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ABSTRACT
This thesis presents fine-mesh multiphysics methodologies and algorithms for nu-
merical predictions of the behavior of Light Water Reactor (LWR) cores. The mul-
tiphysics aspects cover the distribution of neutrons, the fluid flow of the coolant
and the conjugate heat transfer between the solid fuel pins and the fluid coolant.
The proposed schemes are aimed at fine-mesh coupled effects, directly resolving
the interdependencies of the different fields on the finest scales of the computa-
tions.

The solver is developed for both steady-state and transient LWR scenarios.
For the steady-state simulations, the neutronics is solved both by the lower or-
der, diffusion equation and the higher order, discrete ordinate transport method,
and for transient cases by the former. The thermal-hydraulic solver is based on
a computational fluid dynamics (CFD) approach. The implementation utilizes a
finite volume method (FVM) computational framework, and to achieve feasible
computational times, high performance computing (HPC) aspects such as paral-
lelization by domain decomposition are considered.

The implemented tool is applied to cases of parts of a fuel assembly, analyzing
systems of up to 15× 15 fuel pins and succesfully resolving sub-pin resolution of
all fields. Furthermore, the transient fine-mesh neutronic solver is verified based
on a novel scheme utilizing the system response to a local perturbation.

In addition, the multiphase flow problem encountered in Boiling Water Reac-
tors (BWRs) is studied. First, the transport of bubbles under subcooled boiling
conditions is simulated based on a population balance approach. The novel for-
mulation is shown to increase the computational efficiency and to capture a large
range of bubbles sizes with few degrees of freedom. Second, the typical Eulerian-
Eulerian approach for two-phase flow is studied from a stability and dynamics
perspective. The latter investigations highlight the complexity of the two-fluid
formulation and indicate the spontaneous emergence of meso-scale void struc-
tures under adiabatic conditions.

Keywords: Coupled neutronics/thermal-hydraulics, CFD, nuclear reactor mul-
tiphysics, multiphase flow
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δij Kroenecker delta
ρ Density
Θ Example quantity
Θp Θ for cell p
Θs Face interpolated value of Θ
Ω Angular direction
g Gravitational acceleration
r General space coordinate
Sf Face area vector
SΘ Source term for Θ
t General time coordinate
V Volume of mesh cell

Neutronics
β Fraction of delayed neutrons
γ Energy per fission
λ Decay constant
µ Average scattering angle
ν Neutron fission yield
ρA Atomic density
σx Microscopic cross-section for reaction

x
Σa Absorption cross-section
Σf Macroscopic fission cross-section
Σs Macroscopic scattering cross-section
Σs0 Macroscopic isotropic scattering

cross-section
ΣT Total macroscopic cross-section
ϕ Scalar neutron flux
φ Expansion coefficient in real spherical

harmonics base
χ Fission neutron spectrum
Ψ Angular neutron flux
C Precursor concentration
D Diffusion coefficient
F Fission source term
G Number of energy groups
J Neutron current
keff Multiplication factor
n Neutron density
PN Power density
Pl Legendre polynomials
Rlr Real spherical harmonics
S Scattering source
w Quadrature weight

TH - Single-phase
α Isothermal compressibility coefficient
β Thermal expansion coefficient
ϵ Dissipation of turbulent kinetic en-

ergy
µ Dynamic viscosity
µt Turbulent kinetic viscosity
τ Stress tensor
cp Specific heat capacity at constant

pressure
h Instantaneous enthalpy
H Time averaged enthalpy
k Turbulent kinetic energy
K Thermal conductivity
p Instantaneous pressure
P Time averaged pressure
q′′ Surface heat flux
q′′′ Volumetric heat source
T Temperature
u Instantaneous velocity
U Time averaged velocity

TH - multiphase
α Void fraction
ξ Abscissa (bubble size)
µ Dynamic viscosity
ρ Density
¯̄τ Stress tensor
¯̄τ t Turbulent stress tensor
Φ Time resolved uniformity index
C Condensation rate
d43 Mean diameter
db Bubble size
f Average number density
g Vapour phase
i Phase
j Bubble size index
l Liquid phase
M Momentum transfer due interfacial

forces
N Number of abscissas
P Pressure
S Source term for condensation, aggre-

gation and breakage
t Turbulent quantity
U Phase velocity
w Weight
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CHAPTER 1

Introduction

This thesis begins with, and ultimately originates from, the physics in the core
of the nuclear power plant (NPP). The core is at the heart of a reactor in every
aspect, located in the center of the plant and containing the fuel with its enor-
mous potential of heat generation from fissioning of heavy nuclei. The reactor
core is a complex environment, governed by multiple fields of intertwined and
coupled physics influencing the process on a wide range of length scales. This
environment is the field of this thesis and the main goal shall be to increase the
understanding of how such a system can be simulated with high resolution and
accuracy.

This first chapter will introduce the main fields of physics that are of interest in
the reactor core and in particular how these are mutually coupled (Section 1.1). To
give a context of the contribution of this work, some standard (or even classical)
schemes of nuclear reactor core simulations (Section 1.2) are described, followed
by some more recent developments in reactor modeling (Section 1.3). Finally, the
objectives of this thesis are presented in detail in Section 1.4.

1.1 Multiphysics in the reactor core

The core of the Light Water Reactor (LWR) contains the solid uranium fuel pins
which contribute with the heat source in the reactor. A controlled chain reaction
of fissions results in a continuous and enormous release of energy in the reac-
tor core. The energy is conducted via the solid encapsulation, the cladding, of
the fuel and then extracted from the pins and convected out of the core via the
heated water. To understand the interplay between the neutron density and the
fluid flow and heat transfer in the coolant, a more detailed description of the
multiphysics is of interest.

The chain reaction of fissions is governed by the distribution of neutrons in

1



Chapter 1: Introduction

the core. If the population of neutrons is kept at a statistically steady concentra-
tion, the reactor is said to be critical. On the other hand, if there is an increase in
neutrons with time, the reactor is in a supercritical state. Reversely, if fewer neu-
trons are born from fission than disappear due to fission, absorption or leakage,
the reactor is in a subcritical state. To achieve an economic utilization of the fuel,
the core should be designed to minimize the loss of neutrons due to leakage out
of the physical domain and due to other nuclear reactions.

The cross-section for a certain reaction, i.e. the probability for a neutron to in-
teract with a certain target, is determined by properties of the interacting material
as well as the energy of the neutron. The microscopic cross-section (σ) describes
the probability for a certain reaction to take place, such as absorption, capture
or fission to occur (see details below). Due to the dependence on the density of
the target material, the neutron distribution is influenced by all processes which
result in variations of the material concentrations. For this thesis, the coupling to
the water density is of particular interest. In addition, the temperature of the fuel
has a significant effect on the cross-sections due to the so-called Doppler broad-
ening.

The microscopic cross-section gives the probability for a certain reaction to occur given
the incident neutron energy such that the reaction rate Rx is given by

Rx(E) = σx(E)ϕ(E)ρA, (1.1)

where ϕ(E) denotes the neutron flux and ρA the atomic density of the target material.
Commonly the combination of the microscopic cross-section and the density is written as
a macroscopic cross-section

Σx(E) = σx(E)ρA. (1.2)

The figure below shows the microscopic fission cross-section of Uranium-235. For low en-
ergies the cross-section is inversely proportional to the neutron velocity, whereas a much
more complicated dependence is seen for the intermediate region. The resonances in
this energy range constitute a particularly challenging task in the process of cross-section
condensation as an average of a longer energy interval in the resonance region strongly
depends on the precise spectrum of the neutron flux.
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Figure 1.1: Fission cross-section for Uranium-235 [1].

Microscopic and macroscopic cross-sections

2



1.1. Multiphysics in the reactor core

CORE ASSEMBLY FUEL PIN

Core � ≈4 m Assembly
width 0.2 m

Fuel pin� ≈0.01 m

Fuel
Gap
Cladding

Figure 1.2: Schematic drawing of a horizontal plane of a LWR core.

The temperature profile in the fuel is determined by the energy release from
the fissions and the conduction in the fuel pins, i.e. the transport of energy in
the stack of fuel pellets in each rod in the assembly (see Figure 1.2). The conduc-
tivity of the solid fuel matrix is governed by the micro structure as well as the
temperature of the material. Due to the neutron irradiation in the core, the fuel
and cladding properties change with time in the reactor. The processes responsi-
ble for such defects constitute a complete field of material science, and complex
phenomena such as cracking of the fuel might take place.

To allow thermal expansion and fuel swelling, LWR fuel rods have a small
gap between the fuel and the cladding, initially filled by an inert gas. Due to the
small distance between the solids, the major mechanism for heat transfer (under
normal reactor operating conditions) is conduction also in the gap. The cladding
is the first safety barrier in the reactor, designed to contain the fuel and the fis-
sion products. Although no fission events occur in the gap or cladding, these
regions are still influential on the neutronics problem as the neutron distribution
is affected via capture.

The heat conducted from the cladding is extracted from the core with forced
convection. In the case of the LWR, the water acts as the coolant, and a high flow
velocity through the core is maintained by pumps. In the case of a Pressurized
Water Reactor (PWR) the water is nominally kept in liquid state, whereas a phase
change from liquid to vapor is seen in a Boiling Water Reactor (BWR). The high
flow velocity results in a turbulent flow with enhanced heat transfer properties.
The turbulence in the coolant is further enhanced by the so-called spacers, es-
sentially steel frames holding the fuel pins as well as interrupting the flow and
inducing swirls.

In addition to acting as a coolant, the water in a LWR functions as a moder-
ator for the neutrons. The moderation process cools, i.e. slows down, the high
energy neutrons born from fission. The benefit of a higher concentration of low
energy neutrons is best understood from the energy dependence of the fission

3



Chapter 1: Introduction

Light Water
Reactor

Multiphysics

Neutron
distri-
bution

Power
density

Cross-
sections

Fuel
properties

Temper-
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Density
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Fuel cross-sections:
Doppler and density coupling

Power density:
Energy source in fuel
temperature
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fuel properties
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Water density coupling

Neutronics

Thermal-hydraulics

Figure 1.3: Diagram of the multiphysics couplings for the neutronics and
thermal-hydraulics in the LWR core.

cross-section for U-235 as presented in Figure 1.1. Due to the inverse propor-
tion of the microscopic fission cross-section, the chance for fission events is much
larger for slow neutrons. The moderation primarily occurs due to elastic scatter-
ing between the neutrons and the hydrogen atoms in the water.

All described physical processes are connected and the reactor core problem
is thus a true multiphysics problem in the sense that one field cannot be solved
without knowledege of the others. To summarize the different couplings, Fig-
ure 1.3 shows the primary dependencies between the neutron behaviour, the so
called neutronics, and the fluid flow and heat transfer in the water and the fuel,
the so called thermal-hydraulics. The temperature and density of the fuel and the
water both influence the neutronics, which in turns affects the fuel temperature
directly through the energy release from fission, and water indirectly as the heat
is transported from the fuel to the water.

In addition to the multiphysics aspects of the reactor core, the problem is fur-
ther complicated by the many length scales to be resolved. The schematic repre-
sentation in Figure 1.2 shows a horizontal plane in the core. The figure outlines
a hierarchy of relevant scales, ranging from the full core size, via the fuel assem-
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blies, to the separate fuel pins. In principle, the hierarchy could be continued
with even smaller scales governing some of the phenomena discussed above (e.g.
turbulence in the water and micro structures of the fuel matrix). In the extreme,
we could even consider the atomic length scales and the sizes of the nucleons
which ultimately govern the interaction between the neutrons and the nuclei.

Due to the extreme range of scales, it is immediately clear that it is not possible
to directly resolve all parts of the problem from first principles. In order to solve
the ultimate problem of the complete reactor core, we must rely on assumptions
and closures from other scales. Inevitably, such closures introduce errors. As
the reactor is also a multiphysics environment, the use and derivation of closures
for the large scale problems must also consider that coupled physics phenomena
occurring at the small scales need to be correctly represented at the larger scales,
which is far from trivially granted. The latter is a key aspect to why the focus in
this thesis is on fine-mesh simulations, i.e. simulations where the different fields
of physics can be directly coupled without the approximations required to solve
the full core problem.

1.2 Neutronics and thermal-hydraulic simulations

Given the multiscale and multiphysics problem of the reactor core, we now turn
the attention to different options and strategies to simulate and produce numer-
ical predictions of the behavior of the core. To motivate the need of novel algo-
rithms, a brief overview is first presented of some standard schemes applied in
routine calculations for the core. The described procedures are well established
and the current practices have prevailed for many decades in the same or at least
similar shapes. Nevertheless, there are significant limitations and assumptions
for multiphysics perspectives and for the physics of the finest scales resolved.

1.2.1 Lattice and core simulations of the neutronics

Although a rapid increase is seen in the use of Monte Carlo methods for the neu-
tronic calculations, even on a full core scale, such methods are still too compu-
tationally expensive for routine industrial calculations (further discussed in Sec-
tion 1.3). As a result, the industry still relies on deterministic computations for
the neutronic problem, and the predominant schemes have for a long time relied
on hierarchal algorithms. Such multiscale approaches range from the simulations
of a single pin cell (i.e. a fuel pin surrounded by the coolant), to fuel assembly cal-
culations and finally to the full core scale. A brief overview of the hierarchy of
scales is shown in Figure 1.4, where the three different levels are outlined together
with some standard choices of algorithms.

In detail, the first two stages of the simulations (pin cell and assembly cal-
culations) are typically computed in a lattice code. Conveniently, such a code
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• Computes cross-sections for
the core simulator, branched on
thermo-physical state and burnup

• 2D transport algorithm, e.g.
Method of Characteristics

• Burnup simulations for fuel and
burnable absorbers [2]

• Few group energy structure
traded against the spatial repre-
sentation for feasible computa-
tional time

• Node-wise homogeneous repre-
sentation of the core (∼20,000 for
a full core [3])

• Low order representation of the
neutron energy dependence (of-
ten only a fast and a thermal
group)

• Simplified thermal-hydraulic
models to compute node-wise
thermophysical data

• Diffusion or nodal codes based
on a uniform Cartesian grid

• Eigenvalue computations to
determine the steady-state charac-
teristics of the core

• Transients computed with time
dependent solvers, potentially
coupled to a thermal-hydraulics
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Figure 1.4: Overview of a multiscale deterministic neutronics scheme progress-
ing from pin-wise 1D calculations, via 2D assembly calculations to full core 3D
simulations

generates a library of cross-sections which are branched to cover desired state
points for fuel burnout, thermo-physical state of the reactor, control rod positions
etc. Due to the large number of different fuel assemblies and feasible states, the
lattice calculators must rely on fast algorithms and sufficiently coarse approxima-
tions to give useful simulation times.

Relevant for this thesis, the approximations in the lattice code include assump-
tions of approximate fuel and moderator temperature profiles. Whereas the ac-
tual horizontal temperature profiles are multiphysics dependent (as depicted in
Figure 1.3), a standard lattice code is run with explicit, and often discrete, temper-
ature profiles.

The last stage, the core calculation, is for LWRs performed on a coarse Carte-
sian grid corresponding to the fuel assemblies in the core. A large number of
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1.2. Neutronics and thermal-hydraulic simulations

solver variations exist. However, the core simulators again require fast compu-
tations as the codes are routinely applied repetitively e.g. in the process of core
design.

Furthermore, the core solver relies on lower dimensional thermal-hydraulic
algorithms to predict the temperature and void distributions in the core. The
computed states are used to interpolate the cross-section tables from the lattice
solver. Roughly, each fuel assembly has one associated thermal-hydraulic chan-
nel in which the conservation equations of mass, momentum and energy are
solved (see e.g. [4]). At the scale of the core solver, the multiphysics couplings
are coarse and by no means resolve small fluctuations or pin-wise temperature
profiles.

From this crude description of the neutronic scheme it is clear that the method-
ology is streamlined to give fast computations for the full core problem with the
core solver and the cross-section tables computed in the lattice solver. The mul-
tiphysics aspects are limited and the direct coupling to the (simplified) thermal-
hydraulic solvers is performed only at the coarsest level.

1.2.2 System codes for thermal-hydraulics

The thermal-hydraulic counterpart to the hierarchal neutronics methodology con-
sists of a full core solver, partitioned on so-called channels, and a sub-channel
code simulating one or a few such channels with a higher resolution. Figure 1.5
presents a brief overview and characteristic algorithms for both methodologies.
In contrast to the neutronics scheme, the thermal-hydraulic solvers are not neces-
sarily combined in the same workflow.

The goal of the system code is to compute the complete plant response to a set
of transient scenarios, including accidents such as a loss-of-coolant accident [9].
The representation of the flow is much simplified, relying on 1D transport equa-
tions, discretized with first order schemes in space and time [6]. As illustrated
in Figure 1.5, the core, as well as the other components, is treated with a coarse
nodalization. As a result of the crude representation, the effects from for example
fluid fluctuations are not modeled but included in correlations. The benefit of the
coarse approach is the short wall clock time for relatively long transient scenarios,
even on desktop computers.

The algorithms for the neutronic response are typically based on much sim-
plified models, such as the 0D point-kinetic model [10]. On the other hand, for
scenarios where the neutronic response is crucial, a coupling to a 3D neutronic
solver is advantageous (which is further discussed in Section 1.2.3).

In partial contrast to the macroscopic full plant modeling in the system code,
a subchannel code is aimed at (more) local conditions in specific fuel assemblies.
For safety reasons it is of interest to e.g. find the hottest channels in the reactor
core in order to determine the peak cladding temperature (PCT) [11]. For such a
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temperature, e.g. find-
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representation (1D
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the fine scale behavior,
including influence of
spacers and turbulence
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ficient, allowing mul-
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[8]
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Figure 1.5: Overview of the characteristics of a coarse full plant system code
and a higher resolution subchannel code.

purpose the subchannel approach gives more information than the coarse nodal-
ization in the system code. From fluid dynamics and heat transfer perspectives,
the subchannel code is still very far from the first principles, relying on correla-
tions for pressure drops, heat transfer, multiphase flow and more [12]. Further-
more the flow is still not resolved in 3D manner but only 2D (see e.g. [7]).

In addition to the mentioned schemes, there is of course the option of a further
resolved and much more fine grained simulation. In nuclear terms this would be
denoted as CFD, although in principle also the previously described models are
numerical predictions of fluid flows, thus deserving the epithet CFD. Although
there are numerous examples of interesting core related applications of CFD in
the open literature, the 30 years of experience of the macroscopic type of model-
ing should not be forgotten [13]. The current and future potentials of CFD are
further discussed below (Section 1.3).
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1.3. High-fidelity core simulations

1.2.3 Segregated multiphysics schemes

For some accident scenarios the multiphysics aspects need to be better resolved
than it is in the case of the system codes with simplified neutronic models [10].
For such scenarios, the classical choice is to perform an external code coupling
between a system code and a neutronic core solver. Even though appreciated as
multiphysics in a more integrated sense, the coupling algorithms are commonly
based on the so-called operator splitting techniques [14] with low order time
schemes. Nevertheless, such best estimate approaches are a key tool for current
industrial simulation routines, in particular due to the enormous efforts of code
verification and validation already spent on this type of simulations for industrial
plants. Examples of attempts on higher order time schemes exist, e.g. by implicit
formulations of a combined system matrix [15], such and similar attempts are still
limited in the resolved scales of multiphysics. The mapping between the codes is
often coarse in the sense that only macroscopic quantities or average properties
are exchanged. Consequently, there is no increased fidelity in the physics sim-
ulated. The coupled calculations are limited by the very static geometries and
resolutions of each of the separate codes and the simplistic coupling schemes and
mappings. In contrast, the type of projects next described (Section 1.3) are to a ma-
jority focused on newly developed tools, without the legacy of the system codes
or core solvers, or with more degrees of freedom when it comes to geometry and
resolutions.

1.3 High-fidelity core simulations

Following the rapid development of the computational capacity, an increasing
complexity in the fuel assembly designs and the continuous strive to perform
more accurate and precise reactor core simulations, the last ten years have seen
a large number of initiatives toward higher fidelity multiphysics simulations of
the reactor core. From a larger perspective, the specific goals and aims are as
many as the methodologies proposed and many of the initiatives are still in early
development stages. Nevertheless, the trend is clear and true HPC applications
are growing in interest in the nuclear community. In this section, some of the
motivations of such novel schemes are discussed together with an overview of
the HPC and high-fidelity efforts from the open literature.

