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Abstract
The recent ER=EPR conjecture as well as advances in string theory have spurred the interest in worm-
holes and their relation to black holes. The complexity of these phenomena motivates the restriction to
a tensionless limit of string theory, which is believed to be described by a higher spin theory. This thesis
investigates the specific case of three-dimensional black holes and wormholes in Einstein- and higher
spin gravity. We first study black holes and wormholes in general relativity, and it is found that to have
traversable wormholes we must introduce exotic matter, i.e. matter with negative energy density. It
is then shown that the Einstein-Hilbert action in 2+1 dimensions can be expressed as a Chern-Simons
action with the gauge group SL(2) × SL(2). By extending the gauge group to SL(3) × SL(3) a gener-
alization of Einstein gravity is obtained, yielding a higher spin gravity theory. In the extended theory
the metric, which was previously fundamental, has become gauge dependent. Because of this we must
instead classify solutions through the holonomy. We show that in this theory we can resolve a conical
singularity without changing its holonomy. What is more interesting, is that we show that this precise
transformation transforms both the cone and the black hole to a traversable wormhole. Of course, this
possibility brings into question the interpretation of matter, and more fundamentally, the stress-energy
tensor in a higher spin gravity theory. Even without fully resolving these issues the theory can be useful,
as it provides a possible way of simplifying calculations by changing the geometry of a problem without
changing its solution. As this text is geared towards undergraduates in physics, it begins with an in-
troductory chapter on Maxwell’s theory of electromagnetism as it is an example of what might possibly
be the simplest gauge theory. Generalizing this theory to non-abelian groups leads to Yang-Mills and
Chern-Simons theories. An introduction to general relativity with a special emphasis on the Cartan
formulation, is provided as well. In addition to this there are multiple appendices detailing the necessary
mathematical background needed to understand the later parts of the work.
Keywords: Gauge Theory, 2+1-Dimensional Gravity, Higher Spin Gravity, Wormholes, Black Holes,
Chern-Simons Theories

Sammandrag
På senare tid har intresset för maskhål och deras relation till svarta hål ökat, framförallt på grund av
ER=EPR-hypotesen och framsteg inom strängteori. Komplexiteten hos dessa fenomen motiverar restrik-
tionen till den spänningslösa gränsen av strängteori, vilken tros beskrivas av en högre spinn-teori. I detta
arbete undersöks tredimensionella svarta hål och maskhål i Einsteinsk gravitation och i en högre spinn-
gravitationsteori. Vi studerar först svarta hål och maskhål i allmän relativitetsteori, den konventionella
gravitationsteorin, och vi finner att vi behöver introducera exotisk materia för att åstadkomma maskhål
som tillåter genomfärd. Det visas sedan att Einstein-Hilbert-verkan i 2+1 dimensioner kan uttryckas
som en Chern-Simons-gaugeteori med gaugegruppen SL(2) × SL(2). Genom att utöka gaugegruppen
till SL(3)×SL(3) generaliserar vi Einsteinsk gravitation och erhåller en högre spinn-gravitationsteori. I
denna teori är metriken, vilken tidigare givit oss den fundamentala geometriska tolkningen av lösningar,
gaugeberoende. På grund av detta klassificerar vi istället våra lösningar genom holonomier. Explicit
demonstreras hur vi i denna teori kan upplösa singulariteten hos en kon utan att ändra dess holonomi.
Ännu mer intressant är att denna transformation visar sig transformera både konen samt ett svart hål till
ett maskhål. Detta leder oss till att ifrågasätta huruvida en väldefinierad stress-energitensor kan existera
i en sådan teori. Trots dessa svårigheter kan teorin emellertid visa sig vara användbar, eftersom den kan
nyttjas för att förenkla beräkningar genom att förändra geometrin utan att deformera lösningen. Då
målgruppen till denna text är studenter med motsvarande tre års kandidatstudier i fysik inleds arbetet
med ett grundläggande kapitel om Maxwells elektromagnetism vilket kanske är det enklaste exemplet
på en teori med gaugesymmetri, ett begrepp som genomsyrar allt som behandlas i detta arbete. En gen-
eralisering av denna teori till icke-abelska grupper fås ur Yang-Mills och Chern-Simons teorier. Vidare
ges en introduktion till allmän relativitetsteori med särskilt fokus på Cartans formulering. Dessutom
återfinns ett stort antal appendix i rapporten, i vilka den nödvändiga matematiska bakgrunden ges för
att kunna tillgodogöra sig och förstå de senare delarna i arbetet.
Nyckelord: Gaugeteori, 2+1-dimensionell gravitation, Högre spinn-gravitation, Maskhål, Svarta hål,
Chern-Simons-teorier
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Sammanfattning
I snart ett århundrade har forskare och fysiker försökt förena de två hörnstenar som den fundamentala
fysiken vilar på: kvantmekanik och allmän relativitetsteori. Denna förening refererar dagens fysiker till
som kvantgravitation (engelska quantum gravity). I 2+1 dimensioner (två rumsliga dimensioner och en
tidsdimension) verkar en sådan förening vara möjlig. Detta undersöktes av Witten redan 1988, då han
utnyttjade att gravitation kan uttryckas som en Chern-Simons gaugeteori, vilken han påvisade kunde
kvantiseras.

