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Converting dynamic impact events to equivalent static loads in vehicle chassis
Simulating the dynamic impact events in RADIOSS on vehicle chassis system to
capture the peak load stresses and strains and replicating the event by applying
equivalent static loads in optistruct
SUSHANTH SHANDILYA DATTAKUMAR
VIVEK GANESHAN
Department of Applied mechanics
Chalmers University of Technology

Abstract
The ever increasing need to simulate the complex dynamic events in vehicle chassis
demands extensive computational resources. Due to the extreme nature of the peak
load events, special attention needs to be given to the dynamic peak loads in order
to understand the damage caused by them in the vehicle components and their ef-
fect on the design. To mitigate the difficulty of handling dynamic loads, structural
engineers usually carry out the static simulations using a dynamic load factor. The
dynamic load factors need to be reliable and determined logically by accounting for
the inertial effects such that the equivalent static loads result in similar stress and
strain patterns in the components.

The explicit method has been used extensively in order to effectively replicate the
complex events due to its ability to solve highly non-linear problems with very less
convergence issues and unconditional stability. However, the limiting factor being
the computational time to carry out such analysis being very high. For quasi-static
based problems, implicit methods have proven to be a good solution, as the compu-
tational time required in this method is shorter and the calculations cycles involved
are fewer, but with an implication of conditional stability. Thus, its very important
to understand the pros and cons of each integration scheme and choose the suitable
one based on the application. In the current study, a methodology has been devised
utilising both the schemes to arrive at a reliable dynamic load factor. The method-
ology involves carrying out the dynamic simulation first to replicate the dynamic
event, followed by a modal transient analysis to understand the active modes at
each time instant. The equivalent static loads are calculated based on the modal
transient analysis and applied in static or quasi static analysis to obtain similar
stress and strain patterns in the components and thus the dynamic load factor.

In the pre-study of the thesis, simple geometries such as the beams were tested for
2 configurations, namely, cantilever and simply supported. The physical and load
impulse characteristics were investigated. In the main study, the project involved
analysing the loading conditions from the multi-body dynamics model of the vehi-
cle chassis components and developing an FE model to study the response of the
sun-assembly to the applied dynamic and static loads. The equivalent static loads
were adjusted to achieve the same damage (stress and strain distribution) in the
components. The above procedure was adopted for 2 load cases, namely, the side
kerb impact and the pothole load case. Parametric study was conducted to investi-
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gate the effect of each parameter on the output response. The components studied
in this work are the upper and the lower control arms of SLA type suspension system.

Some of the key findings from the thesis work are :
• Fundamental frequency of the sub-assembly governs the maximum displace-

ment response.
• For the various load curves studied, namely triangular,sinusoidal, and trape-

zoidal pulse load, the maximum response was found to be mainly influenced
by the average impulse acting on the system.

• The maximum displacement of the system is majorly governed by the ratio of
the impulse duration to the fundamental time period of the system in case of
isosceles triangular impulses.

• The dynamic peak load has negligible effect on the dynamic load factors.

Keywords: Impact events; Vehicle Chassis; Dynamic analysis; Equivalent static
load.
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1
Introduction

1.1 Background
During its lifespan, vehicles are subjected to abusive/ impact loads several times,
which are highly dynamic in nature. Such load cases are called as peak loads /
strength events. Due to their extreme nature, simulating the peak load events with
good accuracy is of great importance in the design and development cycle of various
components in the vehicle chassis system. Some of the common scenarios of peak
load events can be, driving over a curb stone, skid against a curb, driving into a
pothole etc. [7]

Extensive research has been carried out focusing on the impact and fatigue analysis
on the vehicle chassis system to identify the effects of these varying dynamic loads
[2, 7, 15]. As it is computationally expensive to perform dynamic simulations , usu-
ally equivalent static loads are preferred to simulate the effect of such impact events.
During dynamic analysis, special attention needs to be given to the peak loads due
to the inertial effects. The applied static loads are multiplied with an amplification
factor in order to accommodate for the inertia. The amplification factors used are
usually obtained from experience, experimental and field data.

1.2 Purpose and Objectives
The thesis aims to study the dynamic impact events on vehicle chassis and to cor-
relate this to an equivalent static load which results in a similar stress and strain
distribution in the component. The aim of the project is to develop a method to
identify a relation between the static and dynamic loads.

1.3 Method
A detailed literature study of the previous work pertaining to topics relevant to the
thesis was carried out to understand the conversion of dynamic loads to static loads
for simple geometries and reasonably complex geometries [8]. The dynamic simu-
lation was initially carried out for simple geometries such as beams and equivalent
static loads were obtained through optimisation using the package Hyperstudy and
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1. Introduction

also analytically.

The study was then extended to a system level analysis where 2 load cases were
investigated, namely Pothole case and the side kerb impact case (Knuckle drop test)
consisting of a few of the chassis components (namely lower and the upper control
arms, the damper and the knuckle).The model setup is done using the preprocessor
Hypermesh where the components are connected using bushings or ball joints. The
dynamic simulation for the selected load case is performed using the explicit code
RADIOSS after which a modal analysis is performed to identify the modes and
to obtain modal participation of the identified modes at each time instant. The
equivalent static loads are then obtained by activating the respective modes by
tweaking the static loads. This is solved using the OPTISTRUCT, which has an
in-built implicit code for quasi-static analysis. The loads are applied in static or
quasi static simulations to obtain similar stress and strain distributions as observed
in the dynamic simulations. Five different variations of the pothole load case with
different damper configurations were tested and 1 case for the knuckle drop test
case.

1.4 Limitations
• The thesis considers only the single impulse events such as a driving into a

pothole or a lateral kerb strike. Thus, a fatigue analysis on the vehicle chassis
will not be performed.

• Only short impulse events are considered for the study and quasi static events
are not. Thus, the effects of prolonged load events that occur in situations like
cornering or long distance braking are not considered for the study.

• The results obtained from the dynamic analysis will be used to develop a rela-
tion between the dynamic load acting on the vehicle and the applied equivalent
static loads. Though they act as good indicators for design modifications, it
is out of scope of the current research work.

• As the aim of the thesis is to obtain a correlation between the loads used in
static and the dynamic simulation, there will be no physical validation of the
obtained simulation results.

2



2
Theory

2.1 Static & dynamic study
Engineers often run into situations when they need to decide whether a static anal-
ysis would suffice their study or a dynamic one. To choose the right option, it is
necessary to understand the complexity of the loading scenarios and the physics
behind the study. In our case, we discuss further about the analysis of structures
subjected to static and dynamic load cases and their differences.

Structural analysis deals with the change in behaviour of a physical member under
the applied loads. The nature of response of the system is completely dependent on
the way the load is applied to the component. If the load applied slowly, the inertial
effect defined on the basis of Newton’s first law of motion will be neglected and this
is called as a static analysis. In static analysis, a single output value of solution is
obtained for the system in the form of displacement, reaction forces etc. In a broader
sense, static forces are considered as constant loads acting on the structure. A sim-
ple example of static load is a block of iron laying on a surface, a stationary truck etc.