1.3.1 Motivations for novel approaches

As evident from the discussion on the classical computational schemes, the sepa-
rate neutronics and thermal-hydraulic reactor simulations are severely simplified
in their representation of the multiphysics. As a motivation for new algorithms
for nuclear reactor core simulations, a scattered list is given below. Some of the
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points of this list are later referenced and rephrased in the actual objectives of the
current thesis (Section 1.4):

• Unresolved multiphysics – The lattice codes apply simplified temperature and
density profiles in the cross-section generation, implicitly introducing an
error in terms of the actual thermophysical state in the fuel and moderator.

• Small margins require higher resolution – As plants are power uprated the mar-
gins to, for example, critical heat flux (CHF) decrease and arguably the local
conditions are of increased interest [16].

• Void heterogeneities – Heterogeneities in the void fraction distribution in the
subchannels of a BWR are potentially influential on the neutron modera-
tion and thus a multiphysics understanding of such heterogeneities is of
interest [17, 18].

• Fuel behavior – To simulate e.g. the local influence and deposition of CRUD
on the fuel pins, novel fine-mesh and multiphysics schemes are required [19,
20]. Notably, simulation of CRUD deposition is one of the targeted prob-
lems in The Consortium for Advanced Simulation of LWRs (CASL) [21].

• Spacer design – As the spacers in the fuel assemblies increase in complexity,
there is a greater need to understand the influence of the induced turbu-
lence. In addition, CFD predictions of spacers are a cheap way to select the
best candidates to a significantly smaller cost then using test rigs. [16, 22–
24]

Whereas the list is by no means exhaustive, such and similar issues are interesting
and constitute relevant drivers for the development of novel multiphysics and
high-resolution strategies.

1.3.2 Overview of multiscale and multiphysics approaches

The drive towards stronger coupling and higher resolutions has taken a lot of
different shapes, partly due to the fact that the complexities of the physics are
mirrored in the complexities of the computations, partly because of unclear stan-
dards for reactor core multiphysics and partly because of the very different needs
for the different issues mentioned in the previous section.

In many of the attempts on achieving the higher resolution multiphysics of the
core, the schemes were based on externally coupled tools, e.g. applying a combi-
nation of a Monte Carlo solver for the neutronics and a commercial CFD solver
for the thermal-hydraulics [25–27] , or a deterministic neutronic solver [28–30],
again, coupled to a CFD solver. The sophistication of such couplings varies from
efficient data exchanges using external scripts to built-in coupling schemes. Large
scale projects such as VERA [31] and MOOSE [19] likewise apply an existing code
coupling approach but in massive HPC environments and with a large focus on
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efficient parallelization and coupling. Although many of the efforts referenced
are of interest from a physics point of view, many should be considered as proofs
of principle, paving the way towards practical use of such computations.

In contrast to the external code couplings, there are notable examples of mul-
tiphysics solvers with a more integrated focus. An interesting example is again
the MOOSE project, which can be employed as a general finite element frame-
work with non-linear solvers and massive parallelization [32]. Many smaller
scale projects with a tighter coupling were focused on commercial multiphysics
solvers [33, 34], but there are also examples which are based on open source
software [35], as is the case in the current thesis. Many of the multiscale and
multiphysics initiatives in the open literature are focused on fuel performance
in terms of local phenomena, where for example the deposition of CRUD is of
importance [19, 20] or for fuel pin mechanistic behavior [36, 37].

Whereas the resolution of the CFD simulations has generally been low in the
multiphysics coupled simulations discussed above (see e.g. [28, 30]), there are
many pure CFD applications where a high-resolution approach is of particular
interest. An example is seen in the simulation of grid-to-rod fretting for which
time and space resolved turbulent fluctuations are of interest [22, 38]. Another
class is the simulation of fuel pin spacers, where again an accurate prediction of
the induced turbulence is of interest to predict the pressure drop in the core as
well as the local heat transfer from the fuel pins to the coolant [16, 24, 39].

As mentioned above, multiphase flow is yet another topic for future high-
fidelity simulations relevant for nuclear core predictions. Whereas the system
codes rely on approximations and empirical relations, there are efforts made to
perform 3D simulations on the scale of a fuel assembly (see e.g. Lo and Osman
[40]). Although much less developed, there are examples of coupled multiphase
CFD and neutronics [41], performed on coarse meshes and for steady-state pur-
poses. However, the severe complexity of the multiple flow regimes makes the
multiphase problem a theoretically more complicated CFD problem compared
to the single phase counterpart, and much work remains in covering all flow
regimes in a consistent manner [42]. An extended introduction connected to mul-
tiphase simulations for BWRs is postponed to Chapter 6.

1.4 Objectives of the research work

The objectives of the research are divided in two parts. First, the objectives for
the fine-mesh multiphysics simulations are described together with the applied
assumptions and resulting limitations. Second, the objectives for the investiga-
tions and method development for the multiphase flow research are outlined.
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1.4.1 Fine-mesh multiphysics simulation objectives

The first part of the thesis is concerned with multiphysics simulations of the nu-
clear reactor core. The primary aim is to develop a computational tool which re-
solves the multiphysics dependencies already at the finest simulated scales. The
physics covered is the same as in the classical coupled schemes (Section 1.2.3), i.e.
the flow of the fluid coolant, the conjugate heat transfer (CHT) between the solid
fuel pins and coolant and the neutron distribution in the core. However, the sim-
ulated scales are much finer, focused at a sub-fuel pin level and with a resolved
water temperature and flow profile between each of the separated fuel pins. The
described scales are throughout the thesis described as fine-mesh.

A part of the objective is to demonstrate the feasibility of such a computa-
tional code, including the computational cost and applicability in terms of HPC
resources. However, the focus is also to resolve aspects of the multiphysics which
are of potential importance for a safe operation of the reactor and, perhaps even
more, for design of fuel assemblies.

In specific terms the objectives of the first part are to:

• develop a deterministic computational methodology with a fine-mesh ap-
proach to the neutronics for both steady-state and transient simulations,
with a cross-section model relevant on a sub-pin scale,

• develop a CFD methodology, including heat transfer and the fluid flow,
with a 3D representation of the flow between the fuel pins and treatment
of turbulence,

• implement the methodologies in a single, multiphysics, computational tool
deployable at computational clusters, and

• apply the solver to both steady-state and transient cases for parts of fuel
assemblies.

As such, the objectives are related in a generic sense to many of the points
mentioned in Section 1.3.1, and perhaps primarily to the need to resolve the mul-
tiphysics and to increase the resolution of the numerical predictions in the core.
In relation to the previously referenced literature on coupled neutronics/CFD
projects (Section 1.3.2), the current objectives are different in that a single compu-
tational tool should be developed, directly treating all covered aspects.

Assumptions and limitations

Following the defined objectives, there are a number of implicit assumptions in
the models, whereof the most important include:

• No mechanistic modelling of fuel behavior – As described in Section 1.3.2, many
of current high-fidelity simulation schemes are primarily targeted toward
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fuel behavior and mechanical properties. The fuel pins are here considered
static, rigid bodies with only temperature dependent thermophysical prop-
erties.

• No models for the surrounding environment – Due to the computational cost
(and the limited computational resources at hand) only parts of a fuel as-
sembly are considered in the performed simulations. In principle a coarse
model for the surrounding would be beneficial, serving a set of boundary
conditions. However, for the presented cases all computations assume an
infinite lattice of the simulated environment, which is realized through peri-
odic or symmetry boundary conditions in horizontal direction. For the inlet
and outlet conditions the boundary conditions are determined without any
actual models of the nozzles or e.g. the turbulent spectra of the fluid flow
entering the bottom of the assembly.

Whereas the previous assumptions are limitations of the implemented code,
there are some further limitations imposed due to the computational cost of the
simulations:

• System size limited to parts of a fuel assembly – As a result of the high resolu-
tion of the simulations, the computational grids contain a large number of
degrees of freedom and thus an extensive computational burden. Due to
the available computational resources, the system sizes must thus be lim-
ited. However, as part of the objective to implement the tools for HPC en-
vironments, proper parallelization schemes are still applied and with larger
computational resources the code should be applicable to larger cases.

• Number of neutronic energy groups limited – The neutronic calculations are
performed on a low number of energy groups (ranging from 2 to 16). Again
the reason is the computational cost, and all algorithms are implemented
for an arbitrary number of energy groups (an exception to this is the results
related to Paper VIII, where the derivation is performed for 2 groups (Sec-
tion 5.3). Similarly, the simulations performed with the discrete ordinates
method are limited in the number of directions.

Practically there are additional limitations in terms of what could be consid-
ered within the above scope of the objectives. In particular, the geometrical details
of the fuel assemblies are limited to the fuel pins, the gap, the cladding and the
coolant, e.g. neglecting the influence of the spacers.

1.4.2 Multiphase flow objectives

The second part of the thesis concerns multiphase flow in the reactor core and in
particular bubbly flows under subcooled and adiabatic conditions. As is further
discussed in Section 6.1, the multiphase flow is challenging for multiple reasons
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and the maturity of multiphase CFD is significantly lower than for single-phase.
For the mentioned reasons, the research conducted for multiphase flow within
this thesis has a more generic character than the fine-mesh multiphysics simula-
tions. Nevertheless, the goal of the conducted studies is to increase the under-
standing of bubbly flows with the two-fluid model, which could be used for low
void fraction simulations in the fine-mesh multiphysics solver.

Due to the extreme computational cost connected with the interface resolving
methods, such methods are not of practical interest for simulations of systems of
the size of a fuel assembly. Instead, the focus is on the two-fluid model, which
gives only an average representation of the phases, with no explicit tracking of
the interface between the gas and the liquid in the two-phase flow. The model is
further introduced and discussed in Section 6.4, but for the sake of formulating
the objectives for the multiphase research two of the issues with the two-fluid
model is here outlined.

First, as a result of the lack of representation of the interface between the faces,
information such as bubble sizes and shapes are unknown in the two-fluid formu-
lation. A potential remedy for this is to introduce a population balance equation
(PBE) to track one or more properties of the bubbles to a significantly lower cost
as compared to explicitly computing the bubble interfaces. Such an approach is
of interest not the least for diabatic simulations where the bubble distribution will
change not only due to bubble breakage or aggregation but also due to conden-
sation and evaporation. In practical terms, a two-fluid approach complemented
by a PBE is a good candidate for simulation of the subcooled and bubbly flow
regimes in a BWR, and as such the framework is worth investigating, also from
the fine-mesh multiphysics point of view.

Secondly, from a more general perspective, the two-fluid formulation has pre-
viously been shown to be prone to numerical issues, not the least due to an ap-
parent lack of hyperbolicity for some types of flow. Although a wide range of
remedies have been proposed, the underlying potential stability issues are still
of major interest for the application of the two-fluid model. In particular, the dy-
namic behavior of the model is key to the predicted mass and heat transfer within
the reactor core, and emergence of heterogeneities in the flow can only be trusted
if the underlying equations are understood to be sound. Again, investigations on
the dynamics of the two-fluid formulation is of interest for the larger perspective
of fine-mesh simulations as the dynamics and appearance of void heterogeneities
are of potential importance in the coupling to the neutron distribution.

In specific terms, the objectives related to modeling of multiphase flow within
this thesis are to:

• investigate the stability of the two-fluid model in terms of phase heterogen-
ities for bubbly gas-liquid flows, and

• develop novel methodologies for simulation of vapor bubbles in a subcooled
liquid using a the two-fluid model complemented by a PBE.
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As the case of multi-phase flow is particularly challenging from a CFD per-
spective and again limitations to the scope are necessary. The main simplifica-
tions applied in the developed models and performed simulations include:

• No simulation of wall phenomena – The bubbly flows arises due to evapora-
tion at the wall. The bubble growth and departure are governed by micro
structures at the surface as well as the flow at the wall. Such aspects are not
covered in the thesis. Instead the transport of the bubbles is the primary
target.

• Empirical correlations for condensation – In the simulation of subcooled bubbly
flows, the condensation of the bubbles is, again, ruled by local conditions
at the surface of the bubble. In this work no interface tracking simulations
of the condensation are performed. Instead, empirical relations are used for
the condensation rate.

• No specific treatment of high void fractions – The objectives are primarily re-
lated to low void fraction regions. This is not to say that high void fractions
with other regimes than bubbly flow are not of interest. Rather, the bubbly
flows are perhaps the most well researched and still there are significant op-
portunities for further research. From a larger perspective it is also natural
to first focus on the low void fraction regimes.

1.4.3 Outline of the thesis

The thesis is structured in seven chapters, whereof this introductory chapter is the
first. Chapter 2 gives an introduction to the computational methodologies later
applied in the thesis, including detailed descriptions of mesh generation, cross-
section generation and parallelization algorithms. In Chapter 3 the models for
coupled LWR single phase problems are given for both neutronics and thermal-
hydraulics. Next, Chapter 4 presents the implementation and an application to
a steady-state multiphysics problem. In Chapter 5, the methodology is extended
to transient conditions and again applied to a small lattice of fuel pins. Chapter 6
describes some of the complexities of the two-phase flow in BWRs, and presents
a proposed algorithm for subcooled boiling and, additionally, simulations regard-
ing the dynamics of two-phase CFD solvers. Finally, Chapter 7 gives a conclusion
and recommendations for future work in the areas of multiphase flow for reactor
core applications as well as fine-mesh multiphysics simulations.

15





CHAPTER 2

Computational methods

To perform multiphysics simulations of a nuclear reactor is, inevitably, strongly
connected to development of computational methods, coding, and not least HPC.
To approach both the complexity and the sheer size of the system, we need ef-
ficient algorithms and numerical methods run on modern hardware and imple-
mented in the right languages. I therefore find it reasonable and enlightening to
introduce the computational techniques, which are key to this thesis. As a matter
of fact, a large effort has been invested in choosing and developing sufficiently
performant algorithms; a task which has been equally challenging and joyful.

Due to the many fields of physics and thus many numerical solvers required,
it would be difficult, not to say impossible, to within the same PhD project de-
velop all the necessary computer code from scratch. Instead, I partly use some
existing tools and codes, in some cases extended for the purpose of the project,
which substantially increase progress and reduce the development time. At the
same time, it is of large value to have full transparency of all codes and algorithms.
With the current trend of open-source initiatives this is viable. An accessible code
base gives the possibility to perfom rapid development and the opportunity to
modify and extend the software. This has been a cornerstone in the work for this
thesis.

This chapter introduces the computational tools applied throughout the re-
maining chapters of the thesis. A brief introduction to HPC is given in Section 2.1,
including a small historical perspective on HPC and the development of comput-
ers and efficient code in parallel algorithms. In Section 2.2, an outline of the key
elements of the finite volume method (FVM) is presented togther with the library
which lies as the foundation for the developed multiphysics solver as well as
the two-phase solvers later discussed. Finally, Section 2.3 introduces the specific
framework developed within this thesis and its use of existing software.

17



Chapter 2: Computational methods

2.1 High Performance Computing

High performance computing involves simulations or other computational tasks
that are employed on multiple processors or multiple computers. In the area of
computational physics and numerical simulations in general, HPC is necessary
to solve large problems which would lead to prohibitive long simulation times
on a laptop or desktop computer. Now, as we shall see, the notion of a large com-
putational problem has changed and continues to change with the ever increas-
ing capacity of the supercomputers. The computations performed in this thesis
would have been almost impossible already 20-25 years ago, even considering, at
that time the largest supercomputers in the world.

To further widen the concept of HPC, aspects such as computational efficiency
and utilization of the hardware must also be considered. In particular, even
though a large computational cluster is exploited, the single CPU utilization is
still vital. Furthermore, the single CPU optimization is relevant irrespective of
the cluster size. As discussed below (see Figure 2.1), the computational resources
for this project have been limited to around maximum 80 and in average 20 CPUs
on one of the Swedish computational resources.

2.1.1 A brief historical perspective

The history of HPC and supercomputers goes back to the 1960s, with computers
such as LARC [43], featuring two CPUs. The early 1970s saw the emergence of
RISC computers, where the CDC6600 was the first to use the idea of a reduced
instruction set to simplify the CPU [44]. From the later part of the 1970s, HPC was
dominated by vector computers which utilized a single operation on a vector of
data (so called SIMD architecture) [45]. During the following two decades (ca.
1975-1995) the supercomputer CPUs were considerably more complex than per-
sonal computers. In the latter half of the 1990s this changed, with the emergence
of clusters built up of thousands of simpler, commodity, CPUs. During the 2000s
the trend with massively parallel supercomputers continued, with machines such
as Blue Gene [46].

Although history has seen a large number of architectures of hardware the
trend is clear; the computational capability is growing exponentially (see Fig-
ure 2.1). With the trend of ever increasing computational capacity it is tempt-
ing to rely on accelerated hardware, putting less effort in software development.
However, in reality, the situation is rather the reversed one. Currently, the trend
of the largest supercomputers is to use more heterogeneous architectures with
accelerators or graphic cards connected to each standard computer. To use the
full capacity of such resources major efforts on software development might be
required to utilize the resources.

From a nuclear engineering perspective, it is interesting to note that, whereas
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2.1. High Performance Computing

the nuclear industry for a long time has taken a lead in the development of HPC
resources, Turinsky [47] points out that during the mid 1980s the industry turned
from the use of large computers to standard desktop machines. Although the
industry to a large extent relies on codes running on desktop computers, many of
the above described efforts (Section 1.3) are again heavily focused on taking the
lead in use of large scale computations.

The trend for the growth of the supercomputers is shown in Figure 1, with a linear in-
crease in the floating point operations per second (FLOPS) in the log diagram. In relation
to the single CPU performance, the increase in clock frequency of the CPUs is also impor-
tant. However, as indicated by the trend in the figure, the growth in clock frequency has
stalled and we cannot expect the next generation of CPUs to necessarily keep accelerating
our applications. To quote Herb Sutter, the convener of the ISO C++ committee, ”The free
lunch is over” [48].
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Figure 2.1: Development of the CPU clock frequency over time [49] (data ex-
tracted from [50]) with a comparison of the #1 computing cluster according to
Top500 [51]. The green squares indicate desktop and laptop computers of the the-
sis author, with Flops estimated by Intel Math Kernel Library Benchmarks [52].

Hardware development and resources

2.1.2 Code efficiency and optimization

To write a fast computational code we need to consider both hardware aspects,
such as e.g. cache sizes and memory bandwidth, as well as software aspects
such as algorithms and code languages. Although a PhD project in multiphysics
of nuclear reactors does not specifically target such areas, it is arguably of high
value with a general knowledge of such code aspects for the development of a
HPC framework.

In order to illustrate some of the many challenges in code efficiency and op-
timization, a few of the key aspects for the multiphysics simulations performed
are briefly mentioned:
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• Memory bandwidth – To solve the discretized neutronic and thermal-hydraulic
equations, a sparse matrix solver is applied (Section 2.2.2). The standard it-
erative sparse matrix solvers typically rely on matrix-vector multiplication,
which in turn are limited by the bandwidth of the memory [53]. Whilst the
modern CPU architecture relies on multiple levels of caches to speed up the
data fetching, our large sparse systems will not be close to fit the cache.

• Memory locality – Not only sparse matrix calculations are restricted by slow
memory access in relation to the CPU throughput. For data processed to-
gether it is always beneficial to keep the data close in memory. An impor-
tant example is the ordering of the computational mesh cells which could
help to minimize the number of fetches from memory (and the larger cache
levels).

• Disk access – The disk (spinning disk or SSD) is the slowest data storage
on the computer and we generally want to avoid excessive write or read
operations. As an example, we can avoid disk access by condensing the
results as much as possible already in the simulation stage, minimizing the
storage operations.

• Vectorized operations – A modern CPU support vectorized operations where
multiple variables are processed within the same instruction (see e.g. [54]).
On a commodity CPU this means that the throughput of arithmetic opera-
tions for double precision (64 bit) numbers increases with a factor of two to
eight (see e.g. [55]).

For any of the above aspects we are helped both by the CPU routines (e.g.
for handling data fetching) and the compiler (e.g. for translating code in to vec-
torized machine instructions). Nevertheless, it must be in the interest of the de-
veloper to understand the basics of the hardware and software interaction. Any
small knowledge helps to increase the understanding of the computer and what
we can expect in terms of CPU efficiency and performance.

Directly or indirectly, the programming language is an additional key aspect
for good utilization of the hardware. HPC applications have historically been
implemented in compiled languages, where no additional effort is spent on run-
time code interpretation. Whereas FORTRAN is a classical choice for HPC for
nuclear applications in particular, a large proportion of modern software is de-
veloped using other languages, not seldom C++. The latter has the advantage of
a large user base (outside the nuclear community and outside HPC) with good
compiler and library support.

