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Abstract

Heterogeneous catalysis is vitally important to modern society, and one path towards
rational catalyst design is through atomistic scale understanding. The atomistic scale
can be linked to macroscopic observables by microkinetic models based on first-principles
calculations. With the increasing accuracy of first-principles methods and growing com-
putational resources, it has become important to investigate and further develop the
methodology of microkinetic modeling, which is the theme of this thesis.
First, a procedure for mean-field microkinetic modeling of reactions over extended surfaces
is developed, where complete methane oxidation over Pd(100) and Pd(111) is studied as
an example. The model reveals how the main reaction mechanisms depend on reaction
conditions, and shows poisoning as well as promotion phenomena.
Second, the effect of entropy in microkinetic modeling is investigated, where CO oxidation
over Pt(111) is used as a model reaction. Entropy is found to affect reaction kinetics
substantially. Moreover, a method named Complete Potential Energy Sampling (CPES)
is developed as a flexible tool for estimating adsorbate-entropy.
Third, a kinetic Monte Carlo method is developed to bridge the materials gap in het-
erogeneous catalysis. The computational cost to map out the complete reaction-energy-
landscape on a nanoparticle is high, which is solved herein using generalized coordination
numbers as descriptors for reaction energies. CO oxidation over Pt is studied, and
nanoparticles are found to behave differently than the corresponding extended surfaces.
Moreover, the active site is found to vary with reaction conditions.
Finally, the reaction orders and apparent activation energies are coupled to the microscale
via the degree of rate control, which enhances the atomistic understanding of reaction
kinetics.

Keywords: Catalysis, Density Functional Theory, Microkinetic modeling, Nanoparti-
cles, Kinetic Monte Carlo, Mean-field approximation, Entropy, Methane oxidation, CO
oxidation.
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Chapter 1

Introduction

”What would happen if we could arrange the atoms one by one the way we want them ... I
can hardly doubt that when we have some control over the arrangement of things on a small
scale we will get an enormously greater range of possible properties that substances can
have and of different things we can do ... Atoms on a small scale behave like nothing on a
large scale, for they satisfy the laws of quantum mechanics.” Richard P. Feynman(1959)1.

This was how Richard Feynman envisioned the influence that nanotechnology will have
in society, nearly 60 years ago. Today, his visions of manipulating matter at the atomic
scale is close to reality. Systems can be designed atom by atom, which is a consequence
of understanding the quantum mechanical behavior of atomic systems. Understanding
the behavior of matter at the smallest scale is crucial as it enables rational design, and
manipulation, of properties in nanoparticle-based technologies.

Figure 1.1: Schematic illustration of a catalytic reaction. The catalyst provides an
alternative pathway with lower energy barriers for a chemical reaction.

One technology that benefits from atomistic understanding is heterogeneous catalysis.
Heterogeneous catalysis has a range of applications in society, such as cleaning automotive
exhaust from harmful gases, producing synthetic fuels, and manufacturing chemicals. In
the chemical industry, about 90% of the production applies catalysts2 (p. 11). Because
of this, small improvements can have major impacts on a global scale. A catalyst is a
substance that speeds up a chemical reaction without being consumed in the process. In
Figure 1.1, a catalytic reaction is illustrated, where reactants are converted to products
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with lower energies as compared to the case without a catalyst. The conversion of
reactants proceeds on the surface of the catalyst, which provides an alternative pathway
for the reaction. To maximize the exposed surface area, heterogeneous catalysts are often
designed as precious metal-nanoparticles, dispersed on porous metal-oxide supports.

Since catalysis proceeds on the surface of nanoparticles, understanding bonding on
surfaces is required. The first step in a catalytic cycle is adsorption of reactants on the
surface. Next, the reactants form new chemical bonds mediated by the surface, and finally
the resulting products should desorb from the surface. For the catalytic cycle to proceed
efficiently, the adsorbate-surface bond should neither be too strong nor too weak. This
point is contained in the Sabatier principle2 (p. 264), which states that for a given reaction,
there is an optimal binding energy of the reactants. The fact that there is an optimal
binding energy has lead to the recognition that only a few sites might be active in a
catalytic reaction and the concept of active sites3. An early description to quantify the
rate of a catalytic reaction was the Arrhenius equation2 (p. 36), which gives an empirical
expression for the rate constant:

k = A exp

(−Ea
kBT

)
(1.1)

where Ea is the activation energy, A is a pre-exponential factor, and T is the temperature.
As Ea appears in the exponent, small variations in Ea results in large changes in the rate.
A smaller activation energy allows for a higher efficiency, since the temperature can be
kept low. The Arrhenius equation is connected to the Sabatier principle as the activation
energy usually is correlated with the bond strengths of the reactants. This is the essence
of the Brøndsted-Evans-Polanyi (BEP) principle2(p. 267), which states that the transition
state energy of a reaction depends on the bond strength of the adsorbates.

Besides the general and phenomenological insights contained in the Sabatier principle
and the Arrhenius equation, the microscopic picture of catalysis has been elucidated by
the computational chemistry and physics communities. The development of electronic
structure calculations; especially Density Functional Theory4;5, have played an important
role in studies of catalytic reactions6. Some of the earliest models of the catalyst surface
were small clusters that locally mimicked the active site7. These cluster models are
fair approximations to the catalyst surface7, which can explain chemical bonds between
adsorbates and surfaces qualitatively. Later, when the computational power had matured,
slab models were applied to model extended surfaces7, which presently is the most common
approach. Slab models have enabled quantitative descriptions of the adsorbate-surface
bond. Explicit calculations on nanoparticles still pose a special challenge due to the
system size and structural complexity. However, during the past few years, studies of
adsorption on idealized nanoparticle-models have been conducted using first-principles
calculations8–17.

In addition to studies of specific reactions, computational approaches have been used
to understand trends in catalytic properties. One example is the adsorption on transition
metal surfaces, where the leftmost metals in the periodic table of elements are more
reactive than the metals to the right. This trend was rationalized by the d-band model18,
where the center and filling of the d-band determines the reactivity of a certain catalyst
site. Different sites on nanoparticles have different coordination numbers that correspond
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to varying d-band centers. Thus, the d-band model suggests that the coordination number
should be a proper descriptor for binding energies6. To improve on the coordination
number as a descriptor, the coordination numbers of the first nearest neighbor can be
taken into account. This was recently realized with the generalized coordination number
that was shown to be a good descriptor for the reactivity on extended surfaces and
nanoparticles19–21.

Adsorption studies solely account for the thermodynamic aspects of catalysis. However,
to fully understand a reaction it is also central to describe the reaction kinetics. The
reaction kinetics can be elucidated using a microkinetic model, which is a mathematical
representation of a reaction as a set of intermediate steps. The benefit of constructing
a microkinetic model is that the main reaction mechanisms and kinetic bottlenecks are
accessible, which reveals the elementary steps that should be targeted in future catalyst
design. Previously, microkinetic models based on experimental measurements22–28 and
first-principles calculations29–43 have been formulated for various catalytic reactions.
Although this field is rapidly growing, the number of formulated microkinetic models is still
modest44. Models derived from first-principles calculations been formulated using several
different methods, and it is timely to investigate and develop the general methodology of
microkinetic modeling, especially to take advantage of the growing computational power.

Furthermore in the preceding literature, extended surfaces have often be used as
model-systems for nanoparticles. Using extended surfaces gives the benefit of structural
simplicity. However, it simultaneously gives rise to a, so-called, materials gap between
technical catalysis and model systems. Efforts have previously been made to bridge the
materials gap by performing experiments on surfaces and well-defined nanoparticles45–48.
Additionally, theoretical models have been constructed to understand the kinetics on
nanoparticles38;40;49;50. In these theoretical studies, the considered reaction energy
landscapes were simplified or the reactions schematic. Hence, there is a need to understand
nanoparticle catalysis using first-principles-based reaction energy landscapes.

1.1 Thesis Objectives

The purpose of this thesis is to investigate and develop the methodology of first-principles
microkinetic modeling of reactions on extended surfaces and nanoparticles. In particular,
it aims to investigate catalysis through mean-field modeling and kinetic Monte Carlo
simulations. Furthermore, methods for analysis of microkinetic simulations and comparison
with experimental results are discussed. Special emphasis is placed on the modeling of
adsorbate entropy, and how to bridge the materials gap between extended surfaces and
nanoparticles.

The necessary components for formulating, solving, and analyzing first-principles
microkinetic models are illustrated in Figure 1.2. The first step is to choose a simplified
model system of the catalyst. Simplification of the real catalyst is necessary as a technical
catalyst is complex and ill-defined. Moreover, working with a simple model system will
likely result in a clearer understanding of catalytic mechanisms. The choice of model
system can include extended surfaces as well as nanoparticles, which both will be treated
in the upcoming chapters. The next ingredient in the modeling is an energy landscape for
the reaction, which is the set of Gibbs free energy barriers for the considered elementary
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Figure 1.2: Concept map of the thesis. The map illustrates necessary components
to model catalysis from first principles.

reactions. All Gibbs free energies in the present work are calculated using Density
Functional Theory (DFT). When the Gibbs free energy barriers have been obtained,
the rate constants can be calculated. Construction of the reaction energy landscape
and rate constants are treated in chapter 2. With access to the rate constants of all
elementary reactions, the kinetics can be simulated by solving the chemical master
equation. The master equation can in special cases be solved approximately in the mean-
field approximation, and when the mean-field approximation is not applicable, the kinetics
can be simulated with kinetic Monte Carlo. Kinetic Monte Carlo is necessary to simulate
the kinetics of reactions on nanoparticles. Simulation of reaction kinetics and analysis
of the results are treated in chapter 3. The results of the kinetic simulations should
be analyzed to understand the governing reaction mechanisms and to determine which
elementary steps that control the rate. Here, the rate controlling steps are quantified by
a degree of rate control analysis. Ultimately, the success of a first-principles microkinetic
model depends on how well it agrees with experiments. To compare with experiments, the
model can be used to simulate reaction orders and apparent activation energies. Examples
of the developed methodologies are presented in chapter 4, which describes kinetic models
of methane and CO oxidation.
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Chapter 2

Calculating Rate Constants

To simulate reaction kinetics, it is necessary to calculate the rate constants of the
elementary steps in the microkinetic model. This chapter deals with calculations of rate
constants from first principles using Density Functional Theory.