Med grund i detta studerar vi kopplingen mellan gravitation och gaugeteori i 2+1 dimensioner och
utvecklar en tredimensionell modell som vi kan använda för att studera intressanta fenomen som svarta
hål och maskhål. Vidare utökar vi teorin till en högre spinn-teori, vilken kan användas till att bland
annat lösa upp singulariteter. I högre spinn-teorin är den geometriska tolkningen av svarta hål och
maskhål, till skillnad från i konventionell gravitationsteori, inte fullständigt klarlagd. Detta gör högre
spinn till ett spekulativt men intressant område att studera. Vår förhoppning är att ge en inblick i hur
svarthåls- och maskhålslösningar kan tolkas och påvisa de problem som uppstår vid övergången från den
konventionella gravitationsteorin till en högre spinn-teori. I synnerhet intresserar vi oss för så kallade
traversable maskhål, det vill säga maskhål som kan korsas. Då det i Einsteinsk gravitation visar sig
att sådana inte kan existera utan tillgång till materia med negativ energidensitet, ofta refererat till som
exotisk materia, utforskar vi istället om dessa maskhål kan förekomma i en högre spinn-teori.

En målsättning i detta arbete är att introducera läsaren till viktiga fysikaliska koncept som gauge-
teorier och allmän relativitetsteori, som båda kräver ett stort antal matematiska verktyg för att kunna
ta till sig. För att kunna ge en grundläggande förståelse för dessa teorier återfinns den centrala matem-
atiken, som i huvudsak kan sammanfattas i gruppteori och differentialgeometri, i form av appendixavsnitt
som komplement till huvudtexten. I rapportens första del ges en introduktion till gaugeteorier vilken
påbörjas med ett inledande kapitel om Maxwells elektromagnetism som den första gaugeteorin. Detta
följs naturligt av förlängningen till gaugeteorier med icke-abelska grupper, där Yang-Mills gaugeteori
är ett fundamentalt exempel. Det hela kulminerar i Chern-Simons gaugeteori, vilken är den teori som
vi senare kopplar till gravitation.1 Därefter introduceras det andra viktiga huvudspåret i rapporten,
allmän relativitetsteori och gravitation i 2+1 dimensioner. I synnerhet använder vi Cartans formulering
av teorin som utnyttjar ekvivalensprincipen, för att beskriva rumtiden med ett lokalt platt tangentplan
i varje punkt.