Figure 2.1: Representation of static and dynamic loads

Dynamic means time varying, and as the name suggests, the applied loads vary with
time and thus induce time varying responses (displacements, velocities, accelera-
tions, reaction forces, stresses etc). One of the most notable difference in dynamic
analysis is the explicit consideration of inertial forces developed in the structure
when it is excited by the time varying loads. Due to its time-varying characteristics,
dynamic analysis is more realistic in nature to the actual occurring event but it also
makes the modelling more computationally demanding. Some of the examples of
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2. Theory

dynamic loads are hammer striking an iron block , a moving truck on a bridge etc.
[12, 3]

2.2 Explicit & Implicit Methods
A model can be solved by either explicit or implicit numerical solution schemes.
Implicit solvers are more suitable when the time dependency of the solution is not
important (Eg. static problems,modal analysis) whereas explicit methods are suit-
able when solving for dynamic events. Depending on the type of analysis being
performed a suitable solver method must be chosen such that the most accurate
solution is obtained in the shortest duration and with more efficient resource con-
sumption, as shown in fig 2.2. A discussion about the explicit and implicit method
of solving a structural based problem is presented below.

Figure 2.2: The figure represents the applicability of the implicit and the explicit
methods

2.2.1 Explicit Scheme
The explicit scheme is used to solve dynamic problems. In this scheme, the state
of the system is calculated at a later time step from the state of the system in the
current time step. One of the common methods adopted to solve in this scheme is
the second order accurate central difference method to approximate the accelerations
in the body. The external forces are computed from the applied loading conditions.
Then the internal forces due to stresses is computed using the implemented material
model. Using the central difference scheme the acceleration is approximated as
shown. The algorithm for the central difference scheme is as given.
The algorithm for the explicit method is shown below [5]

ü0 = p0 − cu̇0 − ku0

m
(2.1)
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2. Theory

u−1 = u0 −∆tu̇0 + ∆t2
2 ü0 (2.2)[

m

∆t2 + c

2∆t

]
ui+1 = pi −

[
m

∆t2 −
c

2∆t

]
ui−1 −

[
k − 2m

∆t2

]
(2.3)

We can then calculate the displacement at the i+1 time step as

ui+1 =
pi −

[
m

∆t2 −
c

2∆t

]
ui−1 −

[
k − 2m

∆t2

]
[
m

∆t2 + c

2∆t

] (2.4)

The velocity and acceleration are give by

u̇i = ui+1 − ui−1

2∆t üi = ui+1 − 2ui + ui−1

∆t2 (2.5)

To calculate the velocities and displacements of the consecutive time steps, i is re-
placed with i+1 in equations 2.4, 2.5.

From the incremental displacement the new internal forces and correspondingly the
external forces can be calculated from loading conditions and the accelerations for
the next time step can be computed [10, 5].

The explicit scheme is relatively inexpensive for high velocity and short duration
events, as the mass matrix is inverted instead of the stiffness matrix(as in implicit
scheme). The mass matrix being a diagonal matrix makes the numerical computa-
tion of its inverse quicker. The maximum time-step in an explicit solver is limited
by the smallest element present in the model. For the solution to be stable, the
enforced time-step for the analysis has to be smaller than the critical time step.
The critical time-step is calculated using the following equation.

∆t = minelements

(
l

c

)
(2.6)

Time step should be chosen reasonably with reference to the above calculated value.
As the time step is increased, the solver adds a non-physical mass to the system to
accommodate for the time step. This affects the results of the dynamic analysis.
Mass scaling is still acceptable when it does not affect the results considerably. Thus
from the time-step formulation we observe that it depends on the speed of sound in
the material (c) and the minimum element size (l) in the model.

2.2.2 Implicit Scheme
The implicit analysis enforces equilibrium between the external forces and the in-
ternal force using Newton or Newton-Raphson iteration method to a predefined
tolerance. This allows it to be more accurate than the explicit analysis and larger
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2. Theory

time-steps can be used to solve dynamic problems. At each time step the stiffness
matrix needs to be updated, reconstructed and inverted which tends to be numer-
ically expensive. Thus implicit analysis works best for static and quasi static cases
where there are no dynamic or inertial effects and where the material plasticity
needs to be captured.In the present thesis the implicit analysis is used instead of
linear static analysis to obtain the obtain the mode transient analysis and also to
calculate the equivalent static cases where significant plasticity was observed in the
dynamic results.

One of the commonly used implicit methods is the Newmark method. Unlike the
central difference scheme discussed previously which is conditionally stable, the New-
mark method is unconditionally stable. The method computes the displacements
and velocity for each time step using a Taylor series approximation. The algorithm
for the Newmark method is given below.[5]

• The stiffness matrix K, Mass matrix M and the damping matrix C are as-
sembled.

• Initialise u0, u̇0, ü0
• The timestep ∆t and the parameters β and γ are chosen ( for the solver to

be unconditionally stable the parameters are chosen as follows γ = 0.5 and
β = 0.25).

• The LU factorisation of the matrix given below is calculated

[M + γC + β∆t2K] (2.7)

• The initial displacement u−1 is computed as shown

u−1 = u0 −∆tu̇0 + ∆t2
2 ü0 (2.8)

For each time step the displacement at time t+ ∆t is calculated as
• The accelerations can be obtained by solving the equation given below

[M + γC + β∆t2K]ün+1 = RHS (2.9)

RHS = −Kun − (C + ∆tK)u̇n −
[
∆t(1− γ)C + ∆t2

2 (1− 2β)K
]
ün (2.10)

• The displacements and velocity can be computed as

un+1 = un + u̇n∆t+ [(1− 2β)ün + 2βün+1]∆t
2

2 (2.11)

u̇n+1 = u̇n + [(1− γ)ün + γün+1]∆t (2.12)

• The consecutive time steps are computed by updating n to n+1.

6



2. Theory

2.3 Linear & Non-Linear systems
In structural analysis, the systems can be modelled based on two main behaviours.
One is accounting for only the linearity of the system and the other one account-
ing for both linearity and non-linearity. When a structure is loaded, it deforms. If
the deformations are small or well below the elastic limit of the material, then the
stiffness can be assumed to remain unchanged and the structure can be assumed to
behave linearly. In the current study, the system experiences non-linear behaviour
in terms of the plasticization of the components due to the applied loads and the
peaking of stresses beyond the yield limit. The component displacement is governed
by the bushing configurations at the joints, which exhibit a linear behaviour at lower
displacements and a non-linear behaviour at large displacements, which is discussed
in detail in section 4.1.4. The generic force-displacement relationship can be repre-
sented as follows,

F = kx (2.13)

Figure 2.3: Material behaviour a) Elastic Response b) Elasto-plastic Response

This in turn implies that there will be no remarkable change in material properties
and the shape of the structure. On the other hand, if the load applied results in
a large or permanent deformation , then the stiffness of the system changes due
to the plastic deformations and thus the material properties too. Such behaviour
of the structure can be categorised as non-linear. The system can have other non
linearity’s such as the contact definitions and geometric non-linearity’s. [16] .