2.1 Reaction Rate Constants

Rate constants can be estimated using Transition State Theory51;52 (TST). The TST
rate constant for an elementary reaction is derived by dividing phase-space into a reactant
and product region by a specific dividing surface52. All points on the dividing surface
in phase-space define the transition state (R‡). Reactants (R) that cross this dividing
surface become products (P ). The main assumption of TST is that the reactant and
transition state are in equilibrium, and that the transition rate into the product region is
so low that the Boltzmann distribution remains intact52. The second assumption is that
the reactants cross the dividing surface only once. Thereby, the TST estimate of the rate
constant will always be larger than the actual rate constant. The reaction can be written
as:

R� R‡ → P (2.1)

The TST rate constant is written as a frequency f of the molecules passing R‡ into P ,
multiplied with the ratio of the partition functions as52:

kTST = f
Z‡

ZR
, (2.2)

where Z‡ is the partition function in the transition state and ZR is the partition function
of the reactant state. f can be found using the Maxwell-Boltzmann speed distribution,
and assuming that R‡ has a finite width δ, such that Z‡ = δZ∗. Using this, the rate
constant can be shown to take the following form52:

kTST =
kBT√

2πµkBT

Z∗

ZR
, (2.3)

where µ is an effective mass for the reaction coordinate.
An effective mass of the reaction coordinate is an abstract concept, and it is cumbersome

to work with. Therefore, it is often assumed that the reaction coordinate is a vibration
with frequency ν. Taking the classical limit of the partition function for this vibrational
mode, in the limit where kBT � hν, gives a simple expression for the rate constant51:

kTST =
kBT

h

Z‡

ZR
. (2.4)
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For a barrierless adsorption reaction, where the gas-phase reactant molecule impinges on
a substrate atom with area A, one can deduce the following expression52

kTST
ads =

s0pA√
2πMkBT

, (2.5)

where p is the pressure of the gas, A is the are of the adsorption site, M is the molecule
mass, and s0 is the sticking probability. If this expression is used for the adsorption rate
constant, the corresponding desorption rate constant kdes can be determined from the
equilibrium constant K:

K =
kads
kdes

= e

−∆G

kBT , (2.6)

where ∆G is the Gibbs free energy change upon adsorption. In this manner, thermody-
namic consistency is ensured.

The Gibbs free energy change is composed of an enthalpy (∆H) and an entropy (∆S):

∆G = ∆H − T∆S (2.7)

The enthalpy change of the reaction is determined by electronic rehybridization, where
bonds are broken and new bonds are formed. Likewise, the entropy is determined by the
potential energy landscape. Therefore, it is essential to calculate the energy of atomic
systems, which can be achieved using Density Functional Theory.

2.2 Density Functional Theory

The total energy of a system of atoms is calculated using the stationary Schrödinger
equation:

Ĥ |Ψ〉 = E |Ψ〉 , (2.8)

where the many-body Hamiltonian Ĥ can be written:

Ĥ = ĤeZ + Ĥee + ĤZZ . (2.9)

The expression (2.9) includes contributions from electron-nuclei interactions (eZ), electron-
electron interactions (ee), and nuclei-nuclei interactions (ZZ). The corresponding
Schrödinger equation to (2.9) does not allow an analytical solution for more than one
electron, and must be solved by approximations.

One common approximation is the Born-Oppenheimer Approximation, which treats
the nuclei with classical physics and invokes the adiabatic approximation. The adiabatic
approximation states that electrons move on a much shorter time scale than the nuclei.
Therefore, the electrons instantaneously follow the nuclei during atomic motion without
undergoing transitions between stationary states. However, the stationary states vary
as the nuclei move. The adiabatic approximation holds if the ratio of the electron
to nuclei mass is small compared to the energy difference between different adiabatic
eigenstates53 (p. 9). The second part of the Born-Oppenheimer approximation treats
nuclei as classical, which can be rationalized due to their large thermal wavelengths (λT ).
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λT is roughly the average de Broglie wavelength at a given temperature53 (p.10). Particles
with substantially larger separation than λT do not exhibit quantum phase coherence,
and the total nuclear wavefunction is simply the product of the individual wavefunctions.
When the Born-Oppenheimer approximation is invoked, it is sufficient to deal with the
electronic part of the Hamiltonian ĥe:

ĥe = T̂ + V̂ext + V̂ee = T̂e + V̂ext + V̂H + V̂XC (2.10)

Where T̂ is the kinetic energy operator for the electrons, V̂ext is the external classical
electrostatic field set up by the nuclei, and V̂ee describes the electron-electron interactions.
In the second equality V̂ee is split up into the classical Hartree energy V̂H and the
quantum mechanical exchange and correlation energy V̂XC . The Hartree energy is simply
the electrostatic energy of the field set up by the electrons, which has a non-physical
self-interaction that should be canceled by V̂XC .

The exchange energy stems from the indistinguishability principle and symmetrization
postulate of quantum mechanics, which state that a fermionic wavefunction is anti-
symmetric under particle permutation. These constraints modify the electronic energy
with the so-called exchange energy. Exchange will make electrons of identical spin less
likely to be close as two fermions cannot occupy the same quantum state. The correlation
energy is the energy related to correlation of electronic motion. In this sense, exchange
interaction is also a form of correlation.

Density Functional Theory is based on the two Hohenberg-Kohn (HK) theorems4. The
first HK theorem states that the ground state electronic density (ρ) uniquely determines
the external potential (V̂ext). This implies that ρ also determines the ground state |Ψ〉
of the many body problem. The second HK theorem defines the variational energy as a
functional of ρ4

Ev[ρ] = 〈Ψ[ρ]|T̂ + Ûee|Ψ[ρ]〉+

∫
ρ(r)vext(r) dr (2.11)

Where vext is the external potential. It must be noted that Ψ depends on ρ and vice
versa, which implies that the problem must be solved self-consistently.

The expression for the kinetic energy of the real interacting system is unknown as
a functional of the density. This difficulty is circumvented in the Kohn-Sham scheme5,
where one works with a fictitious non-interacting system that has the same density as the
real system. The benefit is that the ground state of a non-interacting system is simply
the Slater-determinant composed of the individual single particle states. In the fictitious
reference system, the Hamiltonian is53 (p. 61)

ĤR =
N∑

i=1

(
T̂R + vR(ri)

)
(2.12)

Where N is the number of electrons. The first term is the single particle non-interacting
kinetic energy operator, and vR is a reference potential which ensures that the density
coincides with the density of the interacting system. vR can be derived using variational
calculus with the constraint that ρ integrates to N ; this yields53 (p. 63)

vR(r) = vext(r) +

∫
ρ(r′)
|r− r′| dr +

δẼXC
δρ(r)

. (2.13)
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The second term in (2.13) is the Hartree energy and the third term is a chemical potential,

which is formulated as a functional derivative with respect to ρ. ẼXC is a modified
exchange-correlation energy that must be introduced when neglecting kinetic correlations
in the reference system. The Kohn-Sham equations are a set of equations defined by (2.12).
These equations must be solved self-consistently since vR depends on ρ and vice-versa.
Finally, the energy is evaluated by the Kohn-Sham functional53 (p. 62)

EKS [ρ] = TR +

∫
ρ(r)vext(r) dr +

1

2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ + ẼXC [ρ] (2.14)

The only remaining unknown quantity here is the exchange-correlation energy, which
determines the accuracy of DFT. It is interesting to note that DFT is an exact theory,
given the true exchange-correlation energy.

2.2.1 Exchange Correlation Energy Approximations

The approximation of the exchange-correlation functional is a major concern when it
comes to the accuracy of DFT. One can view the exchange-correlation energy as the
Coulomb interaction between the density and a displaced charge density, which is brought
about by exchange and correlation53 (p. 69). This displaced charge density is called
the exchange-correlation hole ρ̃XC(r, r′) = ρ(r′) [g(r, r′)− 1]. Here g(r, r′) is the pair-
correlation function, describing the probability to find an electron at r given that one is
already present at r′.