De nyvunna kunskaperna om Einsteinsk gravitation och gaugeteorier använder vi sedan för att, likt
Witten, uttrycka gravitation i 2+1 dimensioner som en Chern-Simons-teori. I rapportens senare del
betraktas maskhål- och svarthålslösningar till Einsteins ekvationer, dels i vanlig Einsteinsk gravitation
men även i den generaliserade högre spinn-teorin. Här läggs särskilt fokus på den geometriska tolkningen
av maskhål och svarta hål i högre spinn. Vi finner bland annat att lösningar som beskriver en maskhåls-
geometri samtidigt kan vara svarta hål i en sådan teori. Nedan återfinns en mer detaljerad summering
av de viktigaste delarna i den ordning de uppträder i arbetet.

Gaugeteorier
Ett av de största framstegen inom teoretisk fysik var sammanslagningen av de elektriska och magnetiska
krafterna som kan sammanfattas i Maxwells ekvationer. En egenhet med teorin är att den är oförenlig
med Newtonsk mekanik, eftersom ekvationerna inte är invarianta under en Galileisk transformation.
Istället hade Maxwell funnit en Lorentzinvariant teori, långt före Einstein formulerade sin berömda
relativitetsteori. Förutom detta hade Maxwell upptäckt den första gaugeteorin. I kvantmekanik saknar
fasen hos ett kvanttillstånd mening, och denna symmetri syns redan i Maxwells teori. Det visar sig även
möjligt att utifrån denna symmetri konstruera Maxwells ekvationer genom att finna en Lagrangian med
samma symmetriegenskaper.

Yang-Mills-teori är en generalisering av elektromagnetismen till en godtycklig symmetri som även
tillåts vara icke-abelsk, det vill säga att två skilda transformer inte kommuterar. Den elektromagnetiska
fältstyrkan F generaliseras till en två-form med samma namn medan fyrvektorpotentialen A och ström-

1Chern-Simons gaugeteori utgör även en topologisk knutteori, vilket påvisades av Witten i slutet av 1980-talet.

ii



Sammanfattning

men J blir ett-former.
Genom att tillämpa minsta verkans princip på Yang-Mills-Lagrangianen finner vi Yang-Mills ekva-

tioner:

DF = 0 ,
D ∗ F = ∗J ,

där D är den en kovarianta yttre derivatan, ∧ kilprodukten och ∗ är Hodge-dualen. Maxwells ekvationer
är ett specialfall av dessa då symmetrigruppen består av fastransformationer.

För att få en gaugeteori som är rumtidsoberoende, så som allmän relativitetsteori, konstrueras en
Lagrangian som är ett specialfall av LYM då F = ∗F och strömmen J är avslagen. Teorin, i vilken denna
Lagrangian återfinns, kallas för en Chern-Simons-teori, och dess rörelseekvationer ges av platthetsvillko-
ret

F = dA+A ∧A = 0 .
Vi behandlar i senare delar av texten Chern-Simons-teori för att uttrycka gravitation i 2+1 dimensioner.

Gravitation i 2+1 dimensioner
Den fundamentala teorin för att beskriva gravitation på en makroskopisk skala är Einsteins allmänna
relativitetsteori. I denna teori kombineras tid och rum till rumtiden, vilken modelleras som en mång-
fald. Energi och materia kan kröka rumtiden lokalt för att ge upphov till gravitation. Krökningen av
rumtiden beskrivs av Riemanns krökningstensor Rµνρσ. Ofta används istället Riccitensorn eller Ric-
ciskalären för att beskriva krökningen av rumtiden. Riccitensorn, Rµν , fås genom att ta ett visst spår
av Riemanntensorn, och Ricciskalären, R, fås i sin tur genom att ta spåret av Riccitensorn.

I likhet med avsnittet om gaugeteorier kan vi härleda rörelseekvationerna från en verkan:

S = 1
2κ

∫
d3x
√
−g(R− 2Λ)︸ ︷︷ ︸
SEH

+Smateria ,

där κ är Einsteins konstant, Λ är den kosmologiska konstanten och Smateria är en verkan som beskriver
distributionen av materia. Vi har även indikerat att den första termen ofta refereras till som SEH ,
Einstein-Hilbert-verkan. Variationen av den totala verkan ger Einsteins fältekvationer:

Rµν −
1
2gµνR+ Λgµν = κTµν , (0.1)

där Tµν är stressenergitensorn som beskriver flödet av energi i rumtiden och utgör källan till gravita-
tionsfältet.