Assuming perfect linearity in real structures is not an ideal way to go about in
structural analysis because every system exhibits some degree of non-linearity in
its response in the form of localised non-linearity’s. Most of the problems can be
solved with satisfactory accuracy by adopting proper linearization methods in the
problem. But, the solution becomes unreliable if the degree of non-linearity in
the system exceeds the capacity of the linear description. Non-linear systems can be
solved to obtain reasonable solutions by using non-linear techniques such as iterative
solution strategies [6].
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2.4 Basic principles in dynamics
This chapter discusses the introduces the reader to the basic concepts in dynamics
[1].

2.4.1 Work & Energy
An object in rest is said to be in static equilibrium when the net force acting on it
zero. When a body in rest is disturbed by the application of an external force, it
moves. By Newton’s 2nd law of motion, acceleration of a body is directly propor-
tional to the net force acting on the body and the mass of it. As the force increases,
the acceleration of the body increases. Newton’s 2nd law of motion is expressed as,

F = ma (2.14)

When force (F) moves a body by a distance (S), then work is said to be performed
on the body. The work-displacement relation ix expresses as,

W = FScosθ (2.15)

Where θ is angle between the direction of application of the force and the motion
direction. Force is mostly variable in dynamic problems and hence it would be more
apt to mention work as an integral over the position in space where force (F) is a
function of position. The above can be expresses as,

W =
∫ L

0
F (x)dx (2.16)

Figure 2.4: Work done on a particle

On integrating the equation of the Newtons 2nd law of of motion, the principle
work-energy can be expressed as,

∑
W1−2 = 1

2mv1
2 − 1

2mv0
2 (2.17)∑

W1−2 is the work done by the net forces acting on the particle to displace it from
point 1 to 2. Work is a scalar quatity and it can be negative or positive.If the initial
velocity (v0) is not equal to the final velocity (v1), there will be a change in kinetic
energy in the system and this is equal to the work done by the force.
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2.4.2 Momentum & Impulse
When bodies collide, they experience a variable force with respect to time acting
on them during their interaction. This leads us to the principle of impulse and
momentum. The time integral of the force, called as impulse is equal to product of
mass and the change in velocity, known as the change in momentum. Consider a
time interval t1 to t2 over which the force is integrated to obtain the following∫ t2

t1
Fdt = m∆v (2.18)

If a body moves with an initial velocity v0,if a force F is subjected to it , the final
velocity of the body can be calculated using the above equation. The impulse in-
tensity can be determined by calculating the area under the force-time graph. An
impact load is a force of large magnitude acting on a body for a very short duration,
usually in the order of milliseconds. The physics behind impact loading involves
the conservation of energy and momentum, i.e when a moving object collides with
a structure it imparts its kinetic energy to the structure as an increase in strain
energy and is partially dissipated through friction and plastic deformations in the
structure and the object.

If the impact loading is a regular occurrence in the service of a structure, then it is
expected that the plastic deformation occurring in the structure during impact load-
ing is localized and the overall response of the structure is elastic after the impact
load. One of the most common example is the drop impact test shown in figure 3.
This is usually done by dropping a known mass from a predetermined height onto
a structure like a beam. If the resulting response of the structure is purely elastic,
then a relationship can be established between the static and dynamic loadings of
the dropped mass as shown

Figure 2.5: Mass impact test for beams

n = 1 +
√

1 + 2h
δstatic

(2.19)

The above formulation is a simplified version of the dynamic impact factor and does
not take into account modal vibrations. A more detailed analysis which accounts
for the modal vibrations will be presented later. [1]
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2.4.3 Structural dynamics and solving methods
A typical structural dynamics problem can be defined based on the d’Alembert’s
principle. FEM being one of the common discretization method adopted to solve
the problem by breaking up the continuous system into smaller finite parts, the
equation of motion can be defined based on mass (M), damping (C) and stiffness
(K) as follows [11] :

Mẍ+ Cẋ+Kx = F (t) (2.20)

where, ẍ ,ẋ and x are the vectors of nodal acceleration, velocity and displacement
respectively. F(t) is the applied external load. The system is said to be in dynamical
equilibrium if the above equation is satisfied at all times, t.[11]
Structural dynamic problems can be classified as shown in Fig 2.6 based on the
nature of the external load and the expected outcome of the problem.

Figure 2.6: Classification of structural dynamics problems

Among the various methods mentioned, modal analysis and transient analysis are
discussed in detail, as it is of special importance in this study.

2.4.3.1 Modal analysis

Modal analysis is used to understand the vibration characteristics of the system. It
enables the designer in understanding the mode shapes for the natural frequencies of
the system. The rhs in the eqn. 2.24 is considered zero in modal analysis. [11] Modal
superposition method can be used quite effectively to study the dynamic response
of the system based on the modal analysis. Modal analysis is a linear analysis and
thus any non-linearity’s mentioned will be ignored.

2.4.3.2 Modal superposition method

Mode superposition method is one of the efficient ways to replicate a harmonic
or transient analysis [11]. In this method, the dynamic behaviour of the system
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is obtained by the linear combination of the first m prominent modes.It can be
represented as,

x(t) =
m∑

n=1
φn.y(t) (2.21)

Where φn represents the mode shape of mode n and y(t) is its modal amplitude.
On substituting eqn. 2.21 in eqn. 2.24 and by pre-mulitplying with the transpose
of the modal matrix , we arrive at the following equation:

φTMφ.ÿ(t) + φTCφ.ẏ(t) + φTK.y(t) = φT .F (t) (2.22)
For an undamped or symmetrically damped system, the above equation represents
a set of m equations which describe the generalised SDOF model in modal subspace
[11].

2.4.3.3 Transient Dynamic analysis

Transient dynamic analysis is the method adopted to determine the dynamic re-
sponse of a system to a time varying load acting on it. The time-varying load is
mentioned as a vector in the RHS of eqn. 2.24 . The analysis can be used to deter-
mine the stress, displacement, strain and reaction force time histories of a system
for combination of harmonic or transient loads. For determining the solutions in
this method, time integration should be performed . As discussed in section 2.2 ,
either explicit or implicit solving algorithm can be can be adopted.

