the beginning, it is considered that it
has passed the burnin phase. Figure 8 shows an example of a parameter path
during a MCMC simulation. By visual inspection we would conclude that the
Markov chain passed the burnin phase after about 400 iterations. The samples
from the burnin phase is then removed since it will bias the estimation.

An efficient MCMC chain should have as low dependence between consecu-
tive samples as possible in order to make efficient use of the number of iterations
available. This is known as quick mixing as compared to slow mixing where
there are significant dependencies between samples in the Markov chain even
when separated by a large number of iterations. Quick mixing requires small
dependence on the prior sample in the proposal distribution while still allowing
for a high acceptance probability. This is usually competing requirements that
are hard to satisfy simultaneously.

A common proposal distribution for the MH algorithm is the Gaussian pro-

posal centered at x, i.e. q(y|x) ∝ exp
(
− (y−x)TΣ−1(y−x)

2δ

)
for some chosen

covariance Σ. Note that this is a symmetric proposal since q(y|x) = q(x|y)
and δ controls the stochastic step length. This is known as the random walk
Metropolis-Hastings algorithm since the proposals would have behaved like a
random walk if the accept/reject step had not been present.



5.3 Monte Carlo simulation 21

5.3.2 Gibbs sampler

An important special case of the MH algorithm that even predates MH is the
Gibbs sampler. Suppose that the samples are two dimensional, x = [x1, x2]. If
the conditional probabilities are known, i.e. the distribution of x1|x2 and x2|x1,
it is possible to use these conditional distributions as proposals. Hence the ac-

ceptance probability of the MH algorithm becomes α = min
{

f(x1)
f(x2)

f(x2|x1)
f(x1|x2)

, 1
}
=

min
{

f(x1,x2)
f(x1,x2)

, 1
}

= 1. Since the acceptance probability is always 1, the ac-

cept/reject step is not necessary. Hence, if one samples first from x
(i)
1 |x(i−1)

2

and then from x
(i)
2 |x(i)

1 for each iteration, the corresponding sample path will
be a realization of a Markov chain with stationary distribution equivalent to
the target distribution. This works for x of arbitrary many dimensions.

It is also possible to mix the Gibbs sampler and MH algorithm such that two
disjoint subsets of parameters for the target distribution are updated separately
using the conditional distributions and the Gibbs sampler. Within each subset,
a more general MH algorithm with arbitrary proposals could be used. This is
known as Metropolis-within-Gibbs MCMC and is utilized in paper II.

5.3.3 MALA

The Metropolis adjusted Langevin algorithm (Roberts and Tweedie, 1996) is a
method that, compared to the regular MH algorithm with symmetric Gaussian
proposals, make use of the target distribution in designing the proposal distri-
bution. This is achieved by making use of the gradient of the target pdf. Hence
the extra cost of evaluating the gradient pays off in a more efficient MCMC sam-
pler. It is based on the stochastic differential equation (SDE) of the Langevin
diffusion process,

dX(t) = Σ∇ log f(X(t))dt+
√
2Σ

1
2 dW (t), (2)

where ∇ is the gradient operator with respect to the dimensions of X(t), W (t)
is a Brownian motion, and Σ is the covariance operator of the proposal distribu-
tion. The solution to equation (2) has the target distribution as its stationary
distribution. Hence, if the sample path of a Langevin diffusion would be avail-
able, taking samples at distances sufficiently far apart would correspond to
sampling from the target distribution. The MALA algorithm uses the Euler-
Maryuama method (Platen and Bruti-Liberati, 2010) to acquire a discretization
of a sample path from the Langevin diffusion equation. However, the discretiza-
tion introduces errors and an accept/reject step is hence necessary to enforce
sampling from the target distribution.

The proposals generated from the regular random walk MH algorithm can be
considered as being Euler-Maryuama time discretizations of a Brownian motion.
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The Brownian motion does not have the target distribution as its stationary
distribution and therefore the MALA algorithm will acquire fewer rejections for
comparable steps lengths.

5.4 Crank-Nicholson MCMC

Cotter et al. remarked that the Euler-Maryuama scheme used for the MALA
is not stable with respect to the step size and the number of dimensions of the
random variable. With increased dimensionality, the step length needs to be
decreased in order to keep a constant acceptance probability. That corresponds
to a mixing of the MCMC chain that becomes slower with increased dimension-
ality. This can be a problem when approximating an infinite dimensional model
by a finite dimensional approximation. Cotter et al. noticed that if the target
probability measure, μY , is absolutely continuous with respect to a Gaussian
probability measure, μ0, the SDE,

dX(t) = −KQX(t)dt+ γK∇ log f(X(t))dt+
√
2KdW (t),

has the stationary probability measure μ0 if γ = 0 and μY when γ = 1. Here K
can either be chosen as the covariance operator of μ0 or the identity operator.
Q is the precision operator of μ0 and f is the Radon-Nikodym derivative dμ

dμ0
.