Det är även möjligt att uttrycka allmän relativitetsteori med den alternativa Einstein-Cartan-formalismen.
I denna formalism är en lokal ortogonal bas ea, vielbeins2 e aµ och spinn-kopplingen ω a

µ b de fundamentala
objekten. Vielbeinen lever i det lokala tangentrummet och relateras till den krökta mångfaldens metrik
genom

gµν = e aµ e
b
ν ηab ,

där ηab är Minkowskimetriken, som därmed ger en relation mellan den lokala ortogonala basen och de
mer generella kroklinjiga koordinaterna.

Cartans strukturekvationer beskriver krökningen av rumtiden i termer av den lokala ortogonala basen
och spinn-kopplingen:

T a = dea + εabcω
b ∧ ec, (0.2)

Ra = dωa + 1
2ε
a
bcω

b ∧ ωc , (0.3)

där T a är torsionsformen och Ra är krökningsformen. Torsionsformen beskriver torsionen av rumtiden,
vilket kan ses beskriva till vilken grad en skalärprodukt bevaras mellan två vektorer då de transporteras
i rumtiden. I allmän relativitetsteori gäller att torsionen är noll.

Einstein-Hilbert-verkan kan uttryckas i Cartan-formalism på följande sätt:

SEH [e,ω] = − 1
2κ

∫ [
2ea ∧ (dωa + 1

2εabcω
b ∧ ωc)− 1

3Λεabcea ∧ eb ∧ ec
]
. (0.4)

2Ordet vielbein översätts från tyska till svenska som "flera ben".
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Sammanfattning

Varierar vi denna verkan med avseende på ω erhålls den första strukturekvationen med T a = 0. Varierar
vi istället med avseende på e erhålls analogen till Einsteins fältekvationer i vakuum:

dωa + 1
2ε
a
bcω

b ∧ ωc = Λ
2 ε

a
bce

b ∧ ec . (0.5)

Lösningar till Einsteins ekvationer
Den allra första kända lösningen till Einsteins ekvationer hittades 1915 av Karl Schwarzschild.
Schwarzschildlösningen i 3+1 dimensioner är en sfäriskt symmetrisk metrik med två mycket intressanta
egenskaper: en händelsehorisont samt en singularitet i origo. Händelsehorisonten är i sig ingen kur-
vatursingularitet utan endast en koordinatsingularitet som utgör en yta från vilken inget ljus kan ta sig
ut, varför Schwarzschildlösningen senare kom att kallas ett svart hål. Med ett koordinatbyte finner vi
att det svarta hålet kan ses som en brygga mellan två olika rymdtider, en Einstein-Rosen-brygga eller
mer konventionellt ett maskhål. Detta maskhål tillåter dock inte information att färdas från den ena
sidan till den andra och är därmed ett exempel på ett non-traversable maskhål.

Inspirerade av Schwarzschildlösningen undersöks en radiellt symmetrisk metrik i 2+1 dimensioner:

ds2 = −B2(r)dt2 +A2(r)dr2 + r2dφ2 ,

och genom att lösa Cartans strukturekvationer (0.5) med en kosmologisk konstant Λ = − 1
l2 där l är en

karakteristisk längd, finner vi

ds2 = −
(r2

l2
−M

)
dt2 +

(r2

l2
−M

)−1
dr2 + r2dφ2 .