2.5 Single degree of freedom systems
A single degree system is one in which the motion of the body is defined by a single
coordinate. Fig 2.7 represents a similar spring-mass-damper system acted upon
by a time-varying force (F) [1]. This body is considered to be rigid and has no
internal deformations when loaded. In an reality, systems exhibit some damping
properties due to the frictional forces created internally and due to the contact with
the ground, due to which the system is modelled along with a damper for more
realistic behaviour. The equation of motion can be can be written as,

mẍ+ cẋ+ kx = F (t) (2.23)

The equation of motion can be solved to calculate the variation of displacement with
time by substituing for the loading function, initial conditions and other necessary
parameters.
An SDOF system can experience a free vibration or forced-vibrations based on the
force acting on the system. When a system is subjected to impact loading, the force
acts on the body for a short interval of time. The systems response can be explained
in two parts, namely, the response during the load application and the free vibration
response after the removal of the load. As the load duration is typically short, the
maximum response of the system occurs slightly later [8]. The characteristic of the
response depends on the type of the load and also the property of the structure
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Figure 2.7: SDOF spring-mass-damper system

[1]. The effect of damping is negligible for the first oscillation but become of more
prominence in the consequent ones. Thus, it would not be of necessity to include
dampers for capturing the maximum responses of the impact loaded systems. [8]

2.6 Optimization and sampling techniques
In the most general sense, optimization is the mathematical discipline adopted to
find the extreme(maxima and minima) of systems, functions or set of numbers. The
prime motive of all the optimization techniques is to either maximize the desirable
outcome of a system or minimize the undesirable outcomes. A system comprises
of inputs, design variables, controllable and uncontrollable factors. The output of
this system is the response.As the number of variables in a system increases, un-
derstanding the interaction and influece of them on the response of the system gets
challenging. Sampling techniques are the methods adopted to decide the number
of samples to be chosen in the design space to extract maximum information using
minimum resources.

Figure 2.8: System setup

The following section discusses one of the standard sampling techniques, design of
experiments and an optimization technique using global response surface method in
detail.
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2.6.1 Design of experiments
DOE is one of the mathematical methods used to plan and perform scientific stud-
ies systematically. DOE enables one in understanding the effect of multiple input
variables on the response of the system. It can be adopted in finding the optimal
settings of the input variables to obtain a specific response of the system. Some
of the common techniques in DOE are full factorial method, fractional factorial
method, Taguchi method etc. Among the methods mentioned, Taguchi method has
been adopted in this work and is discussed in detail in this section.

• Taguchi method
Taguchi technique is a method used to find the best values of the controllable factors
such that there is very less sensitivity to the uncontrollable factors. It helps in
carefully choosing the samples from the full factorial set so that the main effects of
the input variables can be captured in the response of the system. The method uses
a special method called as the orthogonal arrays for sampling. The orthogonal array
and its size depends on the number of input variables and levels of each variables
chosen.

Ntaguchi = 1 +
m∑

n=1
(Ln − 1) (2.24)

Where ’m’ is the no. of variables and ’L’ is the no. of levels.

2.6.2 Load Identification
Load identification is the process of finding equivalent static loads for and applied
dynamic loads. One of the methodology explored was load identification via system
identification. The system identification uses optimisation to fit a set of output
response of a model to predefined target values by varying the input variables.The
objective function for the system identification is formulated using the least squares
formula [14]. The optimisation was then carried out using the Global Response
Surface Method (GRSM) to identify the equivalent static loads.

2.6.3 Global Response Surface Method
The optimisation technique used in the system identification is the Global Response
Surface Method.As the name suggest its a method which is used when a global
optimum is required. During each iteration of the GRSM new designs are generated.
The response surface is then updated adaptively in accordance with newly generated
designs. The figure below gives the simplified algorithm of the GRSM[14].

2.7 Suspension systems
The suspension system is one of the most important component in the vehicle. It has
to keep the vehicle in contact with road surface while at the same time preventing
vibrations, shocks due to bumps or potholes to be transmitted to the vehicle body.
,thus ensuring a good ride performance and comfort for the passengers in the vehicle.
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Figure 2.9: GRSM Algorithm

The scope of the current thesis is limited to only the double wishbones suspension
system and different load cases are studied for the same suspension system.

2.7.1 Suspension System
The double wishbone suspension system is an independent suspensions system.The
wheels can move independent of each other. Thus, a disturbance in one wheel will
not be transmitted to the other wheel. It consists of two wishbone shaped link arms
whose one end is connected to the knuckle by means of spherical joints and the
other end to the chassis via two mounting points. In this study we use a variant of
the double wishbone suspension system is the Short Long Arm (SLA) suspension
system.The lower control arms support the vehicle load and the upper arm helps in
maintaining the position of the steering knuckle. The suspension damper configura-
tions usually used in the such systems are telescopic type. The spring stiffness and
the damping properties of the suspension system can be tweaked to adjust the ride
quality and the performance of the vehicle.[4, 15]
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Figure 2.10: Double Wishbone Suspension System [15]

Figure 2.11: Short Long Arm (SLA) type suspension system
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3
Pre-study on Cantilever and
simply-supported beams

3.1 Continuous formulation of beams
Continuous formulation is often an ideal method for studying the behaviour of me-
chanical structures, as infinite number of degrees of freedom are defined in the system
i.e each small element can be considered as a discrete particle which is connected to
all other elements by springs.In this method, the mass is assumed to be distributed
equally throughout the structure rather than being concentrated at localised coor-
dinates, as in lumped parameter based models. [1].

3.1.1 Static solution
The static solution for the beam problem was obtained by implementing the Euler-
Bernoulli beam theory from which a relation between the distributed force (q) and
the transverse beam deflection (y) can be established as shown in eqn 3.1.

q

EI
= d4y

dx4 (3.1)

Where E → Young’s modulus
I → second moment of inertia
q → load per unit length

To determine the static deflection of the beam, the differential equation in eqn. 3.1
is integrated 4 successive times and solved with appropriate boundary conditions
to get the transverse deflections. The appropriate boundary conditions for different
configurations of beams is available in various literature’s [1, 9]. Some of the ap-
proximations considered while implementing Euler–Bernoulli beam theory are:-
(1) shear deformations are ignored,and
(2) planar cross sections remain normal and planar to the axis of the beam during
deformation. The accuracy of the model are limited by these assumptions when the
beam is not long and slender.
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3. Pre-study on Cantilever and simply-supported beams

Figure 3.1: Beam with distributed mass and load

3.1.2 Dynamic solution
To determine the analytical solution for the dynamic response of the system, La-
grange’s equations were used[1]. Concentrated load was applied at the mid span
and end point for the simply supported and the cantilever beam respectively.The
following steps were followed to arrive at the analytical solution :
The dynamic deflection of the continuous beam can be represented as the summation
of its modal components as shown in the equation below i.e mode super-positioning.

y(t, x) =
n∑
1
An(t)φn(x) (3.2)

An is the modal amplitude, φn is the characteristic shape. The equation of motion
of the nth mode can be obtained by solving the given differential equation.