The simplest and earliest kind of exchange-correlation approximation is the Local
Density Approximation (LDA)5. In LDA, the exchange-correlation is approximated by
considering the inhomogeneous electron gas as being locally homogeneous, thus applying
the exchange-correlation hole of the homogeneous electron gas. In this way, the exchange-
correlation energy is found by integration with an energy density ε̃LDA

XC :

ẼLDA
XC [ρ] =

∫
ρ(r)ε̃LDA

XC [ρ(r)] dr . (2.15)

The exchange-correlation hole and pair-correlation function for an inhomogeneous electron
gas is however non-local. To introduce some semi-local behavior and improve on LDA, the
Generalized Gradient Approximation (GGA) can be invoked53 (p. 86). This approximation
improves over LDA by taking into account the gradient of the density. GGA functionals
are constructed by augmenting the LDA energy density with an exchange-correlation
enhancement factor FXC [ρ]. Thereby the exchange-correlation energy becomes

ẼGGA
XC [ρ] =

∫
ρ(r)ε̃LDA

XC [ρ(r)]FXC [ρ(r),∇ρ(r)] dr . (2.16)

Multiple GGA functionals have been developed throughout time, and one popular choice
is the Perdew-Burke-Ernzerhof (PBE) functional54. Another GGA functional derived
from PBE is the revised PBE functional of Hammer et al.55 (RPBE), which is optimized
for chemisorption. Metallic systems are generally well described using PBE, whereas
chemisorption problems might prove more difficult. For example, PBE predicts the lattice

8



constant of Pd to be56 3.99 Å, and RPBE gives 4.02 Å. Experiments give56 a lattice
constant of 3.876 Å, and PBE comes closer to the experimental lattice constant. PBE
predicts the chemisorption energy of CO on Pd(111) at the fcc site to be55 -1.94 eV,
whereas RPBE yields -1.65 eV. The corresponding experimental value is55 -1.47 eV.
Similar improvements for RPBE over PBE in the chemisorption energy exist for oxygen55.
This indicates that PBE performs better for the solid, whereas RPBE predicts good
chemisorption energies. In microkinetic modeling the chemisorption energies are most
important as lattice-parameters do not enter the rate constant calculations explicitly.
Therefore, the RPBE functional is applied in Paper II and Paper III to model CO oxidation
over Pt.

The exchange-correlation energy of GGA functionals can be improved further, and
different strategies exists53 (chap. 5) such as, meta-GGAs, van der Waals functionals, and
hybrid functionals where exact exchange energies are included.

The discussion concerning DFT is straightforwardly generalized to spin-polarized
systems. This is done by decomposing ρ into a spin-up density and a spin-down density
(ρ = ρ↑ + ρ↓), where one must solve the Kohn-Sham equations for each spin channel
separately.

2.2.2 Projector-Augmented Wave Method

When performing DFT calculations in practice, a certain basis set is needed to represent
the Kohn-Sham orbitals. In the present work, the applied basis functions are plane waves.
Plane waves are advantageous for periodic systems as they fulfill Bloch’s theorem53 (p. 129).
Another advantage is that increasing the number of plane wave components in the basis
results in monotonous convergence of the energy. Other choices of basis functions include
numerical grids and atomic orbitals53 (chap. 8).

The wavefunctions close to the nuclei oscillate rapidly due to orthogonality, and it
would require an unreasonable plane-wave basis to describe these oscillations. To avoid
describing the oscillations explicitly, the Projector-Augmented Wave (PAW) method57

is used. In PAW, the core electrons are usually treated as chemically frozen as they do
not directly take part in the rehybridization, and only the valence electrons are treated
explicitly. The valence wavefunctions are treated by introducing a linear transformation T
between the true wavefunction |Ψ〉 and a pseudo wavefunction |Ψ̃〉. Real-space is divided
up into interstitial regions between the atomic cores and augmentation regions around the
cores. The pseudo wavefunction is chosen to be a smooth function inside augmentation
regions, which needs a smaller basis set. The method requires that |Ψ̃i〉 = |Ψi〉 outside
the augmentation regions, and that they match in value and derivative at the boundary.
The transformation T only acts locally in each augmentation region, and it is the identity
transformation outside.

The transformation is performed using different basis functions than plane-waves. This
basis functions can be the all-electron partial waves |φi〉, which are found by integration
of the radial part of the Schrödinger Equation for the isolated atom. Here i denotes all
angular momentum quantum numbers and an index labeling the atom in question. i also
contains an index n that describes different partial waves for identical angular momenta
and atomic sites. Each |φi〉 is assigned a pseudo partial wave |φ̃i〉 that is equal to |φi〉
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outside of the augmentation region. |φ̃i〉 forms a complete set inside. Using the partial
waves as basis functions inside the augmentation regions, the transformation takes the
form57

T = I +
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i| (2.17)

|Ψ〉 = T |Ψ̃〉

Where I is the identity operator and 〈p̃i| is a projector function. There is one 〈p̃i| for

each |φ̃i〉, which fulfill the conditions:

∑

i

|φ̃i〉 〈p̃i| = I, 〈p̃i|φ̃j〉 = δij . (2.18)

It should be noted that the projectors are local operators inside each augmentation region
that project out the relevant part of the wavefunction. Hence, inside an augmentation
region the wavefunction is the augmented part of the sum in (2.17), whereas outside the

projectors are orthogonal to |Ψ̃〉 and no augmentation takes place.

2.2.3 Periodic Systems

The atomistic model systems in the present work were chosen to be periodic systems. The
wavefunction of an electron in a periodic potential (ψk) obeys Bloch’s theorem, which
can be stated as53 (p. 129)

ψk(r) = eik·ruk(r), (2.19)

where k is the wavenumber and uk is a function with the periodicity of the potential.
Using the periodic zone scheme58 (p. 223) and working in the first Brillouin zone, the
wavefunction of an infinite solid is described taking only one unit-cell into account. In
principle, all possible wavenumbers must be included in the calculation, however in practice
this is solved by Brillouin zone sampling. In Brillouin zone sampling, one represents the
density, hence the energy, as a sum over special wavenumbers in the first Brillouin zone
called k-points:

ρ(r) =
∑

k∈BZ

ωk|ψk(r)|2 (2.20)

Where ωk are weights that depend of the symmetry of the Brillouin zone. In practice,
symmetry is applied and only points in the irreducible wedge of the Brillouin zone are
considered. The density is given as a sum over each k-point as

ρ(r) =
∑

k∈BZ

ωk

Nk∑

i=1

f
(k)
i |φ

(k)
i (r)|2, (2.21)

where φ
(k)
i (r) are the eigenstates of the Kohn-Sham equations, f

(k)
i are the occupation

numbers of the orbitals, and Nk is the number of occupied electronic states with wavenum-
ber k. It is necessary to solve a set of coupled Kohn-Sham equations, one for each k-point.
The number of k-points is a quantity, which must be increased until convergence in the
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quantity of interest is achieved. Furthermore, it should be noted that a larger supercell
will require fewer k-points for convergence as a larger unit-cell will result in a smaller
Brillouin zone.

When calculating the density it can have practical relevance to work with partial
occupation numbers, which is referred to as smearing of the Fermi surface. For metallic
systems, this might be necessary as different k-points can make new bands enter or exit
the calculation during the self-consistent solution of the Kohn-Sham equations.

2.3 Local Minimum Energies

The previous sections have described how the energy of an atomistic system can be obtained
given the atomic positions. However, the precise positions that correspond to local energy
minima are generally not known. Energy minima are important to find, since a system
will spend a major part of its time near the minima. The local optimization procedure
used in this thesis is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm59. The
BFGS algorithm is of the Quasi-Newton type where the atomic positions are updated
according to the Hessian matrix.

Calculating adsorption energies is done in a series of steps. First, the bulk unit-cell is
used to calculate the lattice constant that corresponds to the lowest energy, for example by
fitting an equation of state. Next a surface slab is constructed, where the number of layers
required to converge the surface- or adsorption-energy is determined. Then adsorbates
are placed over sites on the surface, and the system is relaxed locally. There can be
multiple local minima on a surface, and each possible minimum should be probed to find
the lowest energy. The calculations should also be converged with respect to simulation
cell size. Furthermore, a vacuum layer is introduced perpendicular to the surface to avoid
interactions between periodic repetitions of the system. For gas-phase moelcules, a large
cell is required to avoid interactions between periodic repetitions of the system.

Vibrations of gas-phase molecules and adsorbates can also be calculated with DFT.
This is often done by assuming a harmonic potential and finding the vibrational frequencies
using finite differences. The vibrations become important when analyzing transition states
as well as correcting the bare DFT energies for zero-point motion. A zero-point energy is
present for confined matter since it defines a ∆x in Heisenberg’s uncertainty principle.
Thereby a small ∆x implies a larger ∆p, which is responsible for the zero-point energy.

2.4 Energy Barriers with Nudged Elastic Band

The energy barrier for moving a system from the initial state to the transition state plays
a central role in describing chemical reactions. The transition state energy is needed
to calculate the rate constants. Nudged Elastic Band60 (NEB) is a method to find the
Minimum Energy Path (MEP) between an initial state and final state, and NEB is also
used to identify the transition state.

To initialize a NEB calculation, the initial and final atomic positions are specified.
Next, the atomic positions are interpolated between the initial and final state. The
resulting atomic configurations are called images, and the distance between the images
are described by a reaction coordinate r. Structural optimization is done on each image,
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which is connected to the other images by modifying the force component parallel to
the MEP. The total force on each image is decomposed in parallel and perpendicular
components as:

F = F‖ + F⊥ = −kr + F⊥ (2.22)

where k is a spring constant. Hence, each image interacts with its neighbor images by a
spring-force parallel to the MEP, which prohibits full relaxation of each image down to a
local minimum (initial or final state). The perpendicular component ensures that each
image relaxes down to the MEP at the given reaction coordinate. In this manner, the
images are stretched along the MEP.

Typically, the transition state is not found without releasing the highest energy image
from all spring forces, and reversing the true parallel force component. As a result,
the image climbs up the MEP to the true transition state. This procedure is called
the Climbing Image method60, which can be switched on after a coarse initial NEB
calculation. Whether the highest energy point is a saddle point on the MEP can be
verified by vibrating the highest energy image. If the image has one imaginary frequency
in the direction of the reaction coordinate, the image is a saddle point on the energy
surface and can be considered a transition state.