Här ärM en integrationskonstant. OmM ∈ (−1,0) har vi en konisk singularitet i origo, vilket kan tolkas
som en punktpartikel med en massa som fixeras av värdet på M . Specialfallet M = −1 är ekvivalent
med AdS3, det vill säga ett negativt krökt 2+1-dimensionellt universum.3 För M > 0 får vi ett svart
hål, känt som ett BTZ-svart hål efter fysikerna Bañados, Teitelbom and Zanelli som fann lösningen
på 1990-talet. BTZ-hålet har precis som Schwarzchild-hålet en händelsehorisont, men singulariteten är
ingen kurvatursingularitet, utan en kausalitetssingularitet. Konstanten M kan för BTZ-hålet relateras
både till omkretsen på det svarta hålet samt dess massa.

En annan intressant radiellt symmetrisk geometri är Morris och Thorne-maskhålet, vilket kan beskri-
vas med metriken:

ds2 = e2Φ(r)dt2 + dr2

1− b(r)
r

+ r2dφ2 ,

där Φ(r) betecknar rödskiftsfunktionen och b(r) är formfunktionen. Genom att konstruera Einsteinten-
sorn finner vi att för att lösa Einsteins fältekvationer (0.1) krävs en stresstensor med negativ energiden-
sitet. Ett material med en sådan egenskap refereras ofta till som exotiskt. Vi undersöker huruvida vi kan
konstruera exotisk materia från det elektromagnetiska fältet och ett konformt kopplat skalärfält. Det
elektromagnetiska fältet visar sig endast tillåta positiv energidensitet. Det konformt kopplade skalärfäl-
tet visar sig vara mycket svårt att analysera. Vi visar emellertid att det inte går att erhålla icke-triviala
lösningar om skalärfältet är masslöst i 2+1 dimensioner.

Högre spinn
För att vidare undersöka maskhål samt generaliseringar av svarta hål relateras gaugeteori till allmän rela-
tivitetsteori i 2+1 dimensioner med en negativ kosmologisk konstant. Vi finner att AdS3:s isometrigrupp
SO(2,2) är isomorf med SL(2)× SL(2). Detta leder oss till att undersöka verkan

SCS [A]− SCS [A] , (0.6)

där SCS är en Chern-Simons-verkan och A samt A ges som

A = (ωaµ +
eaµ
l

)Tadxµ , A = (ωaµ −
eaµ
l

)Tadxµ , (0.7)

3Negativ krökning kan liknas vid ytan av en sadel.
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Sammanfattning

där Ta är generatorer till sl(2), det vill säga Liealgebran till SL(2). Detta val innebär att (0.6) blir ekvi-
valent med en variant av ekvation (0.4), mer precist en Einstein-Hilbert-verkan med negativ kosmologisk
konstant.

Det är rättframt att generalisera genom att istället välja gruppen SL(N)× SL(N) som med N > 2
innehåller SL(2) × SL(2). Detta är en högre spinn-gravitationsteori som besitter en utökad mängd
gaugesymmetrier. I detta arbete studerar vi dock endast generaliseringen SL(3) × SL(3) som visar sig
vara högst intressant. Detta innebär således att generatorerna i (0.7) nu tillhör sl(3). Denna gener-
alisering tillåter inte bara den spinn-2-metrik som diskuterats ovan, utan även en högre-dimensionell
spinn-3-metrik. Med de utökade gaugetransformationerna kan man införa singulariteter i tidigare välde-
finerade metrikerna.

Då metriken inte längre är gaugeinvariant används istället holonomier för att klassificera lösningar.
Dessa beskrivs matematiskt enligt:

Hol(A) = P exp
(∮

γ

A

)
,

där γ är en sluten kurva, P betecknar en vägordnad integral och A ges av (0.7).
Med dessa verktyg går det att gaugetransformera både en konisk singularitet och ett svart hål till

ett maskhål utan att ändra holonomin. På detta vis möjliggör högre spinn att singulariteter i geometrin
kan upplösas. Generaliseringen av ett svart hål i en högre spinn-gravitationsteori är ej trivial då vi ej
längre kan göra en geometrisk tolkning av fenomenet. Istället kan dessa objekt defineras genom krav
på holonomier som implicerar välkända geometriska egenskaper, såsom händelsehorisonter, om högre
spinn-fält slås av.