Än + ω2
nAn = f(t)

∫ l
0 p1(x)φn(x) dx

m
∫ l

0 φ
2
n(x) dx

(3.3)

Thus the static modal displacement is computed and corresponding dynamic modal
amplitude is obtained as shown

Anet = f(t)
∫ l

0 p1(x)φn(x) dx
mω2

n

∫ l
0 φ

2
n(x) dx

(3.4)

The modal responses are given by,

An(t) = Anet(DLF )n (3.5)

Where (DLF )n → dynamic load factor for equivalent SDOF system in nth mode
(refer fig.2.8 in [1] )

The total response of the system can be calculated as,

y(x, t) =
n∑
An(t)φn(x) (3.6)

Where φn(x) → Characteristic shape for beams with various boundary conditions
(refer Table.4.1 in [1] )
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3.2 Response of the beam to different pulse-load
characteristics

Response of the beam was studied for Three different pulse-load characteristics,
namely triangular,sinusoidal, and trapezoidal pulse load as shown in Fig.3.2. Im-
pulse load of 20ms and 4ms were imposed on a cantilever beam for all the three
loading curves. As seen in Fig 3.3, the peak deflection in case of beam loaded the
trapezoidal pulse load was the highest followed by sinusoidal pulse and triangular
pulse load respectively.This is evident from the fact the area under the load curves
shown in Fig. 3.2 is highest for the trapezoidal loading indicating that it has the
maximum impulse amongst the loading’s that were tested for. Also, the peak event
occurs at a slightly later time period in case for the trapezoidal loaded beam in com-
parison to the triangular pulse loaded beam. These characteristic responses can be
attributed to the higher impulse acting on the beam in case of trapezoidal loading.

Figure 3.2: Impulse Load curve

Figure 3.3: Maximum nodal displacement of cantilever beam (500x100x10) for
different loading curves acting for a)20 ms b)4ms
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3.3 Load Identification Setup
Load identification was carried out to compare and match the dynamic response of
the beam to its equivalent static model, which would give a similar displacement and
stress fields at a particular time instant. The dynamic simulations of the beams were
setup in Hypermesh and solved using the explicit FEM solver RADIOSS. Triangu-
lar impulse loads (as shown in Fig 3.2) were applied on two beam configurations,
namely cantilever and simply supported beam. The dynamic simulation was run
for few milliseconds till at-least one cycle of the response was captured. Nodal dis-
placement were captured on several points along the length of the beam in order to
conduct a load identification based optimisation on the geometry using the software
package Hyperstudy. The equivalent static model to match the obtained dynamic
displacements in the RADIOSS was setup in Optistruct and the forces were applied
at the points of interest along the length of the beam as shown in Fig 3.4 .
The Optistruct model was then imported into Hyperstudy. The static forces on

Figure 3.4: Load-identification model setup in Optistruct with points picked
along the length of the beam

the points of interest (Fig 3.4) were set as the design variables and the nodal dis-
placements/stresses from the dynamic simulations at the point of interests were set
as the target responses. System identification was performed using the Global Re-
sponse Surface Method (GRSM) to determine the equivalent static forces at the
nodes picked. Also, the system identification method was tested on the system to
study the stress responses and found to yield good results.
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Figure 3.5: a) Impulse load acting on a cantilever beam (500x100x10) b)The
corresponding nodal displacements at various points along length beam

3.4 Pre-Study Results
The transient response of the beam subjected to an impulse load was studied. Ta-
bles in appendix I aggregate the results obtained from load identification for the
displacement and the stress distribution for simple beam problems. Impulse loading
duration ranging from 4 ms up to 24 ms were imposed on the beams of different
cross-sections and 2 different configurations to capture the displacement and stress
responses. It was observed that the shorter impulses in the range of 1/5th to 1/10th
the fundamental time period of the system, caused the beams to vibrate in one of
its modes, primarily in the 1st mode followed by some minor contributions from the
2nd and the 3rd mode (as indicated in Fig. 3.9 for cantilever beam and Fig 3.13
for simply supported beam), this is confirmed by looking at the mode participation
factors obtained from performing the modal transient analysis as seen in Fig 3.10.
As the impulse duration was shortened, the contributions from the higher modes
become more pronounced [1, 9, 2]. As the duration of the impulse was increased, the
maximum displacement in the beam increased but the inertial effect was reduced
(i.e the peak event occurred more closer to the peak load timing in the impulse)
due to the fact that the rate of loading was reduced [1]. The Dynamic load factors
(DLF) were calculated based on the results obtained and it was found to vary from
0.5 upto 20. One noticeably different result is the value of DLF being lower than 1
in case 3 in simply-supported beam (Table A.2). This is due to the impulse dura-
tion being nearly 1/4th the natural time period of the beam. In triangular impulse
loads, the dynamic effect increases as the duration of loading approaches the natural
period of the system and reaches the maximum when it is equal to it [1]. Fig 3.6
shows the parameter based study carried out to study the response of the system
for triangular impulse loads. The DLF is observed to be sensitive to the time period
of loading. As the mass of the system was increased, the amount of energy required
to displace the beam from rest will be more. The mass increase resulted in smaller
displacements as compared to the lighter beams, thus resulting in the drop of DLF
value with increasing mass. The peak value of the force has no effect on the DLF
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due to the fact that DLF is relative in nature to the static displacements. The time
to reach the peak loads would be more important than the peak values of the force.
It was evident from this study that the DLF and response of a system subjected to
an impact load not only depends on the system parameters like mass, stiffness and
damping, but also on the characteristics of the load like, duration of the impulse,
rate of loading and also the point of application of the load. The calculated analyt-
ical dynamic displacements were in close convergence with the RADIOSS response
with an error percentage of 7 - 9 %.

Figure 3.6: Parameter based study of the cantilever beam for isosceles triangular
load

The equivalent static loads obtained from the system identification were applied
on the static model of the beam. The nodal displacements and element stresses
along the beam length were recorded, as shown in the table A.2. The displacements
and stresses due to the applied equivalent static loads matched well with the re-
sults obtained from the dynamic simulations. The comparison of the displacement
and stress field in the dynamic and equivalent static, as seen in figures 3.7 and 3.8,
show a close correspondence between the dynamic and equivalent static simulations.

Figure 3.7: Displacement contour plots for a)Dynamic (4ms 500N impluse) and
b) Equivalent static loads acting on a cantilever beam
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3.5 Key findings
Some of the key findings from the pre-study are :

• Fundamental frequency of the beams govern the maximum displacement re-
sponse of the system

• For the various load curves studied, namely triangular,sinusoidal, and trape-
zoidal pulse load, the maximum response was found to be mainly influenced
by the average impulse on acting on the beam

• The maximum displacement of the system is majorly governed by the ratio of
the impulse duration to the fundamental time period of the system in case of
isosceles triangular impulse

• System identification using hyperstudy and the modal transient analysis was
found to compliment each other in order to identify the equivalent static load
case in case of simple geometries like beams, as shown in fig.3.7 - 3.14.

• The dynamic peak load has negligible effect on the dynamic load factors as
shown in fig 3.6.

