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Mixed Oxide Oxygen Carriers for Chemical-Looping Combustion 

PETER HALLBERG 

Department of Space, Earth and Environment 

Chalmers University of Technology 

 

ABSTRACT 

Chemical-Looping Combustion is a promising method for combustion with inherent carbon 

dioxide capture. Oxygen is provided to the fuel with a solid oxygen carrier. The oxygen carrier 

is circulated between the reactor for fuel oxidation and another reactor where it is reoxidized 

with air. A good performing oxygen carrier is vital for this process. An oxygen carrier is 

typically a metal oxide and this work focus on evaluating oxygen carriers based on mixed metal 

oxides. 

A method was developed to determine the reduction reaction enthalpy of oxygen carriers in a 

fluidized-bed batch reactor. The method was verified using a nickel based oxygen carries with 

known enthalpy. Different oxygen carriers based of the iron-titanium oxide ilmenite were 

evaluated to determine the reaction enthalpy in a chemical-looping process. 

Oxygen carriers manufactured with spray drying technology were developed through a 

screening process. Starting with 79 different materials those deemed promising were tested in 

a fluidized-bed batch reactor. The ability to release oxygen, reactivity with fuel and fluidization 

behavior were the most important parameters and based off the results 10 materials were chosen 

to be investigated in a small continuous Chemical-Looping reactor system. Based off these 

results 2 materials were examined in a larger continuous Chemical-Looping reactor system 

where fuel power up to 6 kW were used. 

Oxygen carrier particles based on calcium manganite performed best with substantial release 

off oxygen and high to complete conversion on fuel. The material CaMn0.775Ti0.125Mg0.1O3-δ 

performed best in all three reactor systems. In addition to the oxygen release and reactivity these 

particles also proved durable with unaffected reactivity and low attrition after 99 h of 

continuous chemical-looping operation. 

Keywords: Chemical-Looping Combustion (CLC), Chemical-Looping with oxygen 

uncoupling, oxygen carrier, ilmenite, calcium manganite, CO2 capture 
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Mixed-Oxide Oxygen Carriers for Chemical-

Looping Combustion 

1. INTRODUCTION 

 

1.1 Global warming 
For over 100 years it has been known that carbon dioxide in the atmosphere traps heat[1].  Some of the 

radiation from the sun is absorbed by earth’s surface and converted to heat. The heat causes infrared 

radiation which is absorbed and reemitted by greenhouse gases in the atmosphere increasing the 

temperature of earth’s surface. Since the start of industrialization the atmospheric concentration of 

carbon dioxide and other greenhouse gases have increased. Most of the increase of carbon dioxide is 

due to combustion of fossil fuel[2]. 

The atmospheric concentration of carbon dioxide has surpassed 400 ppm and is steadily increasing with 

a present rate of over 2 ppm per year. To limit future disastrous effects of global warning the trend of 

increasing emissions need to be reversed. Limiting the emissions will however be difficult since around 

86 % of the world primary energy is fossil and infrastructure is built long term. 

1.2 Carbon dioxide Capture and Storage/Sequestration (CCS) 
There are different options to decrease carbon dioxide emissions and many of them will be needed to 

have a chance to reach climate goals[3]. One option is to capture carbon dioxide from large emission 

sources and subsequently transport it to locations where it will not reach the atmosphere. Figure 

1.2.1Figure 1.2.1 is from the IPCC Special Report on Carbon Dioxide Capture and Storage and presents 

an overview of the entire CCS chain. Examples of large emission sources are power plants, refineries 

and industry, for example steel and cement production. The carbon dioxide would be separated, 

compressed and then transported by pipeline or ship to a storage site. Storage sites could be depleted 

gas or oil reservoirs or deep saline aquifers. The carbon dioxide can also be used for enhanced oil 

recovery. While this would not eliminate carbon dioxide emission it would be a substantial reduction 

compared to conventionally produced oil. Generally the geological storage consists of a porous layer, 

where the carbon dioxide are injected, covered by a nonporous cap rock. Another alternative is 

mineralization where the carbon dioxide reacts with certain metal oxides present in common rocks to 

produce solid carbonates.  An example of carbon dioxide capture and storage together with enhanced 

oil recovery is a project in Boundary Dam in Canada where carbon dioxide is separated from a power 

plant by amine absorption and sold to be used for enhanced oil recovery at Weyburn Oil Field [4].  

There are different methods to separate carbon dioxide in combustion processes. All of them require 

energy for the separation process and thus lowering the efficiency of the overall process. One method is 

post-combustion capture where there is a conventional combustion and the carbon dioxide is separated 

from the flue gas. Similar technology is used in the natural gas processing industry. Post-combustion 

separation include amine absorption processes. An advantage of post-combustion separation is that it is 

possible to use for retrofit of existing units, not only power plants but also industrial processes such as 

cement production and refineries. In pre-combustion separation gasification at high pressure is followed 

by water-gas-shift and thereafter separation of carbon dioxide and hydrogen. The technology is used in 

fertilizer and hydrogen production. In oxyfuel combustion there is first an energy requiring air separation 

step to get a pure oxygen stream. The fuel is burnt with oxygen together with recycled flue gases to be 

able to keep the boiler at an acceptable temperature for the boiler tubing because pure oxygen would 

result in a higher boiler temperature. [5] 
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Figure 1.2.1 Schematic image of possible CCS systems showing the sources for which CCS might be relevant, transport 

of CO2 and storage options. From IPPC Special Report on Carbon Dioxide Capture and Storage [5]. 

1.3 Chemical-looping Combustion (CLC) 
Chemical-looping combustion is a fuel oxidation process with inherent CO2 separation[6]. In CLC 

oxygen is provided to the fuel with a solid oxygen carrier, which is usually a metal oxide. Systems where 

the oxygen carrier is continuously circulated between two reactors has been successfully tested in 

different scales. A schematic image of the general process is shown in Figure 1.3.1. 

 

Figure 1.3.1 A schematic image of the Chemical-looping Combustion process. 

In the fuel reactor (FR) the fuel is oxidized by the oxygen carrier, denoted MexOy, according to reaction 

(1). The flue gases consist of mainly CO2 and steam. Steam is easily condensed so that almost pure CO2 
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remains. So by preventing dilution of the flue gases with nitrogen from the air, ideally no energy 

consuming gas separation is needed to obtain CO2 of sufficiently high purity for transport and storage. 

This makes CLC an almost ideal technology for CCS. Another important advantage over conventional 

combustion is that due to the relatively low temperature used, typically around 1000 °C, thermal NOX 

formation is avoided. Moreover, fuel NOX is limited to the fuel reactor which could be beneficial for 

separation compared to conventional combustion. After the fuel oxidation, the oxygen depleted oxygen 

carrier is transferred to the air reactor (AR) to be reoxidized with air according to reaction (2). Note that 

the sum of reaction (1) and (2) is identical to conventional combustion and thus the heat output from 

CLC is the same as conventional combustion.  

𝐶𝑛𝐻2𝑚 + (2𝑛 +𝑚)𝑀𝑒𝑥𝑂𝑦 → 𝑛𝐶𝑂2 +𝑚𝐻2𝑂 + (2𝑛 +𝑚)𝑀𝑒𝑥𝑂𝑦−1 (1) 

𝑂2 + 2𝑀𝑒𝑥𝑂𝑦−1 → 2𝑀𝑒𝑥𝑂𝑦 (2) 

  

Reaction (1) is typically considered as a gas-solid reaction. So when the fuel is a solid, such as coal or 

biomass char, an intermediate step is needed where the char is gasified. This can be done according to 

reaction (3) or reaction (4) using steam or carbon dioxide as reagent. 

𝐶 + 𝐶𝑂2 → 2𝐶𝑂 (3) 

𝐶 +𝐻2𝑂 → 𝐻2 + 𝐶𝑂 (4) 

The most common way of achieving a suitable reactor for creating contact between the solid oxygen 

carrier and the reacting gas is by fluidization. Fluidization is a process where a solid, granular material 

is made to behave like a fluid by passing gas up through the solid, a basic diagram of the process is 

shown in Figure 1.3.2. With sufficient gas velocity the upward drag force will counteract the 

gravitational pull. Thus, it is possible to circulate the particles from one reactor to another. Circulating 

fluidized beds are used in commercial scale in for example conventional boilers so the technology is 

well established. 