Slutsats
Genom att använda gaugeteori har vi lyckats konstruera en generalisering av allmän relativitetsteori. Vår
modell är en så kallad högre spinn-teori och är därmed en del av en större grupp av teorier, framförallt
utvecklade av Vasiliev i slutet av 1990-talet. Högre spinn-teorier är intressanta av flera anledningar men
kanske framförallt då de anses beskriva strängteori i gränsen då strängspänningen försvinner. Förhopp-
ningen är att genom högre spinn förenkla svåra problem i strängteori.

Ett problem som fysiker brottats länge med är singulariteter. Singulariteter anses ofta vara ofysikaliska
och signalerar områden i vilka ny fysik krävs. Vi har i detta arbete visat att i en högre spinn-teori kan
singulariteter ofta tolkas som gaugeartefakter, det vill säga effekter av gaugeval. Explicit visades hur
singulariteten för en punktpartikel samt ett svart hål kan transformeras bort. Dessa transformationer
var även valda så att holonomin var bevarad och därmed kan den transformerade metriken anses vara
ekvivalent med den första. Anmärkningsvärt var att den nya metriken vi erhöll efter transformationen
kunde tolkas som ett maskhål. Detta innebär att vi har lyckats kringgå kravet på exotisk materia för ett
maskhål. Givetvis ställer detta även frågan hur massa, eller kanske mer exakt, stress-energitensorn bör
tolkas i högre spinn. Detta eftersom den är intimt förknippad med den nu gaugeberoende geometrin.

Möjligheten att förändra geometrin genom gaugetransformationer är mycket intressant då den kräver
nya definitioner av objekt som annars klassifieras med geometrin. Vi har framförallt undersökt hur ett
svart hål kan definieras utan direkt referens till metriken och hur dessa krav kan formuleras i termer av
holonomier. Problemet med den geometriska tolkningen av metriken är komplext och framförallt finns
det ännu inte en klar tolkning av den extra spinn-3-metriken och hur denna interagerar med spinn-2-
metriken. Här finns en möjlighet till nya upptäckter och insikter. Även utan en klar förståelse för dessa
problem finns möjligheter att utnyttja de teorier vi har studerat. Ett möjligt område är partikeldynamik
i AdS3, där genombrott gjorts med geometriska modeller. Möjligtvis kan högre spinn-transformationer
förenkla dessa geometrier och underlätta beräkningar. Högre spinn skulle även kunna fungera som en
typmodell av hur vi kan generalisera definitionen av geometriska begrepp till mer allmänna sammanhang.

Möjligtvis kan den hyllade AdS/CFT-korrespondensen kasta ljus på om en geometrisk tolkning av
högre spinn är möjlig. AdS/CFT relaterar strängteori i AdS med en konform fältteori på randen. Detta
innebär alltså en ekvivalens mellan objekt definerade i olika antal dimensioner, något som mycket väl
kan visa sig vara högst användbart i högre spinn.
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Chapter 1

Introduction
Since the last century several attempts have been made to unite the two cornerstones of fundamental
physics: quantum mechanics and general relativity. Physicists refer to the unification of quantum me-
chanics and spacetime as the theory of quantum gravity. This kind of theory is of great importance
when it comes to understanding the more enigmatic aspects of the universe, e.g. such as the big bang
and black holes. The reconciliation of quantum theory and gravity in ordinary spacetime has remained
elusive but the search has spawned different toy models. One such toy model, proposed by Witten1 in
1988, is quantum gravity in 2+1 dimensions as a Chern-Simons gauge theory [2]. This theory has the
attractive attribute of being exactly solvable.2

In 2013, the famous theoretical physicists Maldacena and Susskind3 proposed a conjecture which
may lead to pioneering contributions in the fields of black holes and quantum entanglement [4]. The
conjecture can be simply stated as ER=EPR and is founded upon Einstein’s and Rosen’s theory of
wormholes (ER) and the Einstein-Podolsky-Rosen theory of quantum entanglement of particles (EPR)4.