By discretizing this SDE using a Crank-Nicholson approximation on the
linear part of the drift, stability is achieved and the discretization errors for a
chosen step length are no longer dependent on the number of dimensions.(

I +
1

2
KQ

)
X(ti) =

(
I − 1

2
KQ

)
X(ti−1) + γK∇ log f(X(ti−1))δ +

√
2Kδε.

The choice of K should depends on if (I + 1
2L) can be efficiently inverted or

if sampling from the prior distribution is straightforward. Setting K as the
covariance operator corresponds to the case when sampling from the prior is
possible and was utilized in Paper II.

Just as with MALA compared to random walk MH, choosing γ = 1 requires
evaluation of the gradient but will lead to a higher acceptance probability.

The Crank-Nicholson MCMC scheme is particularly well-suited to spatial
modeling including continuous Gaussian random fields since the infinite di-
mensional spatially continuous model has to be approximated by some finite
dimensional ditto. The step length’s invariance to the number of dimensions
in the Crank-Nicholson MCMC algorithms is therefore important. Moreover,
Gaussian fields clearly fulfill the requirement of a Gaussian prior needed for the
method to be applicable. This was utilized in paper II in order to acquire an
efficient posterior sampler.
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6 Summary of papers

6.1 Paper I: Whole-brain substitute CT generation using
Markov random field mixture models

Computed tomography (CT) imaging is a technique for acquiring three dimen-
sional internal images of electron density within living organisms as well as
inanimate objects. The method relies on exposing the subject to X-radiation
and measuring the attenuation as it passes through. Radiation therapy is an-
other usage of X-radiation. Here, the ionizing property of the high-energy X-ray
photons are used to damage cancerous tumors. In the dose planning of radiation
therapy it is important to know how the subjects body will absorb X-radiation.
That information is used to avoid damaging healthy tissue as much as possible
while still exposing the tumor sufficiently. Such absorption properties can be
acquired from a CT images and hence CT imaging is a vital tool in radiother-
apy treatment. Another important application of CT imaging is for attenuation
correction of PET images. In PET imaging, radiation is emitted by a tracer
fluid inside the body of the subject and a PET scanner can sense this radiation
and create images from it. In this way it is possible to follow the path of the
tracer fluid as it passes through the body. Some of the radiation will however
be absorbed by the body and the PET images need to be corrected for this
attenuation in order to acquire reliable images. CT images are able to explain
this attenuation and are hence an important tool in PET imaging as well.

A problem with CT imaging is that X-ray radiation is ionizing and hence
there exists risks of damaging living tissue. This has triggered research in acquir-
ing CT-equivalent information in other ways. Johansson et al. (2011) showed
that it is possible to acquire a substitute CT (s-CT) image from magnetic res-
onance imaging (MRI) using statistical methods. More specifically, Johansson
et al. (2011) modeled the voxels of a CT images and several MRI images with
different flip angles and echo time jointly as independent realizations from a
multidimensional Gaussian mixture model. The parameters of the model was
learned from training data using a maximum likelihood estimator through the
EM-algorithm. The s-CT images can then be acquired as the conditional mean
given available MRI images. The classes of the mixture model could be thought
of as different kinds of tissue. Hence, a separate distribution will be used to
explain the joint behavior of the four MRI modalities and the CT image for
each of the different tissue types. In this way it is possible acquire a non linear
mapping from the four dimensional MRI space to the CT space. Figure 10
visualizes the different classifications of tissue types in a slice seen in profile of
a human head.

Paper I extends on the Gaussian mixture model by adding two new con-
cepts. First, the Gaussian distribution might be too restrictive and a more
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(a) Binary mask (b) CT (c) First echo, 10◦

(d) Second echo, 10◦ (e) First echo, 30◦ (f) Second echo, 30◦

Fig. 9: A two dimensional profile slice of the three dimensional image of one
of the subjects in the CT/MRI data. Binary data mask (panel a), CT
image (panel b), four MRI UTE sequences (panels c-f).

flexible probability distribution could potentially explain the tissue behaviors
better. For instance skewed probability distributions or distributions with a
higher kurtosis could perform better for certain cases. For this reason, the
Gaussian distribution is replaced by a normal inverse Gaussian (NIG) distribu-
tion, yielding a five dimensional NIG mixture model. Moreover, it is unrealistic
to believe that the intensity distribution of the five dimensional voxels are in-
dependent of each other. Some spatial structure should exist in the images and
hence voxels nearby should be dependent on each other. This dependence is
captured by assuming a Potts model for the class memberships of the mixture
model. Hence, the model of Paper I is a spatial model due to the distribution
of the classification as a Potts spatial random field. However, conditioned on
the class memberships there is no spatial dependency in the joint distribution
of the five dimensional voxels.