 

Figure 1.3.2 Basic diagram of a fluidized bed reactor. Image from Wikimedia Commons. 

 

Currently Chemical-looping combustion has been demonstrated in various pilot plants, 1 MWth [7] and 

2.5 MW pseudo-CLC [8], but not yet at commercial scale. The 1 MWth-experiment by Ströhle et al. at 

Technische Universität Darmstadt used hard coal as fuel and ilmenite as oxygen carrier. An important 

result from the experiments was that the oxygen demand for oxidizing unconverted gases was in line 

with results from smaller units. However, only partial CLC was achieved as the fuel reactor was 

fluidized with a mix of air and steam. Review articles that summarizes progress in the field have been 

written by Hossain and de Lasa [9], with the advances in CLC up to 2008 is reported; Fang et al.[10], 
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with advancement in development in CLC up to 2009; Adanez et al.[11], where the main advances in 

CLC and Chemical-Looping Reforming (CLR) up to 2010 is reported with much focus on oxygen 

carriers; Fan and Li [12], reported on various Chemical-Looping- Combustion, Gasification and 

Reforming processes 2010; Moghtaderi [13], various different Chemical-Looping processes 2012; 

Lyngfelt [14], reported on the status of development in CLC with solid fuels 2014; and. A books on 

CLC have been written by Fan [15], a more thorough of Chemical-Looping Systems compared to the 

review article by Fan & Li. Fennell & Anthony edited a book on Calcium and Chemical Looping 

Technologies with chapters by many of the leading researchers in the field[16]. 

Packed bed systems have also been suggested but the experimental experience is limited. [17-21] 

1.3.1 Chemical-Looping Combustion with Solid Fuels 

While CLC using gaseous fuel is relatively straightforward, using solid fuels comes with a few different 

challenges. As the fuel cannot be used as fluidization gas in the fuel reactor the reactor system has to be 

adapted for addition of solid fuel. When the fuel enters the fuel reactor the volatile part of the fuel can 

react directly with the solid oxygen carrier, but the char first needs to be gasified. For gasification and 

fluidization of the fuel reactor steam and/or recirculated flue gas is used converting the solid fuel to 

hydrogen gas and carbon monoxide, syngas. The syngas is then oxidized by the oxygen carrier. The 

main challenges are to gasify all char in the fuel reactor without it escaping to the air reactor or with the 

flue gas and to convert the syngas. These challenges need to be considered when designing a reactor 

system and choosing an oxygen carrier. When choosing oxygen carrier it is necessary to consider ash 

that is a part of solid fuels and likely will limit the oxygen carrier life time. The oxygen carrier should 

thus preferably be of low cost, have high reactivity with syngas and possibly have CLOU properties, 

which is introduced in the following section. 

1.3.2 Chemical-looping with Oxygen Uncoupling (CLOU) 

If the oxygen carrier is chosen so that oxygen in gas phase is released spontaneously at fuel reactor 

conditions (high temperature, low oxygen partial pressure), the intermediate fuel gasification step is not 

needed. This concept with gas phase oxygen release from the oxygen carrier is called chemical-looping 

with oxygen uncoupling (CLOU) and is described by reaction (5)[22]. 

𝑀𝑒𝑥𝑂𝑦 → 𝑀𝑒𝑥𝑂𝑦−1 +
1

2
𝑂2 

(5) 

Oxygen released by reaction (5) will react with char in an ordinary combustion reaction without diluting 

the flue gas with nitrogen and the reduced oxygen carrier can be reoxidized in the air reactor via reaction 

(2). The sum of reactions is the same as for CLC but the slow gasification steps reaction (3) and (4) can 

be avoided. This makes CLOU an attractive concept for oxidation of solid fuels. However, the ability to 

release gaseous oxygen has been shown to be advantageous also during combustion of gaseous fuels 

since oxygen released may be present above the bed in the upper part of the fuel reactor and thus 

contribute to achieving full conversion of fuel. Mayer et al. and Abad et al. came to this conclusion after 

analyzing experiments made with both CLOU and non-CLOU oxygen carriers at Technische Universität 

Wien in a 120 kWth pilot reactor [23, 24].  

1.3.3 Chemical-Looping Reforming 

The Chemical-Looping concept can be applied to other things than combustion for energy. The system 

can be adapted for syngas or hydrogen production with carbon dioxide capture. Rydén and Lyngfelt 

investigated different alternatives [25] and concluded that some proposed systems even might be more 

efficient than an reference case with conventional steam reforming.  

 

1.3.4 Oxygen carriers 

The oxygen carrier is crucial to the chemical-looping process. To select suitable oxygen carriers, several 

parameters should be considered. One important parameter is the reactivity toward fuels and air. A high 
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conversion of fuels such as natural gas or syngas is required. This requires both suitable thermodynamic 

properties of the oxygen carriers and sufficiently fast reaction kinetics. Physical factors which also affect 

the actual reaction rate include particle size, porosity, surface area etc. Another important factor is 

reversibility, which can be expressed for example as the number of fuel conversion cycles an oxygen 

carrier can undergo without deactivation. Deactivation may have several causes, e.g. that the oxygen 

carrier decomposes into a non-reversible state, loses porosity or reacts with sulfur from the fuel forming 

inert metal sulfides. Other important particle properties include resistance toward attrition and 

fragmentation. Moreover, factors such as melting temperature, oxygen transfer capacity, RO, (i.e. the 

mass fraction of the oxygen carrier that is oxygen available for fuel oxidation), price, toxicity and 

environmental impact should also be considered. 

The oxides of transition-metals, such as iron, nickel, copper and manganese are all potential oxygen 

carriers, of which copper and manganese are capable of CLOU. Combined oxides of different transition-

metals are also potential oxygen carriers. For example: the iron-titanium oxide ilmenite is a material that 

have been extensively used as an oxygen carrier 

Nickel oxide based oxygen carriers have been proven satisfactory in numerous studies: Jerndal et al. 

found both high fuel conversion and good fluidization behavior in freeze granulated oxygen carriers in 

a batch reactor [26], Linderholm et al. used spray dried particles continuously for over 1 000 h with high 

fuel conversion [27] , Bolhàr-Nordenkampf et al. achieved high methane conversion with spray dried 

particles in a 120 kWth unit [28] and Adánez et al. used impregnated particles in a 500 Wth unit without 

change in particle properties [29]. However, the use of nickel oxide involves several drawbacks, such 

as thermodynamic constraints concerning the degree of fuel conversion, sensitivity to fuel impurities 

such as sulfur, and, compared to alternatives, high price and toxicity[11]. 

Copper oxide based oxygen carriers have demonstrated high reactivity in studies by A. Abad et al.[30], 

Mei et al.[31] and de Diego et al.[32]. However, drawbacks with copper oxide based materials include 

poor structural integrity in studies by I. Adánez-Rubio et al.[33], M. Rydén et al. [34] and loss of active 

material in studies by Penthor et al. [35] and de Diego et al. [32]. Also, the relatively low melting 

temperature of copper at 1085°C could become a problem during extended operation. 

Table 1.3.4 Monometallic oxygen carriers compared by oxygen transfer capability, whether their reaction with methane 

is exo- or endothermic, CLOU capability, arbitrary reactivity with methane, most important shortcomings and a few 

references to studies. Note that nickel and copper is often together with an inert support material in an oxygen carrier 

making their high RO values come closer to those for manganese and iron.  