Figure 3.8: Stress contour plots for a)Dynamic (4ms 500N impluse) and b)
Equivalent static loads acting on a cantilever beam

Figure 3.9: Eigen modes of the cantilever beam a) Mode 1 b) Mode 2 c) Mode 3
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Figure 3.10: Modal transient analysis of beams with the active modes (1 & 2) at
peak instant

Figure 3.11: a) Dynamic and b) Equivalent static displacement response
comparison of simply supported beam under the influence of dynamic (1000N 8ms)

impulse

Figure 3.12: a) Dynamic and b) Equivalent static stress response comparison of
simply supported beam under the influence of dynamic (750N 4ms) impulse

Figure 3.13: Eigen Modes of simply supported beam a)Mode 1 and b)Mode 3
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Figure 3.14: Modal transient analysis of simply supported beam showing a)
modes active b) modes active at peak instant
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4
Model Setup

4.1 Dynamic Model Setup
The dynamic simulation was setup in the explicit finite element code RADIOSS.
The setup of the model required certain approximations and simplifications, so that
the model predicts sufficiently accurate results at a reasonable time while replicating
the physical behaviour of the suspension system for the given purpose. The details
of the setup are discussed in detail below.

4.1.1 Model setup & Description
The vehicle assembly under study was setup previously for an NVH based study .
Considering the system setup and the boundary conditions were the same for the
purpose of the current study, the Nastran model was utilised to understand and
setup the dynamic analysis for the front suspension assembly. Hypermesh had a
built in conversion tool that enabled us to convert the Nastran model into a radioss
model. As the front suspension included many components which would increase
the complexity of the problem, a quarter vehicle model consisting of the wheel hub,
knuckle,shock absorber, upper and lower control arms was considered.The Nastran
model was converted into a RADIOSS model for the study purpose. The ball joints
in the assembly were modelled using RBE2 elements. RBE2 spiders were created
at the joint locations for each of the components, which were in turn connected by
a single RBE2 element. In order to replicate a ball joint, the only the translational
DOFs were locked in the RBE2 spiders and the connector single RBE2 element,
thus giving it a free movement in all the 3 rotational DOFs, as represented in Fig
4.1. A global contact definition (Type 24) was defined for the assembly to ensure
that the local interaction between the components is captured. The inner ends of
the link arms were constrained with an single point constraint (SPC) through the
bushing elements (SPRING 3N) which allows the link arms to move, as they would
in a vehicle. The damper system was defined using the beam elements (BEAM 3N)
connected to lower ball joint on one end and to the spring element (SPRING 2N
with a local fixed coordinate system) near the upper strut. Figure 4.1 represents
the overview of the assembly setup with details about the SPC’s.
In order to obtain reasonable results, the time step should be sufficiently small to
avoid mass scaling issues. Based on the size of the elements and the suggestion by
Hypermesh, the time step was set to 6 x 10−8.
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Figure 4.1: Model setup of the sub-assembly used in the current study

4.1.2 Load application
The points load were applied through the Force-time load curves at the hard points
through the master node of the RBE2 spiders. The load curves were obtained from
the ADAMS simulations for each of the load cases. The load cases tested in this work
are lateral kerb impact and drive through a pothole. The load cases are discussed
in detail below:

• Knuckle drop test - Lateral Kerb impact
In this case, a lateral point load was applied through the RBE2 elements at the test
setup plate end as shown in fig 4.2.

• Drive into a pothole
In this case, a point load was applied in each of the global directions through the
master node of the RBE2 spider as shown in the fig 4.3.
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Figure 4.2: Model setup - Knuckle drop test -Lateral Kerb impact.The blue
arrow shows the direction of the lateral kerb load. The attachment plate is

included to in place of the wheel, as per the knuckle drop test setup, as shown in
the picture alongside

4.1.3 Material model
The material model is one of the most important parameter for any simulation. It
defines how the material will respond to the applied loading and when it will start
yielding. RADIOSS has the option to either use a predefined material model from
its library or to have a user defined material model by specifying the load deflection
curve. In the present thesis, the Johnson Cook material model was chosen from the
RADIOSS material model Library.

The Johnson cook model is an empirical model which takes into consideration
isotropic hardening, kinematic hardening,temperature effects and variation of yield
stress of the material.The stress in the Johnson Cook model is given as follows [13].

σ = (A+B · εn
p )
(

1 + C · ln ε̇
ε̇0

)(
1−

(
T − Tr

Tm − Tr

)m)
(4.1)

Where εp is the plastic strain, Tm melting point,Tr room temperature and A,B,C,n,m,ε0
the material parameters.In the current study we will not be considering strain rate
or temperature effects on the material, hence the material parameters which are
required are A,B and n. From experimental data its easy to obtain the yield stress
(A), ultimate stress(σu) and strain(εu) from which the values of B and n can be
calculated using the following equations [14]

A = σy (4.2)

n = σuεu

σu − σy

(4.3)
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Figure 4.3: Model setup - Pothole load case. The 3 blue arrows at the hub
represents the loads in the 3 directions for the load case

B = σu

nεn−1
u

(4.4)

The constants C and Tm can be ignored as the strain rate effects and temperatures
effects are not considered in this study, in order to simplify the model.

4.1.4 Bushing Modelling
The lower and the upper control arm is connected to the sub-frame through the
bushings. The bushings play an important role in the behaviour of the system.The
dynamic characteristics of the bushings are complex in nature, as the response de-
pends on variables such as frequency, preload, amplitude etc.[15]. The static stiff-
ness (force-displacement) curves had to be modelled to obtain a reasonable solution.
The non-linear bushings were modelled based on the inner and outer diameter of the
bushings housing. The asymptotes were included for the curves keeping the outer
diameter of the bushing housing as the maximum displacement for the bushings.
A modelled bushing with an asymptotic behaviour included as discussed above, is
shown in figure 4.4.
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4. Model Setup

Figure 4.4: Force vs. Displacement curves of the modelled bushings with
asymptotes at the outer diameter of the bushings for few of the translational

directions for FLRCA and FLFCA

4.2 Linear static, Quasi Static and Modal Tran-
sient Analysis Model Setup

The linear static, non-linear quasi static and modal transient simulation were solved
using the FEM solver, Optistruct. Modal transient analysis is a dynamic simulation
based on mode superposition method with linear material properties defined.

4.2.1 Model Setup
For all the above simulations, the NVH (Noise Vibration and Harshness) model
which was setup in NASTRAN was used as the starting point. The components
were modelled keeping the dynamic model setup as a reference so that simulations
could be compared. There was no contact defined in these models in order to reduce
the simulation run-time.The absence of a contact definition would allow the tie rod
to rotate about its axis in a rigid body mode.To prevent the rigid body motion of
the tie-rod (in rotation) a local coordinate system was define along the length of the
tie-rod and the axial rotation of the tie rod was constrained.

4.2.2 Load Application
In linear static and the quasi static models, the loads were applied as point loads at
the wheel hub in the pothole case and at the adapter end for the knuckle drop test,
as discussed in the dynamic model setup. In case of the modal transient analysis,
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4. Model Setup

the loads were applied as point loads through the constraints (DAREA) with a force
vs. time table(TABLED1) defined for the time varying load.