2.5 Adsorbate-Adsorbate Interactions

The adsorbates on a catalyst surface interact either by direct interactions or by modification
of the surface electronic structure61;62. Such phenomena can have large effects on the
binding energies of certain species and consequently may be important for the kinetics. A
microkinetic model should take this into account by modifying the energies as a function of
the adsorbate configurations. Paper I treats adsorbate-adsorbate interactions as functions
of the adsorbate coverages, where the energies of the most abundant species (O, C, CO)
are perturbed linearly using calculations of the differential adsorption energies. This
turns out to be important for obtaining reasonable coverages. In Paper II, an exponential
relation is fitted for the CO-CO and O-O interactions, whereas the CO-O interactions are
modified linearly. It is important to use the differential adsorption energies instead of
the average adsorption energies, as adding another adsorbate will alter the energy of the
system based on the adsorbates that are already present.

Adsorbate-adsorbate interactions can also be fitted to specific atomic arrangements.
This is achieved by so-called cluster expansion Hamiltonians63 (p. 94) where one calculates
the energies of certain geometric occupation-patterns and fits a Hamiltonian to the system.
The expansion is truncated at a certain number of nearest neighbors, typically including
two and three-particle interactions. In Paper III, the adsorbate-adsorbate interactions are
considered between the first nearest-neighbors, and two-particle interactions are accounted
for.

Figure 2.1 shows simulated coverages plotted as a function of temperature for complete
methane oxidation over Pd(100) using the microkinetic model of Paper I. The applied
model includes O-O, C-C, and OH-OH interactions. The figure shows coverages when the
interactions are turned off and are at full strength. Without any interactions, O has a
very high coverage and there is no C on the surface. At full interaction strength, there is
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Figure 2.1: Simulated coverages without adsorbate-adsorbate interactions (left) and
with adsorbate-adsorbate interactions (right) during complete methane oxidation
over Pd(100). Pressures: 0.61 mbar methane and 3.06 mbar oxygen.

a coverage of both C and O. Thus, the adsorbate-adsorbate interactions are of utmost
importance for obtaining reasonable coverages and kinetics.

2.6 Modeling Entropies in Catalytic Reactions

The Gibbs free energies entering the rate constants are composed of an enthalpic con-
tribution and an entropic part. Thus, to compute rate constants, the entropy difference
between the initial and transition state must be modeled.

To model entropy, it is customary to work in the canonical ensemble and thereby use
the canonical partition function Z, which is a sum over all states, available to the system.
The entropy and partition function are related by the connection between statistical
mechanics and thermodynamics64

S = − ∂

∂T
(−kBT lnZ)V,N = kBlnZ + kBT

1

Z

(
∂Z

∂T

)

V,N

. (2.23)

In this way, the entropy is uniquely defined by the partition function.
The partition function of an ideal-gas molecule can be split up into translations,

rotation, and vibrations. Assuming that these degrees of freedom are independent, the
partition function is a product of the individual contributions:

Z = ZtransZrotZvib. (2.24)

The translational part of the partition function of the free-gas molecule is given by2 (p.89)

Ztrans = V

(
2πMkBT

h2

)3/2

, (2.25)

where V is the volume of the gas, and M is the mass. V is often substituted for the
pressure using the ideal gas equation of state pV = kBT .
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The rotational partition-function can be calculated in the rigid-rotor approxima-
tion2 (p. 92):

Zrot =
1

σ

(
8π2kBT

h2

)3/2√
πIAIBIC (2.26)

where IX is the moment of inertia of the molecule around the principal axis X, and σ is
the symmetry factor of the molecule.

Finally, the vibrational partition function in the Harmonic Approximation has the
following form2 (p. 90)

Zvib =
∏

i

e
−

~ωi
2kBT

1− e
−
~ωi
kBT

, (2.27)

where ωi is the vibrational frequency of mode number i. The Harmonic Approximation
assumes that the molecule is subject to a parabolic potential leading to the harmonic
oscillator energies ~ωi, which can be calculated using finite differences in the energies
obtained with DFT.

The partition function of adsorbates differs from gas-phase molecules. Paper II explores
the effect of adsorbate entropy in microkinetic modeling. In this context, the method of
Complete Potential Energy Sampling (CPES) is developed to estimate adsorbate entropy
with DFT. Four different adsorbate entropy approximations were compared in Paper II:
the Harmonic Approximation, the Hindered Translator, the Free Translator, and CPES.
These approximations differ in the description of the translational partition function
parallel to the surface. All remaining degrees of freedom are described as frustrated
vibrations.

In the Harmonic Approximation, the adsorbate fixed to one site and subject to a
harmonic potential. Thereby all modes are frustrated vibrations, and (2.27) determines the
full partition function. If low-energy modes are found (< 100 cm−1), it can be necessary
to truncate the value, as low-energy modes are computationally uncertain.

The Hindered Translator65;66 allows for motion of the adsorbates, depending on their
diffusion barriers. The model is simple as it ignores surface topology by only treating
the fastest path of diffusion. In the Hindered Translator, the adsorbate is subject to a
sinusoidal potential, and the two surface-parallel directions are treated with the following
partition function66:

ZHT
T =

Nsites
πrx
Tx

exp

(
−rx + 1

Tx

)
I20

(
rx

2Tx

)

[
1− exp

(
− 1

Tx

)]2 exp

(
2

(2 + 16rx)Tx

)
. (2.28)

Tx = kBT/hνx is the ratio between the thermal energy and the vibrational energy, and
rx = Wx/hνx is the ratio between the diffusion barrier Wx and the vibrational energy.
Nsites is the number of surface sites, and I0 is the zero-order modified Bessel function of the
first kind, arising from the periodic potential. The last exponential in (2.28) is accounting
for zero-point energy corrections66. There can be some uncertainties in working with
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the Hindered Translator. For example, it treats surface symmetry in a rough way by
assuming that the potential energy surface for diffusion obeys V (x, y) = V (x) + V (y),
which is questionable for most surfaces. The Hindered Translator is, however, expected
to be accurate for closed-shell molecules due to the presumably flat energy landscape for
diffusion.

The Free Translator is derived by assuming completely free diffusion of the adsorbate
over the surface. The translational partition function is given by that of a 2D free-gas:

ZFree
trans = A

2πMkBT

h2
, (2.29)

where A is the area that the adsorbate is free to translate over. The free translator defines
an upper bound to the translational entropy of any adsorbate as it corresponds to a
completely flat potential energy landscape.

CPES is developed in Paper II as an alternative method for calculating entropies. The
method uses DFT calculations to map out the potential energy as a function of adsorbate
position in the unit-cell. The translational partition function is evaluated by numerical
integration of a semi-classical partition function64:

ZCPES
trans =

2πMkBT

h2

∫∫
e

−V (x, y)

kBT dxdy, (2.30)

where V (x, y) is the potential energy of the molecule at position (x, y) in the unit-cell.
V (x, y) is calculated with DFT by locally optimizing the adsorbate in the direction
perpendicular to the surface, for various (x, y). For a completely flat potential energy
surface with V (x, y) = 0, (2.30) coincides with the Free Translator partition function
(2.29). The CPES method takes the surface symmetry into account as well as the detailed
potential energy landscape. In this sense, the CPES method is as accurate as the chosen
exchange-correlation potential used in the DFT calculations. Rotations can also be
modeled using (2.30) by mapping out a potential energy surface for rotation over some
angle θ, and evaluating the integral over θ. However, a complication is that the potential
energy for rotations and translations over a surface may be mutually dependent, which
can be solved by treating translations and rotations together using (2.30) and mapping
out V (x, y, θ).

The approximations discussed in this section are only valid in the low coverage limit
as they do not include adsorbate-adsorbate interactions. However, CPES can include the
effect of adsorbate-adsorbate interactions by reformulating (2.30) as a multi-dimensional
integral over multiple atoms by mapping out a potential V (x1, y1, x2, y2, · · · ).

2.7 Summary

This chapter has described how rate constants can be calculated by DFT. To describe
the Gibbs free energy properly, modeling of adsorbate-adsorbate interactions and entropy
calculations were also discussed. The uncertainties in calculating rate constants primar-
ily come from the uncertainty in the DFT calculations, the approximate treatment of
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adsorbate-adsorbate interactions, and approximations made to the entropy. DFT calcula-
tions and adsorbate-adsorbate interactions give a large contribution to the uncertainty,
whereas entropy has a slightly lower impact.
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Chapter 3

Simulating Reaction Kinetics

The previous chapter described how to calculate the rate constants of catalytic reactions,
which are determined by Gibbs free energies. The present chapter deals with simulating
and analyzing reaction kinetics, where the discussion begins with the chemical master
equation.

3.1 Chemical Master Equation

The kinetics of a chemical reaction can be viewed as a set of transitions of a system into
various states. Reactions occur on a high-dimensional free energy surface with several
maxima and minima. In principle, a reaction can be followed in space and time by solving
Newton’s equations of motions with molecular dynamics. However, molecular dynamics
is unfeasible for simulations of reaction kinetics, as the time-step is several orders of
magnitude smaller than the typical time of a chemical reaction. This is due to the fact
that molecular dynamics spends most time simulating vibrations.

The chemical master equation takes advantage of the time-scale separation between
vibrations and chemical reactions by dividing phase-space into regions corresponding to
different chemical states of the system. Consider two states of the system: α and β. The
chemical master equation connected to state α is given by63 (p. 31):

dPα
dt

=
∑

β

[WαβPβ −WβαPα] , (3.1)

where Wαβ is the transition rate from β to α, and Pα is the probability for the system to
be in α. The sum in (3.1) runs over all states β, which can bring the system into state α.
In practice, the state is often defined by the coverages on the catalyst sites. Thereby, α
can be represented as

α = {A∗,B∗, ∗, ∗,A∗, ∗,A∗,B∗, · · ·} (3.2)

Where A and B are chemical species, and ∗ denotes an empty site. The set is simply the
species occupying the sites of the system. The chemical master equation is the key to the
kinetics of the system as it describes the time-evolution for the probability of observing
the different states. A high transition rate into a particular state and a low transition
rate out of the state, implies that its probability increases in time. Thus, the kinetics will
follow the fastest set of transitions into a set of most probable states, which defines the
equilibrium.