 RO=mox

/(mox-

mred) 

FR 

reaction 

with CH4 

CLOU CH4 

reacti

vity 

Shortcomings Ref 

CuO/Cu2O 0.1 Exo Yes +++ Poor durability [30-34] 

CuO/Cu 0.201 Exo Part +++ Low Cu melting point 

Poor durability 
[36] 

Fe2O3/Fe3O4 0.033 Endo No + Poor reaction kinetics with 

CH4 
[37, 38] 

Mn3O4/MnO 0.070 Endo No ++  [39] 

Mn2O3/Mn3O4 0.034 Exo Yes ++ Low reoxidation T  

Poor kinetics for oxidation 
[40] 

NiO/Ni 0.214 Endo No +++ 
Toxicity, CO/H2 

conversion limited to 

approximately 99% 

[26, 28, 

29, 41] 

 

A summary of monometallic oxygen carriers are shown in Table 1.3.4 where a few relevant 

characteristics are included. The oxygen transfer capacity, RO, are included but note that the high values 

for nickel and copper get lower as they are often combined with and inert support material in an oxygen 

carrier. Whether the reaction with methane is exo- or endothermic is relevant for process design as an 
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endothermic reaction would require a higher solid circulation, in order to fulfill the thermal balance 

between the two reactor vessels. The reactivity is ranked compared to the other materials. The most 

important shortcomings are also included and they motivate looking into combined oxides as the next 

step in oxygen carrier evolution. 

1.3.4.1 Mixed (Manganese) oxides 

Focus here is on mixed oxides that includes manganese since they are shown to have CLOU capability 

as well as being relatively low-cost and readily available. Oxygen carriers based on manganese and iron 

have been studied by several researchers. Azimi et al. [42-44] found almost complete fuel conversion at 

very low oxygen inventory and also investigated various support materials to increase particle strength 

and attrition resistance, Rydén et al. [45] found high oxygen release but low attrition resistance in 

continuous experiments, Haider et al. [46] found significant CLOU behavior using impregnated ore 

particles, Shafiefarhood et al. [47] studied decomposition (i.e. reduction) temperatures on Fe-Mn oxides, 

Shulman et al. [48] found oxygen release characteristics as well as high reactivity with methane, Bhavsar 

et al. [49] investigated oxygen carriers with CeO2 as support and Larring et al. [50] examined potential 

operating temperatures for different ratios of Fe-Mn. As iron and manganese are quite similar in atomic 

mass and ionic radius they are interchangeable in the oxides (Fe+Mn)2O3 and (Fe+Mn)3O4. Azimi et al. 

found in their studies that a Mn/(Mn+Fe) ratio of 0.5 – 0.8 is favourable from a thermodynamic point. 

At a partial pressure of oxygen of 0.05 atm the temperature change, or corresponding oxygen partial 

pressure change, needed for phase change at that ratio is minimal. The experiments in the studies 

mentioned above achieved substantial oxygen release as well as high ability to oxidize fuel. Other mixed 

manganese oxide have been evaluated as oxygen carriers.  

Manganese have also been combined with magnesium and silicon. Examples include work by Mattisson 

et al. [51] who investigated different binary an ternary oxides. Källén et al. [52-54] also have investigated 

several materials with manganese, silicon and iron and found promising reactivity but low attrition 

resistance, however, a Mn-Si material with Ti addition showed no large attrition. Shulman et al. [55] 

investigated MnMg oxides with respect to reactivity and oxygen release and found that addition of 

calcium hydroxide was beneficial. 

Another combined manganese oxide that has been proposed for CLC is CaMnO3-δ.  Leion et al.[56] and 

Rydén et al.[57] studied CaMn0.875Ti0.125O3-δ with results good enough to motivate further studies. 

Fossdal et al. investigated oxygen carriers based on low cost raw materials and found that a manganese 

ore with calcium addition was a promising oxygen carrier [58]. CaMnO3-δ has a perovskite structure 

(i.e., a crystalline structure having a unit cell that can be written as ABO3-δ, in which A is a large cation 

and B is a smaller cation). The δ-factor expresses the degree of oxygen deficiency in the structure: δ=0 

for a perfect structure. Materials of perovskite structure are feasible for chemical looping application 

because δ can be increased or reduced, while keeping the perovskite structure intact. The equilibrium δ 

is changed by altering factors in the surrounding such as temperature, pressure, or oxygen fugacity (see 

the work of Leonidova et al. [59]). The surroundings in a chemical-looping air reactor are oxidative, 

while they are reductive in the fuel reactor. Therefore, the value of δAR will be smaller and that of δFR 

will be larger. The amount of oxygen available for oxidation of fuel can be written as δFR - δAR. The A 

and B sites do not have to consist of one single type of ion. Doping of the A-site and the B-site with one 

or more types of ions is possible as long as the dopants have similar ionic radii and oxidation state as 

the main atom. The B site can be selected among most transition metals. Good candidates for the 

application of CLC could be, for example, manganese, iron, and titanium. The A-site must have much 

larger ionic radii, so there are less options. Calcium appears to be the most attractive for the A-site 

because of good availability and low cost. The general criteria concerning the formability of perovskites 

has been extensively reviewed by Li et al.[60]. Another notable feature of CaMnO3-δ is the fact that the 

sum of reactions in the chemical-looping fuel reactor will be slightly exothermic, which could be 

advantageous, with respect to heat balance of a chemical-looping facility. Reaction enthalpy for oxygen 

release from CaMnO3-δ materials have been examined by Rørmark et al.[61] and kinetics by Abad et al. 

[62]. Not all materials with a perovskite structure undergo changes under conditions relevant for 
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chemical-looping combustion, but CaMnO3-δ based materials have been shown to do so, as well as 

materials substituted with lanthanum and iron[63]. The study of Bakken et al. of CaMnO3-δ showed that 

there may be reversible decomposition to Ca2MnO4-δ and CaMn2O4-δ[64]. In the materials tested in paper 

II, some of the manganese was substituted by titanium, iron, or magnesium. Galinsky et al.[65] 

investigated manganese substitution with aluminum, vanadium, iron, cobalt and nickel, iron was deemed 

most suitable as it was fully compatible with the perovskite structure while the other dopants formed 

secondary phases. Also calcium substitution have been investigated by Galinsky et al.[66], of barium 

and strontium the strontium was found to effectively stabilize the perovskite structure. Arjmand et al. 

[67] have studied CaMnO3-δ based oxygen carriers with  lanthanum as A-site dopant and iron, titanium, 

magnesium or copper as B-site dopant. All variants performed well except for the material doped with 

copper that defluidized. Arjmand et al. [68] and Cabello et al. [69] have investigated the sulfur tolerance 

of these oxygen carriers. Arjmand et al. found that while presence of sulfur dioxide reduced reactivity 

it could be minimized by adjusting operating parameters while Cabello et al. found that hydrogen sulfide 

addition to fuel substantially reduced reactivity as well as caused agglomeration problems. Schmitz et 

al. [70] have done continuous experiments with CaMn0.9Mg0.1O3-δ using sulfurous solid fuels, and while 

the performance was superior compared to ilmenite, a reversible loss of reactivity was noticed. Schmitz 

et al. [71] also investigated the same material in a longer experiment using biochar with very good 

results. CaMnO3-δ based oxygen carriers have also been used for Chemical-looping combustion with 

liquid fuel by Moldenhauer et al. [72, 73], in these experiments the fuel conversion was high but not 

complete. 

 

1.4 Aim of work 
As the work in Paper I is not on CaMnO3-δ as Papers II-IV, the aim of Paper I is here presented separately. 

1.4.1 Paper I 

In chemical-looping combustion of solid fuels a lower oxygen carrier life time is expected due to 

possible deactivation by ash and loss of oxygen carrier in the removal of ash. The lower cost of a 

naturally occurring mineral, compared to a designed and manufactured oxygen carrier, should be more 

suitable for solid fuel. Ilmenite is a naturally occurring mineral, which has been used as oxygen carrier 

material for solid fuels. The overall redox reaction of ilmenite in chemical-looping combustion would 

be reaction (6). 

4𝐹𝑒𝑇𝑖𝑂3 + 𝑂2 ↔ 2𝐹𝑒2𝑇𝑖𝑂5 + 2𝑇𝑖𝑂2 (6) 

 

Ilmenite is a combined oxide for which reliable thermodynamic data is not readily available. Due to 

uncertainty regarding intermediates in that reaction and a reported segregation of iron and titanium oxide 

in the oxygen carrier particles [74] the reaction enthalpy needed to be verified.  