2.1.3 Parallelization

A fast single CPU code is a good starting point for a fast parallelized code. Mod-
ern architectures support parallelization on many different levels, which might
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require significantly different efforts from the developer. The three most com-
monly discussed parallelization regimes include:

• Shared memory – The easiest way to parallelize the code is often to use all
available threads on the same computer, which allows the memory to be
shared between the different processes. Shared memory parallelization is
limited to the number of CPUs on the motherboard (i.e. 2-6 on a commodity
desktop computer). A major advantage is that the interprocessor communi-
cation is avoided, i.e. the parallelization incurs no substantial overhead.

• Message passing – To combine multiple separate computers (aka nodes) on
e.g. a computer cluster, message passing is utilized. In contrast to the pre-
vious scheme, no shared memory exists and the application must handle
exchange of all data common between the different computers. While this
is de facto standard seen in e.g. commercial CFD solvers (as well as the
open source alternatives) it has drawbacks in terms of interprocessor com-
munication overhead and complexity of data exchange scheduling.

• Accelerators/Graphic cards – A recent trend on some of the largest supercom-
puters has been to use separate hardware for computational acceleration.
For example, graphic card computations based on, e.g., CUDA [56] is a cur-
rent trend in which massive computational performance can be achieved
on a single gaming graphics card. The major drawback here is the induced
complexity of another hardware architecture.

In addition, for completely independent simulations, we can of course parallelize
by running multiple separate processes and combine the results. The latter is
e.g. used in some Monte Carlo codes, and was exploited in the cross-section
generation (Section 2.3.3), where the system can be duplicated since the neutron
histories are assumed independent. A further detailed introduction to different
types and levels and some key aspects for nuclear engineering parallelization is
given by Calvin and Nowak [57].

In the same manner as the above discussion on efficiency and optimization,
the code developer will benefit from general knowledge about the paralleliza-
tion. However, in many cases an underlying framework for parallelization is
desirable, e.g. a parallelized matrix solver library. In the current project the paral-
lelization is achieved using message passing as defined in the MPI standard [58].
The system is decomposed in multiple domains, each solved in a separate process.
The message passing handles the communication by, simply put, exchanging the
boundary values of the domains.

In more specific terms of reactor core simulations, many of the CFD/neutronics
multiphysics examples from the literature are formulated as a multiple code scheme.
Such an approach is exemplified in Figure 2.2. Advantageously, each of the codes
can use the existing parallelization capabilities, which is efficient from a develop-
ment point of view. However, as apparent from the figure, the communication
is handled in a gather-scatter manner, where the internal parallelization, e.g. by
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domain decomposition, must gather data before the exchange to the other code
occurs. After retrieving the data from the other code a scatter must again take
place. This clearly limits the efficiency of the coupling and induces further com-
plications [31].

Coupling scriptCode A

Read data from B
Solve field

Write data for B

CPU1

CPU2

...

CPUn

Code B

Read data from A
Solve field

Write data for A

CPU1

CPU2

...

CPUn

Map
coupled

fields
Invoke

the codes
sequentially

Parallelization handled
separately by the codes

Figure 2.2: Example of data transfer in the multiple codes approach [Paper IV].

In contrast, in a single code approach, as applied in the thesis, all parts of
the multiphysics problem can be decomposed in the same spatial domains as ex-
emplified in Figure 2.3. In such a scheme, the data transfer between e.g. the
neutronics and the thermal-hydraulics can be performed directly on each sepa-
rate CPU or thread. As the same, monolithic, application runs both the CFD and
the neutronics there are no costs associated with waiting for one of the fields to
be finished or similar. Instead all fields are directly solved in the same code. This
is particularly important for transient applications where a large number of data
exchanges are required.

Solve all fields
Coupled data read

directly from memory

CPU1

CPU2

CPU3

CPU4

Solve all fields
Coupled data read

directly from memory

CPU1

CPU2

CPU3

CPU4

Problem decomposed
using same decomposition

Coupled data shared
on each CPU

Figure 2.3: Example of single code coupling scheme avoiding external trans-
fer [Paper IV].
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2.2 The finite volume method

In this thesis all partial differential equations (PDEs) are solved using the finite
volume method (FVM). FVM is the classical choice for CFD applications, includ-
ing many commercial examples (e.g. Star-CCM+ [59] and ANSYS Fluent [60]),
as well as long term open source projects (e.g. Gerris [61], OpenFOAM R⃝ [62]
and MFIX [63]). Although the finite difference method (FDM) was the historical
choice, in particular for the very early CFD research [64], it is much less popular
today. FDM suffers from restrictions on the grids and the conservation proper-
ties are less favorable than in FVM [65]. Furthermore, the finite element method
(FEM) is applied in some CFD codes (e.g. COMSOL [66]), but still only in a minor-
ity of the commercially available tools. FEM has undoubtedly many advantages,
not the least for higher order discretization, but still to some extent considered
less mature than FVM for fluid systems [67].

In terms of 3D implementations of neutronics (i.e. core solvers), the classical
choices include the FDM or nodal methods [68]. However, in terms of differential
operators in the neutron diffusion and transport equation, the FVM is again a
viable option. To fulfill the objective of a single multiphysics code, the neutronic
equations are here solved with the FVM, as done for the CFD. In particular, FVM
is well suited for unstructured meshes required in the fine-mesh approach in this
thesis.

2.2.1 Equation discretization

The finite volume method relies on a discretization of the computational domain
into control volumes (CVs). The process of discretizing the domain is considered
separately below (Section 2.3.1) and at this point only the discretization of the
conservation equations on an existing grid of CVs is considered. Even though a
full description of the discretization mathematics is out of scope for the current
thesis, a brief and very basic overview is given. A more complete and general pic-
ture can be found in numerous CFD books and publications (for good examples
see e.g. [65, 69, 70]).

For simplicity we consider a standard example from CFD, namely the trans-
port equation of the generic (scalar) quantity θ:

∂θρ

∂t
+∇ · (ρUθ)−∇ · (Dθ∇θ) = Sθ(θ), (2.1)

which is transported in a fluid by a convective velocity U, with a fluid density
ρ, a diffusivity Dθ and some source term Sθ. For the sake of brevity, notation on
the space and time dependence has been removed from all quantities in eq. (2.1).
Upon integration over the CV and after applying the Gauss theorem we get∫

V

∂θρ

∂t
dV +

∑
∀f

Sf · (ρUθ)f −
∑
∀f

Sf · (Dθ,f∇θf ) =

∫
V

SθdV, (2.2)
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where the divergence operator convective term and the diffusion term are trans-
formed to discrete sums over the faces of the control volume by application of the
Gauss theorem.

Concerning the space dependence, FVM assumes a linear variation of a field
both with respect to time and space and, for the collocated approach, cell cen-
tered values of all fields [70]. Accordingly, the volume integrals in eq. (2.2) are
converted to multiplications of the integrand and the volume of the current cell.
For the right hand side source term a linearization in the field can be performed,
increasing the implicitness of the method, such that∫

V

Sθ(θ)dV = VpθpSp + VpSu, (2.3)

where p indicates the cell currently under consideration, Sp and Su correspond to
the coefficients for the implicit and explicit parts of the linearization, respectively.
This is of particular interest for the implementation of the neutronics, where lin-
earizations of both the fission and scattering source terms are needed.

For the convective term, face values of the velocity, density and the generic
quantity are required. The interpolation to faces is of major importance for the
accuracy as well as the robustness of the method. Whereas low order methods,
such as the upwind differencing guarantee boundedness, higher order schemes
such as central differences come at the expense of issues with stability [69].

Similar to the convection, the diffusion term requires a face interpolation of
the density, the diffusivity and the gradient of the field (∇θ). For orthogonal
meshes the gradient can be directly estimated as the difference between the cell
center values in the cells on each side of the face. For non-orthogonal meshes
on the other hand, additional explicit terms are needed (for a detailed overview
see [70]).

To handle the time dependence, eq. (2.2) is integrated in time. The time deriva-
tive is then approximated as

t+∆t∫
t

∫
V

∂θρ

∂t
dV dt = ρp

θnp − θop
∆t

Vp, (2.4)

where the indices n and o refer to the new and the old time step, respectively.
What concerns the rest of the terms of eq. (2.2), for all variables a time step (n or o)
must be chosen. If the old time step is inserted an explicit scheme is achieved,
whereas using the new time step (currently solved for) results in an implicit
scheme. The previous is first order accurate and limited by the Courant num-
ber whereas the latter is in theory first order accurate but unconditionally stable.
In practice however, the first order accuracy of both schemes are undesirable and
therefore the unconditional stability is of secondary importance. Other, higher or-
der time schemes are therefore more popular, and in the current thesis the default
choice is the Crank-Nicholson scheme (second order in time).
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For later discussion on mesh generation (see Section 2.3.1) the following con-
ditions imposed by the applied FVM should be noted:

• Only first neighbors – In the discretization of the convective term and the
diffusion term relations to neighboring cells are computed. In the current
work only first neighbors are considered, resulting in a so called compact
computational molecule. The latter is beneficial for unstructured meshes,
where second neighbors are not trivially defined.

• No hanging nodes – The faces of the CVs are assumed to be one-to-one in the
sense that no single face is connected to more than one face of another cell.

• No curved faces – All faces of the discretized mesh are assumed to be flat.
A curved boundary (such as the outer radius of the fuel pin) is thus repre-
sented by a set of flat faces. In contrast to FEM, where the order of accuracy
can be increased by an increase of degree of base polynomials and with a
non-linear representation of the boundary (see e.g. [71]), FVM instead relies
on a refinement of the mesh.

Although seemingly restrictive, the above assumptions are important to achieve
a performant method with fast discretization and a, generally, well structured
sparse matrix system with few off-diagonal elements.

2.2.2 Sparse matrix solvers

The discretization in time and space results in a set of algebraic equations. It
should be noted that all non-linearities are linearized (as discussed for the source
term), and thus result in a sparse linear matrix system.

In terms of computations, the discretization (and matrix assembly) routines
might take significant computational time. However, the major effort of the CFD
solver is spent on solving the linear system itself. Whereas direct methods are
useful for very small matrices, such methods are out of question for the large
and sparse matrices found in CFD, both due to excessive memory usage and too
high a cost in terms of floating point operations. Instead, iterative methods are
used such as e.g. the Gauss-Seidel method for which a huge number of accel-
eration techniques have been developed over the years [72]. Again more effi-
cient methods are found in so-called projection methods, which include Krylov
subspace solvers such as Conjugate Gradient (CG) for symmetric matrices and
Bi-Conjugate Gradient Stabilized (BiCGStab) which are routinely used in many
CFD solvers. For certain classes of problems, relaxation techniques, such as the
Algebraic Multigrid method (AMG), are a good option.

Although the mathematical details of the sparse matrix solvers are out of
scope for the thesis (for good introductory texts see e.g. [73, 74]), a general knowl-
edge is of importance both for selecting the correct class of methods based on
the matrix properties (hyperbolic, parabolic or elliptic) as well as for tuning the
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methods to achieve good performance. The latter is often a (time consuming) pro-
cess of trial and error. Nevertheless, due to the long simulation times for highly-
resolved simulations presented in this thesis, well chosen parameters can easily
save days of simulation time.

In the presented example (eq. (2.1)), the solution variable θ was assumed to
be a scalar quantity. For vectorial (or tensorial) solution variables a set of such
conservation equations need to be solved for each computational cell. Addition-
ally, with interdependent conservation equations (such as pressure and velocity,
or different neutron energy groups) the couplings must be resolved. In princi-
ple all equations could be discretized together, and after applying the required
linearizations, a coupled system of equations is obtained. In CFD the early day
computers were limited by computer memory and as a result, the matrices were
kept at a minimum size, resulting in the development of segregated algorithms
for the pressure and velocity dependence. The coupled aspects are further dis-
cussed in Section 3.3.

2.2.3 OpenFOAM R⃝

All solvers developed in this thesis are implemented as extensions of the finite
volume framework OpenFOAM R⃝[75] 1, which is a C++ open-source tool for de-
velopment of CFD solvers. The code consists of a library of general routines
focused on formulation, discretization and solution of tensorial equations with
FVM. Furthermore, a set of existing solvers are provided, including classical ap-
proaches such as segregated pressure and velocity solvers for single phase flow,
multi-fluid solvers, conjugate heat transfer and more. For an overview, see the
documentation [77, 78] or third party literature on the code [79, 80].

Considering the objectives of this thesis, some of the key aspects and benefits
of the library are:

• Unstructured meshes – OpenFOAM R⃝ handles unstructured meshes and im-
plements a computational molecule consisting of the nearest neighbors. The
unstructured meshes captures the geometry of the fuel pins and potentially
more complicated core geometries (e.g. the spacers). The library provides
corresponding FVM discretization and differential operators for the fluid
flow and heat transfer applications.

• High level equation format – The code provides a high-level equation inter-
face in which the system equations can be directly written in a user-friendly
manner which effectively hides the underlying equation discretization and
treatment of boundary conditions, etc.

1OpenFOAM R⃝ has since its first release in 2004 been forked multiple times, and in this thesis
the multiphysics code and the subcooled population balance transport code are implemented in
the community version foam-extend [76] whereas the two-fluid stability computations are per-
formed in OpenFOAM foundation version [62].
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• Existing CFD algorithms – Importantly, the library provides the standard seg-
regated fluid solver approaches, including SIMPLE [81] and PISO [82], with
a Rhie-Chow for collocated grid [83]. The previous are the foundations for
the fluid solver for the coolant of the core.

• Turbulence models – Libraries of both Reynolds Averaged models (RANS)
and Large Eddy Simulations (LES) are included, which enable fast integra-
tion of turbulence in new solvers.

• Parallelization routines – The library supports MPI parallelization and all nec-
essary data operators (such as discretization routines, algebra operators) are
written with the parallelization in mind. The code uses a so-called zero halo
layer domain-decomposition, i.e. partitioning of space in non-overlapping
domains.

Except for the above mentioned points, the freely available source code (released
under GNU GPL 3) is another important aspect as it can be extended not only on
the top-level but also for key, lower level, elements of the library.

For this thesis, many parts of the library are exploited without any modifica-
tions. However, for the multiphysics and two-fluid parts of the project, significant
code development was needed. Some of the newly developed parts2 are (in order
of size of code):

• Neutronics solvers – A library for neutronic simulations (diffusion and trans-
port) was required. This includes handling of the cross-sections and treat-
ment of both diffusion and transport equations (SN ).

• LWR multiphysics solver – The multiphysics application was developed to
combine neutronic solvers and fluid solvers.

• Population balance solvers – For Paper VI, PBE solvers for DQMOM and MUSIG
were developed, including the relevant boundary conditions for vapor gen-
eration.

• Mesh intersection utility – A library for intersecting overlapping meshes was
developed. The tool handles the data transfer between the neutronic mesh
and the separate meshes for the solid fuel pins and the coolant (see Sec-
tion 2.3.1).

2The mentioned additions to the code are not part of OpenFOAM R⃝, and the work here pre-
sented is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM
software and owner of the OpenFOAM and OpenCFD trade marks. For any ambiguity on the
rights (and wrongs) of the trademark please refer to http://www.openfoam.com/legal/
trademark-guidelines.php.
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2.3 Computational scheme

An overall view of the computational workflow of the multiphysics solver is pre-
sented in Figure 2.4. The leftmost column corresponds to the pre-processing steps,
namely mesh generation (Section 2.3.1), cross-section generation (Section 2.3.3)
and formatting and acquiring of thermo-physical data for the materials. As for
the material properties, data are extracted from openly available sources and in-
terpolated in the multiphysics solver.

The center column corresponds to the coupled fine-mesh solver for the neu-
tronics and the thermal-hydraulics. As indicated, the two modules exchange all
coupled data, and the procedure for the data mapping is briefly covered in Sec-
tion 2.3.2. The results of the computations are stored on the OpenFOAM internal
format and post-processed by a combination of ParaView [84] and Python utili-
ties.

Although invisible in all included publications and in the current description,
the setup of a coupled case with all initial fields, meshes, thermophysical data,
cross-section sets and decomposition schemes is typically time-consuming and
repetitive. To simplify the process, Python utilities were developed for each of
the applications presented in the appended papers, and the value of such utilities
for work like this should not be underestimated.
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Figure 2.4: Overview of the computational framework for the multiphysics sim-
ulations.
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2.3.1 Grid generation

The generation of computational grids, is a key to the multiphysics simulations,
not least due to the fact that the problem benefits from the use of multiple meshes,
with one or more for each field.

Mesh influence on the results

As regards the influence of the grid quality on the results, some of the key sources
which contribute to mesh-induced errors are [70, 85]:

• Insufficient mesh resolution – If the mesh is too coarse the physics might not
be correctly represented. In particular, large gradients will be poorly repre-
sented and the solution might not be only imprecise but also inaccurate.

• Non-orthogonality error – In the discretization of the diffusion operator, the
gradient at the surface between two neighboring cell centers must be com-
puted. In the case of non-parallel normal of the surface and the vector con-
necting the cell centers a correction of gradient at the surface is required.
Such a correction is often computed explicitly [65], but might lead to insta-
bilities.

• Skewness error – The term skewness is applied when the vector binding
neighboring cells does not cross the common surface in the center. In partic-
ular, the order of interpolation from the nodes to the face centers decreases
from second order to first order.

• Non-uniformity – The mesh uniformity affects the discretization, namely via
the order of accuracy of the computation of face gradient.

In addition, it should be mentioned that in the case of a preferred direction of
the flow (as the case with the dominating axial flow velocity component in the
reactor) it is preferable to have the flow crossing the cells parallel to the normal
of the crossed surface. In practical terms we thus desire prismatic or hexahedral
elements, axially aligned with the flow.

As the gradients in the field govern what regions require a finer discretization,
a non-uniform grid is generally beneficial. The resolution requirements would ei-
ther stem from some a priori knowledge of the solution or on posteriori estimated
errors used to automatically update the mesh accordingly (so called adaptive re-
finement). Whereas we can directly apply the former from a general knowledge
of the reactor core, considering phenomena such as a thermal neutron group peak
in the top and bottom reflectors, the latter is, although tractable, practically cum-
bersome to achieve. In particular, for a refinement by splitting cells to smaller
cells (h-refinement) we want to work on a fully unstructured grid [86], which has
other drawbacks for the multiphysics framework as discussed in the next section.
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Gap mesh
Fuel mesh

Cladding
mesh

Moderator mesh Neutronics mesh

Figure 2.5: Example domain discretization for a single fuel pin with surround-
ing subchannel. Exploded for the thermal-hydraulics (left) and the neutron-
ics (right) [Paper IV].

Multiple meshes

To solve both neutronics and thermal-hydraulics in an efficient manner, multiple
overlapping meshes are required. The neutronic grid must cover the entire do-
main, whereas the fuel, gap and cladding meshes discretize the separate regions
only. In addition, the fluid problem is solved on a mesh covering the domain
outside the solids. An example of the required regions and meshes is given Fig-
ure 2.5, where the separate domains are highlighted.

Depending on the algorithms that couple the different fields of physics, dif-
ferent conditions are imposed on the mesh characteristics. A good overview of
some mesh generation issues specific to the reactor geometry is given by Hansen
and Owen [87], where among others the following key aspects are notable:

• Mass preservation – A mesh with flat surfaces induces an error in the rep-
resentation of the underlying body. Figure 2.6 gives an example where a
fuel pellet is discretized with two alternative meshes; the full lines apply a
discretization of 3 elements in the azimuthal direction whereas the dashed
discretization uses 6 elements. In the magnification of the point at ϕ = π/6
it is seen that the actual cylinder (red) is not exactly captured by any of the
two meshes. Although seemingly small, the impact on the criticality value
of the reactor might be important.

• Multiple mesh consistency – Not many available meshing tools are built for
multiple mesh support, especially not considering the need for overlap-
ping meshes with preserved material regions. Preferably, a mesh generator
should handle situations as the one presented in Figure 2.6 in a consistent
manner for all the meshes.

In addition, two more aspects were found important during the method develop-
ment for this thesis:
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Figure 2.6: Quarter fuel pin discretization with a 9 elements (solid lines) or 18
elements (dashed lines).

• Domain decomposition – As all the calculations are performed on HPC re-
sources with MPI, the domain must be decomposable into different regions.
To achieve an efficient decomposition of the multiphysics problem, one ap-
proach is to decompose all fields of physics using the same spatial partition-
ing. This ensures that the data transfer between the modules (e.g. neutron-
ics power level to the fuel heat transfer mesh) is done on the same CPU. To
achieve this, a strictly controlled meshing process is required, where all the
different meshes have cell faces coinciding at the surfaces used for spatial
partitioning.