At equilibrium, one interesting feature of the master equation is that
dPα
dt

= 0. In

this case, WαβPβ(t0) = WβαPα(t0), where t0 is a time at equilibrium. This is known as
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the principle of detailed balance, which reflects that each step is in equilibrium with its
own inverse.

3.2 Mean-Field Approximation

The Mean-Field Approximation (MFA) yields an approximate solution to the chemical
master equation. To derive the MFA, consider a model surface reaction A+ B → AB.
The average number of species A on the surface is given by63 (p. 105):

〈NA〉 =
∑

α

PαN
(A)
α ⇒ d〈NA〉

dt
=
∑

α


∑

β

[WαβPβ −WβαPα]


N (A)

α , (3.3)

where N
(A)
α is the number of species A in state α, and Pα is the probability of the system

to be in state α. The time-derivative was inserted from the master equation (3.1). The
indices of summation can be rearranged to yield63 (p. 111):

d〈NA〉
dt

=
∑

α

∑

β

[
N (A)
α −N (A)

β

]
PβWαβ (3.4)

For a reaction A + B → AB, let α correspond to a state with AB, and β corresponds

to a state with A+B. Then it must hold that N
(A)
α −N (A)

β = −1. Additionally, given
α, then for each β a well-defined number of terms in the sum have non-zero Wαβ . This

number is equal to the number of adjacent A+B pairs on the surface (N
(AB)
β ). With the

transition rate assumed equal for each β, one obtains63 (p. 112):

d〈NA〉
dt

=
∑

β

−PβWN
(AB)
β = −W 〈N (AB)〉 (3.5)

The MFA assumes that the adsorbates are randomly distributed. In this case, the number
of pairs in state β becomes63 (p. 112):

N
(AB)
β = ZN

(A)
β

N
(B)
β

S − 1
, (3.6)

where Z is the number of nearest neighbors, S is the number of surface sites, and

N
(B)
β /S − 1 is the probability for a site to be occupied by B. Inserting (3.6) into (3.5)

gives:

d〈NA〉
dt

=
∑

β

−PβWZN
(A)
β

N
(B)
β

S − 1
= − WZ

S − 1
〈N (A)N (B)〉. (3.7)

The mean of a product can be written as the product of the means augmented with the
fluctuations from the individual means:

〈
N (A)N (B)

〉
=
〈
N (A)

〉〈
N (B)

〉
+
〈[
N (A) − 〈N (A)〉

] [
N (B) − 〈N (B)〉

]〉
. (3.8)
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In the limit of an infinite number of sites, S − 1 ≈ S, and fluctuations can be neglected
which gives:

d〈NA〉
dt

= −WZ

S

〈
N (A)

〉〈
N (B)

〉
(3.9)

Dividing by the number of sites, we find the mean-field equation for the time-evolution of
A:

dθA
dt

= −kθAθB , k = WZ, (3.10)

where θi is the coverage of species i on the surface, and k is identified as the rate constant
of the reaction. Similar equations can be derived for θB and the fraction of empty sites.
The two main assumptions of the MFA are that the surface is infinite, and that adsorbates
are randomly distributed. θA corresponds to the probability for observing species A on a
surface site. The random distribution implies that configurational entropy is accounted for
in the mean-field equations. The assumption that the surface is infinite (S � 1) breaks
down for nanoparticles, where fluctuations cannot be neglected. Moreover, the MFA
breaks down for strong adsorbate-adsorbate interactions, and the situation is particularly
severe for attractive interactions that lead to pairing of adsorbates.

The advantages of the mean-field picture is that it focuses on the average behavior
of the system by describing the coverages. This means that results often are simple to
analyze, and that the computational cost of mean-field modeling is considerably smaller
than Monte Carlo simulations as the mean-field equations often can be solved on a desktop
computer within some minutes. The disadvantage of the MFA is the limitation to infinite
surfaces. Furthermore, when working with coverages spacial information is lost, which
can be central to understand a reaction mechanism.

In practice, a mean-field model is constructed by having a list of coverages (θ) for
species that may cover the surface, and a set of reactions with rates R(θ). From this
information, a system of coupled first-order ordinary differential equations is formulated:

dθi
dt

=
∑

j

cijRj (θ) , (3.11)

where cij is an integer that describes how many i-species that are produced in reaction j.
Rj is the rate of the elementary reaction j, which is equal to the rate constant times the
relevant coverages. As an example, consider the following schematic reaction:

A2(g) + 2∗ ↔ 2A∗ (a)

B(g) + ∗ ↔ B∗ (b)

A∗ + B∗ → AB(g) + 2∗ (c)

The time-evolution of the coverage of A is given by:

dθA
dt

= 2k+a θ
2
∗ − 2k−a θ

2
A − k+c θAθB (3.12)

where k±i is the rate constants for reaction i, and * indicates an empty site. The first term
comes from the forward-reaction of (a), which requires two sites for dissociation such that
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θ∗ enters squared. The factor two is is present as two A are formed upon adsorption. The
second term stems from the backward reaction of (a). It is negative as A is consumed by
the elementary step. The third term arises from reaction (c), which requires one A and B.

For species B the coverage equation is:

dθB
dt

= k+b θ∗ − k−b θB − k+c θAθB . (3.13)

The resulting system of differential equations is often solved numerically, and in the present
work this is done using Python and SciPy67. Before integration, the initial conditions are
specified, which is important as different initial conditions can lead to different steady
states. The steady state is reached when all coverages are constant in time. A common
situation is that the rate constants vary by several order of magnitudes, which makes
the equations stiff. Therefore, an integration method that handles stiff problems must
be chosen, and in the present work the Backward Differentiation Formula68 method was
found to be most effective.

3.3 Kinetic Monte Carlo

Kinetic Monte Carlo69 (KMC) is a stochastic method to solve the chemical master
equation (3.1). KMC must be applied in situations when the adsorbate distribution is not
random or the system is finite-sized. A nanoparticles is an example of a finite system with
specific adsorbate patterns. In KMC, the system starts in a specific state, and evolves in
time to different states governed by random number generation. KMC solves the master
equation by simulating the transitions between states as a function of time. This is done
by performing a large number of reaction events and their time of observation.

The KMC method can be implemented using various algorithms, for which two
popular choices are the Variable Step Size Method (VSSM) and the First-reaction method
(FRM)63 (Chap. 3). VSSM and FRM are two implementations of the same method, which
is also known as the n-fold way70. In the present work, the shortest computational time is
obtained using the FRM algorithm. Before performing a simulation, the types of possible
reaction events are defined. When this is done, FRM can be performed by a series of
steps, which are summarized in Figure 3.1.

Step 1: The simulation is initialized by setting time t = 0, defining when the simulation
should end (tend), choosing the reaction conditions, and initializing the site occupations.
Here an event-list is initialized to keep track of possible reaction events, their time of
occurrence, and the site where they proceed. The event-list is updated at each simulation
step.

Step 2: For all possible events, the times of occurrence are calculated, and the event-list
is populated. The time of occurrence tβα for taking the system from state α to state β is
calculated according to63 (p. 53)

tβα = t− 1

Wβα
lnu (3.14)

Where t is the current simulation time, Wβα is the rate constant of the event, and u is a
random uniform deviate on the interval ]0, 1].
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Step 3: Determines whether the simulation has ended by checking if t ≥ tend.

Step 4: Performs the chronologically next reaction in the event-list. If the next reaction
is impossible, it is discarded and the next possible event is performed.

Step 5: The event-list is updated by adding new events made possible by the last
simulation step. This only done in a neighborhood around the site where the last event
happened, since avoiding updating globally saves a significant amount of computational
resources for large systems.

Step 6: Defines the end of the simulation, where quantities of interest are saved. To
lower the memory consumption, saving data and cleaning different lists should also be
done during the simulation.

1. Initialize Simulation : Set simulation time (t = 0), simula-
tion end-time tend, temperature, pressure, and initial site-
occupations.

2. Populate event-list and generate occurrence times tβα.

3. Is t ≥ tend? If yes skip to 6

4. Perform next possible event in queue, and set t to tβα of the
chosen event.

5. Update list of possible events. Jump to 3

6. Finalize simulation: Save results.

Figure 3.1: First Reaction Method Algorithm.

The sites and their mutual connectivity must be represented somehow in kinetic Monte
Carlo simulations. In Paper III, neighbor lists are used to define the connection between
sites. The neighbor lists for all sites constitute a global connectivity pattern. Alternatively,
a lattice-based algorithm can be implemented, where the connected sites are adjacent on
a lattice. The implemented neighbor-list approach has an advantage over a lattice-based
approach, as incommensurate lattices and dynamical catalyst changes can be accounted
for in a simpler manner.

The time-step in the simulations is governed by the rate of the fastest reactions since
these events are executed with the highest probability. Figure 3.2 (left) shows time as a
function of simulation step during a short Monte Carlo simulation. The time increment is
small in the beginning of the simulation, and becomes larger as the simulation proceeds,
which is owing to decreasing fastest rates. Figure 3.2 (right) shows a histogram over
the time step. The shortest time-steps are mostly originating from the beginning of
the simulation, where the reaction is far from equilibrium. The histogram resembles
an exponential distribution, which is reasonable as the events essentially are Poisson
processes.