1.4.2 Paper II-V 

Because of earlier mentioned drawbacks with nickel, the development of oxygen carrier materials 

without nickel is well motivated. Paper II, III IV and V was part of a larger project, Innocuous, with the 

goal to development an oxygen carrier without or with little nickel for combustion of natural gas. The 

general material development strategy used in the project is shown in Figure 1.4.2. A large number of 

materials were prepared in step 1 and 2. All of those materials underwent step 3c and those with 

sufficient crushing strength also step 3a and 3b. The jet cup test in step 3d was developed in parallel but 

was included in the developing scheme in the Success project, which eventually followed the Innocuous 

project. Paper II-V describes part of the development effort in the aforementioned project. Paper II 

includes a part of step 3 but discussion about all of the 79 materials that was manufactured is included 

in a paper by Jing et al. [75]. Of the mentioned 79 materials 10 were deemed promising and continued 

to step 4 and 5. Part of step 5 is included in Paper III and V and additional work on that were made by 

Rydén et al.[34] and Källén et al.[54]. Of the 10 materials from step 5 only 2 proceeded to step 6 and 7. 
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Step 7 is included in Paper IV and in work by Källén et al.[76]. Additional work from Innocuous can be 

found in studies by Sundqvist et al. [77], Jing et al. [78, 79],Rydén et al. [80], Mattisson et al. [81]. 

1. Formulation of 
composition and 

production method

2. Preparation of first 
batch (20-50 g)

 3a. Reactivity tests in batch reactor (15g)
 3b. Characterisation (XRD, BET, SEM etc)
 3c. Crushing strength test
 3d. Jet cup test

Is oxygen carrier 
promising?

4. Preparation of 
second batch (1 kg)

5. Reactivity and 
durability test in 300Wth 

rector (250-400 g)

Is oxygen carrier still 
promising?

6. Preparation of third 
batch (25+ kg)

7. Reactivity and 
durability test in 10kWth 

reactor (13-20 kg)

Yes Yes

No No

Equipment size, research effort, time, cost

 

Figure 1.4.2 Oxygen carrier developing scheme. From Rydén et al. [82] 

The ultimate goal of the Innocuous project and the Success project was the development of industrially 

feasible oxygen carrier materials with low cost and low environmental impact, as well as manufacturing 

methods for particles suitable for use in fluidized bed reactors. Paper II-V constitutes a significant 

contribution towards this goal. 
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2. METHOD AND MATERIAL 

To be able to determine the viability of an oxygen carrier material many characteristics needed 

evaluation.  

 

 Poured bulk density was determined with a standardized pouring devise and a scale. The value 

was used to decide the amount of particles to use in the continuous units. 

 Particle size distribution was obtained by placing a representative weighed sample on a column 

of sieves with mesh cloth with openings in different, defined sizes. The column of sieves was 

placed in a mechanical shaker and after a set time the content of each sieve was weighed. How 

the particle size distribution developed during continuous operation was used as a measure of 

particle structural integrity. 

 The force required to crush a particle was determined using a digital force gauge. The values 

for individual particles differed substantially and therefore an average of 30 particles were used. 

This crushing strength was used as a measure of the mechanical strength of the particles.   

 An ocular assessment of particles where shape and possible micro agglomerations could be 

discovered was made using a light microscope.  

 X-ray crystallography was used to investigate the crystal composition of materials. 

2.1 Experimental setup 
Three different setups have been used for the experiments covered in this thesis. A comparison between 

the reactor systems is shown in table 2.1. They are all fluidized bed systems. Also common for all of the 

systems is that they utilize electrical heating in order to perform the experiments at desired temperature. 

Outlet gases are analyzed with a multicomponent gas analyzer after being subject to condensate removal 

and filtering.  

Table 2.1 A comparison between the reactor systems. The operating time refer to a typical experiment with one material. 

The amount of bed material for the continuous units is dependent on the bulk density of the material and does not 

include the material possibly needed to make up for samples and fragmentation. The number of materials tested are 

total for the unit, not by the author. The gas velocity is when comparing the units to each other. 

Reactor 

system 

Operating time Mass of bed 

mtrl [g] 

Process # mtrl 

tested 

Gas velocity 

Batch Hours 15 Batch Hundreds Low 

300 W Days 250 - 400 Continuous Dozens Intermediate 

10 kW Weeks 9 000 – 17 000 Continuous Few High 

 

2.1.1 Fluidized bed batch reactor 

A fluidized-bed reactor of quartz is placed inside an electric oven. The oven is insulated and the opening 

through which the gases entered and exited the reactor are insulated with quartz wool. The quartz reactor 

is cylindrical and has an inner diameter of 22 mm and a height of 870 mm. The oxygen carrier is placed 

on a porous quartz plate located 370 mm from the lower end. Fifteen gram of oxygen carrier or sand is 

the amount used for all experiments. Temperature measurements are conducted with two CrAl/NiAl 

thermocouples enclosed in Inconel 600 in quartz shells. The thermocouples are located 28 mm below 

the porous plate in order to measure temperature below the bed, and 22 mm above for measurements in 

the bed. The experiments were performed at 900 – 1000 °C, as measured by the upper thermocouple. 

The pressure drop over the reactor is measured with a frequency of 20 Hz in order to determine whether 

the bed is fluidized or not. The experiments were run in cycles where the fluidizing gas was alternated 

between oxidizing and reducing with a purging inert in between. A schematic picture of the setup is 

shown in Figure 2.1.1. 
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The most important advantages with the unit include: a very small amount of oxygen carrier needed, 

experiment takes only hours, hundreds of oxygen materials have been tested in this setup and are 

available for comparisons, easy to control oxidation and reduction, few things to cause problems. A 

disadvantage is that running multiple cycles is quite time consuming. 

 

Figure 2.1.1 Schematic picture of the fluidized batch reactor setup 

2.1.2 300 W Chemical-Looping Combustor 

The reactor is designed to use a rather small amount of oxygen carrier with gaseous fuel. Worth noting 

is that 300 W is the original fuel power for which the reactor was designed using natural gas as fuel, but 

during experiments fuel power is typically varied on purpose. The amount of oxygen carrier required to 

operate the reactor depends on the density of the oxygen carrier and is in the range 200 – 400 g. The 

inner dimensions of the air reactor are 25 * 42 mm in the base and decrease to 25 * 25 mm in the riser 

section. The inner dimension of the fuel reactor is 25 * 25 mm. The inner dimensions of the downcomer 

are 21 * 44 mm. Two 3D images of the reactor from different directions are shown in Figure 2.1.2. The 

gas to the air reactor and fuel reactor enters wind boxes and is evenly distributed over the cross section 

by porous quartz plates. In the downcomer and bottom loop seal (slot) gas enters through the pipes seen 

in Figure. These inlets are divided in two so that one inlet is on the fuel reactor side and the other is on 

the air reactor side. The gas is distributed through small holes drilled in the pipes directed downwards. 

The air flow in the air reactor is sufficiently high to throw the particles upwards to a wider settling zone 

(not shown in figure) where they fall down. A fraction of the falling particles enters the downcomer loop 

seal. Via the return orifice they fall into the bubbling fuel reactor where they are reduced. From the 

bottom of the fuel reactor the particles enter the slot loop seal and return to the air reactor where they 

are reoxidized and the loop is completed. The oxygen depleted air from the air reactor passes through 

particle filter while the flue gases from the fuel reactor pass through a particle filter and water seal, 

before leaving the reactor system. Slip streams are extracted after both the air reactor and the fuel reactor 

and are taken to gas conditioning systems, in which each slip stream is further filtrated and water is 

condensed. Following the gas condition systems the concentrations of O2, CO2, CO and CH4 are 

measured continuously using a combination of infrared and paramagnetic sensors. N2 and H2 from the 

fuel reactor are measured periodically by gas chromatography. The gases in the air reactor and fuel 

reactor are somewhat diluted by the gas that fluidizes the slot. The gases are furthermore diluted with 

the gas from the downcomer when it leaves the reactors and dry gas concentrations measured are thus 

slightly lower than when leaving the reactor. Both the downcomer and slot were fluidized with argon. 
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The advantages with this reactor are the continuous operation, the fairly small amount of oxygen carrier 

needed and that experiments only take days to carry out. Disadvantage with this system is that it is 

difficult to determine the oxygen carrier flow between air and fuel reactor and thus knowing the degree 

of reduction/oxidation of oxygen carriers. 