Maldacena and Susskind proposed that a non-traversable wormhole in general relativity is equivalent
to entanglement in quantum mechanics [7]. In order to understand their conjecture one has to be familiar
with properties of black holes. In short, a black hole is a curved spacetime with a geometry consisting of
two regions: the exterior and the interior, separated by a surface, the so called event horizon. Black holes
are predicted by Einstein’s equations, from which the fully extended geometry of the solutions describe
a pair of black holes joined by a wormhole. The wormhole can be seen as the interior of the joined black
holes and as a ”bridge” between them, and is therefore often referred to as an Einstein-Rosen Bridge.

It may be an appealing idea that one can use wormholes, if they constitute a bridge between black
holes, to travel from one black hole to another by travelling through them. However, nothing can escape
the interior of black holes and, furthermore, the bridge may collapse after a very short period of time. In
fact, the wormhole fails to serve the purpose of a bridge as it can not be crossed. This is a consequence
of the fact that the wormhole gets thinner as time progresses and the horizons of the black holes separate
extremely rapidly [7]. In other words conventional Einstein-Rosen bridges are said to be non-traversable
and do not constitute a particular good example of time machines. However, they are yet of today
seen as prototypes of wormholes and spurred Morris and Thornes’ (abbreviated MT) idea of traversable
wormholes, theoretically realized in 1988 [8]. In their paper they proposed that traversable wormholes
could exist according to the theory of general relativity with the use of exotic matter, i.e. matter with
a negative mass. In this paper we show that Morris and Thorne were indeed correct, by noting that
the MT-solution, upon solving Einstein’s equations, yields a negative component in the stress-energy
tensor.5 It may now seem, due to the need for exotic matter, that traversable wormholes are purely
mathematical constructions and have no correspondence in the physical world and our universe. There
is still hope, however, since in quantum field theory negative energy density is possible as seen in the
Casimir effect, so the construction of a traversable wormhole might be possible after all, but then as a
quantum object [9].

Another way to allow for traversable wormholes is to introduce new degrees of freedom and thereby
generalize our regular theory, in our case yielding what is called a higher spin gravity theory [10]. Even-
tually new problems arise when working in this theory - for instance we may not have a stress-energy
tensor with the same physical interpretation as in conventional Einstein gravity. In fact, even defining

1Edward Witten (1951-), greatly acclaimed professor of mathematical physics at Princeton University. Awarded the
Fields medal in 1990, partly for his work on topological quantum field theory. In particular he connected Chern-Simons
theory to knot theory.

2Witten claimed in 2007 that this model is in fact incorrect and instead proposed a different model related to the
monster group [3].

3Juan Maldacena (1968-), Argentinian professor of theoretical physics at Princeton University, Leonard Susskind (1940-),
American professor of theoretical physics at Stanford University.

4The acronyms ER and EPR can be derived from the last names of the physicists who wrote the first papers on
wormholes and entanglement, Einstein-Rosen [5] and Einstein-Podolsky-Rosen [6] respectively.

5The stress energy tensor, Tµν , is a tensor which describes the density and flux of energy in spacetime. More specifically
T 00 = ρ, where ρ is the energy density.
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Chapter 1. Introduction

a proper stress tensor is difficult. Moreover, the extended symmetries, as opposed to the symmetries of
the regular theory of gravity, may dramatically alter the geometry of spacetime. As such, higher spin
theory requires refined mathematical tools in order to be properly interpreted.

1.1 Motivation of thesis
In this thesis we aim to provide an understanding of how Einstein’s theory of general relativity is
connected to internal symmetries, and how this facilitates its generalization to higher spin gravity. A
theory that possesses internal symmetries is invariant under some set of transformations, in this case
gauge transformations6, and therefore the theories we study are referred to as gauge theories. In technical
terms the gauge invariant object of interest is the Lagrangian, which by the principle of stationary action
gives us proper equations of motion. In 2+1 dimensions it is particularly simple7 to connect gauge
theories to the theory of gravity, which is why we restrict to this case in our thesis.