A considerable challenge in KMC for chemical reactions is that the fastest reactions
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Figure 3.2: Time in kinetic Monte Carlo simulations of CO oxidation on a 5.2 nm
Pt nanoparticle. Left: Time as a function of simulation step. Right: A histogram
over the time step. Reaction conditions: 600 K, 20 mbar CO, and 10 mbar O2.
The CO diffusion barrier is increased by 0.5 eV.

determine the time-step. For example, diffusion events can be several orders of magnitudes
faster than chemical reactions, which can make KMC simulations computationally unfea-
sible. To overcome this problem, one can raise the barriers of the fast events. However,
this must be done with care as the fast events need to remain equilibrated. This simple
method has previously been justified theoretically63 (pp. 162-163). A sophisticated solution
is to identify events that are in equilibrium during the simulation and increase these rate
constants during the simulation71–74. This can be useful when there are many possible
reactions and no prior knowledge of the reactions is available.

KMC enables investigations of more realistic systems than the MFA since it does not
assume complete randomness, nor an infinite number of sites. This also implies that
small nanoparticles are possible to simulate. Disadvantages of KMC simulations are that
the results are more complex to analyze, and that the computational cost is significantly
higher than in the MFA.

3.4 Analyzing Reaction Kinetics

Mircokinetic models give access to various information, which can be compared with
experimental measurements. This section discusses the information that is obtained from
a microkinetic simulation, and how to analyze the results in relation to experiments.

3.4.1 Reaction Mechanisms

One advantage of doing a microkinetic analysis is that it provides information about the
most important reaction mechanism; provided that the relevant reaction pathways are
included in the simulations. The active mechanisms are found using the net-rates, which
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can be written in a mean-field picture as:

Wi = k+i
∏

l

θl − k−i
∏

m

θm. (3.15)

Where l is the set of reactant species for the elementary reaction i, and m is the set
of products. In kinetic Monte Carlo, one can simply observe which reactions that are
executed most frequently. The dominant reaction mechanism will be the set of reactions
with the highest net-rates that complete a catalytic cycle.

3.4.2 Turnover Frequencies and Coverages

The Turnover Frequcency (TOF) is a measure of the number of products formed per active
site and time-unit. In a microkinetic model, the TOF is simply the net rate of product
formation. Quantitative comparison between a simulated TOF and an experimental result
is complicated, since there are many uncertainties and approximations involved in the
modeling. Hence, it is common that the simulated TOF deviates with a few orders of
magnitudes from experiments. However, the trends and variations across various reaction
conditions often resemble experimental behavior.

The coverages are a simple measure to analyze the reaction, and the most abundant
species can be compared to spectroscopic experiments that show the adsorbates present
on the surface. Furthermore, knowing the most abundant species can assist in improving
the kinetic model, for example by improving adsorbate-adsorbate interactions or entropies
for the most abundant species.

3.4.3 Reaction Orders and Apparent Activation Energies

The reaction order in a given pressure and the apparent activation energy are two
macroscopic quantities that can be obtained from a microkinetic model and compared to
experimental values.

The reaction orders are phenomenological quantities that are defined assuming a
power-law in the catalytic rate2 (pp. 26-27):

r = Kpnx
x , (3.16)

where K is a constant with respect to pressure, px is the partial pressure in species x,
and nx is the reaction order in species x. To obtain nx from simulations, the TOF is
fitted to this power-law.

The apparent activation energy Eapp is obtained by assuming an Arrhenius relation in
the turnover frequency2 (pp. 36-37):

r = A exp

(−Eapp

kBT

)∏

x

pnx
x , (3.17)

where A is a the pre-exponential factor, x is a gas-species, px is the pressure, and nx is
the reaction order. In practice, Eapp is calculated numerically by evaluating the derivative
of r versus 1/T , over a narrow temperature range.
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Direct comparison with experimental values is not always possible since the structure
in experiments is less well-defined than in theoretical models. For the methane oxidation
reaction in Paper I, the reaction orders agree well with experiments75;76. However, the
apparent activation energy did not agree well with experimental values75–77. This is likely
due to surface-oxide formation during the experiments, which was not included in the
model. In this manner, the discrepancies between experiments and a validated microkinetic
model can provide important insights about the catalyst state during experiments.

3.4.4 Degree of Rate Control

The degree of rate control78;79 of an elementary step (χi) can be thought of as the
sensitivity of the catalytic rate r to the individual rate constants. χi is defined by:

χi =
kfi
r

(
∂r

∂kfi

)

Ki

, (3.18)

where kfi is the forward rate constant of step i, and the derivative is taken with a fixed
equilibrium constant Ki. Thus, χ provides information on the slow steps that limit the
catalytic rate. In practice, the derivative is evaluated with finite differences by increasing
the rate constant of the step a small percentage, e.g. 1%. χ is important in microkinetic
modeling as it determines which reaction steps that are affecting the rate, and χ can
therefore provide useful information for catalyst design. Moreover, it is important to
model these steps with a good accuracy.

Paper IV connects the microscopic kinetics to the reaction orders and apparent
activation energies using the degree of rate control. In this way, these two macroscopic
quantities are linked to the atomistic picture. The reaction orders are shown to have a
simple relation with χ:

nx =
∑

i

χi
∂lnWi

∂lnpx
. (3.19)

The reaction order is a weighted sum over the individual rates Wi, derived with respect to
the pressure of interest. The reaction order in the presence of a catalyst has previously been
described as a phenomenological quantity80, however, the connection between reaction
orders and the elementary reactions are shown in (3.19).

The relation between χ and the apparent activation energy takes the form

Eapp =
∑

i∈vib
χi

(
Ei + kBT + kBT

2 ∂Si
∂T

)
+

∑

j∈trans
χj

(
Ej −

kBT

2
+ kBT

2 ∂Pj
∂T

)
(3.20)

− kBT 2
∑

x

∂nx
∂T

ln px

Where Ei is the energy barrier of elementary step i, Si is the entropic barrier, and Pj
is the sticking coefficient related to step j. nx is the reaction order in species x, and px
is the partial pressure. The first sum runs over the steps that have a vibration as the
reaction coordinate, and the second sum is over reactions with a translational reaction
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coordinate. The third sum accounts for the pressure dependence of the total rate. It is
interesting to note that the zeroth order contribution in temperature is the largest and
arises from the elementary energy barriers. The first-order temperature terms arise from
a lost degree of freedom in the reaction coordinate, and the second order terms stem from
entropic losses and pressure dependencies.

The derived expressions provide a microscopic understanding of the reaction orders
and apparent activation energies. Furthermore, the expressions might be used to evaluate
proposed rate-determining steps and reaction mechanisms, for example by combining
DFT calculations and experimental measurements.

3.5 Summary

The present chapter has discussed how the chemical master equation describes the reaction
kinetics. The mean-field approximation was derived as an approximate solution to the
master equation, and Kinetic Monte Carlo was presented as a stochastic method to solve
the master equation. Finally, analysis of results obtained from microkinetic models was
discussed with focus on comparing with experiments.
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Chapter 4

Kinetic Models for Methane and CO
Oxidation

4.1 Constructing a Kinetic Model

Figure 4.1: Illustration of workflow for constructing a first-principles microkinetic
model.

The microkinetic models in this thesis are constructed using a workflow illustrated
in Figure 4.1. Formulation and refinement of a model is an iterative procedure, where
the cycle in Figure 4.1 is completed multiple times before settling on a final version of
the kinetic model. The workflow begins with identifying an atomistic model system of
the catalyst. This is often a crucial and difficult step as technical catalysts are complex
systems, which are ill-defined with respect to structure and composition. The next step
is to identify possible intermediates. These intermediates are connected by multiple
elementary reaction steps, which together constitute the catalytic cycle. Taking complete
methane oxidation to CO2 over Pd surfaces as an example, the atomistic model system
can be Pd(100) or Pd(111). Plausible intermediates are hydrocarbons, oxygen, carbon,
and CO. Thereby, a starting point for a possible reaction mechanism could be:

CH4(g) + 5∗ → C∗ + 4H∗ (4.1)

O2(g) + 2∗ → 2O∗ (4.2)

C∗ + 2O∗ → CO2(g) + 3∗, (4.3)
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These steps are not elementary, and should be reformulated as elementary steps, possibly
by including alternative pathways. After the intermediates and elementary reactions have
been identified, rate constants are calculated for the considered elementary steps and the
kinetic equations are solved. Thereafter, the computational results are compared to exper-
imental data by simulating measurable quantities, such as turnover frequencies, reaction
orders, and apparent activation energies. The cycle is repeated until the model has the
desired level of detail and agrees with experimental data. A validated microkinetic model
opens up the possibility to use the simulations for predictions beyond the experimentally
investigated conditions.

4.2 Complete Methane Oxidation over Pd(100) and Pd(111)

In Paper I, the mean-field approximation is applied to model complete methane oxidation
over Pd(100) and Pd(111), which is a complex reaction with several possible intermediates
and mechanisms. The reaction is important to understand as methane is a potent
greenhouse gas, which has a larger global warming potential than CO2

81;82. Moreover,
complete methane oxidation to CO2 is becoming an increasingly important reaction for
the automotive industry as the global natural-gas vehicle fleet is growing83. The overall
reaction is:

CH4(g) + 2O2(g)→ CO2(g) + 2H2O(g). (4.4)

Pt and Pd are know to be active catalysts, where Pt is superior in net reducing conditions
and Pd is advantageous in net oxidizing environments84. Pd oxidizes readily at most
reaction conditions82;85–87 and the high activity has previously been attributed to the
oxidized phase85;88, whereas other reports assigned the high activity to the metallic
state89–91. The metallic phase is difficult to stabilize during experiments, which makes
a first-principles microkinetic model a useful tool. Furthermore, a microkinetic model
reveals active reaction mechanisms and kinetic bottlenecks that can help improve the
reaction.

The kinetic model developed in this work extends a previous model of the reaction over
metallic Pd36, by taking into account a large number of reaction barriers and multiple
reaction mechanisms. One purpose of constructing a refined model is to compare with a
detailed model of the reaction over PdO(101)35. By comparing models of metallic Pd
and PdO, differences are revealed between the two phases, which is important in order to
determine the most active phase.