 

Figure 2.1.2 The 300 W Chemical-Looping Reactor. Arrows show the direction of oxygen carrier flow. The blue part is 

the air reactor, the red part is the fuel reactor and the green parts are the downcomer and slot. Image courtesy of 

Patrick Moldenhauer. 

2.1.3 10 kW Chemical-Looping Combustor 
The reactor has a nominal thermal power of 10 kWth with natural gas. A schematic image of the setup 

is shown in figure 2.1.3.1. An air reactor that eventually narrows in to a riser drives the circulation of 

solids. After the riser, gas is separated from particles in a cyclone. From the cyclone the particles fall 

down into a particle loop seal that prevents gas leakage between the air- and fuel-side. Below the loop 

seal particles continue down into a bubbling fuel reactor. On the other side of the fuel reactor an overflow 

exit leads the particles, via the next loop seal, back to the air reactor. A vertical plate in the middle of 

the fuel reactor prevents particles from by-passing the bed. The gas that leaves the cyclone and fuel 

reactor is first passively cooled in finned pipes before sample streams are withdrawn and led to a gas 

conditioning system. The gas from the cyclone is led to a bag filter that captures the elutriated particles 

before the gas exits to the chimney. The gas form the fuel reactor goes through a water seal with the 

dual purpose of collecting condensed steam and elutriated particles while also controlling the pressure 
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in the fuel reactor. Figure 2.1.3.2 shows a photography of the reactor system prior to insulation which 

clearly shows the heating coils and the many pressure taps. 

 

Figure 2.1.3.1 10 kW Chemical-Looping Combustor Experimental Setup with numbers as follows: 1. Air reactor 2. 

Riser 3. Cyclone separator 4. Fuel reactor 5. Loop seals 6. Water seal 7. Nitrogen 8. Natural gas 9. Nitrogen 10. 

Compressed air 11. Air preheater 12. Heating coils 13. Cooling flanges 14. Bag filters 15. Chimney. The image comes 

from Linderholm et al., 2008 [41]. 

 

The advantages with this reactor setup is the continuous operation, the high gas velocities (almost 

comparable to a commercial size unit) and that it can be operated unmanned (in a best case scenario). 

The disadvantages include that it is quite time consuming to set up the system, and the experiments takes 
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weeks (or even months) to execute. Also many different factors can cause problems in the system and a 

large amount of oxygen carrier (10-20 kg) is needed. 

 

Figure 2.1.3.2 A photography of the reactor system with the pink heating coils prior to insulation. 

2.2 Method 
Due to the fact that the studies in the different papers were carried out on different reactor systems the 

method differed quite a lot. This section will briefly describe the method from each paper. 

2.2.1 Determination of reaction enthalpy (Paper I) 

The two main reactions in the fuel reactor is the reduction of the oxygen carrier and oxidation of fuel. 

Depending on both which fuel and which oxygen carrier that is being used the net enthalpy can be 

exothermic or endothermic. By using mixtures of fuels with known, and different, oxidation enthalpy 

the enthalpy of oxygen carrier reduction could be found. Seven mixtures of methane and carbon 

monoxide were used. By examining the reactants and the response in reactor temperature change the 

enthalpy of oxygen carrier reduction was established iteratively. 

2.2.2 Material screening (Paper II) 

The materials were tested in the fluidized batch reactor. As both the capability to release gas phase 

oxygen as well as reactivity with methane was of interest both of these characteristics were examined. 

First four cycles with nitrogen as reducing gas, then three cycles with syngas, three cycles with natural 

gas and finally three more cycles with nitrogen. The final cycles with nitrogen were to determine if the 

reactions with fuel had affected the ability to release oxygen. An overview of the experimental plan is 
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presented in table 2.2.2. Beyond the chemical properties the fluidization behavior and the mechanical 

durability of the particles were of interest. 

Table 2.2.2 Experimental plan for oxygen uncoupling and fuel reactivity testing. Fi is flow in the period i, i.e. Oxidation, 

Reduction and Inert. ti is the time for period i. T is temperature. 

No of 

cycles 

Reducing 

gas 

FOx 

[mLN/min] 

FIn 

[mLN/min] 

tIn 

[s] 

FRed 

[mLN/min] 

tRed 

[s] 

TOx 

[°C] 

TRed 

[°C] 

3 nitrogen 900 600 360 - - 900 900 

1 nitrogen 900 600 360 - - 900 900 → 1000 

3 methane 900 600 60 450/360 20 950 950 

3 syngas 900 600 60 450/360 80 950 950 

3 nitrogen 900 600 360 - - 900 900 

2 nitrogen 900 600 360 - - 900 900 → 1000 

1 nitrogen 900 600 1800 - - 900 900 → 1000 

 

2.2.3 300 W Chemical-looping Combustor (Paper III and V) 

The experiments in this unit were carried out over several days. During the first days the CLOU 

capability was examined as temperature was stepwise increased. While CLOU was examined the 

fluidization gas in the slot loop seal and downcomer was argon and in the fuel reactor carbon dioxide. 

The air reactor was fluidized with air, or air diluted with nitrogen to an oxygen concentration of 5 %. 

The choices of fluidization gases was in order to be able to notice any leakage between the air reactor 

and fuel reactor. The difference in oxygen concentration in the oxidation gas was to determine whether 

that would influence the degree of oxidation (i.e. the δ-factor) of the oxygen carriers as expected. After 

the CLOU testing the following days were spent on operation with natural gas. Initially natural gas 

diluted with nitrogen was used not make sure nothing weird happened. After that several different values 

of the parameters air reactor flow, fuel flow and fuel reactor temperature were examined. 

2.2.4 10 kW Chemical-looping Combustor (Paper IV) 
The goal with this campaign was long term testing and verification of the oxygen carrier under 

conditions roughly comparable to future industrial units. Different values of the parameters fuel reactor 

temperature, solids inventory, air and fuel reactor flow was tested in order to find stable settings for 

continuous operation. An overview of the campaign is presented in Table 2.2.4. 
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Table 2.2.4 Overview of the experimental campaign. The temperature displayed was measured by a thermocouple in 

the bottom of the fuel reactor and the values below 900 °C occurred during heat-up periods with fuel addition at the 

beginning of some days. 

Day Time with fuel 

[h] 

Nominal solids 

inventory [kg] 

Air flow 

[LN/min] 

Fuel flow 

[LN/min] 

Temperature 

[°C] 

1 0.4 13 200 9 870 

2 15.4 13 180 8-9 940-950 

3 12.6 13 160 8-10 940-950 

4 11.9 13 160-200 7-10 930-950 

5 5.2 13 160-200 6-8 700-950 

6 3.1 13 160-170 4-7 940 

7 8.0 13 180-200 8 900-930 

8 9.5 14 160-180 7-8 920-950 

9 11.2 14 160 7 910-930 

10 6.1 14 160 7 800-920 

11 3.8 14 160 7 800-930 

12 12.2 14 160 7 930-950 

Sum: 99     

 

2.3 Data evaluation 
A few different characteristics were evaluated from the experiments. The conversion of fuel was 

measured as 

 

𝛾 =
𝑥𝐶𝑂2

𝑥𝐶𝑂2 + 𝑥𝐶𝑂 + 𝑥𝐶𝐻4
 

(6) 

 

Where xi being the fraction of specie i. That was a very simple measure of how much of the fuel was 

oxidized to carbon dioxide and as such it is called CO2 yield. It was measured from gases leaving the 

fuel reactor and does not take into account possible gas leak to air reactor or coking. During batch tests 

the reduction of the oxygen carrier was an important measure, 

 

𝜔 =
𝑚

𝑚𝑂𝑋
 

(7) 

 

Was generally used where m is current mass of oxygen carrier and mOX is the mass of the fully oxidized 

oxygen carrier. During the continuous experiments attempts were made to quantify the attrition of the 

particles by measuring the particles below 45 µm that was produced. Generally particles added were in 

the size range 106-212 µm. The attrition of the material during operation was expressed as 

 

𝐴 =
𝑚<45µ𝑚

𝑚𝑡𝑜𝑡 ∗ 𝑡
 

(8) 

 

Where m<45µm was the mass of fines, mtot the total solids inventory and t the total operation time with 

fuel fluidizing the fuel reactor. The inverse of the attrition is a value for expected particle life time. 