4.2.3 Material Model
In case of the modal and quasi static analysis the material models chosen were
different. The modal and static analysis are always performed using the linear
elastic isotropic material properties. This is one of the major limiting factors in the
modal analysis as it does not account for any material non linearity, but its observed
that this assumption is good enough to achieve the desired output as seen in the
results section.
The quasi static analysis was performed to capture the plasticity which occurs in the
component during loading. Using the user defined material model option MATS1
in Optistruct a bi-linear load curve as seen in Fig.2.3 is defined using the yield
stress,ultimate stress and strain of the material.

4.2.4 Bushing Modelling
The bushings modelled for the dynamic simulations were used.
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5
Methodology and Load cases

5.1 Method
Based on the pre-study and literature survey, a methodology was developed to arrive
at the equivalent static loads. Figure 5.1 shows the procedure, which worked well
for the load cases tested in the present thesis.

The procedure is described in detail in steps below:
• Step 1 : The non-linear dynamic analysis is carried out to understand the

behaviour of the system. The displacements at the hard points in x,y and
z directions are recorded for the required time instant (peak instant in the
current study). The stress distributions and plastic strain in the components
are noted.

• Step 2 : An eigen mode analysis is carried out to understand the global and
local eigen modes in the sub-assembly under study.

• Step 3 : A modal transient analysis is carried out to replicate the dynamic
analysis and to understand the active modes in the system at each time instant
of the analysis.

• Step 4 : The Modal participation factor and the effective modal mass was
used as reference points to understand the contributions and the percentage
of mass participating in each mode. This step helps in understanding the
complexity of the scenario being tested based on the number and the type of
modes active in the system.

• Step 5 : Unit loads are applied in the global x,y & z directions individually
on the static assembly setup to record the displacements in each direction.

• Step 6 : The loads are scaled in the individual directions to match the dis-
placement fields recorded in step 1 at the hard points, keeping track of the
stress fields in the components. It can be noted that the maximum scaling
directions are supported by the mode participation factors and the effective
modal mass.

• Step 7 : If the stress and the strain distributions are reasonably mapped, the
equivalent static loads are obtained or we move to step 8.

• Step 8 : A more detailed load identification needs to be carried out, which
can be:
(i) Hard point based load identification, where loads need to be added at
specific hard points to activate the similar modes, as in dynamic analysis in
the system
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5. Methodology and Load cases

Figure 5.1: Flow Chart - Methodology

(ii) Component based load identification, where the components will need to
be analysed individually to understand the loads acting at its hard points
This step has not been considered in detail in this study.

Note: As the number of mode interactions in the system gets higher, it becomes
more challenging to obtain. Specially, when the local modes are active, it becomes
more challenging to capture the dynamic stress and plastic strains in the compo-
nents.
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5. Methodology and Load cases

Table 5.1: Load cases

5.2 Load cases
As discussed in the previous chapter, two load cases were mainly tested in this thesis.

• Pothole load case
The pothole load case was tested for various velocities of the car and damper con-
figurations as shown in Table 5.5 and Fig 5.3. 3 configurations of dampers, namely
stiff, intermediate and soft damper. Fig5.3(a) shows the maximum tire normal force
for different velocities and damper configurations simulated in ADAMS.

Figure 5.2: Adams simulation of the pothole load case
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Figure 5.3: a) Max tire normal force vs velocity b) Damper curves

• Kerb impact case - Knuckle drop test
Table 5.5 shows the input parameters for the knuckle drop test, which is a industry
standardized test to analyze side kerb impact in vehicle chassis.

Figure 5.4: Adams simulation of the side kerb impact load case

5.3 Load curves
The input load curves for each of the cases mentioned in the previous section were
obtained through the ADAMS multi-body simulations. As the load curves were
noisy, specially in case of the kerb impact case, the curves were smoothened in
MATLAB using the Gaussian function, as shown in fig 5.5.
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Figure 5.5: Smoothened ADAMS load curve for the side kerb impact load case
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6
Results

The chapter discusses the results obtained by adopting the methodology discussed
in the previous chapter.

6.1 Pothole load case
The system was tested for 5 different load cases as shown in Table 5.5 . The equiv-
alent static loads were calculated for the peak instant from the dynamic simulation
in all cases. Load case 1 is discussed in detail. The modal transient analysis sug-
gested that mode 3 (global mode, z-translational) and mode 4 (x-translational) had
participation of 1 and 0.3 respectively at the peak instant of 41ms in the dynamic
simulation as shown in fig 6.1. These values were kept as reference values to un-
derstand the contribution of each modes to the total response of the system at
the peak time instant, which suggests that the maximum scaling direction to be
z-translational in this load case. Unit displacements were applied in x,y and z direc-
tions individually on the static model setup to understand the displacement fields
of the system. Based on the observations, the dynamic peak loads had to be scaled
by a factor of 1.11 in x- direction and by 1.56 in the z-direction at the wheel hub to
obtain the equivalent static loads. The scaling of loads were carried out keeping the
von-mises stress and the displacement fields as the reference points. Fig6.4 compares
the stress distribution in the most affected part in this load case, which was the rear
lower control arm.As seen, the applied equivalent static loads replicate the stress
pattern in the components well. The stress values in the other components showed
good correlation to the dynamic results too.

Table 6.1 shows the results for all the tested load cases. It can be noted that the
scaling factor varies from 1.27-1.58 for the z-direction loads.The scaling factor was
observed to depend on the loading duration and the nature of the load curve. If
the time duration of the load from crest to crest is larger, the scaling factor was
found to be higher for these cases, which can be attributed to higher net impulse
in these cases. Biggs (1964) has explained the scaling factors for SDOF systems,
where the duration of loads are compared with the fundamental time period of the
system. If we approximate the load curves to an isosceles triangular impulse, the
scaling factor increases as the duration approaches the fundamental time period of
the system. More rate based and time duration of loading based studies were done,
which is discussed in the following section.
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6. Results

Table 6.1: Results- Pothole load cases

6.2 Knuckle drop test - Kerb Impact case
Apart from the pothole load case, the system was also tested for a kerb impact
event where a mass of 700 kg travelling at 2.2 m/s impacts the assembly shown in
Fig. 4.2. The equivalent load was calculated at the instant when the peak stress
occurred in the most affected component (rear control arm in this case). The stresses
peaked at 27ms in the components when the bushings went into non-linearity. The
modal transient analysis suggested that there were significant contributions from
multiple modes unlike the pothole case where only two global modes predominantly
contributed to the response of the system. From figure 6.5 it can be observed that
there were significant contributions from mode 3 (z-translation of knuckle, global
mode), 8 (knuckle rotation about the z-axis) and 11 (knuckle rotation about x-axis)
with a mode participation of 0.6,-1 and 0.5 respectively. Some minor contribution
is observed from many other modes such as mode 6,7, 9(local mode), 13 and 17.
As multiple modes are active at the peak instant it becomes quite challenging to
capture all the modes by scaling just the Y direction force in the static solution.
Thus in this load case more significance is given to capture the stress and strain hot
spots on the most affected components (front lower rear control arm) in this case.
A load in y-direction caused the knuckle to move in y-translation and rotate about
the z-axis. As mode 8 gives us good judgement that the z-rotation of the knuckle
is a dominant mode, the y-direction forces had to be scaled the most followed by
mode 11 which suggests that the knuckle had to rotate about the x-axis .
The y direction force had to be scaled by a factor of 1.33 and an additional force of
15KN was to be applied in z direction to reasonably capture the stress distribution
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Figure 6.1: a) Modal transient analysis for the Pothole load case 1 b) Active
modes at the peak instant at 41ms