• Mesh repeatability – Since the geometry of the reactor consists of square or
hexagonal lattices, at least in the case of the commercial designs, a consis-
tent meshing throughout the fuel assembly is needed. That is, for the same
pin cell geometry, the same mesh topology should be computed. This is
achievable with block structured meshes where one can assure a perfect
match at the interface of the pin cells. For an unstructured mesh this is not
directly feasible (or at least difficult to achieve given the previous point of
material region preservation).

The described key aspects are not very closely related to the archetype case of
the single monolithic mesh covering the full domain. Although the mentioned
issues are not particularly challenging from a theoretical point of view, the com-
bination of requirements still makes for a practical problem requiring special pro-
cedures (in the sense of not directly applicable in the commercial CFD codes). As
an example from the literature, Tautges and Jain [88] describe a hierarchal proce-
dure for building meshes for hexagonal as well as square lattices with a sufficient
resolution for CFD, taking advantage of the repeated structures. Such procedures
are a good attempt, at least up until the point where the level of detail is further
increased. For the case of explicit modeling of spacers, a fully unstructured mesh
is generally unavoidable (see e.g. [40, 89]).
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Development of mesh capabilities

If we summarize the above discussion, the criteria include that the meshes should
be:

• preferably structured with minimized non-orthogonality and surface nor-
mals aligned with the flow direction,

• conformal with the domain decomposition such that no inter-node data
transfer is required for the multiphysics couplings,

• easy to control in terms of the resolution, in order to minimize the degrees
of freedom,

• repeatable for all pin cells, and

• body-fitted to capture advanced geometries such as spacers.

To fulfill as many criteria as possible, two different solutions were tested. In the
first part of the project (essentially [Paper I]) the meshes were generated with
the SALOME platform [90]. An example of the meshes produced is given in Fig-
ure 2.7. The SALOME platform includes both pre-processing and post-processing
together with different capabilities for code coupling and was applied as the
framework tool for the NURESIM project [91]. For the current example, only
the meshing tools were tested.

The meshes from [Paper I] are of hybrid character, with structured regions
for the boundary layers (i.e. fluid regions close to the walls) and unstructured
regions in the bulk of the fluid and the fuel pin. Although the software could
be controlled via a Python interface, the possibilities to full control the mesh was
found limited (at least in 2012).

To increase control, especially to get full consistency between all mesh regions
and in the whole fuel lattice, an alternative meshing code was developed within
the project. The code consists of an object-oriented Python framework in which
the grids are built from macro objects in a block-structured manner. An example
of a computed block-structured mesh of a spacer from the PSBT benchmark [92]
is illustrated in Figure 2.8. The macro objects are discretized as blocks with an
internal Cartesian discretization in (nx, ny, nz) cells. The FVM formulation ap-
plied does not allow hanging nodes, and thus all intersecting blocks must have a
consistent face discretization.

The block-structured method has the benefit of exact control of the discretiza-
tion of each block and, accordingly, a shared preservation of all geometric regions
between different meshes. However, there are drawbacks, and in particular the
block-structured mesh will be governed by the regions of the finest mesh reso-
lution which will propagate through the mesh. An example issue is seen in Fig-
ure 2.9, where the corners of the moderator mesh are influenced by the structure
of the spacer, which gives artificial transitions between different regions in the
mesh.
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Figure 2.7: Example of mesh generated via SALOME (adaptation from [Paper
I]).

Figure 2.8: Block-structured mesh of a spacer for a pin cell. The solid fuel pin is
indicated by the low opacity orange region.
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Figure 2.9: Example of moderator mesh for a pin cell including a spacer as
shown in Figure 2.8.
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A configuration file ensures rapid control of the discretization and the system
geometry (fuel pin radius, number of spacers, fuel pin lattice size, etc.). On the
drawback side, it should be noted that the geometrical template structures are in-
ternally specified, e.g. the spacer geometry is hard coded from blueprints except
for some general parameters such as height and material thickness. This is the
price of the block-structured approach; the developer needs to more or less man-
ually build the block structures internally. However, with the developed object
oriented library, modifying the geometry or building new geometries are suffi-
ciently fast. Also, this should be considered a programmatic approach to pure
hexahedral meshing as can be done through interfaces in some mesh generators
(such as e.g. ANSYS R⃝ ICEM [93]).

The developed mesh tool additionally creates the required initial and bound-
ary conditions for all fields. Furthermore, the output of the mesh generator con-
tains blocks with corresponding discretization, points and groups of block faces
for the boundary conditions. The application generates the exemplified mesh
(Figures 2.8 and 2.9) for 3 spacers in a 1 m long system in approximately 10 sec-
onds. The short generation time is a benefit of the block-structured approach
where not every single cell needs to be computed but only the blocks building
the structures.

It should be noted that the generality of the tool is limited and, as discussed
above, a more complicated spacer geometry would require an unstructured mesh.
An extension of the tool would be to use unstructured meshes for certain regions
of the multiphysics meshes, and specifically ensuring that the outer surfaces of
such regions are consistent with neighboring block regions.

2.3.2 Mesh mapping

As described above, different meshes are applied for the different fields. To
achieve data transfer between meshes of different resolution and structure a map-
ping algorithm is required. The problem can be solved by a point-to-point inter-
polation, advantageously accelerated by clever data sorting and decomposing the
problem (see e.g. [94]). Alternatively, a direct overlap between the meshes could
be computed such that volumetric intersections are used to map the data trans-
fer. A schematic example of the latter approach is displayed for a 2D problem
in Figure 2.10. An advantage of intersection approach is that the interpolation
is directly conservative, and such a property was the rationale for choosing this
approach for the current work. A more detailed discussion on the algorithm and
its limitations is given in Paper IV.
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MESH A MESH B

Cell j in mesh A

Intersection Iij
between cell j
in mesh A and
cell i in mesh B

Cell i in mesh B

Figure 2.10: Example of mapping of two overlapping meshes. The intersection
Iij is used to compute interpolation weights for two-way interpolation between
cells i and j. [Paper IV]

2.3.3 Cross-section generation and utilization

Except for meshes and the material thermophysical data, the multiphysics tool re-
quires macroscopic cross-sections for the neutron solvers. The actual application
of the cross-sections in the neutronic equations is postponed to Section 3.1, but as
the preparation of the cross-sections requires a methodology in itself, a descrip-
tion is given of the criteria for and how to efficiently compute such cross-sections.

Prerequisites and potential methodologies

Based on the objectives of sub-pin resolution in the fuel and the fine-mesh multi-
physics coupling, the prerequisites are that the cross-sections should be:

• valid at a sub-fuel pin scale,

• discretized in G energy groups (where G ≪ 100),

• providing higher order (PN ) scattering matrices,

• parametrized on the thermophysical state (temperature, density, etc), and

• useful in combination with the multiphysics setup as described in the pre-
vious section.

In particular, the last and the first point turns out to be challenging as the required
scales are not the same as in the standard neutronics workflow (as described in
Section 1.2.1). Three alternative approaches to generate the cross-sections were
identified:
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1. Generate macroscopic cross-sections directly from the nuclear data libraries
with correct handling of resonances, with a large number of energy groups.
This could either be done in a lower dimension spatial calculation or on
parts of the actual simulated 3D domain. A detailed overview of the stages
associated with lattice computations and cross-section generation is given
by Knott and Yamamoto [3] and it is clear that this process would require a
major effort in terms of methodology development, and it would later risk
to significantly increase the simulation time.

2. Directly apply cross-sections generated by a lattice code. This option was
investigated in the early stages of the project (primarily for the commercial
codes CASMO-4E [95]), but it was found that the available output was pro-
vided on a scale much coarser than required. As described in Section 1.2.1,
the lattice codes are aimed at generating fuel assembly cross-sections in few
energy groups for the core solvers. As a result, the geometry and scales of
the condensation and homogenization processes do not match the criteria
for the fine-mesh simulations. It should be noted that there are examples
of open source lattice codes (e.g. DRAGON [96]) which could potentially
be modified or extended to produce the desired set of cross-sections. How-
ever, also for such alternatives there are severe limitations when it comes to
non-standard geometries (e.g. a spacer) and again a major effort would be
required to extend the code and develop such a model.

3. Compute macroscopic cross-sections with a Monte Carlo approach. This
option has the benefit of a very flexible geometry, where most Monte Carlo
codes supports combinations of a range of primitive mathematical geome-
tries. The obstacle for this alternative is that macroscopic cross-section gen-
eration is not historically a standard functionality of such solvers. The long
term state-of-the-art code MCNP [97] has been user modified for such gen-
eration [98], and the proposed methodology was tested. However, the im-
plementation achieved was found inefficient and inconsistent wherefore the
early attempts were abandoned. It should however be noted that the same
group performed the reversed operation, i.e. performing calculations in
MCNP based on macroscopic cross-section [99], which was successfully ap-
plied in noise calculations related to the current thesis [100]. As an alterna-
tive to MCNP, the code Serpent [101] was tested and found more suitable
since macroscopic cross-section generation is a built-in utility and can be
applied for specific regions of the simulated domain (such as a small part of
a fuel pin).

Decidedly, all three alternatives have benefits and in particular the first option is
tractable from a theoretical point of view. Under transient conditions, where the
reactor is potentially far from critical, a general assumption of criticality might
give significant impact on the cross-section [102]. With the first option, an on-
the-fly approach could potentially compute the cross-sections valid for the actual,
and not necessarily critical, state of the reactor. However, as noted above, such an
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alternative is associated with a large development effort and a significant compu-
tational cost.

From a framework point of view, the third option was judged as the choice
easiest to implement and deploy in the multiphysics solver since Serpent includes
advanced geometries and cross-section generation and extraction. Nevertheless,
the resolution required in this project is still not a default case and the code is not
explicitly prepared for generation of many sets of cross-sections on small parts of
a fuel assembly or fuel pin. For this reason, and to pre-process the cross-sections
for use with the deterministic solver, a wrapper code was developed (described
below).

Given the choice of Serpent it is tempting to entirely discard the idea of the de-
terministic neutron transport solver. Why should we use a discretized, condensed
and homogenized approach to the neutron transport when we can readily per-
form simulations in continuous energy with no discretization errors associated
using Monte Carlo? In particular, the availability of detailed geometrical descrip-
tions and accurate solution to the transport problem are appealing. Although the
arguments for a Monte Carlo approach are indeed strong for steady simulations,
there are still some aspects that support the choice of a deterministic approach:

• Transient simulations – Whereas steady-state coupled reactor problems have
been performed with Monte Carlo methods for a number of years, transient
algorithms are less developed. Examples of simulations of short transients
with Serpent (without delayed neutron handling) exist in the literature [103,
104]. Also methodologies for longer transients, i.e. where delayed neutron
handling is essential have been proposed [105] but still seem to be under
development and not yet sufficiently mature to be a viable option.

• Simulation time – Monte Carlo simulations are associated with a significant
cost, in particular when compared to heavily optimized core simulators. In
the current case of fine meshes the difference could be expected to be smaller
but nevertheless significant.

• Resolution of coupling – In order to perform a direct fine-mesh coupling be-
tween the CFD and the Monte Carlo solvers, a fine geometrical resolution of
the tallies would be required. Consequently, the Monte Carlo simulations
must be run for a long time to reach low statistical errors for each small
volume coupled to the fluid solver. To get a high precision for very small re-
gions in space would induce a much higher cost than getting precise global
parameters.

• Inconsistent parallelization schemes – Due to the independence between the
simulated neutron histories the Monte Carlo software is most conveniently
parallelized by duplicating the system, run on separate processors/threads
and then recombining the data in a statistically consistent manner. In con-
trast, the large scale CFD solvers parallelize by domain decomposition. A
tightly coupled parallelization schemes, such as presented in Figure 2.3,
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would thus not be readily achievable. The monolithic code approach is par-
ticularly important for transient solutions with a lot of data exchanges.

Whereas the latter three points could be overcome by (extended) simulation times,
the first point is decisive for the current project. In the long run, transient simu-
lations are of particular interest and to get a relevant coupling to the CFD solver
and to the scenario length of the transients, requires handling of the delayed neu-
trons.

Cross-section generation using Serpent

To generate cross-sections for the fine-mesh resolution in Serpent a wrapper ap-
plication was developed. Similar to the mesh application described above, the
tool is developed to automatically create a fuel assembly geometry, but here for
the purpose of detailed cross-section generation. The application has the major
benefit that the, quite error prone, input format of the Monte Carlo code is hid-
den. Instead a configuration file with much fewer option and only the necessary
geometry details is sufficient to setup a case. The utility requires the following
information:

• the lattice pitch together with the number of fuel pins, and the respective
type of pin at each position,

• the desired resolution of the cross-section set in terms of radial and az-
imuthal regions in the fuel, gap, cladding and moderator as exemplified
in Figure 2.11,

• the desired number of energy groups,

• the material properties, including densities and isotopic compositions, and

• the radial temperature profile in the fuel as well as in the moderator.

For the moderator, the application computes the relevant density properties
and applies this to the material of the particular region in space associated with
the specified temperature. It should be noted that Serpent handles the Doppler
broadening associated with a certain material temperature, but the application
still need to determine and supply Serpent with the correct cross-section table.

In principle three dimensional sets of cross-sections could be computed with
both a horizontal and axial resolution. However, as discussed above, finer res-
olutions require longer simulation times to get the desired statistical confidence
intervals. Furthermore, as the cross-section generation is not at the core of the
project, a reasonable assumption is to use axially independent cross-sections, i.e.
relying on a horizontal slice with reflective boundary conditions in the axial di-
rection.

Given the above specified information, an input file is created for Serpent and
then run with the same tool. After the simulation is finished, the same application
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Symmetry line

2 % UOX
2 % UOX with 2% Gd2O3

4 % UOX
Water, 1000 ppm boron
Gap, helium
Reflective boundary

Figure 2.11: Fuel pin discretization in horizontal plane, using 4 azimuthal and
8 radial regions per pin cell, in total 1775 regions [Paper IV].

computes temperature dependent cross-section files for the multiphysics and geo-
metrical descriptions of each of the regions (radial and azimuthal information) in
an OpenFOAM R⃝ specific format. The latter is necessary to compute sets of cells
from the computational meshes for which each group of cross-sections should be
applied.

The geometry in Figure 2.11 shows the actual cross-section regions, in total
1775 regions for the multiphysics computation in [Paper IV]. The Serpent input
file for the presented case is more than 8000 lines long, which emphasizes the
need for the automatic procedure. The input for the wrapper is 100 lines long.

Implicitly, the described process includes a number of assumptions whereof
the most notable are that:

• the cross-section generation is performed under the assumption of periodic
boundary conditions, i.e. a system with an infinite number of identical fuel
assemblies, and

• the cross-sections are computed for static temperature profiles, a priori de-
termined but potentially updated by an iterative process between the Ser-
pent wrapper and the multiphysics simulations.

Similar to the meshing utility, the tool is implemented as an object-oriented
library in Python. The object-orientation has many practical features when it
comes to the geometry modeling. The simulation time of the script itself is negli-
gible in comparison to the Monte Carlo simulation.
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CHAPTER 3

Models for the coupled LWR
single-phase problem

After the introduction of the multiphysics problem with current standard and
high-fidelity approaches in Chapter 1 and the overview of the computational
methods in Chapter 2, this chapter introduces the neutronic and thermal-hydraulic
models. Except for describing the transport equations for each of the modules a
brief discussion is given on the options available to solve the non-linear multi-
physics problem.

On a side note, the step going from the mathematical formulation in this chap-
ter to the implementation in the FVM framework described in the previous chap-
ter is seemingly large. To provide enough detail to directly repeat the numeri-
cal experiments is unsatisfactorily difficult (and page consuming). Such a deep
rift between reported equations and actual implementation is commonly seen in
the open literature, and is unfortunate. Although the next chapters (4 and 5) in-
troduce some additional details, the current chapter should be better seen as an
overview description of the neutronics and thermal-hydraulics.

3.1 Formulation of the neutronic problem

The transport of neutrons in the reactor core is governed by the linear Boltzmann
equation, here written in an integro-differential form, such that [106]

∂

∂t
n(r,Ω, E, t) + Ω · ∇Ψ(r,Ω, E, t)+ΣT (r, E, t)Ψ(r,Ω, E, t) =∫

(4π)

∞∫
0

Σs(r,Ω
′ → Ω, E ′ → E, t)Ψ(r,Ω′, E ′, t)dΩ′dE ′+
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χ(E)

4π

∞∫
0

νΣf (r, E
′, t)Φ(r, E ′, t)dE ′, (3.1)

where the neutron density (n(r,Ω, E, t)) is related to the angular neutron flux as

Ψ(r,Ω, E, t) = v(E)n(r,Ω, E, t), (3.2)

which in turn is related to the scalar flux Φ(r, E, t) as

Φ(r, E, t) =

∫
(4π)

Ψ(r,Ω′, E, t)dΩ′. (3.3)

The balance equation eq. (3.1) is not analytically solvable except for simplified
problems and in general we need to rely on numerical methods to resolve the
neutron distribution in the core.

In order to solve eq. (3.1) in the FVM framework as described above, we dis-
cretize the solution space consisting of time (t), space (r), angle (Ω) and energy
(E). The space discretization was already briefly discussed in Section (2.2.1), and
instead, the balance equation is first discretized in terms of neutron energy such
a set of G energy intervals is defined as

[Emin, Emax] =
G∏

g=1

[Eg, Eg−1], (3.4)

with the purpose of writing eq. (3.1) as a set of G discrete equations, coupled in
the discrete energy space. Such a set of relations are computed by integrating the
balance equation over each energy interval g with 1 < g ≤ G. As an example the
scalar neutron flux Φ(r, E, t) is discretized as

Φg(r, t) =

Eg−1∫
Eg

Φ(r, E, t)dE. (3.5)

For the cross-sections and the other energy dependent parameters of eq. (3.1), flux
averaged quantities need to be computed, where e.g. the energy discretized total
cross-section is given by

ΣT,g(r) =

Eg−1∫
Eg

ΣT (r, E)Φ(r, E)dE

Eg−1∫
Eg

Φ(r, E)dE

. (3.6)
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The weighting procedure is a key aspect of the cross-section generation and due
to the complex energy dependence (see the example of the fission cross-section in
Figure 1.1), such weighting must be carefully and consistently performed. In the
current work this is implicitly achieved by the internal flux weighting in Serpent.
After discretizing all terms of eq. (3.1), the balance equation for energy group g is
given by

1

vg

∂

∂t
Ψg(Ω) + Ω·∇Ψg(Ω) + ΣT,gΨg(Ω) =∫

(4π)

G∑
g=1

Σs,g′→g(Ω
′ → Ω)Ψg′(Ω

′)dΩ +
χg

4π

G∑
g′=1

νg′Σf,g′Φg′ , (3.7)

where the space and time dependencies are left out for the sake of brevity and
the neutron density n(r,Ω, E, t) is written in terms of the angular flux according
to eq. (3.2).

For the time dependence, the thesis includes both steady-state and time-dep-
endent neutronics solvers. For the steady-state solver the time dependence in
eq. (3.8) is discarded and a normalization factor 1/keff is multiplying the fission
source of the balance equation such that

Ω · ∇Ψg(Ω) + ΣT,gΨg(Ω) =∫
(4π)

G∑
g=1

Σs,g′→g(Ω
′ → Ω)Ψg′(Ω

′)dΩ +
χg

4πkeff

G∑
g′=1

νg′Σf,g′Φg′ , g = 1, ..., G. (3.8)

The equation now takes the form of an eigenvalue problem where the eigenvec-
tors are the (angular) neutron fluxes and the smallest eigenvalue corresponds to
the inverse of the criticality factor (keff).