16 
 

2.4 Oxygen carriers 
In paper I the experiments were focused on ilmenite based oxygen carrier. Ilmenite is an iron-titanium 

oxide that requires limited processing to be used as oxygen carrier. Being an ore it was low-cost but 

unfortunately the reactivity with methane is rather low so it is unsuitable as an oxygen carrier for natural 

gas. All other papers focused on chemical-looping combustion with natural gas hence other oxygen 

carriers was looked into. Paper II was a part of a larger screening where 79 different oxygen carriers 

were manufactured and evaluated. The method of production was spray drying as it, as a well know 

production method for powders and small particles, were deemed possible to scale up in later stages of 

the project. The particles could be divided in three larger groups of particles with either Cu, CaMn or 

MnMg as active material. A few of the materials based on Cu and CaMn performed quite well with 

regard to CLOU capability and fuel reactivity in batch reactor. However many materials had low 

mechanical strength and were disqualified from batch reactor evaluation. Of the materials with best 

mechanical and reactivity properties 10 were produced in larger batches for continuous operation in 

larger pilot reactor. The Cu-based oxygen carrier suffered high attrition and deteriorating mechanical 

strength during continuous testing while the CaMn-based oxygen carriers proved to be more durable. 

Two of the CaMn-based oxygen carriers were thus chosen to be scaled up further for testing with 

commercially relevant gas velocities over longer time as the next step. 
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3.    RESULTS 

 

3.1 Determination of reaction enthalpy, Paper I 
It was shown that it was possible to determine the reaction enthalpy of an oxygen carrier 

oxidation/reduction using a fluidized batch reactor, a thermocouple, a gas analyzer and various mixtures 

of reacting gases. The known reaction enthalpy of a Ni-based oxygen carrier was determined within 

error range with the method developed. The change in enthalpy for the sum of all the reactions that 

happened during the fuel cycle as a function of the change in temperature for the Ni-based oxygen carrier 

is shown in Figure 3.1.1. Each pair of dots in the figure are the values for one specific mixture of carbon 

monoxide and methane. The method was subsequently used to find the reaction enthalpy of three 

different ilmenite-based oxygen carriers. The results were 453 kJ (mol O2)-1 for a synthetic ilmenite, 469 

kJ (mol O2)-1 for a natural ilmenite and 468 kJ (mol O2)-1 for another natural ilmenite that had previously 

been in operation in an experimental reactor. The results fit well with the suggested reaction path. 

 

Figure 3.1.1 ΔH vs. ΔT for the Ni-based oxygen carrier and a linearization of the fit 

 

3.2 Screening, Paper II 
In paper two a part of the larger screening in the EU project Innocuous is presented. 6 different 

compositions of a CaMnO3-based oxygen carrier doped with either iron, titanium or magnesium are 

compared. Each composition is produced with three different calcination temperatures; 1100, 1200 and 

1300 °C. First the mechanical strength was tested by measuring the crushing strength. A higher 

calcination temperature resulted in a higher density and crushing strength. The materials were thereafter 

examined in the fluidized batch reactor with respect to oxygen release and fuel reactivity. During the 

batch experiments the materials with lowest crushing strength and density all formed some dust, which 

was found in the quartz wool used as filter, which indicated a poor durability. The threshold for dust 

formation was between 1.11 and 1.28 N. The four materials with highest density all showed 

defluidization at certain conditions during the batch experiments. The defluidization was reversible but 

it was found that the oxygen carriers had agglomerated. The agglomerations ranged from small micro 

agglomerates of a few particles to most of the bed being agglomerated. The particles that were doped 

with magnesium and calcined at 1300 °C had no problems during operation. All of the materials tested 

released oxygen to inert atmosphere and were able to fully oxidize syngas. The reactivity with methane 
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was higher for materials calcined at lower temperature. The reactivity of the materials calcined at 1300 

°C was nevertheless quite high, some examples are shown in Figure 3.2.1. During these experiments no 

deterioration of the reactivity was observed which is displayed in Figure 3.2.2 were the release of oxygen 

from the first and last cycles were seemingly identical. A summary of the results is shown in Table 3.2.1. 

Table 3.2.1 Summary of results. The materials are presented with a short name as well as composition. The crushing 

strength values are shown for each calcination temperature, remaining data only for materials tested in batch reactor. 

The average fuel conversion, γ, for a particle degree of oxidation, ω, between 1 and 0.99. Also shown are whether the 

particles defluidized and formed dust during batch testing. Materials C9, C12 and C14 calcined at 1100 °C were not 

tested in the batch reactor as they were expected to form dust as well and thus not be suitable for further studies. 

calcination 

temperature [°C] 

crushing strength 

[N] 

γ for ω: 1 - 0.99 

[-] 

defluidization 

[yes/no] 

dust formation 

[yes/no] 

  C9 

CaMn0.75Ti0.25O3-δ 

  

1100 0.46    

1200 0.63 0.97 no yes 

1300 1.3 0.91 yes no 

  C10 

CaMn0.95Ti0.05O3-δ 

  

1100 0.46 0.99 no yes 

1200 0.68 0.98 no yes 

1300 1.29 0.96 yes no 

  C11 

CaMn0.8Fe0.2O3-δ 

  

1100 0.39 0.99 no yes 

1200 1.11 0.95 no yes 

1300 1.43 0.90 yes no 

  C12 

CaMn0.9Fe0.1O3-δ 

  

1100 0.4    

1200 0.97 0.95 no yes 

1300 1.38 0.95 yes no 

  C13 

CaMn0.8Mg0.2O3-δ 

  

1100 0.36 1.00 no yes 

1200 0.65 0.97 no yes 

1300 1.28 0.99 no no 

  C14 

CaMn0.9Mg0.1O3-δ 

  

1100 0.27    

1200 0.56 0.99 no yes 

1300 1.38 0.99 no No 
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Figure 3.2.1 Reactivity with methane shown as γ against ω for particles calcined at 1300 °C. 

 

 

Figure 3.2.2 A comparison of the oxygen release prior, cycles 1, 2 and 3 b. f. ,  and post fuel , 1, 2 and 3 a. f. , cycles for 

CaMn0.95Ti0.05O3-δ. The graphs for all other materials looked similar. 
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3.3 300 W (Paper III and V) 
Three different materials were examined in paper III and two in paper V in the circulating dual fluidized 

batch reactor. The oxygen uncoupling capacity was examined by using an inert gas instead of fuel in the 

fuel reactor for two different oxygen concentrations, 21 % and 5 %, for the fluidization of the air reactor. 

The release of oxygen to inert atmosphere in the fuel reactor was substantial. The amount of oxygen 

released was dependent both on temperature and the oxygen partial pressure in the air reactor as can be 

seen in the graphs in Figure 3.3.1. High temperature and high oxygen partial pressure in the air reactor 

clearly was beneficial, as could be expected. 

 

 

Figure 3.3.1 Effect of temperature and air reactor O2 concentration on oxygen uncoupling for CaMn0.8Mg0.2O3-δ (a), 

CaMn0.9Mg0.1O3-δ (b) and CaMn0.775Mg0.1Ti0.125O3-δ (c). 