Figure 6.2: a) Mode 3 - Knuckle z-translation b) Mode 4 - Knuckle x-translation

in the components as shown in Table 6.2. From Fig 6.7 and 6.8 it can be seen that
even though the stress and plastic strain distribution in the dynamic and equivalent
static simulation are not mapped exactly, the equivalent static solution was able to
capture the hot spots in the component well. Ideally, as the local mode interactions
increase in the dynamic simulation, a reasonable orientation of the solution would
be to capture the most affected zones in the components rather than the exact stress
and strain distributions, as the stress in the bodies are path dependant.
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6. Results

Figure 6.3: Equivalent static loads in x and z-directions compared with the load
curves - Load case 1

Figure 6.4: Von-mises stress comparison for lower rear control arm - Pothole case

Figure 6.5: a) Modal transient analysis - Kerb impact case b) Active modes in
the system at the time, 27ms

Table 6.2: Results - Lateral kerb impact load cases
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Figure 6.6: Equivalent static loads in y-direction compared with the load curves

Figure 6.7: Stress distribution - Kerb impact case a) Dynamic case b) Equivalent
static case

Figure 6.8: Plastic strain distribution- Kerb impact case a) Dynamic case b)
Equivalent static case
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6.3 Dynamic peak load and time period based
study

A simplified model with coarser mesh of 3mm size was used to carry out the study
on the effect of dynamic peak loads and time period of the impulse on the maximum
displacement of the system discussed earlier in Fig 4.1. The simplification resulted
in reducing the dynamic simulation time from 6 hours to an average of 30 min per
model based on the time period of the impulse. The system was subjected a isosceles
triangular impulse, as shown in fig 6.9.
Fig 6.9 based on the data presented in table 6.3 confirms the discussion in the
previous chapter that the maximum dynamic effect is observed when the impulse
duration equals the fundamental time period of the system (58ms in this case). The
dynamic load factor drops below the maximum value when the impulse duration
exceeds the fundamental time period of the system. Biggs (1964) has explained
the significance of the time period of the impulse on the maximum response of the
system. It was also observed that the value of the dynamic peak load had a negligible
effect on the DLF.

Table 6.3: Maximum displacement of the system subjected to isosceles triangular
impulse for varying Dynamic peak load factor and duration
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Figure 6.9: DLF vs ratio of impulse duration to fundamental time period of the
system ( td /T)
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7
Final remarks

7.1 Conclusion
In this thesis work, a pre-study was conducted to investigate the effects of transient
impulse loads on simple geometries such as the cantilever and the simply supported
beams. The dynamic impact events were converted to equivalent static loads in the
all the above cases. The response of the system was observed for various characteris-
tics of loads such as duration of impulses, peak loads, shapes, loading rate etc. The
physical properties of the beams were altered to study the effects on the response of
the system too. The displacement response of the system was found to be governed
predominantly by the time duration of the impulse loads. The fundamental i.e. the
first eigen mode was the main contributor to the solution in all the cases. The effect
of higher modes were observed as the impulse duration was considerably lower than
the fundamental time period of the system. The deflection and the stress responses
in both the beam configurations were found to match well from the dynamic study
to the equivalent static case when load identification was adopted. The modal tran-
sient analysis was found to compliment the study well in understanding the active
modes in the system.

Based on the results from the pre-study, a methodology for converting the dynamic
loads to equivalent static loads was outlined. The methodology consists of 4 steps,
which involves carrying out dynamic analysis and modal transient analysis of the
component to understand the event and finally convert it to an equivalent static
case. In the main study, the suspension assembly was studied to understand the
response of the system for 2 load cases, namely pothole and side kerb impact load
cases. The system identification through hyperstudy was found to be very sensitive
to the loads and the bounds, thus leading to convergence at local optimum’s. Modal
transient analysis was found to be work well to identify the behaviour of the system
and thus the loading directions. The scaling factor for the equivalent static loads
was found to be dependent on the impulse duration’s and the loading rates. Thus
the equivalent static loads were identified for the tested load cases, which was found
to vary between 1.27-1.58.

Some of the key findings of the study are :
• Understanding the global and local modes active in the system at the peak

instant help in understanding the complexity of the load case and the ease
of replication of stress and strain distribution in the equivalent static case as
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shown in fig 6.4 & 6.7.
• For the cases considered in this study, we can do this conversion with confi-

dence for the pothole load case. The stress and the strain results in equivalent
static solution deviates from the dynamic event in case of the lateral kerb im-
pact load case due to the occurrence of multiple active global and local modes
at the peak instant.

• The maximum displacement of the system is majorly governed by the ratio of
the impulse duration to the fundamental time period of the system in case of
isosceles triangular impulse.

• For an isosceles triangular impulse, the maximum dynamic effect is observed
when the duration of the impulse approximately equals the fundamental time
period of the system Table 6.3.

• The dynamic peak load has negligible effect on the dynamic load factors as
shown in fig 6.9.
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7.2 Future work
Though the above studies were found to give good incites into the importance of
the impulse characteristics and the equivalent static loads for various load cases and
systems, some simplifications were done in obtaining the solutions, especilly in the
assembly level system. Some of the improvements and studies that can be incorpo-
rated in further studies are:

• Pre-tensioned springs in dynamic simulation
The dynamic simulations were found to be very sensitive to small changes
due to which, the pre-tension in the spring were not considered in this. The
dynamic models can be updated with the pre-tensioned spring to understand
the behaviour of the system better.

• Detailed bushing models
The static bushings models were modelled according to the dimensions of the
housings to obtain reasonable outputs from the dynamic simulations. A more
detailed bushing models with rate, amplitude and frequency dependencies in-
cluded will help in understanding the system behaviour better as the load
distribution in the components is highly dependent on the bushing models.

• Path dependency studies
The stress in the bodies are path dependant, which might not be captured
completely with equivalent static loads in complex loading scenarios . More
detailed study on the path dependency can be carried out to arrive at the
equivalent static loads.
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A
Appendix 1 - Pre-study on load

identifiaction

Table A.1: Results - Load identification for the displacements
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A. Appendix 1 - Pre-study on load identifiaction

Table A.2: Results - Load identification for von-mises stress
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