For the transient approach the time derivative is retained and in addition the
fission source of neutrons is split in two parts, the contributions from the prompt
neutrons and the delayed neutrons. The prompt neutrons are released immedi-
ately after the fission event. In contrast, the delayed neutrons are released after
decay of the fission products with a varying time delay. In order to account for
the accumulation of such precursors of delayed neutrons and the contribution
to the balance equation, additional conservation equations for the precursors are
added. Due to the large number of different fission products decaying, the pre-
cursors are routinely grouped in I groups, with one conservation equation per
group. The balance equation for the transient problem is then given by

1

vg

∂Φg(r, t)

∂t
∇ · Jg(r, t) = −ΣT,g(r, t)Φg(r, t) +

G∑
g′=1

Σs0,g′→g(r, t)Φg′(r, t)

+ (1− β)χp
g

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t) + χd
g

I∑
i=1

λiCi(r, t), g = 1, ..., G,

(3.9)
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with the precursor concentrations (Ci) calculated as

dCi(r, t)

dt
= βi

G∑
g′=1

νg′(r, t)Σf,g′(r, t)Φg′(r, t)− λiCi(r, t), i = 1, ..., I. (3.10)

As seen from eqs. (3.9) and (3.10) the equations are interdependent and must be
solved together, either by explicit iteration or in a more implicit manner.

For the angular discretization, two different alternatives will be considered in
this thesis, namely the diffusion approximation, in which the angual dependen-
cies are removed, and the discrete ordinates method.

3.1.1 Diffusion approximation

The diffusion approximation for the angular dependent neutron transport equa-
tion is achieved in three steps. First, the neutron transport equation is integrated
over all angular space such that eq. (3.8) gives

∇ · Jg + ΣT,gΦg =

∫
(4π)

∫
(4π)

G∑
g=1

Σs,g(Ω
′ → Ω)Ψg(Ω

′)dΩdΩ′ +
χg

keff

G∑
g=1

νg′Σf,g′Φg′ .

(3.11)

Secondly, the scattering kernel (Σs,g(Ω
′ → Ω)) is assumed to be isotropic, i.e.

Σs(r,Ω
′ → Ω, E ′ → E) =

Σs0(r, E
′ → E)

4π
. (3.12)

Finally, we apply Fick’s law to approximate the current as [107]

J(r, E) ≈ −D(r, E)∇Φ(r, E). (3.13)

Inserting eqs. (3.12) and (3.13) in eq. (3.11) then gives the final form of the steady-
state diffusion equation as

−∇ (Dg∇Φg) + ΣT,gΦg =
G∑

g′=1

Σs0,g′→gΦg′ +
χp
g

keff

G∑
g′=1

νΣf,g′Φg′ . (3.14)

Advantageously, the diffusion equation efficiently reduces the solution space for
the neutron distribution as only one equation is solved per energy group. How-
ever, the approximation of isotropic scattering and the use of Fick’s law is known
to reduce the accuracy, in particular for heterogeneous regions such as close to the
interface between the fuel pins and the moderator. A more rigorous derivation of
the diffusion equation using P1 theory is given in Bell and Glasstone [107].
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3.1.2 Discrete ordinates method

As an alternative to the diffusion approximation of the angular flux, there are
many methods to actually resolve the angular flux, or at least some degree of
it. Just like space or time, the angular dimension requires discretization. In the
spherical harmonics (PN ) method the angular flux is expanded in terms of a spher-
ical harmonics base of order N (with couplings to higher order terms neglected),
which results in a set of coupled equations for the flux expansions (see e.g. [68,
106]). In the discrete ordinates method (SN ) the angular space is instead covered
with a set of discrete directions. The neutron transport equation is solved for each
such direction. The latter method (SN ) is the method applied in this thesis.

In more specific terms, for the steady state discrete energy problem, eq. (3.8)
is written for one specific ordinate (i.e. streaming direction) Ωm [108]

Ωm · ∇Ψm,g + ΣT,gΨm,g = Sm,g +
1

k
Fm,g, (3.15)

where the fission source (Fm,g) is defined as

Fm,g ≡ χg

M∑
m′

wm′

G∑
g′=1

νg′Σf,g′Ψm′,g′ , (3.16)

and the scattering term is expanded in terms of Legendre ploynomials (Pl) and
written for a discrete number of ordinates M such that

Sm,g ≡
L∑
l=0

(2l + 1)
M∑
m′

Pl(Ωm · Ωm′)wm′

G∑
g′=1

Σs,l,g′→ gΨm,g′ . (3.17)

The scalar flux (Φg) is computed as a weighted sum of the flux for each direction,
such that

Φg = 4π
M∑
m

wmΨm,g, (3.18)

where the weights (wm) are associated with the chosen quadrature set as dis-
cussed next.

The set of discrete directions (Ωm) and weights (wm) is decisive for the accu-
racy of the solution of the M coupled transport equations. The optimal set is
unfortunately problem specific (see e.g. [110]). However, in general a larger num-
ber of discrete directions will recover the angular flux with a better accuracy. In
this thesis specifically, the level symmetric quadrature set is applied (for further
details see e.g. Hébert [68]). An example of the set of directions for such a set of
order 9 is shown for the first octant in Figure 3.1. As seen in the figure, the set of
directions is symmetric as regards all Cartesian axes.

Computationally, the most costly part of eq. (3.15) is the evaluation of the
scattering term, where each evaluation of Sm,g for a specific m and g requires
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Figure 3.1: Example discretization of an octant of the angular space using level
symmetric quadrature of order 8 with µ1 = 0.20 according to [109].

(L × M × G) summations. In order to reduce the cost of this computation the
scattering source is projected on a spherical harmonics basis, specifically the real
spherical harmonic functions as defined by Hébert [68], such that eq. (3.17) can
be written

Sm,g =
G∑

g′=1

L∑
l=0

(2l + 1)
l∑

r=−l

Rlrϕg,l,rSs,l,g′→g. (3.19)

The quadrature set applied in this thesis represents the spherical harmonics or-
thogonality up to a degree L = N/2 [68] and therefore a smaller number of expan-
sion coefficients ϕg,l,r than the actual number of discrete ordinates are required.

The SN method is well known to converge slowly for many types of prob-
lems [111]. Commonly, different accelerating schemes are applied to decrease the
number of iterations required to resolve the angular interdependence between
the different directions in the scattering source (explicitly in eq. (3.17) or implicitly
via the projection on the spherical harmonics in eq. (3.19)). One classical method
is the diffusion synthetic acceleration (DSA) [112]. Successful implementations of
such accelerated schemes are known to be dependent on a discretization consis-
tent with the original SN implementation [113]. Moreover, some classical schemes
like the DSA have been shown to work worse in cases of multidimensional cases
with strong material heterogeneities (which very well describe the systems of in-
terest in this thesis). Another possible approach, is to solve the problem using
a Krylov method, which has been reported to decrease the dependence on the
discretization [113]. What regards the neutronics solver developed for this the-
sis, a Krylov method is by hypothesis a better candidate for the unstructured (or
at least non-Cartesian) approach. However, in the current scope, the coupling
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between the ordinates was resolved by source iteration.

3.2 Single-phase fluid flow and heat transfer

The single-phase flow problem in a LWR is goverend by the conservation equa-
tions for mass, momentum (the so called Navier-Stokes equations) and enthalpy
written as [114]

∂ρ(r, t)

∂t
+∇ · (ρu) (r, t) = 0, (3.20)

∂(ρu)

∂t
(r, t) +∇ · (ρu⊗ u) (r, t) = ∇ · τ(r, t)−∇p(r, t) + ρ(r, t)g, (3.21)

and

∂(ρh)

∂t
(r, t)+∇·(ρuh)(r, t) = −∇·q′′(r, t)+q′′′(r, t)+¯̄τ(r, t) : ∇⊗u(r, t)+∇·(up) (r, t).

(3.22)
The interpretation of the heat source terms (q′′ and q′′′) is discussed in detail in
Section 3.2.3. The complexity of the equations is manifold. First, eqs. (3.20)–(3.22)
are all interdependent through the fluid velocity (u) and (except for the continu-
ity equation) through the pressure (p). Secondly, the equations are non-linear in
the solution variables u, h and p (or alternatively ρ). Thirdly, all material data
in eqs. (3.20)–(3.22) vary with the thermophysical state of the system, which in
turn will change due to the enthalpy rise in the heated channels in the core. For
all three mentioned reasons, an iterative (or non-linear) algorithm is required to
resolve the dependencies, and this is further discussed in Section 3.2.2 below.

The single-phase problem with low Mach numbers can often be solved as an
incompressible flow, for which the criteria on the density is that

1

ρ

Dρ

Dt
= 0. (3.23)

For the single-phase reactor core problem, the characteristic velocity is indeed
significantly lower than the speed of sound in the coolant (Ma < 0.01). However,
due to the heating of the water the density change will violate the condition in
eq. (3.23). Considering the thermodynamic equation of state we can write [114]

1

ρ

Dρ

Dt
= α

Dp

Dt
+ β

DT

Dt
, (3.24)

where α is the isothermal compressibility and β is the bulk thermal expansion
coefficient. Although α is small in the case of liquid water, the flow should still
be considered as low speed compressible due to the changes caused by the tem-
perature change.

For the incompressible flow, the coupled eqs. (3.20)–(3.21) are typically solved
in terms of pressure and velocity, whereas a compressible solver is often posed
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Chapter 3: Models for the coupled LWR single-phase problem

in terms of velocity and density (see e.g. [65, 115]). In the current case, a so-
called weakly compressible approach is needed, with special attention given to
the dependence on temperature for all transport coefficients.

In addition to the fluid conservation equations, an energy equation for the
fuel pins must be formulated. Such a balance equation is coupled to the energy
equation of the water at the interface of the fuel pin and accordingly results in a
conjugate heat transfer problem between the fuel pins and the fluid. The treat-
ment of the heat transfer is discussed in detail in Section 3.2.3.

3.2.1 Turbulence

The conservation equations (3.20)–(3.22) describe local and instantantaneous flow
and due to the large range of time and length scales involved a direct solution to
industrial scale problems is still not feasible. Indeed, solutions resolving all the
characteristic scales of the flow, i.e. to the smallest dissipation scales of the turbu-
lence, can be computed with Direct Numerical Simulation (DNS) (see e.g. [116]).
However, due to the enormous computational requirements only limited domains
with relatively low Reynolds numbers can be simulated even with the current
state-of-art HPC resources.

Instead of the direct approach, we need to approach the equations with a fil-
tered or averaged approach. From a computational perspective, two methodolo-
gies, or rather classes of methodologies, are commonly found in CFD, namely
Reynolds-Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES),
which are both popular and widely applied in nuclear engineering [117]. In the
current thesis the prior has been used as a first approach. Later experimentation
with LES was performed and due to the generally increased resolution, the cost
of such simulations are significantly larger than the RANS counterpart. Never-
theless, LES is a future candidate for the coupled transient calculations within
the multiphysics tool.

RANS

In RANS, a filtering of the conservation equations is performed via a decomposi-
tion of each field in its mean value and a temporally fluctuating component. The
details of the procedure is well covered in the literature (see e.g. [65, 116, 118,
119]), and here we will be satisfied with the final form of the mass, momentum
and enthalpy equations after the insertion of the decomposed velocity, pressure,
and enthalpies and time averaging the equations given by

∂ρ

∂t
+∇ · (ρU) = 0, (3.25)

∂(ρU)

∂t
+∇ · (ρU⊗U) = ∇ · τ −∇ · ρu′ ⊗ u′ −∇P + ρg, (3.26)
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and
∂(ρH)

∂t
+∇ · (ρUH) = −∇ · q′′ + q′′′ +∇ · (UP ) +∇ · (u′p′) + τ∇⊗U−∇ · (ρu′h′),

(3.27)

where space and time dependence (r, t) is omitted for brevity, capital letters are
used for mean quantities (U, H , P ) and primes indicate the fluctuating compo-
nents (u′, h′, p′).

To close eqs. (3.25)–(3.27), the terms with fluctuating components must be
modeled. As regards the momentum equations, the Reynolds stress tensor u′⊗u′,
could be solved for by using six additional (all permutations of u′

iu
′
j , assuming

symmetry) equations which then model the Reynolds Stresses. Alternatively, and
computationally cheaper, the Boussinesq assumption could be applied such that
in a tensor notation

ρu′
iu

′
j = µt

(
Ui,j + Uj,i −

2

3
Uk,kδi,j

)
− 2

3
ρkδi,j, (3.28)

where the model is posed in terms of a turbulent kinetic viscosity µt and the tur-
bulent kinetic energy k. Instead of solving for the Reynolds stresses, an equation
for k is solved, and in turn additional equations could be added to model some
source term in the k-equation. The open literature contains a plethora of different
models to close the equation for turbulent kinetic energy with different supposed
strengths and weaknesses. In this thesis the standard k − ϵ model is used, i.e. a
two-equation model to compute the turbulent kinetic energy and the turbulent
dissipation combined into a model for the turbulent kinetic viscosity.

In addition to the closure for the Reynolds stresses, models are required for
terms with primed quantities in the enthalpy equation. As regards the last term
of eq. (3.27), this can be modeled as an additional contribution to the thermal
conductivity in the spirit of the Boussinesq assumption (covered in Section 3.2.3)
whereas the term ∇ · (u′p′) is assumed negligible.

It should be noted that the equations above are in principle the Unsteady
RANS equations (URANS) as the time derivatives are kept. For the steady-state
version of the model (RANS) the time-derivatives are taken out, and this is the
model applied in Papers I, II and IV. The interpretation of URANS is not without
controversy (see e.g. [117]) and the fluctuations in the results computed with such
a model are likely doubtful at the best.

3.2.2 Pressure and velocity algorithms

As noted above, eqs. (3.20)-(3.22) are coupled via pressure and velocity and an it-
erative or non-linear approach is required to resolve the dependencies. The most
classical approaches in CFD is to solve the problem linearized and one compo-
nent and equation at a time, i.e. using a so-called segregated approach. The SIM-
PLE algorithm [81] has been the de facto standard for steady-state pressure-based
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incompressible solvers since the 1970s. An important element of the method is
the formulation of a pressure equation given the continuity and Navier-Stokes
equations. Interestingly, the mass (or continuity) equation lacks an explicit depen-
dence on pressure. In a mathematical formalism, eqs. (3.20) and (3.21) written in a
matrix format give a saddle-point problem, essentially lacking the diagonal term
in the system matrix (see e.g. [120]). The solution proposed in SIMPLE could for-
mally be seen as a two stage procedure where the velocity is approximated from
the previous pressure solution, followed by the solution of the pressure field com-
puted via the Schur complement of the system matrix.

In a similar manner as the SIMPLE algorithm, the unsteady PISO algorithm [82]
relies on an iterative approach to resolve the pressure and velocity dependencies
(for further details on the formulation and the implementation see e.g. [80]). The
SIMPLE algorithm was applied in all steady–state simulations in this thesis (Pa-
pers I, II and IV) and PISO for the transient simulations (Papers V and VIII).

3.2.3 Heat transfer problem

The LWR core requires the conjugate heat transfer problem to be solved as the
heat generated in the fuel pins is extracted via the fluid coolant. The enthalpy
balance in the fluid was already described by eq. (3.22). However in order to di-
rectly solve both the fluid and the solid regions in a monolithic, implicit system it
is convenient to use the same solution variable for energy throughout the domain.
As the solid region is described by the temperature conduction equation

ρ(r, T, t)cp(r, T, t)
∂T (r, t)

∂t
= ∇ · (K(T )∇T (r, t)) + q′′′(r, t), (3.29)

the fluid enthalpy equation is re-written in terms of temperature [109]. The result-
ing fluid equation is written as

∂(ρcpT )

∂t
+ ρcpU⃗ · ∇T = βU⃗ · ∇P +∇ · (K∇T ) + q′′′, (3.30)

where β is the termal expansion coefficient of the fluid and where Fourier’s law of
conduction has been applied to model the surface heat flux in terms of a diffusion
term. The thermal conductivity parameter (K) additionally includes a contribu-
tion from the turbulent diffusivity.

Although the volumetric source term q′′′ is kept in eq. (3.30), no actual sources
in the liquid are introduced. In principle the term could have introduced some
source terms due to capture of gamma rays [3], released in the fission events.
However, no transport of the gamma is covered in this thesis. In the temperature
equation for the fuel, the volumetric source term is computed from the recover-
able energy of the fissions and is thus the explicit coupling from the neutronics to
the thermal-hydraulics.
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In contrast to the pressure-velocity coupling described in Section 3.2.2, the
temperature equations require no special procedures in the discretization or equa-
tion reformulation. Instead a potential issue arises from the many solid regions
which are separately connected to the fluid region. To solve the entire heat trans-
fer problem all fuel pins and the fluid region need to be simultaneously con-
verged. For iterative methods, such as the Neumann-Dirichlet method [121], or
in a more general form non-overlapping Schwarz decomposition methods [122],
the many material regions risk to give a very slow iterative problem. As an al-
ternative, all regions could be formulated in a combined system of equations
and consequently solved in a concurrent and fully implicit manner. The latter
approach is applied in this thesis and in practice realized by coupling the temper-
ature at the boundaries implicitly via a harmonic interpolation that preserves the
conservation over the boundary faces between the solid and fluid regions.

In theory, the heat transfer by thermal radiation is required, at least for the gap
and gas inside it which is not opaque to the radiation. As a first approximation,
a frequency independent radiative heat transfer equation could be applied (see
e.g. [123]). The black-body source term for the radiation would then be computed
according to the Stefan-Boltzmann law such that,

Eb(r, T ) = σSBn
2T 4(r), (3.31)

where σSB and n correspond to the Stefan-Boltzmann constant and the refractive
index of the medium, respectively. Due to the large exponent on the temperature,
the thermal heat radiation is either not significant (low temperatures) or com-
pletely dominating the heat transfer (high temperatures). A thermal radiation
model for the gap was included in Paper I. The effect of radiation was studied in
more detail in a previous work [124], where it was found that, for nominal PWR
conditions, the heat transfer due to radiation in the gap was insignificant. For
Paper IV the heat transfer in the gap was therefore modeled similarly to the solid
regions, i.e. as dominated by conduction.

3.3 Multiphysics formulation and algorithms

After the formulation of the separate neutronic and thermal-hydraulic models,
the attention is turned to the multiphysics and the algorithms to solve the com-
bined problem of neutron transport, fluid continuity and momentum conserva-
tion and the conjugate heat transfer between the fluid and the solid fuel pins.

As touched upon in the introduction (Section 1.3.2), the first choice altogether
is whether to solve the coupling in a single code or by application of multiple
tools. Some of the respective benefits and drawbacks of the approaches were
mentioned in Section 2.1.3, and in particular the potential excessive computa-
tional cost of parallelizing the segregated approach was discussed. As outlined
in Section 2.2, this thesis is based on a single code approach.
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To understand the complete multiphysics algorithm, it should be emphasized
that there are many layers to the problem that need to be addressed, namely:

• Multiphysics – The thermal-hydraulic equations rely explicitly on the power
density computed from the neutronics via the source term in the fuel tem-
perature eq. (3.29), whereas the neutronics implicitly relies on the thermo-
physical state via the density and temperature dependence of the cross-
sections.

• Non–linearities – As discussed in Section 3.2 the conservation equations for
the fluid are all coupled and non-linear in the solution variables. Also the
steady-state neutronic problem is non-linear due to the criticality factor.

• Implicit dependencies – Both the neutronics and the thermal-hydraulics rely
on material parameters that are dependent on the thermophysical state and
such dependencies are not expressed in algebraic relations, rather computed
in a black box manner, i.e. relying on e.g. a database of values.

From the above list it is immediately clear that the system cannot be directly de-
scribed with a linear equation system (i.e. Ax = b) rather it is described in a
non-linear manner such that in a generic notation we need to solve

F (x) = 0, (3.32)

where x would be a solution vector of all unknowns (Φg/Ψm,g, U, T , P in the
steady-state case and with turbulence excluded).

In principle a problem like eq. (3.32) could be solved using a non-linear so-
lution method like Newton’s method, by directly computing the inverse of the
Jacobian of the system of equations such that for an iterate m of the solution vari-
able x we have

J(xm)(xm+1 − xm) = F (xm), (3.33)
where the solution of the system would give the next iterate of the solution vari-
able xm+1. To avoid the inverse of the Jacobian, eq. (3.33) can be solved by a
standard linear solver. However, to even formulate the Jacobian might be both
expensive and difficult. Due to the use of ”black-boxes” in terms of the thermo-
physical parameters and cross-sections, a direct analytical form of the Jacobian is
in principle impossible, and for all practical methods based on eq. (3.33) a numer-
ical estimate of J is instead computed.