Reactivity with natural gas was tested at 900 or 950 °C and for four of the materials the temperature 

dependence was tested in a temperature stair from 700 to 950 °C. The temperature was found to be a 
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very important parameter. The temperature dependence of fuel conversion is shown in Figure 3.3.2, note 

that fuel conversion is essentially complete at 900 and 950 °C. 

 

Figure 3.3.2 Effect of temperature on combustion efficiency for the used materials. The plotted values are averages for 

15 min operation at each temperature. 

The load of particles as function of thermal power was another important parameter and was varied by 

changing fuel flow. In Figure 3.3.3Figure 3. the fuel conversions are shown as a function of the solids 

inventory of the fuel reactor per fuel power; kg/MWth. The particle load per fuel power was adjusted by 

changing the fuel flow. A higher particle load per fuel power, i.e. lower fuel flow, resulted in higher 

CO2 yield. Worth noting is that CaMn0.8Mg0.2O3-δ had lower solids inventory than CaMn0.9Mg0.1O3-δ 

which had lower solids inventory than CaMn0.775Mg0.1Ti0.125O3-δ. The differing solids inventory was 

because solids inventory was decided from the density of the particles. Fe0.66Mn1.33SiO3 had a very low 

particle load per fuel power but at a higher temperature. 
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Figure 3.3.3 CO2 yield as a function of solids inventory in fuel reactor per fuel power. The load was changed with the 

volumetric fuel flow and it was assumed that 26 % of the total inventory was located in the fuel reactor. Each data point 

is an average of 15 min operation at steady-state at 900 °C in the fuel reactor except for Fe0.66Mn1.33SiO3 were the 

temperature was 950 °C. FeMnSiO3 is not included as the CO2 yield was much lower. 

How the continuous operation affected the particles was considered of being of high importance. The 

durability was quantified by measuring how much fines, i.e. particles smaller than 45 µm, was formed 

during the experiments as function of time. This value was expressed as wt% loss/h of operation with 

fuel. For CaMn0.8Mg0.2O3-δ the loss of fines was 0.13 %/h while for CaMn0.9Mg0.1O3-δ it was as low as 

0.03 %/h. CaMn0.775Mg0.1Ti0.125O3-δ that had an operating time of 40 h compared to 17 h for 

CaMn0.9Mg0.1O3-δ, had a loss of 0.08 %/h. The durability for the FeMnSi based oxygen carriers was 

worse. The loss of fines for Fe0.66Mn1.33SiO3 was 4.2 %/h and for FeMnSiO3 1.2 %/h. 

CaMn0.775Mg0.1Ti0.125O3-δ was also examined in change of size distribution and the changes were quite 

small as shown in Figure 3.3.4. This small change can be due to a swelling of particles of even just an 

artefact. 

 

Figure 3.3.4 Particle size distribution for CaMn0.775Mg0.1Ti0.125O3-δ, comparison between fresh particles added to reactor 

and the retrieved used ones. 
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The chemical stability of the particles was examined by characterization of fresh and used particles in 

the batch fluidized bed reactor. The oxygen release capability was largely unchanged while the fuel 

conversion decreased. The decrease was greater for CaMn0.775Mg0.1Ti0.125O3-δ than for CaMn0.9Mg0.1O3-

δ as is shown in Figure 3.3.5Figure 3.3.5. In an attempt to explain the decrease in reactivity the particles 

were examined by X-ray powder diffraction. For CaMn0.775Mg0.1Ti0.125O3-δ an increase in the marokite 

peaks, CaMn2O4, was detected, which could be a possible reason for the reduction in reactivity. The 

decomposition to marokite should be reversible [64] but further work is needed to verify this.  

  

Figure 3.3.5 CO2 yield as a function of degree of reduction. Results from reduction with methane in fluidized batch 

reactor. Fresh particles are compared with materials used in the 300 W unit. The experiments were carried out at 950 

°C. 

3.4 10 kW (Paper IV) 
The CaMn0.775Mg0.1Ti0.125O3-δ as well as the CaMn0.9Mg0.1O3-δ particles from the 300 W study were 

selected to be further tested in the 10 kW pilot. Paper IV presents the experimental campaign with 

CaMn0.775Mg0.1Ti0.125O3-δ while the work with CaMn0.9Mg0.1O3-δ is presented in Källén et al. [76]. The 

experimental campaign with CaMn0.775Mg0.1Ti0.125O3-δ included 99 h of continuous operation with fuel 

and substantially longer if all the time with circulation of solids at high temperature would be taken into 

account. During one warm-up, the fuel reactor and loop seals were fluidized with nitrogen instead of air 

to be able to examine to oxygen release to inert atmosphere. The oxygen concentration of the gas leaving 
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the fuel reactor was considerable and similar to the experiment in the 300 W reactor, and is shown as a 

function of fuel reactor temperature in Figure 3.4.1. 

 

Figure 3.4.1 Oxygen concentration of the gas leaving the fuel reactor during a heat-up period of more than 3 h. 

 

The experimental campaign was carried out over 12 days. The air flow in the air reactor ranged from 

160 to 200 LN/min and the flow of natural gas in the fuel reactor from 4 to 10 LN/min. The reactor was 

initially filled with 13 kg particles and in an attempt to increase fuel conversion one additional kg was 

added after day 7. The elutriation of particles due to unsatisfactory cyclone efficiency was high over the 

entire campaign. Due to the high elutriation, it was necessary to return particles to the reactor to keep 

the inventory sufficiently high. As a result the actual particle inventory during operation ranged from 9 

to 14 kg. Each time particles were returned from the bag filters to the reactor system a sample of 100 g 

were taken away and replaced with fresh particles. The samples were sieved to determine the fraction 

of fines, defined as particles under 45 µm. The mass fraction of fines in each sample is presented in 

Figure 3.4.2. In three of the samples the amount of fines was too high to measure as the fines clogged 

the sieve mesh. The high production of fines during the first days of operation could probably be 

explained by a characteristic of the production method that was used to manufacture the particles which 

was spray-drying. As particles are formed by spray-drying, some particles come out with so-called 

satellites which are smaller spheres attached to the larger particles to occur. An example of the small 

satellites is shown in figure 3.4.3. These are then detached when the particles start to circulate with high 

gas velocities in the reactor unit and are elutriated as fines. As most satellites are broken off the amount 

of fines decrease. An analysis of the particle size distribution in Figure 3.4.Figure 3.4.44 also supports 

this explanation. Some of the particles in the size range 180 – 212 µm would after removal of satellites 

end up in the 150 – 180 µm range. After day 7 the only fresh particles added to the reactor system was 

to replenish the samples removed. With this small amounts of fresh particles added the mass fraction of 

fines was 0 – 0.2 %. The highest mass fraction of fines obtained for this period, 0.2 %, would mean a 

loss of fines of 0.011 wt%/h, which corresponds to a lifetime above 9 000 h. This is high and could be 

considered as well above the minimal requirements. Even though the experiment generally went well a 

reoccurring problem was a stop in circulation due to a build-up of particles in the downward cyclone 

exit pipe. Fortunately these stops could be dealt with by hitting the upward cyclone exit pipe with a 

hammer. Each time these stops occurred the CO2-yield dropped dramatically which is very evident in 
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Figure 3.4. which shows the dry carbonaceous gases leaving the fuel reactor. The steam has been 

condensed prior to analysis and the balance is made up of nitrogen used for fluidizing the loop seals. 

 

Figure 3.4.2 The mass fraction of particles below 45 µm elutriated from the cyclone. The dots are measured values while 

the bars represent samples where the fraction of the fines was too high to be accurately measured. 

  

Figur 3.4.3 Light microscope image of unused spray dried particles. Small satellites are attached to some of the larger 

particles. 
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Figure 3.4.4 Particle size distribution of particles before (fresh) and after (used) 99 h of fuel operation. 

 

 

Figure 3.4.5 Compilation of operational data from the run time with natural gas. The grey vertical lines indicate a new 

day. The first 3.4 h of the fourth day lack data due to a software related problem. 