The simulations are performed in slight oxygen excess with pressures of 0.61 mbar
methane and 3.06 mbar oxygen. The model includes six gas-phase species, 16 adsorbed
species, and 32 elementary reactions, which enables multiple reaction pathways. The
included gas-phase species are: CH4, O2, CO2, H2O, CO, and H2. Included adsorbates
are: CH3, CH2, CH, C, H, O2, O, CO, OH, H2O, CH2OH, CH2O, CHO, COH, OCOH,
and CHOH. The reaction is found to proceed via different mechanisms depending on the
reaction conditions. At high temperatures, methane is dehydrogenated on the surface one
hydrogen at a time to C + 4H. Thereafter, C is oxidized to CO and further to CO2 by
O. Simultaneously, H is oxidized to H2O, mainly via OH + OH→ H2O + O. At lower
temperatures, instead C is oxidized by OH, and the mechanism involves steps such as
C + OH→ COH and COH + O→ OCOH.

28



Figure 4.2: Simulated kinetics of methane oxidation at 0.61 mbar methane and
3.06 mbar oxygen. (a) Turnover frequencies versus temperature. (b) Apparent
activation energies versus temperature. (c) Turnover frequency versus pressures
on Pd(100) at 598 K. (d) Degree of rate control versus temperature on Pd(100).

The coverages and TOFs are central quantities for understanding the kinetics. The
simulations predict that the most abundant adsorbates on the surfaces are O, C and CO.
O is present at all investigated temperatures on both Pd(100) and Pd(111), whereas C
and CO only are present at low temperatures. The simulated TOFs are shown in Figure
4.2 (a). The TOFs vary seven orders of magnitudes when increasing the temperature
from 400 to 1000 K, and the Pd(100) surface is found to be more active than Pd(111) at
all investigated conditions.

The apparent activation energy (Eapp) reflects the Gibbs free energy barriers of the
rate controlling steps, as was derived in Paper IV. The simulated Eapp is shown in Figure
4.2 (b). Eapp varies between 1.2 and 0.85 eV for Pd(100) in the temperature range
400-1000 K. The variation is due to changing reaction mechanisms and rate-controlling
steps. An analytical expression is derived for Eapp in the limit of high temperatures,
which shows that Eapp is determined by the methane adsorption barrier and the oxygen
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adsorption/desorption equilibrium as:

Eapp ≈ EfCH4
−
√
pO2

KO2
∆EO2

1 +
√
pO2KO2

, (4.5)

where EfCH4
is the energy barrier for methane dissociative adsorption, pO2

is the oxygen
pressure, ∆EO2

is the dissociative adsorption energy of O2 , and KO2
is the equilibrium

constant for oxygen adsorption.
The reaction order reflects how the TOF responds to a change in pressure. Figure

4.2 (c) shows the logarithm of the TOF as a function of methane, oxygen, and water
pressure on Pd(100). The results for Pd(111) are similar. The analysis shows that a
higher methane pressure increases the TOF. Conversely, oxygen is inhibiting the rate by
blocking sites for methane dissociation, and water can promote the reaction by increasing
the rate of C + OH→ COH, which is a rate-controlling step.

The degree of rate control analysis is a way to explain the kinetics in a compact manner.
The simulated degree of rate controls are shown in Figure 4.2 (d) for the main steps. The
main rate-controlling steps at low temperatures are C + OH→ COH and C + O→ CO.
At higher temperatures, dissociative methane adsorption eventually becomes the rate-
determining step. Oyxgen adsorption is slightly inhibiting over the entire temperature
range. These observations are reflected in the coverages as the most abundant species are
connected to the rate-controlling steps. The presence of C on the surface suggests that
oxidizing C has a finite rate-control, in agreement with the analysis. The reaction orders
are also explained by the degree of rate control, as is derived in Paper IV. The reaction
order in methane follows the degree of rate control for methane dissociation closely (Paper
I and Paper IV). The slightly negative oxygen order shows that oxygen adsorption is an
inhibition step, and thus has a negative rate control. The positive order in the water
pressure is readily understood by noting that increasing the OH concentration speeds up a
rate-controlling step: C + OH→ COH. The apparent activation energy is also connected
to the degree of rate control (Paper IV). The high-temperature analytical expression
for the apparent activation energy (4.5), reflects that methane adsorption is the most
rate-controlling step, and oxygen adsorption is a slightly inhibiting step.

The model in Paper I for metallic Pd can be compared with methane oxidation over
PdO(101), which has been modeled in detail previously35. The reaction orders in the
methane pressure are high and positive for both PdO35;75–77 and metallic Pd surfaces.
However, the PdO catalyst has qualitatively different reaction orders in the water and
oxygen pressures. Water is known to be poisoning the PdO catalyst35;75–77;92 due to
site-blocking effects, whereas water can promote the reaction on metallic Pd. Oxygen
can promote the reaction on PdO at some conditions35;76;77, whereas it inhibits the
reaction on metallic Pd. These clear qualitative differences between Pd and PdO can aid
characterization of the active phase using only the reaction kinetics.

The aforementioned results apply to extended surfaces, however, technical catalysts
are nanostructured materials. The presence of low-coordinated sites on nanoparticles will
likely promote this reaction8 as methane adsorption is the rate-determining step. Thus,
nanoparticles are expected to be more active for the reaction than extended surfaces,
given that other effects are not hindering the rate. The benefit of having a multitude of
sites in complete methane oxidation on nanoparticles remains to be investigated.
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Figure 4.3: Schematic illustration of the potential energy landscape for translation
in (a) the Harmonic Approximation, (b) Hindered Translator, (c) Free Translator,
and (d) CPES.

4.3 Entropic Effects in CO Oxidation on Pt(111)

In Paper II, different models for adsorbate entropy are investigated. Previous first-
principles microkinetic models have typically described adsorbate-entropies in the Har-
monic Approximation31;66;93. Alternatively, weakly bound adsorbates have been treated
as losing one or all translational degrees of freedom upon adsorption30;94–96. Therefore,
detailed investigations of entropy in the context of microkinetic modeling is benefi-
cial. CO oxidation over Pt(111) is used as an archetype reaction. This reaction is
very well-studied30;97–105, and this enables a detailed comparison to experiments. The
reaction is modeled in the mean-field approximation using a Langmuir-Hinselwood mech-
anism30;97;100–102;105;106:

CO(g) + ∗ ↔ CO∗

O2(g) + 2∗ ↔ 2O∗ (4.6)

CO∗ + O∗ → CO2(g) + 2∗.

The entropies of CO and O are found to be qualitatively different. CO translates on a
flat potential energy surface with low diffusion barriers, which results in a high entropy.
O instead clearly prefers fcc binding and has high diffusion barriers, which results in a
low entropy. Typically, a mean-field model includes only a generic and coarse-grained
site, and it is blind to the detailed nature of the site. The coarse-grained site could entail
fcc, hcp, ontop, and bridge sites. When the adsorption energies on these sites are similar,
the translational entropy can be high and should be modeled accordingly.

Four different models for adsorbate entropy are evaluated: The Harmonic Approxima-
tion (HA), the Hindered Translator (HT), the Free Translator (FT), and the method of
Complete Potential Energy Sampling (CPES). The four models are described in detail in
section 2.6. The four methods differ in how the potential energy landscape for translation
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Figure 4.4: Calculated adsorbate entropy versus temperature of CO (left) and O
(right) for one adsorbate in one Pt(111) fcc unit-cell.

is modeled. Figure 4.3 shows a schematic illustration of the potentials in the four models.
The Harmonic Approximation has a quadratic potential along the surface, the Hindered
Translator is sinusoidal, the Free Translator is unbound, and the CPES method uses the
potential energy landscape calculated by DFT.

The entropies predicted by the four approximations are given in Figure 4.4 for one
adsorbate in a single unit-cell. For both CO and O, the Harmonic Approximation predicts
the lowest entropies, as it fixates the adsorbate to one sitei. The Free Translator predicts
the highest entropies since it assumes barrierless adsorbate-diffusion. The Hindered
Translator and CPES predict entropies in between these two extremes. The Harmonic
Approximation gives an entropy for CO that is 0.4 meV/K lower than CPES. At 500 K,
this corresponds to a difference in adsorption energy of 0.2 eV, which can be considered a
significant difference.

The choice of entropy model affects the kinetics significantly, and the predicted TOFs
vary between the four models. The largest TOF is predicted in the Harmonic Approxima-
tion, where the adsorbate entropy is lowest, and the lowest TOF is obtained using the
Free Translator that is an upper bound to the translational entropy. The coverages are
also affected by the entropy. The lowest coverages are obtained in the Harmonic Approxi-
mation, whereas the highest coverages are found using the Free Translator. Additionally,
entropy affects the light-off temperatures, i.e. the temperature for where the turnover
frequency reaches half maximum. Figure 4.5 shows a comparison between light-off tem-
peratures obtained by the developed kinetic model and various experiments97;99;102;105.
The Harmonic Approximation and Free Translator under and overestimate the light-off
temperature, respectively. The light-off temperatures predicted by the Hindered Transla-
tor and CPES are in good agreement with the experimental references over the entire
pressure-range. Hence, modeling the entropy in detail moves the results significantly
closer to experimentally obtained values. The effect of entropy on the kinetics is readily
understood by noting that a high entropy implies a stronger adsorbate-surface bond. This

iFor example either fcc, hcp, bridge, or ontop
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Figure 4.5: Simulated and experimental (Exp) light-off temperatures as a function
of pressure. The experimental references are: Campbell et al.97 (10−7 mbar),
Vogel et al.102 (10−6 mbar), Nakao et al.99 (10−2 mbar), and Calderón et al.105

(10−1-100 mbar).

effect is enhanced with increasing temperatures as ∆G = ∆E − T∆S.