The Potts model is given as a conditional probability distribution. The
Hammersley-Clifford theorem states that the distribution of the class member-
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ships can be stated as a neighbor Gibbs field (Winkler, 2003). Unfortunately,
for a data set of realistic size, the normalizing constant is to demanding to com-
pute and hence the probability measure of the joint distribution is only available
up to a normalizing constant. This makes the likelihood function infeasible to
evaluate and maximum likelihood-based parameter estimation can hence not
be used. As an alternative we consider a pseudolikelihood, L̃(Θ;x), where the
joint likelihood is approximated as a product of all conditional probabilities.
Furthermore, even using the pseudolikelihood, the M-step of the EM-algorithm
is infeasible to compute. Instead Paper I estimates the parameters using an
EMG algorithm.

The proposed method is evaluated using cross-validation on a data set of
brain scans from 14 different patients, see Figure 9 for an example. All four
permutations of choosing Gaussian or NIG distributions on the random variables
conditioned on the classes and choosing the Potts classification model or the
original non spatial one are investigated. The model with Gaussian distribution
and regular mixture model is considered to be the benchmark model since it
corresponds to the model of (Johansson et al., 2011). The conclusions drawn
from this cross-validation study is:

• The spatial classification model makes a significant difference in predictive
ability.

• The NIG distribution did only show a consistent improvement when com-
bined with the spatial classification model.

An example of classification for a slice of a head is shown in Figure 10. Classes
correspnding to soft tissue, bone, air, and a class for bones and soft tissue mixed
on a small scale are present in the figure.

6.2 Paper II: Level set Cox processes

A popular point process for modeling non-interacting point observations with
varying spatial intensity is the log-Gaussian Cox process (LGCP). The latent
Gaussian random field of the LGCP model is in practice assumed to have a
simple parametrization that is both possible to estimate from available data
and interpretable. A common assumption is that the covariance operator of the
latent Gaussian field is a member of a parametric family of stationary operators
and the mean field includes a finite number of fixed linear effects. Such a
model is viable in many cases but the regularizing assumptions can also be too
strong. An example of this can be seen in Figure 11 which shows a point pattern
of observed locations of the tree Beilschmiedia pendula in a region of Barro
Colorado island, Panama. The figure show a pattern that seem to be made up
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Fig. 10: Example classification using the proposed model. Here showing a two
dimensional slice of a three dimensional classification field on one of
the subjects in the CT/MRI data set. Each color denotes a class in the
mixture model.

of two partitions of the observational window. One region of low intensity, and
one region of high intensity with some spatial dependency structure.

Conditioned on knowing the spatial classification for the two distinct classes
it would seem reasonable to model each region, separately, with LGCP mod-
els. This is exactly the idea of paper II where the LGCP model is extended
with a latent classification field. The model assumes that there are an unknown
partitioning of the spatial domain such that for each partition, the point obser-
vations are distributed according to a LGCP model with simple latent Gaussian
random field structures, i.e. a Matérn covariance function. The proposed model
is a Cox process where the logarithm of the intensity surface is distributed as a
spatial mixture model between several classes of Gaussian random fields, i.e.

log λ(s) =

K∑
k=1

πk(s)Xk(s).

The spatially dependent classification probabilities, πk(s), are defined as a clas-
sification field generated by the level set approach described in Section 4.1. The
model is named the level set Cox process (LSCP) due to this latent level set
classification field.

The LSCP model is a latent Gaussian model since the intensity surface is
completely defined by the realizations of latent Gaussian fields, one field for
each mixture class as well as one field for the classification. Compared to the
Potts model of paper I, the level set approach is defined on a continuous spatial
domain which makes the LSCP model continuous in space.
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Fig. 11: Observations of the tree Beilschmiedia pendula on a 1000× 500 square
metres area of the Barro Colorado island of Panama.

Having a continuous point process model is important since point observa-
tions most often are observed in continuous space. However, to be able to do
inference based on the data, some finite dimensional approximation is required.
In paper II the observational domain, D, is discretized in to a finite number of
subregions on an equidistant lattice grid forming a partition of D. It is shown
that the posterior probability measures of the latent Gaussian fields of the finite
dimensional model converges to the posterior measure of the continuous model
under refinement of lattice grid.

Paper II proposes a Bayesian approach to statistical inference. The posterior
marginal distributions of both parameters, latent Gaussian fields, and the inten-
sity surface can be acquired by Monte Carlo simulations. A spectral approach
using fast Fourier transforms together with the preconditioned Crank-Nicholson
MCMC methods of Cotter et al. is proposed for efficient Monte Carlo based
inference.

As an example, posterior inference using four different types of the LSCP
model are compared on the tree locations of the Barro Colorado dataset with
available covariate. These examples highlight the flexibility and potential of the
model.
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