 

Ten hours of completely uninterrupted operations during day 2 is shown separately in Figure 3.4.66. 

The average CO2 yield for this period was over 0.99, which is very high. While all gas flows were held 

constant during this time of operation it can be seen that the temperature in the fuel reactor slowly 

decreases. The decrease in temperature can be explained by a decrease in circulation as the oxygen 

carrier inventory decreases through elutriation of particles. During these ten hours the inventory goes 

from 13 to 9 kg. During the first five hours the methane concentration of the gas leaving the fuel reactor 
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slowly decreases, after that the reduced temperature and inventory causes the fuel conversion to slowly 

decrease. 

 

Figure 3.4.6 Fuel reactor temperature, CO2 yield and fuel reactor concentrations of CO, CH4 and O2 for nine hours of 

operation during Day 2. 

 

A higher CO2 yield could be reached with a lower fuel flow. That is shown for a specific air flow and 

temperature in Figure 3.4.Figure 3.4.77. The lower fuel flow also led to a higher air-to-fuel ratio. A high 

fuel reactor temperature was desired since it beneficially affected the CO2 yield, the relation is shown 

in Figure 3.4.Figure 3.4.88 for specific flow settings. 

 

Figure 3.4.7 CO2 yield as a function of fuel reactor inventory per fuel power at a fuel reactor temperature of 

approximately 940 °C. 
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Figure 3.4.8 CO2 yield as a function of fuel reactor temperature. 

 

In order to determine how the continuous operation had affected the particles reactivity test were carried 

out in a fluidized batch reactor. These indicated that the ability to release oxygen was unaffected by 99 

h of continuous operation. The reactivity with fuel changed only slightly and it was for the better, as is 

shown in Figure 3.4.Figure 3.4.99. While the effect was minor his contradicts the results from the 300 

W-unit, see section 3.3. 

 

Figure 3.4.9 CO2 yield as a function of the mass based degree of reduction of oxygen carrier during reaction with 

methane. 
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4. DISCUSSION 

The main part of this thesis involved the development and step-wise upscaling of oxygen carrier particles 

based on calcium manganite for chemical-looping combustion of natural gas. The scope of the 

experimental work went from the use of a small batch reactor via a small continuous reactor to a larger, 

man-sized, pilot reactor. To a large degree the experiments in the continuous units confirmed the 

expectations created in the batch experiments. The oxygen release were considerable also in the 

continuous units and the fuel conversion was complete or close to complete. The attrition of particles 

stabilized on a low level and in the larger reactor the reactivity with fuel was unchanged. Thus it can be 

argued that the development scheme outlined in Figure 1.4.2 proved feasible and was successfully 

implemented, ultimately resulting in the development of synthetic mixed oxide particles with adequate 

properties for successful operation in a large pilot reactor. 

It shall be acknowledged that there were some difficulties encountered during experiments. However, 

this is to be expected during experimental research and it is not obvious that any of the difficulties were 

directly caused by the oxygen carriers per se. In the batch reactor there were some occasional fluidization 

disturbances, but that was not unexpected during experiments using to low fluidization gas velocity 

and/or to very high temperature. The reason for using such harsh process parameters was that the testing 

scheme originally was developed for other materials, but was kept the same to facilitate comparison 

between materials. Also the use of harsh parameters increase the likelihood to identify deficient 

materials. If a material is sufficiently robust to be operated at very harsh experimental conditions it 

seems likely to be feasible in practice. If all materials had worked perfectly all the time then we clearly 

would have tested them at too benign conditions. It would also have made it impossible to distinguish 

between promising and dubious materials. 

The experiments in the 300 W unit went surprisingly well, aside from the problem with particles leakage 

that occurred but were unrelated to the oxygen carrier material. 

Some practical difficulties was experienced during operation of the largest pilot unit. Basically, the 10 

kW unit was originally designed for particles with much higher density than the ones used in this work. 

In fact, the Ni-based particles for which it was designed had more than twice as high density. This has 

several consequences. As the fuel reactor is a bubbling bed with fixed inventory based on volume, the 

fuel reactor inventory based on mass were much less. This limited the fuel power input if high fuel 

conversion was desired. The calcium manganite also have a comparatively small RO which resulted in 

the need for a higher oxygen carrier circulation. The high circulation was what caused most difficulties 

as the upper loop seal and the cyclone repeatedly would overflow and stop circulation. A final factor 

that was greatly affected by the low particle density was cyclone efficiency. While earlier experiments 

with Ni-based particles could be operated around the clock with only minor elutriation of solids to the 

filters, the use of particles with much lower density resulted in poor cyclone efficiency and significant 

loss of solids as function of time, as has been described above. It seems very likely that a reactor system 

designed specifically for calcium manganite materials would have provided significantly higher 

performance on all levels.  

One final peculiarity that should be mentioned is that while the fuel reactivity, as measured in batch 

reactor, for CaMn0.775Mg0.1Ti0.125O3-δ was unchanged after 99 h in the 10 kW unit it decreased somewhat 

after 40 h in the 300 W unit. This can be compared with CaMn0.9Mg0.1O3-δ which reactivity somewhat 

decreased both in the 300 W unit and after Källens [76] experiment the 10 kW reactor unit. The reason 

for those deviations are not clear. Efforts undertaken after the finishing of the work presented in this 

thesis has shown that the influence on calcination/sintering conditions for calcium manganite materials 

is very significant and affects parameters such as reactivity, density and resistance to attrition. It may be 

that the addition of elements such as Mg and Ti to the perovskite structure is less important than 

originally anticipated, while the effect of calcination/sintering is more important. This issue is outside 

the scope of this thesis though. 
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5. CONCLUSIONS 

The main conclusions from the work presented in this thesis are: 

 The temperature change during fuel reduction in the small fluidized bed reactor can be used to 

determine oxygen carrier reduction enthalpy. This was used to determine that the reaction 

enthalpy for ilmenite was between that of FeTiO3/Fe2TiO5 (445 kJ (mol O2)-1) and Fe2O3/Fe3O4 

(480 kJ (mol O2)-1). Values of 453, 468 and 469 kJ (mol O2)-1 was obtained for synthetic, raw 

and previously used ilmenite respectively. 

 Oxygen carriers based on CaMn1-xMxO3-δ with M = Ti, Fe or Mg and x: 0.05-0.25 works well 

in a small batch reactor. Significant oxygen release as well as high reactivity with syngas and 

methane were obtained. Calcination temperature had a strong impact on particle crushing 

strength. 1300 °C for 4 h was enough for satisfactory strength while 1100 or 1200 °C were not. 

 In experiments in continuously operating pilot units it was possible to reach complete 

conversion of natural gas using oxygen carrier based on CaMn1-xMxO3-δ. This is not possible to 

achieve with Ni-based oxygen carriers, which previously were the state-of-the-art for CLC of 

natural gas. Further, these materials showed low rate of attrition, even when used for up to 99 h 

of operation with fuel in a 10 kW pilot unit utilizing high gas velocities and cyclone. Evaluation 

of oxygen carrier particles post experiments showed that reactivity was unchanged. After 

considerable initial attrition of particles the attrition stabilized on a very low level, 

corresponding to a lifetime of over 9 000 h. 

 

5.1 Epilogue 
After having established CaMnO3-δ based oxygen carriers feasible and highly interesting for chemical-

looping combustion application, next step in the development was deemed to be further scale-up of 

production to industrially relevant volumes and the use of raw materials available in large quantities and 

at low cost, rather than fine chemicals. Pour et al. manufactured CaMnO3-δ based oxygen carriers using 

a manganese ores in a study 2013 [83]. Similar work was made by Mattisson et al. [84]. In the EU-

project SUCCESS, a project that followed and built upon the results of the INNOCUOUS project, the 

main goal was the scale up calcium manganite oxygen carrier production to a batch of >1 ton. This effort 

was largely performed according to the developing scheme in Figure 1.4.2. Two papers by Jing et al. 

[85, 86] covers part of the work from the initial steps while Hallberg et al. [87] presents part of the work 

done in step 5. 
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