In the other end of the scale, a fully explicit approach is to solve the system
with Picard iterations, where each separate module of physics is solved for con-
stant values of all other equations. Considering the steady-state problem eq. (3.32)
could be formulated in terms of the above fluid conservation equations and neu-
tron transport equation as

F


ϕ
P
U
T

 =


Fϕ(ϕ, p, T )
FP (U, T )
FU(P, T )

FT (U, P,Φ)

 =


M(T, p)ϕ− 1

keff
F (T, p)ϕ

HP (U, T )P = SP

HU(P, T )U = SU

HT (U, T )T = ST (U, P,Φ)

 = 0, (3.34)
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where the operators M and F are determined from the neutron diffusion equa-
tion (eq. 3.14) or the SN equation (eq. 3.15), and H and S are determined from
the mass conservation (eq. 3.25, formulated as a pressure eq. via SIMLPE or
PISO), the momentum conservation (eq. 3.26) and the temperature equations for
the solid (eq. 3.29) and the fluid (eq 3.30), respectively. It should be noted that the
operators M and F are also dependent on the criticality factor (keff), which could
in principle be added to the state vector above. Although the exact definition of
each of the operators is not important for the reasoning, it should be noted that
each such operator in itself corresponds to a non-linear problem, i.e. even when
considering all other variables fixed.

A Picard iteration would, with the formulation as in eq. (3.34), be computed
by solving each of the four equations with the other parameters frozen. In terms
of coding effort such an approach is simple and the respective algorithms for
solving the neutronics and thermal-hydraulics could be kept without modifica-
tion. For example, the iteration between the pressure and velocity as performed
in the SIMPLE algorithm could be applied unchanged. The direct use of Picard
iterations has been shown to converge slowly for some multiphysics problems (as
discussed in[125]). However, the method avoids formulating the actual Jacobian
and thus a higher number of iterations could be accepted due to the lower cost
per iteration.

Recently, the use of non-linear formulations has drawn a lot of attention in
the multiphysics communities, including formulations such as the Jacobian Free
Newton-Krylov method (JFNK) (see e.g. [126] and applied in [127]) and Ander-
son Mixing (originally in [128] and e.g. applied to reactor multiphysics by [129]).
The former is known to require sufficiently good preconditioning [127], for exam-
ple realized by a Picard style inner iteration. The latter could be seen as a direct
acceleration of the fixed point iterations and constitute an interesting choice as
the modifications required are small.

It should be noted that in principle two layers of non-linear solvers could be
applied to solve eq. (3.34). Besides solving the outer, multiphysics iteration in a
non-linear fashion, a non-linear approach could be applied for the separate equa-
tions, which has been done for neutronics [130, 131]. Also for CFD the implicit
approaches have gained interest (see e.g. [132]) although the segregated fixed
point algorithms like SIMPLE and PISO still prevail.

In the current thesis, the multiphysics couplings and the respective physics
modules are all solved in a Picard iteration manner. The primary reason for this
was the simplicity of the method and that the performance of the multiphysics
iterations was judged acceptable in the early tests of the solver as discussed fur-
ther in the results. The use of acceleration by e.g. Anderson mixing is interesting
and should be a candidiate for further studies on the coupled CFD/neutronics
problem. Notably, many of the referenced examples of application of e.g. JFNK
are targeted at macroscopic models, on the scale of the system codes, whereas the
current thesis is focused on coupling on much smaller scales. The extent to which
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this difference would manifest in better or worse acceleration with the mentioned
methods is not clear and thus it is open for future investigations.
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CHAPTER 4

Steady-state coupled solver
application and analysis

In this chapter the outlined computational methodology and the defined physical
models are applied together to simulate fine-mesh multiphysics for PWR like
conditions. The chapter includes the results from Papers I, II and IV. Paper I
reports the first version of the code applied to a system of 5×5 fuel pins with
a checkerboard pattern of low and high enrichment fuel pins. Whereas Paper
I is entirely based on a diffusion solver for the neutronics, Paper II presents an
implementation of SN and accompanying results that compare the flux profiles
from diffusion and discrete ordinates. Paper IV is again focused on the overall
behavior of the framework and the code presented corresponds to a re-write as
compared to Paper I.

Many of the presented results are to some extent a proof of principle and an
attempt to present the feasibility of highly-resolved multiphysics simulations of
LWR single-phase systems. As examples of this, the papers include figures for
the computational effort and the relative cost of each of the modules in combi-
nation with the number of iterations required to solve the steady-state problem.
Nevertheless there are results which are of physical interest, such as the results
of the fully resolved simulations compared to some averaged and non-resolved
simulations.

4.1 Implementation and framework details

Although many of the general aspects of the implementation of the multiphysics
FVM code were described already in Chapter 2, some additional details specific
to the steady-state solver are presented here. The framework was re-written be-
tween Paper I and Paper II. One of the major differences between the different
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implementations was that whereas the first version used the same mesh for all
fields of physics, multiple different meshes were supported in the re-written ver-
sion. The single mesh approach was early judged as a drawback and the version
including the mesh–to–mesh transfer capability (see Section 2.3.2), resulted in a
more flexible code. In this summary, the description covers only the methodology
corresponding to the second implementation.

4.1.1 SIMPLE algorithm and heat transfer

The steady–state single phase solver relies on the briefly described SIMPLE algo-
rithm (see Section 3.2.2). The steps of the algorithm are schematically outlined
in Figure 4.1. As seen from the algorithm, the moderator momentum predictor
equations and the turbulence are solved prior to the CHT problem, where the lat-
ter treated with the described monolithic approach for the temperature equation.
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Figure 4.1: Thermal-hydraulics solver methodology.

As regards the stability of the scheme, the SIMPLE approach typically requires
some under–relaxation and for the iterative algorithm presented in Figure 4.1, the
pressure and velocity under–relaxations were typically 0.3 and 0.7, respectively.
For the temperature and the turbulence equations less under-relaxation was gen-
erally needed.
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4.1.2 Discrete ordinates solver

The algorithm of the discrete ordinates and eigenvalue solver, applied in Paper II
and Paper IV, is outlined in Figure 4.2. The approach follows a standard scheme
of an iterative approach to resolve the group and ordinate interdependencies.
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Figure 4.2: Applied algorithm for the discrete ordinates method. [Paper IV]

The solver is applied to the generally unstructured neutronics mesh which re-
quires some additional attention. In the reactor context, discrete ordinates have
often been implemented only for Cartesian grids, although late high-fidelity ex-
ceptions discretized with FEM are notable (see e.g. [133]). Unstructured imple-
mentations of SN with FVM have for a long time been applied for radiative heat
transfer (see e.g. [134]) with a step scheme discretization of the SN equations. The
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latter is in principle identical to an upwind differencing scheme as applied for the
convective terms in the fluid momentum equation. Although the step scheme is
accurate to first order only, it is stable and easy to implement and has therefore
been the choice for this thesis.

As indicated in Figure 4.2, the SN equations are solved using a pre-calculated
sweep order. Since the only spatial dependence coupling with neighbor cells
enters in the streaming term, each given direction (Ωm) can be swept in an order
such that all cells only need to be updated once. The algorithm applied is based
on the work by Plimpton, Hendrickson, Burns, McLendon, and Rauchwerger
[135]. It should however be noted that due to framework technical details, the
parallelization is not modified accordingly (see Paper IV for further details). The
eigenvalue problem is solved by the power iteration method [136].

4.1.3 Picard iteration scheme

The implementation of the fixed point iterative scheme discussed in Section 3.3 is
presented in terms of a flow chart in Figure 4.3. The scheme alternates between
the neutronics and the thermal-hydraulics, applying sub–iterations in each of the
modules to increase the overall convergence rate and limit the number of multi-
physics iterations.
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Figure 4.3: Iterative scheme applied for the coupling of the thermal-hydraulics
and the neutronics [Paper IV]

The most sensitive part of the simulation is the start of the iterations, and, as
seen from Figure 4.3, the algorithm is initiated with an update of the neutronics
and the power profile. In general, the thermal-hydraulic equations were slower
to converge and found most probable to cause failure of the solver and for this
reason the first solution of the temperature equation was delayed to the third mul-
tiphysics iteration. However, after a few of these modified iterations, no under–
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Table 4.1: Geometry specification for the simulated 15× 15 assembly, with con-
trol rod guide tube values in brackets.

Fuel pin radius 0.41 cm
Cladding inner radius 0.43 cm (0.48 cm)
Cladding outer radius 0.49 cm (0.58 cm)
Pitch 1.25 cm
Fuel height 100 cm
Bottom reflector 20 cm
Top reflector 20 cm

Table 4.2: Mesh specification for the simulated assembly.

Region Number of cells
Moderator 6,088,000
Fuel (per pin) 8,000
Cladding (per pin) 4,800
Gap (per pin) 1,600
Neutronics 798,000

relaxation was performed between the multiphysics iterations. An interpretation
of this is that the problem is not sufficiently coupled to give stability issues.

4.2 Application to a 15×15 assembly

To exemplify the results produced with the described algorithms, the system pre-
sented in Figure 2.11 is simulated. The geometry for the fuel pins is provided
in Table 4.1. A summary of the number of computational grids is provided in
Table 4.2. As seen from the table, the moderator mesh is significantly finer than
the one for the neutronics. Further details in terms of boundary conditions and
the domain decomposition are provided in Paper IV, but in overall the thermal
conditions are taken to be typical for the conditions in a PWR.

The neutronic calculations were performed for 8 energy groups and with S8

discretized according to the level symmetric quadrature set. The resulting scalar
flux profile of the system is illustrated for the fastest energy group (g = 0) and
the thermal (lowest energy) group (g = 7) in Figure 4.4. In addition to the surface
plot, a line plot of the scalar flux at the symmetry line is shown.

Both from the line and the surface plot, artifacts of the so called ray effect can
be seen. Such an effect occurs due to the inability of the provided ordinates set
to accurately reproduce the angular neutron flux [137, 138] and the solution to
this problem is generally to increase the number of directions simulated. The
effect was clearly seen in Paper III where a 2D validation of the neutronics was
performed against Serpent. Quadratures ranging from S2 to S16 were compared
and the effect was shown to diminish with the increase in the number of ordinates.
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DeHart [139] emphasizes that the effect in principle decreases with increasing
numerical diffusion (typically due to a coarser grid) and increases with material
heterogeneities. In the fine-mesh approach with resolved material regions, both
factors mentioned are clearly problematic. In addition, the results from Paper II
illustrated the shortcoming of the diffusion solver for the fine-mesh applications
as it induced extensive smearing of the neutron flux as compared to the discrete
ordinates solver.

As regards the thermal-hydraulic results, a visualization of the moderator tem-
perature in the assembly is presented in Figure 4.5. As indicated by the plotted
horizontal planes, the heterogeneities of the fuel temperature are resolved with
the applied mesh resolution. Whereas the total temperature rise for the simula-
tion is a bit more than 10 K for the hot channels, the temperature difference inside
one of the sub–channels is less and, accordingly, the density difference for the liq-
uid is small. In turn, such small heterogeneities mean that the influence on the
cross-sections is relatively small.

In Paper I, a study was performed on comparing keff computed with a hetero-
geneous temperature (as in Figure 4.5 but for a 5×5 system) against a horizontally
averaged profile. It was found that the moderator averaging had no effect on the
criticality value. However, the horizontal averaging of the fuel temperature was
found to give a significant effect. It should be emphasized that significant simpli-
fications are done during the simulations, including the lack of spacers and the
use of the k − ϵ model which has clear limitations (as discussed by e.g. [116]). In
this context, a time averaging from an unsteady simulation utilizing LES would
be of interest to get a second, and potentially more accurate, model for the mag-
nitude of the heterogeneities.

4.2.1 Convergence and performance

To evaluate the performance of the schemes for the separate models (Figures 4.1
and 4.2) and the multiphysics scheme (Figure 4.3) the convergence profiles for
the multiphysics and the separate module iterations are provided for the first
eight outer iterations in Figure 4.6. As described earlier, the first iteration is re-
served for neutronics only, followed by a thermal-hydraulic iteration without the
temperature equation, and from the third iteration all fields are solved. The it-
erations following after the 8 first ones require only a single SN sweep and the
total change in keff from outer iteration 9 to 50 is only 10 pcm (not shown), which
suggests that the multiphysics dependencies are more or less fully resolved after
the last iteration of Figure 4.6.

As seen from the figure, a limit of 100 sub-iterations is applied for the thermal-
hydraulics. Such a limit was found to be increasing the acceleration rate, and in
terms of the reasoning on the iterative schemes in Section 3.3, it is reasonable to
not directly strive for full convergence for each submodule as the sub-iterations
precondition the Picard iterations. In terms of the same section on the coupling, it
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Figure 4.4: Scalar flux at mid-elevation for the fast group (g = 0, bottom) and
the thermal group (g = 7, top) for a quarter of a 15×15 system as outlined in
Figure 2.11 [Paper IV]
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Figure 4.5: Moderator temperature at three horizontal planes, with the axial
dependence at a diagonal cut in the background [Paper IV].

is interesting to consider the potential benefits of a non-linear solver. As regards
the Anderson acceleration, it would be of interest to see the effect on the num-
ber of multiphysics iterations. However, as the number of iterations are already
relatively few, it is perhaps not to be expected that the acceleration would signif-
icantly change the convergence. Instead, as also discussed in Section 3.3, better
solvers for the separate fields of physics would likely be more beneficial.

Needless to say, the relative computational time between the neutronics and
thermal-hydraulics is strongly dependent on degrees of freedom in the equations,
i.e. for neutronics on the number of groups, directions and the grid resolution and
for the thermal-hydraulics only on the latter. Nevertheless, it is interesting to com-
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pare the simulation effort and we found that for the presented discretization (8
groups, S8) the neutronics and thermal-hydraulics had similar computation time.
It should be emphasized that all fields are initiated as flat (i.e. space independent)
which is possibly slow but at least giving an honest view of the convergence prop-
erties of the system.

As regards the earlier descriptions and discussions on the parallelization im-
plementation (Section 2.1.3), the presented case was run on 64 processors and a
steady–state converged solution was computed in a total of 14 wall-clock hours.
A full benchmark of the parallelization would require a varied number of cores
(strong scaling) or by increasing the problem size (weak scaling).

Convergence per iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

R
es

id
ua

l[
au

]

Axial velocity
Temperature
Pressure
keff
Neutron flux

0 16 32 48 64 80

Iteration 1

0 20 40 60 80

Iteration 2

0 60 12
0

18
0

24
0

30
0

Iteration 3

0 30 60 90 12
0

15
0

Iteration 4

0 20 40 60 80

Iteration 5

0 20 40 60 80

Iteration 6

0 20 40 60 80

Iteration 7

0 7 14 21 28

Iteration 8

Subiterations and wall clock time (in brackets)
80 (294 s)
0 (0 s)

0 (0 s)
100 (1157 s)

248 (18124 s)
100 (4719 s)

150 (4175 s)
100 (3860 s)

40 (1017 s)
100 (2860 s)

5 (149 s)
100 (2072 s)

7 (199 s)
100 (1875 s)

1 (53 s)
35 (598 s)

Neutronics:
Ther.-hyd.:

Figure 4.6: Convergence results for the coupled system, with multiphysics itera-
tion convergence as opaque broader lines and the corresponding sub-iterations
as thinner lines [Paper IV].
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CHAPTER 5

Transient coupled solver
application and analysis

After the steady-state simulations in the previous chapter it follows naturally to
continue to transient cases for the same type of systems. For understandable rea-
sons the unsteady models are computationally even more demanding than the
steady-state equivalents; instead of converging the multiphysics problem once,
all couplings must resolved in every time step. Nevertheless, the transient cases
are potentially of greater interest than the steady simulations as local temporal re-
sponses are recovered, and thus an additional contributor to local heterogeneities
can be investigated.

This chapter includes implementation details and some of the results from Pa-
per V as well as a description and the results of Paper VIII. In the former, the over-
all framework is tested for unsteady simulations of a short transient with chang-
ing the moderator inlet temperature. The latter proposes a verification method
for transient neutronics codes, here applied to a simplified 2D system and shown
to give a good agreement with the analytical expressions.

5.1 Implementation and framework details

The transient algorithm is implemented with an iterative scheme as outlined in
Figure 5.1. In contrast to the steady solver, the transient scheme is purely solving
the diffusion equation for the neutronics. Furthermore, the precursor equations
are solved by additional iterations. Other schemes are proposed in the literature
(see e.g. [140]), where the precursors are implicitly treated directly in the neutron
flux equations, which is an area for future improvement. The solution algorithm
for the transient solver is again very similar to the steady solver, solved with a
segregated approach (PISO).
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Chapter 5: Transient coupled solver application and analysis

As indicated in Figure 5.1, the transient algorithm is initiated with a solution
of the steady multiphysics problem, which was found important for two reasons.
First, a good starting guess was found necessary to avoid stability issues with
the multiphysics coupling. Second, the system needs to be close to criticality, i.e.
keff = 1, at the start of the transient. If the system is far from criticality it either
needs to be modified in terms of geometry or material composition, or a renor-
malization of the fission source needs to be applied. The former remedy was
generally found problematic as it requires a re–computation of the cross–sections
for a new fuel composition or moderator boron concentration (see Paper V). It
should be noted that a desirable (but not implemented) feature would be to in-
clude a criticality search in terms of a dynamic boron concentration. For the case
of fission source renormalization, the criticality value from the steady simulation
is applied as a static (i.e. not changed during the simulation) renormalization.
Although such a measure is not physically correct it provides a simple method to
test and feature the transient solver.
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Figure 5.1: Iterative scheme applied to solve neutronics and thermal-hydraulics
coupling [Paper V].

5.2 Application to a 7×7 assembly

In Paper V the transient solver was applied to a quarter of a 7×7 assembly , again
under PWR-like conditions. The horizontal geometry and the material composi-
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Symmetry line

5 % UOX
3 % UOX
Cladding
Water, 500 ppm boron
Gap, helium
Reflective boundary

Figure 5.2: Horizontal geometry for a quarter of a 7 × 7 system with material
regions and the reflective boundary conditions indicated. [Paper V]

tion of the system are outlined in Figure 5.2. Two different enrichments of fuel
pins were included and the water contained a boron concentration tested to give
a system close to criticality. The overall geometry, the axial mesh resolution and
the number of computational cells are provided in Figure 5.3.

The case is run for 10 seconds and between 2 and 3 simulated seconds the
moderator inlet temperature is linearly decreased from an initial value of 550 K
to 540 K. The uniform temperature decrease at the inlet is propagated through the
system and, as an illustration of the response of the system, Figure 5.4 shows the
instantaneous moderator temperature (Figure 5.4a) and the fuel power density
(Figure 5.4c) after 3 seconds. Similar to the previously presented steady-state
results, the subchannel heterogeneities are resolved in the moderator.

In addition, Figure 5.4b shows the temporal development of the relative differ-
ence between the maximum and minimum horizontal temperatures in the mod-
erator at mid-elevation of the system. As seen from the figure, the response to
the inlet perturbation is not homogeneous, and an increase in the heterogeneity
is seen following the temperature decrease. Similarly, Figure 5.4d shows the mid-
elevation relative difference in the maximum and minimum horizontal power
densities. For the power, the transient leads to an initial decrease in the hetero-
geneity followed by an increase. Such results would argue that the fine-mesh
approach captures the physics not seen when assuming a flat moderator tempera-
ture (as e.g. done in a subchannel code). Notably, the magnitude of the difference
from the beginning of the transient to the end is relatively small and is arguably
of little significance for the presented case.
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Chapter 5: Transient coupled solver application and analysis

Neutronics Thermal-hydraulics Geometry description:
• Core height: 3.5 m
• Fuel pin radius: 0.41 cm
• Cladding thickness: 0.06 cm
• Gap thickness: 0.02 cm

Mesh description:

Region
Cells

(Quarter
pin)

Cells
(7x7 lattice)

Fuel (TH) 3200 153600
Gap (TH) 640 30720

Cladding (TH) 1280 15860
Moderator (TH) 19200 846080
Full system (NK) 2240 114702

Figure 5.3: Description of the geometry and the computational grid for the
7×7 system used for transient simulations. Index TH indicates meshes for
the thermal-hydraulics, whereas NK indicates the mesh for the neutronics [Pa-
per V].

Considering the computational effort, the case was run on 16 CPUs for a total
wall-clock time of 59 hours. In contrast to the case presented in Section 4.2, the
time is now primarily spent with the thermal-hydraulics ( 89%). However, the
simulation was here performed with only 4 energy groups and using the diffu-
sion approximation. It is interesting to note that for the majority of the time steps,
only a limited number of both the multiphysics iterations and the inner thermal-
hydraulics iterations are required. Such an observation suggests that a non-linear
formulation would be of limited value for the presented simulation. Moreover, as
the applied time step is limited by the Courant number in the CFD simulations an
implicit algorithm (e.g. solving all neutronics and thermal-hydraulics equations
together in a non-linear fashion) would not necessarily extend the time step.