The overall conclusions of this study are that the treatment of adsorbate entropy
affects the results of the kinetic simulations, and mobile molecules should not be modeled
in the Harmonic Approximation.

4.4 Catalysis on Nanoparticles

Commercial catalysts often consist of metal nanoparticles, which implies that reactions
should be modeled using finite-sized systems. Therefore, to understand catalytic behavior
it is important to model nanoparticles. Nanoparticles are different from extended surfaces
as nanoparticles have different sites with various reactivities. As a consequence, the
kinetics is complex, and the mean-field approximation breaks down. Instead kinetic Monte
Carlo simulations should be applied.

When modeling nanoparticles, a large number of energies is required to represent the
reaction energy landscapes. Moreover, the reaction energies on extended surfaces and
nanoparticles can differ significantly8;9;11;107. Kinetic Monte Carlo models have previously
been formulated for nanoparticles using simplified energy landscapes38;40 and schematic
reactions49;50. However, few studies have simulated a specific reaction using a detailed
reaction energy landscape.

In paper III, CO oxidation is modeled on Pt nanoparticles by developing a KMC
algorithm. The paper outlines a method to simulate nanoparticles by approximating
the reaction energy landscape. The energy landscape is approximated using generalized
coordination numbers, which lowers the computational cost significantly. Recently, the
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Figure 4.6: Left: Generalized coordination numbers of ontop sites on a 2.8 nm
nanoparticle. Right: Activity of CO oxidation versus pressure and generalized
coordination number on a 2.8 nm Pt nanoparticle. The temperature is 850 K, and
the pressure ratio pCO/pO2 = 2.

generalized coordination number CN was shown to be a good descriptor for adsorption
energies on nanoparticles and surfaces19–21. CN is an extension of the conventional
coordination number, which accounts for the coordination numbers of the nearest neighbors
as:

CN =
∑

i∈{NN}

CNi

CNmax
, (4.7)

where the sum runs over the nearest neighbors to the site in question, CNi is the
conventional coordination number of the nearest neighbor i, and CNmax is the maximally
possible coordination number of neighbors in the bulk. In a fcc crystal, the ontop site
has CNmax = 12, a bridge has CNmax = 18, a three-fold hollow has CNmax = 22, and
for a four-fold hollow site CNmax = 26. Figure 4.6 (left) shows CN for ontop sites on a
nanoparticle, where each color corresponds to one CN and hence one adsorption energy.
Furthermore, in Paper III the reaction energy barriers are obtained by a Brøndsted-Evans-
Polanyi (BEP) relation, which relates the adsorption energies to the transition state.
Using BEP relations, coverage dependencies in the reaction barriers are accounted for
automatically. In this manner, CN fully describes the reaction energy landscape with
limited computational effort.

CO oxidation over Pt is taken as a model reaction to study the effects of modeling
nanoparticles on the reaction kinetics. By comparing simulations on nanoparticles with
the extended Pt(111) surface, conclusions can be drawn concerning the materials gap.
The model predicts that nanoparticles have a higher TOF than the Pt(111) surface. One
reason is that the rate is not limited by adsorption as opposed to Pt(111). This is owing to
the low-coordinated sites on the nanoparticle that can contribute to the reaction at high
temperatures. Thus, the active site varies with reaction conditions, and as a consequence
the TOF scales with particle size. The most active sites at 850 K are illustrated in Figure
4.6 (right). Here, the catalytic activity is divided by the highest activity at each pressure,
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Figure 4.7: Simulated CO coverage in CO oxidation over a 5.2 nm Pt nanoparticle.
Left: Temperature of 600 K. Right: Temperature of 1200 K. Pressures: 20 mbar
CO and 10 mbar O2. The CO diffusion barrier is increased by 0.5 eV.

and it is normalized to the number of sites with the given CN. At low pressures, edges
and corners (CN< 5.66) are active, which implies that the TOF declines with increasing
particle size. At high pressures, the edges and facets (CN > 4.25) are most active, and
the TOF grows with particle size. Similarly, temperature affects the most active site. At
high temperatures, the corners and edges are most active, whereas low temperatures make
the edges and facets most active. These results demonstrate that nanoparticles cannot be
represented fully by extended surfaces. Furthermore, the results clearly indicate that the
mean-field approximation breaks down on nanoparticles as a mean-field model cannot
account for the site-distribution, which is important to capture the kinetics.

Paper III shows the average kinetic behavior, which is most relevant in studying
catalysts that operate over long time scales. However, the time evolution of a simulation
is also instructive to consider. Figure 4.7 shows the CO coverage on a nanoparticle
during a short simulation. At 600 K (left), the facets contain free sites, whereas the
edges and corners are completely filled. At 1200 K (right), the coverages are lower on
the edges, whereas the corners and facets are empty. One interesting observation is
that there are large fluctuations in the coverages, which are most pronounced for the
low-coordinated sites as they are less abundant. The magnitude of the fluctuations
increases with temperature and becomes considerable for smaller systems. A mean-field
model assumes that such fluctuations can be neglected, which is clearly not valid on
nanoparticles.

To understand the relation between structure and catalytic activity, it is instructive
to sequentially increase the complexity of the model system. An example is to start
by understanding extended surfaces, then stepped surfaces, nanoparticles, supported
nanoparticles, etc. However, the level of detail can reach a point where the results are too
complex and unclear to comprehend. Moreover, as DFT does not yield chemical accuracy,
at some point the results might be inaccurate. The present work has taken a step from
extended surfaces to truncated octahedral nanoparticles by using scaling relations derived
from DFT. This approach might seem rough at a first glance. However, calculating all
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energies explicitly is less meaningful as the octahedral nanoparticle is to be considered a
model system, and due to the limited accuracy of DFT.

From the developed model, structure-activity relationships can be investigated, which
can be useful in catalyst design. The results indicate that a search for one single active site
might be a too simplistic approach on nanoparticles as various sites likely collaborate to
enable the reaction to follow a path of least resistance. With the developed method, kinetic
modeling of actual reactions can be performed routinely with limited computational effort,
and doing this will be a significant step towards bridging the materials gap.
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Chapter 5

Conclusion & Outlook

The presented work has aimed to investigate and develop the methodology for first-
principles microkinetic modeling of catalytic reactions. This was realized in a series of
papers that addressed various topics.
Complete methane oxidation over extended palladium surfaces was modeled in detail,
which revealed the rate-controlling steps and detailed reaction mechanisms. The mecha-
nisms on metallic Pd were found to be fundamentally different from those on PdO, which
leads to interesting variations between the kinetics of the two phases.

The effect of adsorbate entropy was studied by developing a mean-field model of CO
oxidation over Pt(111). This revealed how adsorbate entropy affects the kinetic behavior.
Furthermore, Complete Potential Energy Sampling was developed to have a systematic
method for estimating entropies of adsorbates.

Additionally, this thesis has addressed the materials gap between extended surfaces
and nanoparticles in heterogeneous catalysis, where a microkinetic model was developed
for CO oxidation on Pt nanoparticles and Pt(111). The model was based on scaling
relations in the generalized coordination numbers, and the kinetics was simulated by
developing a kinetic Monte Carlo algorithm. Generalized coordination numbers provide
a computationally cheap procedure to account for the reaction energy landscape on
nanoparticles.

Finally, as a method to link theoretical simulations and experimental studies, the degree
of rate control was shown to be connected to reaction orders and apparent activation
energies. In this way, the present work has provided a microscopic understanding of these
two phenomenological quantities.

Compared to previous literature, this thesis has developed the methodology for
modeling reactions in heterogeneous catalysis. Previously, methane oxidation over Pd
surfaces has been modeled with a limited number of mechanisms. By inclusion of several
alternative reactions, a more reliable reaction mechanism was obtained in the present
work. Previously, reactions have mostly been simulated on extended surfaces. This thesis
has developed a scheme to facilitate simulations on nanoparticles by using the generalized
coordination numbers. The entropy of adsorbates has previously been of secondary concern
in microkinetic models. The present work has investigated the importance of entropy in
kinetic modeling, and it has developed the CPES method to calculate the entropy from
first principles. Reaction orders and apparent activation energies have previously not been
connected to the microscale. This work has enabled such an understanding by coupling
the reaction orders and apparent activation energies to the degree of rate control.

To further improve microkinetic modeling, there are several interesting aspects that can
be studied to extend this thesis. For example, the method of modeling adsorbate-adsorbate
interactions can be studied in greater detail, both for adsorption energies and entropies.
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The developed kinetic Monte Carlo method can be applied for improved catalyst screening
studies, since it explicitly simulates nanoparticles. One limitation of the present work
is that it treats the catalyst as a static entity without including morphological changes.
Such dynamical changes can possibly be simulated by combining the developed Monte
Carlo algorithm with molecular dynamics. Furthermore, an oxide-support can be included
in the simulations to study possible spill-over phenomena.

Future catalyst design can benefit from understanding the active reaction mechanisms,
thermodynamics, and kinetic behavior in catalysis. In the future, when the computational
power has matured sufficiently, catalyst design can possibly be realized using computational
methods to a larger degree. An important part of this is the development of methodologies
for accurate microkinetic modeling.

As Richard Feynman envisioned it in his talk1 almost 60 years ago, presently we have
a much greater range of possibilities for manipulating and designing nanoscaled systems.
When designing nanoscale technology, it is beneficial to understand the quantum mechan-
ical behavior of systems of atoms. This thesis has taken steps towards understanding the
detailed behavior of atomic systems.
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