5.3 Time-dependent neutronics verification method

To verify a correct code implementation, in terms of the modeled conservation
equations as well as the multiphysics methodology, is typically a difficult task.
Except for a direct validation against measurements, codes are not seldom com-
pared and, speciously, verified against each other. The latter is particularly ques-
tionable if both codes are based on the same method, i.e. likely to produce the
same inaccuracies or similar problems with e.g. discretization. For the fine-mesh
multiphysics simulations presented in this thesis, a direct comparison to numer-
ical experiments is difficult. To the knowledge of the author, no equivalent mea-

68



5.3. Time-dependent neutronics verification method
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Figure 5.4: Axial slices of moderator temperature and power density with cor-
responding time development of maximum and minimum horizontal values at
mid-elevation [Paper V]
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sured data exist. For steady neutronics solvers, verifications against Monte Carlo
codes are often performed, and are in some sense an accepted practice in the nu-
clear field. Such a comparison was done in Paper III for the SN solver.

In Paper VIII a method for transient neutronics verification is proposed. The
foundation of the method is the application of a stationary perturbation and ex-
traction of the point-kinetic component of the system response. A component of
the computed response is verified against an analytical point-kinetic predicition
of the same system. The derivation is given in its full detail in Paper VIII, and
here only the main characteristics are covered together with an example case.

5.3.1 Overview of the methodology

The proposed verification scheme is applicable in both frequency and time space,
where the latter approach is exemplified here. The methodology is based on a
stationary perturbation applied in one of the fuel regions and in Paper VIII im-
plemented as a sinusoidal variation of the thermal group total cross-section, such
that

ΣT,2(r, t) = ΣT,2,0(r) + Asin(ωt), (5.1)

where ΣT,2,0(r) is the unperturbed total cross-section of the thermal group and
A and ω correspond to the amplitude and frequency of the perturbation, respec-
tively. It should be noted that the derivation presented in Paper VIII was done for
a two-group formulation, which is thus followed in the example. In addition to
the two-group diffusion equation, the solution to the adjoint problem is required
and was consequently implemented and added to the neutronics module.

In order to compute the response of the system, the variation of the power
(δP (t)) and the reactivity (δρ(t)) of the system need to be extracted during the sim-
ulation. The quantities are computed as volume integrals (i.e. discrete summa-
tions over the computational grid) involving the adjoint flux, the cross-sections
and the neutron group velocity (for a detailed explanation of the integral expres-
sions refer to Paper VIII). The computed integral values are then fit by a post-
processing utility to estimate the phase change as compared to the original per-
turbation (eq. 5.1) and the amplitude of the responses for δP (t) and δρ(t). The
fitting function is defined as

y(t) = asin(ωt+ p) + kt+ c, (5.2)

where the constant (c) and linear variation with time (kt) allows for an offset and
slow variation of the base line of the fitted functions, which is of importance if
the system is not exactly critical at the start of the perturbation.
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5.3. Time-dependent neutronics verification method

Figure 5.5: Slab system geometry for the example of the point-kinetic verifica-
tion method. The system is compressed in axial direction, actual length of the
system was 50 cm. The blue region indicates the fuel (0.45 cm in width) and the
red region indicates the moderator region (0.25 cm in width). The grey region
corresponds to the region of the fuel where the time-dependent perturbation
was applied. Symmetry boundary conditions are imposed in the horizontal di-
rection. [Paper VIII]

5.3.2 Application to a two-region slab system

As an example of the method, a simplistic 2D slab case is presented. The geometry
and the computational grid are shown in Figure 5.5. The simulations are initiated
from a steady–state multiphysics solution, but performed with a frozen state of
the thermal-hydraulics. In addition, a renormalization of the fission source is
performed (as discussed in Section 5.1).

To verify the solver, the neutronics solver is run for a range of different fre-
quencies, each providing one point for verification. As a result of the many re-
peated runs, the verification process is computationally heavy. On the other hand,
it was found sufficient to run each simulation for a few periods of the perturba-
tion in eq. (5.1), at least as long as the power is not significantly drifting after the
renormalization.

The results of the simulations are provided in Figure 5.6, where the amplitude
and frequency of the point-kinetic components of the system response are com-
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pared to the analytical solution of the point-kinetic equation. As seen from the
figure, the results of the FVM code match both the amplitude and phase well,
with a maximum deviation in the amplitude of less than 5%. Such a result is
important not only for the presented solver but also as an example of a method
with great potential to other 3D transient neutronics codes, thus filling an earlier
vacuum in terms of lacking verification methods.

(a) Amplitude

(b) Phase

Figure 5.6: Frequency dependence of the amplitude (top) and the phase (bot-
tom) of the point-kinetic zero-power transfer function for the slab presented in
Figure 5.5 [Paper VIII]
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CHAPTER 6

On two-phase flow in LWRs

Up to this point in the thesis the coolant of the reactor was considered to be single-
phase liquid water. Such a flow is representative for nominal conditions in a PWR,
but not at all for describing the flow in a BWR. In the latter, the water enters the
core in a subcooled liquid phase but boils and over the height of the channel it
traverses a number of flow regimes. Whereas single-phase flow is relatively well
understood and well reproduced with simulations, two-phase flow is still, after
more than half a century of studies, a very challenging topic.

In this chapter, the two-phase flow problem of liquid and vapor water in the
BWR is briefly introduced (Section 6.1), with primary focus on different strategies
for simulation and modeling (Section 6.2). Due to the difficulties of formulating
a single universal model covering all regimes and scales in a computationally
feasible manner, the problem inevitably needs to be narrowed for the scope of this
thesis. In the current work two aspects are of primary focus, namely simulation of
subcooled boiling flows (Section 6.3) and dynamic characteristics of the two-fluid
model (Section 6.4).

In relation to the previous two chapters on the application of the multiphysics
tool, the current chapter is in a sense more generic. The simulations are per-
formed on simplistic geometries and in parts reduced in terms of model com-
plexity. To a large extent this is done to better illustrate the proposed ideas, and
limit the distraction of the huge number of force models, flow regime correlations,
etc. Furthermore, the purpose of the seemingly reduced models is to clarify some
of the underlying complexities in the models often foreseen in routine application
of multiphase CFD.
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6.1 Perspectives on the simulation challenges

The methods to simulate multiphase flows are in many sense as multifaceted as
the configurations of the flow systems themselves. To model a particulate flow
of gravel requires completely different strategies as compared to a slug flow in a
channel of the BWR. Needless to say, the difficulties are accordingly distinct for
each problem and undoubtedly multiphase flow systems constitute some of the
most outstanding challenges in the field of fluid mechanics.

The BWR core is an important example of the intricacies of two-phase flow in
industrial devices. To extend on the complexities and the motivations for CFD
simulations of BWR subchannels, Figure 6.1 is used as an illustration. The figure
shows a heated channel with flow regimes ranging from bubbly flow to the ex-
treme of single-phase vapor. Some of the reasons for complications include the
phase changes due to boiling and condensation, the different characteristics of the
flow regimes and the issues with overlapping scales of the phase heterogeneities
and the geometry in the narrow channels. In some more detail:

• Phase change – The energy released from fission in the fuel heats the wa-
ter entering the core to the saturation temperature and induces boiling at
the cladding surface. The liquid phase reaches saturation conditions close
to the wall after only a short axial distance (see the sketch in Figure 6.1),
whereafter the water boils at the wall. In addition, during the subcooled
phase the bubbles are transported from the wall to the bulk of the flow and
they condense, which is one of the phenomena targeted in Section 6.3.

• Flow regimes – As the vapor phase continues to increase, the flow regime in
the channel changes. The initial bubbly phase of vapor is transformed into
larger regions of void, depicted in Figure 6.1. If the flow is further heated,
the regime might even become the reverse of the initial bubbly flow, where
instead the liquid phase is dispersed as droplets in the vapor bulk. It should
be noted that the latter conditions, starting from the point of dryout, must
by all means be avoided as there is a risk to melt the fuel due to the severe
decrease in the heat transfer from the fuel.

• Separation of scales – In contrast to the single-phase flow regime, separation
of scales is not trivially fulfilled in the case of multiphase flow. In short, the
lack of separation of scales is a result of that the size of the void regions
approaches the size of the computational grid. As an illustrative example
consider the slug regime in Figure 6.1. It is readily imagined that in order
to resolve the velocity profile of the depicted channel, the computational
cells would need to be on the size of (or rather even smaller than) the void
structures. Such an issue has been a long standing challenge of multiphase
flow [142], and due to the interfering scales it becomes difficult to formulate
a space averaged model to resolve fine scales of the simulations (such as
the flow inside the BWR subchannel) while still fulfilling the separation of
scales [143].
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Figure 6.1: Overview of forced convection boiling phases in a channel (in part
redrawn from [141]).
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As indicated in the motivation for the fine-mesh simulations (Section 1.3.1),
numerical predictions of CHF are both interesting and important challenges in
CFD simulations of BWRs and a major driver for the development of new mod-
els [144]. To accurately model CHF, multiple scales are relevant, ranging from the
micro scales of the growth of a bubble on the surface of the cladding to the trans-
port of bubbles (or larger chunks of void) in the subchannels, and to the scales
of the full fuel assembly. For the first, the growth of the bubble and the depar-
ture from the wall, very detailed descriptions of the flow are generally required
(see e.g. [145]) and this type of simulations fall outside the scope of the current
work. For the latter two scales (bubble departure and the entire subchannel), the
focus is primarily on the flow of two phases and the potential phase change in-
side the fluid which are the topics of the next section, introducing some modeling
approaches of the flow problem.

6.2 Models for two-phase liquid and gas flows

In contrast to the subchannel approach (Section 1.2.2), which to a large extent is
driven by empirical, macroscopic relations and tuned models, the fine-mesh or
CFD approach focuses on a physics-based modeling of the flow. In coarse terms,
the methods could be divided into two groups: interface tracking methods and
averaging methods. The former is sometimes denoted DNS-like methods and the
latter is often deployed as the two-fluid model.

6.2.1 DNS-like methods

The concept of DNS in multiphase flow is not as straightforward as in the single-
phase case. In the latter, the Navier–Stokes equations are resolved on every scale
down to the smallest fluctuations in the flow [116], with small risk of adventur-
ing the separation of scales. For multiphase flow, DNS is occasionally referred to
as simulations in which the interfaces of the multicomponent flow are resolved.
However, the exact nomenclature has for sure been debated (see for example the
note by Yadigaroglu [146]), and it should be noted that the increase in compu-
tational resources has enabled bubbly flow DNS simulations in the single-phase
sense, i.e. with full resolution of each of the phases [147].

Even though the flow fields can be fully resolved with the Navier-Stokes equa-
tions without modifications or models, there are still fundamental challenges
with phenomena such as bubble coalescence and breakage related to the effects
of surface tension. For the latter, a certain amount of modeling is still required
(see e.g. [147]). Furthermore, the systems that can be resolved in a DNS manner
are still small, extremely computationally demanding and primarily focused on
the bubbly flow regime. Consequently, a simulation of a full BWR channel with
anywhere close to realistic void fractions is still out of reach. Nevertheless, DNS
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like simulations are of interest to formulate models for macroscopic correlations,
or to perform multiscale hierarchal simulations (such as reported for gas-solid
flows [148]).

Despite that the BWR subchannel problem does not easily lend itself to full
DNS calculations, interface tracking methods (without all length scales resolved)
are still of interest and relevance. A range of different methods have been pro-
posed, whereof the most notable include the Volume of Fluid method (VOF) [149,
150], the Level Set method (LS) [151, 152] and front tracking [153]. Interesting ex-
amples include single bubble condensation [154, 155], which is potentially valu-
able to formulate correlations for a coarser (two-fluid) model. The DNS simula-
tions alike, the computational effort required also by coarse applications of inter-
face tracking methods precludes their use for full subchannel simulations. For
larger scale CFD simulations an averaging method is instead required.

6.2.2 The two-fluid model

The two-fluid model describes the two phases in an Eulerian-Eulerian frame of
reference [143, 156] and instead of tracking the interface, the phases are treated
as interpenetrating continua. The presence of the phases is described in terms of
a volume fraction, for liquid-vapor systems typically denoted void fraction. Due
to the fact that the interface is not directly tracked, the computational burden
of the method is much smaller than in the case of DNS-like simulations. On
the other hand, the averaging comes with a price. In comparison to the DNS-
like methods described in the previous section, a larger degree of modeling is
required, in particular for the interphase mass and momentum exchanges.

The governing equations of the two–fluid are here briefly outlined for the pur-
pose of the applications in Sections 6.3 and 6.4, but without a detailed derivation
(for a detailed discussion on the procedure see e.g [6]). The model relies on one
or more averages on the Navier–Stokes equations for each of the phases. Such
an averaging can be performed as volume averages (see e.g. [6, 157]), ensemble
average (see e.g. [158, 159]) and/or in terms of time-averages. The result is a set
of mass, momentum and energy conservation equations for each of the phases.
In the current work the mass conservation is given as [157]

∂αiρi
∂t

+∇ · (αiρiUi) = 0, (6.1)

where ρi is the density, αi the phase fraction and Ui is the velocity, and the mo-
mentum equations as

∂αiρiUi

∂t
+∇ · (αiρiUiUi) = −∇ ·

(
αi(¯̄τi + ¯̄τ ti )

)
− αi∇(P ) + αiρig +Mi, (6.2)

again written for each of the phases and where ¯̄τi and ¯̄τ ti are the viscous and tur-
bulent stress tensors, respectively, P is the pressure and Mi represents the inter-
facial momentum transfer. Furthermore, conservation equations for energy are
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required for diabatic simulations, and in the case of boiling or condensation addi-
tional terms appear in all the equations. The latter is the case in Paper VI, whereas
only eq. (6.1) and (6.2) are solved in the stability and dynamics investigations in
Paper III and VII. The set of equations (6.1) and (6.2) is commonly solved in a sim-
ilar manner as the PISO algorithm for single–phase flow. The implementation
utilized in the thesis closely follows the derivations by Rusche [160] and Weller
[159].

As already mentioned the two-fluid model suffers from a number of short-
comings. The following (non-exclusive) list of issues and limitations is notable:

• Lack of stability – It has previously been reported that the two-fluid model
in a pure form (i.e. without additional artificial or physical model-based
viscosity) suffers from lack of hyperbolicity, which might lead to instable
behavior of the simulation [161, 162]. Such instabilities are the topic of Paper
III and Paper VII discussed further in Section 6.4.

• Lack of size distributions – As a result of the averaging, the specific infor-
mation of the phase interface is lost. Consequently, for the example of a
bubbly flow the bubble size distribution is unknown and as a result all size-
dependent correlations (e.g. momentum exchange terms and the conden-
sation rate) cannot be accurately applied. A potential remedy for this is to
regain size distribution information from a PBE, which is the topic of Paper
VI.

• Lack of separation of scales – As the two-fluid model equations are commonly
derived under the assumption of small variations of all fields (at least for
volume averaging) only low void fractions or small bubbles could theoreti-
cally be treated. This is commonly abused as the computer codes often run
also for higher void fractions. Arguably, carrying out ensemble average is
advantageous since separation of scales is not an immediate issue for that
procedure. However, in practical cases the interphase exchange terms are
typically implemented in a volumetric sense [163], thus again a prey for
the mentioned issues. Interestingly there are some (theoretical) examples
of derivations not requiring separation of scales/small local gradients [164,
165], which are of future interest.

From a historical perspective the two-fluid model, in a lower dimensional for-
mulation, has been the standard choice for the system codes to describe the multi-
phase flow. Also in so-called mechanistic CFD modeling, i.e. 3D simulations with
(more or less) well-founded physics-based models (see e.g. [166]), the two–fluid
framework has been and still prevails as the dominant methodology. By large
the two–fluid model should perhaps be seen as the workhorse of the two phase
simulations, and although in many senses imperfect, it enabled interesting 3D
calculations already 20 years ago [167].

In terms of the first part of this thesis, the fine-mesh multiphysics framework,
the two-fluid solver is a good candidate for coupling to the neutronics. In par-
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ticular, the possibility to simulate a complete subchannel is relevant. A DNS-like
simulation of only a few bubbles is arguably too small to be of relevance for the
coupling.

6.3 Population balance for subcooled bubbly flow

As described in the previous section, the averaging of the Navier–Stokes equa-
tions for the two–fluid model results in that the microscopic details of the flow
are lost. For a bubbly flow, as depicted in the region close to the inlet of the chan-
nel in Figure 6.1, the loss of interface information between the vapor and the liq-
uid phase results in an unknown distribution of bubbles. In practical terms, this
implies that the two-fluid simulations are performed for a single size and shape
of bubbles, or potentially estimated from an average interfacial area concentra-
tion [168]. A remedy for the information lost in the averaging is to apply a PBE to
retrieve additional knowledge of the state of the dispersed phase. For gas-liquid
flows it is common to track the bubble size or volume [169–171], but in principle
other parameters such as bubble shape or velocity could also be described with
the PBE.

In particular, for simulations of the onset of boiling and the transport of bub-
bles in a subcooled liquid the size distribution has been argued to be of impor-
tance [172]. Such a distribution is applicable both in the description of the con-
densation in the liquid and the aggregation and breakage of the bubbles. Thus, a
subcooled bubbly flow is an interesting candidate for PBE simulations. In the nu-
clear community, the primary choice for subcooled boiling simulations with PBE
has been the Multiple-size-group method (MUSIG), which represents the size dis-
tribution with a fixed set of, a priori determined, sizes. MUSIG has previously
been successfully applied to subchannel simulations [172–174].

An alternative approach to solve the PBE is given by the Direct Quadrature
Method of Moments (DQMOM), which relies on dynamic sizes allowed to vary
dynamically throughout a simulated domain [175]. An advantage with DQMOM
over MUSIG is that the use of non-fixed sizes allows to describe the distribution
with the same accuracy for fewer degrees of freedom [170, 176]. DQMOM has pre-
viously been applied for adiabatic cases in the field of nuclear engineering [171]
and in other fields for evaporation simulations [177]. In Paper VI, a formulation
for the DQMOM of condensation of bubbles is proposed, implemented and com-
pared to MUSIG. To give relevance to the example provided in Section 6.3.2, a
brief overview of the methodology is given in the following section.
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6.3.1 PBE formulation

The PBE for a bubble size distribution is written as [178]

∂f(ξ, r, t)

∂t
+

∂

∂ξ

(
∂ξ(r, t)

∂t
f(ξ, r, t)

)
+∇ · (U(r, t)f(ξ, r, t)) = S(ξ, r, t), (6.3)

where f is average number density, ξ is the length scale (diameter) of the bubbles,
∇ refers to the convection in space and S is a source term which appears due to
condensation and aggregation of bubbles. The velocity in eq. (6.3) is computed
from the momentum equation for the vapor phase and is in the current method-
ology independent of the bubble size. To simulate condensation, the second term
on the left hand side is written in terms of the condensation as

∂ξ(r, t)

∂t
= C(ξ, r, t). (6.4)

It is particularly important that the condensation model is allowed to have a
size-dependence as empirical models typically introduce the size in the correla-
tions [179]. As briefly mentioned, a two-fluid solver not complemented by the
PBE is limited to a static size of bubbles.

DQMOM

In DQMOM, the average number density is discretized in terms of N abscissas
(ξi) and weights (wi) such that

f(ξ;x, t) ≈
N∑
i=1

wi(x, t)δ(ξ − ξi(x, t)). (6.5)

To close the set of equations for the weights and abscissas, a moment transform is
applied to eq. (6.3). The transform results in coupled transport equations for the
abscissas and the weights based on the 2N first moments of the PBE. An advan-
tage of DQMOM over some similar, moment based, methods is that the equations
are relatively easy to implement, only requiring a discretized time derivative and
convective term. The source terms of the transport equations are computed from
a cell–wise linear system of size 2N × 2N , and to resolve the couplings between
the equations an iterative scheme is applied. For further computational details
the interested reader is referred to Paper VI.

MUSIG

As a reference for the proposed DQMOM formulation for subcooled boiling, a
MUSIG model was implemented. The method is entirely based on models from
the literature, where the PBE is often written in terms of bubble mass. Accord-
ingly, eq. (6.3) is formulated as a set of vapor fraction equations

∂αg,jρg
∂t

+∇ · (αg,jρgUg) = Sj, (6.6)
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System geometry:

• Domain size: 50 cm × 10 cm

• Periodic in horizontal direction

• Mesh size: 100 × 20 cells

Inlet conditions:

• Ug = 0.3 m/s

• Ul = 0.1 m/s

• k = 10−3 m2/s2

• ϵ = 10−3 m2/s3

Figure 6.2: Geometry and boundary conditions for the rectangular, horizontally
confined system applied in Case 3 of Paper VI.

where j is the number of the class, S is again a source term and Ug is common to
all bubble sizes. For MUSIG the condensation is implemented as a source term
coupling the equation for the current j to the sizes below and above (j − 1 and
j + 1).

6.3.2 Application to channel flow with condensation

To exemplify the DQMOM formulation, the case presented in Figure 6.2 is stud-
ied. The simulation domain is a 2D channel with no-slip conditions for the liquid
at the horizontal walls. A small superficial velocity is applied for the bubbles and
the inlet liquid temperature is subcooled by 1 K as compared to the saturation
temperature. Furthermore, all thermophysical properties are computed by inter-
polation from tables handling both the pressure and temperature dependence.
Finally, the inlet bubble size distribution is computed according to a normal size
distribution with an average size of 7 mm bubbles.

The PBE methods (DQMOM and MUSIG) are both coupled to the two-fluid
model with all terms handling the phase change due to condensation included.
As the convection of the bubbles is directly simulated by DQMOM/MUSIG, the
continuity equation is not explicitly solved in the two-fluid solver. The model in-
cludes drag, virtual mass, lift and turbulent dissipation interphase forces, where
the k − ϵ model is used to solve the turbulence in the liquid phase. For the
mentioned forces, the size distribution is used to compute the total momentum
force as a sum of the contributions from each abscissa or class for DQMOM and
MUSIG, respectively. In addition, the condensation model has a size dependence
as previously discussed.

Example results of the simulation are presented in Figure 6.3. The top plot
(Figure 6.3a) shows the development of the void fraction over the simulated chan-
nel. As seen, the initial void fraction quickly decreases as the vapor bubbles con-
dense and shrink. The latter effect is detailed in the bottom plot (Figure 6.3b)
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where the average size of the bubbles in the system is computed as

d43 =

N∑
i=1

ξ4iwi

N∑
i=1

ξ3iwi

. (6.7)

As seen from the figure, the shrinkage of the bubbles accelerates over the chan-
nel, particularly visible for DQMOM, and the effect is explained by an inverse
proportionality of the condensation rate with the bubble size. Due to the fixed
sizes in the MUSIG method, a much smaller range of bubble sizes is covered and
this was in Paper VI shown to be a severe limitation, further emphasized by other
examples in the mentioned paper. It should be noted that both for the void frac-
tion results and for the average size, DQMOM reach minima at around half the
distance of the channel. For intricate reasons of the formulation, a threshold size
of the abscissas is needed to avoid numerical issues. However, as seen from the
figures, such a remedy occurs only at void fractions which are too low to be of
physical significance.

In addition to the example above, different studies of bubbles inserted at the
walls were conducted and a formulation useful for wall boiling models with DQ-
MOM was proposed. Wall boiling is a particularly challenging topic as the inser-
tion of bubbles takes place locally at the wall and in the discretized domain only
in the first layer of cells.

Furthermore, under even more simplistic conditions, DQMOM was shown to
converge for much fewer abscissas than the number of classes needed in MUSIG.
For a case without the coupling to the two-fluid solver and with an initial mono-
size distribution, MUSIG is shown to require more than 100 classes to capture
the size change predicted with only a few abscissas. The difference in number
of required sizes also results in a significant difference in the computational time
which was, advantageously, shorter for DQMOM. However, for the examples
coupled to the two-fluid solver, the differences in the computational effort are
smaller. In practical terms MUSIG seems to have advantages in the simpler im-
plementation and generally more stable characteristics, whereas the primary ad-
vantage of the DQMOM is the feature of dynamic abscissas which can cover very
different ranges of bubble sizes in different parts of the domain.

As clear from the system description of the example case the intention in Pa-
per VIII is neither to directly mimic the geometry nor do reconstruct the exact
conditions in a subchannel in a BWR assembly. Instead, the purpose is to propose
and evaluate a potential candidate for PBE simulations, which is also closely re-
lated to the second objective outlined in Section 1.4.2. In addition, the evaluation
forced additional studies of the coupling between the two-fluid model and the
PBE methods which are of future value for simulations dedicated to the actual
BWR problem.
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Figure 6.3: Vapor fraction (top) and average bubble size (bottom) along the ax-
ial centerline compared between MUSIG and DQMOM and for a void fraction
equation (labeled alphaEqn) with a single static class. [Paper VI]
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6.4 On the dynamics of the two-fluid formulation

As suggested in the introduction to the two-fluid model, the formulation is known
to be prone to instabilities. In particular from the nuclear perspective, the 1D ver-
sion of the conservation equations with no viscosity has been reported to have
issues with such instabilites [161]. From a mathematical point of view, it is well
known that the degree of hyperbolicity in the equations affects the stability and,
for the same 1D formulation, mathematical regularization of the problem has
been proposed as a remedy to achieve hyperbolicity [162]. Another approach of-
ten seen in the literature is numerical regularization, basically achieved by induc-
ing numerical diffusion, either through the use of a coarse spatial discretization
or in many papers, implicitly, by a diffusive turbulence model.

The potential instabilities are not only interesting for the 1D formulation, but
also for the fine-mesh 3D approach in the current thesis. In particular, the influ-
ence of such instabilities on the dynamics of the two-fluid model is of interest.
Although the phases are only predicted in an average sense, the dynamics of the
fields are influential for mass and heat transfer applications. Additionally, it is
of importance to understand any potential discrepancy between instabilities in-
duced only by numerical issues and the heterogeneities actually predicted with
experiments (such as in [180]). Numerical experiments in terms of 3D simulations
with the two-fluid model have previously been studied from a stability perspec-
tive for gas-solid flows. It has been shown that such flows exhibit the so-called
meso-scale instabilities, i.e. regions with fluctuations smaller than the physical
domain but larger than the characteristic size of the particles [181].

From the literature on two-fluid simulations for gas-liquid problems it is clear
that there are still a large number of open questions, and the formulations of e.g.
momentum exchange mechanisms are basically as many as the authors. In addi-
tion, the treatment of turbulence for such systems is an area with a lot of proposed
methods reflected in additional terms for the momentum conservation equations.
A comprehensive discussion on such terms and on the lack of consensus is pro-
vided in Paper VIII.

In the work done for the thesis, the studies of the dynamics of the adiabatic
two-fluid model are deliberately based on a much simplified model. The ap-
proaches reported in Papers III and VII are to prune the studied equations of
any additional (unnecessary) terms and apply the model to simplistic cases. In
Paper III, the two-fluid model according to eqs. (6.1) and (6.2) is simulated includ-
ing only the drag term for the momentum exchange between the phases. For Pa-
per VII the drag-only simulations are extended and compared to simulations also
including the virtual mass force. In specific, the performed simulations are an at-
tempt to understand the possibilities of resolving the dynamics of the gas-liquid
flow with the two-fluid model. Additionally, it has been the goal to formulate,
with physical or numerical arguments, criteria to discern numerical issues from
instabilities of physical origin.
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As regards the presented results, it should be noted that the two included
papers are based on different CFD solvers (ANSYS Fluent and OpenFOAM R⃝).
Furthermore, variations of the implementation of the continuity equations was
studied elsewhere [182]. In Paper III a 2D system was studied and the results
from the paper are omitted here. Instead, the brief discussion in the next section
is based on the results from the 3D system in Paper VIII.

6.4.1 Application to adiabatic cases

The cases studied are simple in the sense that only adiabatic conditions are consid-
ered and the simulated domain is periodic in all directions. The effect of gravity
is included and to outweigh the combined mass of the gas and liquid phases a
jump condition is applied for the pressure. The initial fields and the thermophys-
ical properties are presented in Table 6.1. All fields are initiated with spatially
uniform values, i.e. no initial perturbations are applied to induce the instabilities.

Table 6.1: Thermophysical parameters and initial conditions as applied in Pa-
per VII.

Liquid density, constant ρl 1000 kg/m3

Gas density, constant ρg 1 kg/m3

Liquid viscosity, constant µl 10−3 Pa s
Gas viscosity, constant µg 10−3 Pa s
Bubble size, constant db 0.68 mm

Void fraction, uniform initial condition αg 0.05
Liquid velocity, uniform initial condition (0, 0, 0) m/s

Gas velocity, uniform initial condition (0, 0, 0) m/s
Gauge pressure, uniform initial condition 0 Pa

The simulation is run for 200 s and snapshots of the void fraction distribution
are presented for six chosen time steps in Figure 6.4. The figure presents a com-
parison between simulations performed with only the drag force (upper rows)
or complemented with the virtual mass force (bottom rows). Considering first
the results with only the drag force it is seen that the initially flat distribution
of the void fraction has developed to a non-uniform state. For the results from
t = 40 s to t = 120 s, a pattern with meso-scale structures is evident. However
at t = 200 s, a more disruptive void behavior is seen, with a checkerboard forma-
tion in the horizontal direction. In contrast, the results including the virtual mass
force show initial strange patterns, perceived as being of a numerical character,
whereas a more physically sound void fraction distribution is seen at the later
time steps.

The results from Figure 6.4 are further examined in Figure 6.5, where the tem-
poral development of the void fraction and the velocity field are presented to-
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Figure 6.4: The gas fraction field displayed for 6 time steps (as indicated at the
top of the figure) with the case of no virtual mass (top two rows) and virtual
mass included (bottom two rows), displayed in the horizontal plane (rectangu-
lar figures) and the vertical plane (square figures). [Paper VII]
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Figure 6.5: Temporal development of the void fraction field (top), the unifor-
mity index (middle) and the magnitude of the velocity field for both phases
(bottom). Both cases exhibit an initial transient in the void fraction and the
uniformity index, although significantly faster for the case without the virtual
mass force. The simulations are performed with the initial condition α = 0.05.
[Paper VII]

gether with the time-resolved uniformity index

Φ(t) =
αg,max − αg,min

αg,ave

, (6.8)

where αg,max and αg,min are the instantaneous maximum and minimum void frac-
tions in the domain, respectively. The index is used as a measure of the global
heterogeneity of the system. The average void fraction (αg,ave) is directly given by
the initial conditions for each of the simulations, and, for the presented results,
a flat initial volumetric fraction of 5% gas is applied. The figure again shows a
significant difference in the dynamics of the vapor fraction. For the cases with
the drag only a repetitive instable behavior is visual. Whereas an initial rapid
increase of Φ is seen for the cases with the virtual mass, the later stage of the
simulation follows a smoother behavior.

The results of the simulations are interesting from multiple perspectives. First,
an initially homogeneous distribution of all fields quickly change and a variety of
heterogeneous states is seen. The divergence from the uniform fields is interest-
ing as there are no actual mechanisms in the equations forcing the change, and,
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perhaps even more interesting as there are no mechanisms driving the system
back to the smooth state. Second, the inclusion of the virtual mass force signifi-
cantly changes the characteristics of the void fraction distribution. Although the
actual magnitude of the force is small in comparison to the drag, the alteration of
the behavior is distinct and seems to give a physically more plausible behavior.
Third, it is interesting that the clean formulation, i.e. with no excessive diffusivity
due to coarse turbulence modeling or additional momentum exchanges, exhibits
clear instabilities. Such dynamic behavior would potentially be hidden with the
inclusion of the mentioned type of terms, and arguably the latter would poten-
tially hide the instabilities.

A key question raised in Paper VII is that of the trustworthiness of dynamic
results from the two-fluid model. In detail, although the simulations might ap-
pear as sound and physical after the initial instabilities of numerical character (as
was the case for the simulations including the virtual mass force), how are these
results to be perceived? As argued in the paper, the quantitative values of the
dynamic simulations are not immediately to be trusted which again emphasizes
the complexities of the two-fluid model and the many questions marks yet to be
resolved.

88



CHAPTER 7

Conclusions and recommendations
for future work

Finally, the thesis is to be summarized and concluded. As the work was already
split into two parts from the objectives point of view, the fine-mesh multiphysics
and the two-phase flow studies, also the summary is presented in two parts.
Last, I provide an outlook for the future of simulations for the coupled neutronic
and thermal-hydraulic problem and how efforts like the one currently presented
could be of importance for the nuclear industry in the future.

7.1 Fine-mesh multiphysics simulations

As the development of the multiphysics solver has been an integral part of the
thesis, a summary of the methodology is first given. Second, a summary of the
results is provided and accompanied by a conclusion on the achieved fidelity of
the simulations.

7.1.1 Summary of the methodology

The presented methodology is aimed at fine-mesh simulations of the multiphysics
problem of neutronics and thermal-hydraulics. The computational tool described
in the thesis is based on the finite volume method and implemented in the open
source framework OpenFOAM R⃝. The thermal-hydraulic equations are solved
by a CFD approach with segregated pressure and velocity solvers complemented
by a RANS model for turbulence. The neutronic problem is handled by the multi-
group diffusion equation (steady and transient simulations) and the discrete or-
dinates method (steady cases only), and solved with iterative, fixed-point, algo-
rithms. The multiphysics couplings are handled in a Picard iteration style, with
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sequential updates of each of the two modules. The multiphysics solver is par-
allelized based on the MPI implementation in OpenFOAM R⃝, and with specific
handling of the decomposition such that all overlapping cells of the meshes are
kept at the same computational node.

The multiphysics solver is complemented by a utility for cross-section genera-
tion for sub-pin few group simulations. The tool is based on Serpent and handles
a 2D fuel assembly geometry, specified in a configuration file. Similarly, a mesh
tool is developed and to produce multi region body-fitted meshes for the thermal
hydraulic problem, with resolved fuel, gap, cladding and moderator regions and
a single, monolithic, mesh for the neutronics. The meshes are computed based on
a block structure that gives a high level of user influence on the discretization.

7.1.2 Results and conclusions

The multiphysics tool was applied to both transient and steady simulations, where
the results from the latter showed that:

• The fine-mesh simulations are able to provide the fuel and moderator tem-
perature gradients on a sub-pin and resolved subchannel level with an equally
high resolution neutronics solution on a quarter of a 15×15 fuel assembly
with PWR like thermophysical conditions.

• The convergence characteristic indicates that, generally, a few multiphysics
iterations are required to resolve the couplings, whereas large number of
sub-iterations are required for the neutronics and the thermal-hydraulics,
respectively.

• The neutronics diffusion solver is, as expected, inferior to the SN solver as
shown on a two-dimensional case, validated against a Monte Carlo solu-
tion. The discrete ordinates method exhibits a significant ray effect which
diminishes with the increasing order of the method.

As regards the transient simulations the results showed that:

• The fine-mesh simulation of a quarter of a 7×7 fuel assembly captures the
temporal development of the heterogeneities following a ramping transient
at the inlet of the fuel assembly.

• The solver produces transient responses to local perturbations which could
be verified with a novel approach based on the point-kinetic component of
the system response.

In general, it can be concluded that all objectives were fulfilled for this part
of the thesis. Nevertheless, there are also improvements to be developed (or im-
plemented) for nearly every single aspect covered in the thesis and the solver
methodology. To mention a few, it would be of interest and value to:
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• Develop a transient version of the SN solver. The steady-state validation
results suggest that the diffusion approximation induces a significant error,
not the least due to the highly resolved system and the resulting heteroge-
neous material regions. Clearly a transport method is required also for the
transient cases. In addition, the SN solver needs to be significantly acceler-
ated, advisably based on a Krylov approach.

• Investigate the effect of a more detailed geometry, such as spacers. Such an
effort would be even more interesting in combination with a LES approach
to the turbulence to capture heterogeneities in the heat transfer and fluid
thermo-physical state due to resolved fluctuations.

• Develop a multiphase version of the thermal-hydraulics method. As sug-
gested in the introduction, the heterogeneities in the moderator are signifi-
cantly larger for voided cases and thus a stronger fine-mesh coupling could
be anticipated.

• Assess non-linear techniques to handle the couplings in the overall multi-
physics problem as well as the separate modules. In particular, it would be
interesting to implement the Anderson mixing methodology for the multi-
physics problem and a more implicit approach to the pressure and velocity
coupling.

• Add a multiscale methodology to compute boundary conditions for the fine-
mesh simulations. Whereas the presented work was all based on periodic or
symmetry boundary conditions in horizontal direction it would be of inter-
est to investigate the effect of a more realistic environment of the simulated
systems. To limit the computational effort a multiscale strategy would be a
good candidate, simulating a hierarchy of scales in the same solver.

In addition, the implementation and the framework itself could be extended with
other physics modules and with more generic simulation capabilities such as
fluid-structure interaction or thermo-mechanical modules. Finally, it would be
interesting to test the current approach for larger simulation domains, i.e. based
on significantly larger computer resources.

7.2 Two-fluid simulations

The results and conclusions for the two-fluid simulations are separately reported
for the DQMOM methodology and the dynamics investigations.

7.2.1 DQMOM coupled to a two-fluid solver

The presented methodology for subcooled boiling flows is based on a coupled
PBE and two-fluid solver approach. The PBE is solved using DQMOM with a
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newly proposed formulation for the condensation of bubbles. The method is
compared to a MUSIG method, which in contrast to DQMOM applies a set of
fixed bubble sizes.

The comparisons of the mentioned methodologies propose that:

• DQMOM needs significantly fewer discrete bubble sizes to reproduce the
distribution as compared to the same accuracy as MUSIG. This further im-
plies an edge in terms of shorter computational time required for DQMOM.

• DQMOM requires specific treatment for the extreme of very small bubbles,
typical for subcooled flows where the bubbles grown at the wall fully con-
dense in the bulk of the flow. Remedies in terms of regularization of the
weights and the abscissas are shown for this purpose and successfully sta-
bilize the solver.

In addition, the coupling to the two-fluid solver was carefully analyzed and, in
particular, wall conditions for the insertion of bubbles were studied for both DQ-
MOM and MUSIG.

As discussed in the analysis, the simulations presented in the thesis were not
directly targeted to the BWR geometry or conditions. Instead, the study should
be seen as an attempt to extend the field of CFD simulations for bubbly flows,
and with particular focus on algorithms for the solution of PBEs. As a next step
it would be of interest to investigate the benefits and drawbacks of the DQMOM
method on a system more closely mimicking the subchannels in the reactor and
of significantly larger size.

7.2.2 Two-fluid instability results

To investigate the dynamics of the two-fluid model, simulations based on adi-
abatic conditions were performed on fully periodic systems. The momentum
exchange was based on the drag force and the virtual mass force only and no
turbulence model was involved. The simulations showed that:

• The initially uniform void fraction distribution changed to a heterogeneous
spatial distribution, exhibiting meso-scale structures.

• The inclusion of the virtual mass force stabilized the solver and resulted in
a more physical character of the dynamics.

The analysis emphasized that the numerical character of the initial stage of the
instabilities raises questions on the trustworthiness of such simulations and fur-
ther illustrates the complexities of the two-fluid model. For future investiga-
tions it would be particularly interesting to evaluate the above proposed conclu-
sions based on an entirely different methodology. In detail, to prove, or at least
more firmly confirm, the existence of meso-scale structures, a comparison to a
Lagrangian simulations framework should be a reasonable approach.
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7.3 Future outlook

The core of a nuclear reactor is really an astonishing challenge from so many
perspectives, and although high-fidelity multiphysics has been a hot topic in the
last few years, much remains to be done.

For neutronics, the recent rapid development of the Monte Carlo solvers makes
such types of methodologies important candidates for future tools. We have seen
that there are many problematic aspects (not the least concerning the cross-section
generation) which are completely eluded with the Monte Carlo approach and, al-
though there are still gaps as regards transient simulations, this type of solver is
likely to be an important component of future high-fidelity multiphysics tools.

As regards thermal-hydraulics, the areas of applications of CFD for reactor
core simulations are likely to increase in number as well as in importance. The
continuing growth of computational resources will successively allow for ever
finer scales to be resolved and the application of high-resolution turbulence meth-
ods will for sure play an even more important role in future design of fuel assem-
blies and reactor cores. For multiphase CFD much theoretical work still remains,
and, although, larger clusters can allow for more industrial use of interface track-
ing methodologies, full fine-mesh assembly simulations are for a long time still
going to rely on averaged approaches, which are thus a continued important area
for research.

Another future important question is that of validation of the novel multi-
physics approaches. Although many of the suggested modules for the coupled
tools can be separately validated, the community should aim at direct validation
of the multiphysics solvers, in particular on fine-scales.
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