Since we study gravity in 2+1 dimensions, rather than four dimensions (space and time included),
the model we develop constitutes nothing but a toy model for our universe. Remarkably, interesting
solutions (e.g. black holes and wormholes) from four-dimensional gravity appear in 2+1 dimensions as
well, allowing us to study such solutions in our model. In particular we aim to investigate black hole
and wormhole solutions in a higher spin gauge theory, which is a generalization of the conventional
gravitational theory.8 Higher spin gravity is yet of today a not fully understood area in gravitational
physics, especially when it comes to the geometrical interpretation of the solutions.

In general, literature on this subject is very advanced, and thus we aim to simplify and make more
explicit other work on the subject, as well as provide some potentially new analysis. To make sure
information is not obscured by tedious equations, some calculations are moved to the Appendix, but are
seldom omitted completely. Our objective is that the end product shall provide a solid introduction to the
subject of higher spin gravity in 2+1 dimensions suitable for an undergraduate in physics, maintaining
clarity throughout.

1.2 Reading guide
We start off this text where basic courses in special relativity and electromagnetism left off and then
introduce and develop the theories needed to provide a basic understanding of black holes and wormholes.
There is a lot of mathematical background structure involved in these theories, and an introduction to
all of the necessary mathematical tools is given in appendices A-E, in case the reader is not familiar with
these.

In the beginning of each chapter a summary of the chapter is given, along with its most important
results. The more casual reader can get a basic understanding of the material and our results just by
reading the introductory paragraphs.

In chapter 2 and 3 we introduce gauge theories, the basis of all of modern physics. Gauge theories
describe fields with a set of internal symmetries, which mathematically are expressed through group
theory. These sections culminate in the introduction of Chern-Simons gauge theory which we can use
to construct a theory of gravity in 2+1 dimensions. In chapter 4 we move on to general relativity and
in particular Elié Cartan’s formulation. We present black hole and wormhole solutions to Einstein’s
equations in chapter 5. In particular, we find solutions that contain singularities, that is, points where
the theory is not well defined. To resolve the problem of these singularities we then use Chern-Simons
gauge theory to reformulate the theory of general relativity in chapter 6. In chapter 7 we perform a
generalization of Einstein gravity by extending the symmetries possessed by general relativity resulting
in a higher spin theory. Using this enhanced symmetry we dedicate chapter 8 to studying singularity
resolution and higher spin black holes. In particular we construct a solution that admits a traversable
wormhole geometry.

6A gauge can be seen, in simple terms, as a coordinate system which varies depending on your location with respect to
some base space. Thus a gauge transform corresponds to a change of coordinates on the location.

7As pointed out by Witten in his article ”2 + 1 Dimensional Gravity as an Exactly Soluble System”, for instance
the Einstein-Hilbert action, from which Einstein’s field equations are derived, is perturbatively non-renormalisable in four
dimensions, which is not the case in 2+1 dimensions[2].

8Regular Einsteinian gravity is mediated by the spin-2 boson, the graviton and therefore constitutes a spin-2 theory. In
higher spin theories the fundamental constituents have spins larger than two. We will exclusively study the case spin-3, in
which the spin-2 boson is coupled to a spin-3 field.
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Chapter 2

Electromagnetism
In this chapter we treat electromagnetism formulated in the framework of special relativity and discuss
it from two different points of view. First we revisit the standard Maxwell equations and rewrite these in
the language of tensors. Doing so we introduce the four-vector potential Aµ and the field strength tensor
Fµν . A reminder of tensors and assorted operations such as lowering and raising indices can be found
in Appendix A. We then start from a general Lagrangian and by insisting that our Lagrangian shall
be invariant under local phase transformations, we introduce the covariant derivative and the gauge
connection. Using these we can recover the four-vector potential and the field strength without ever
discussing the electric and magnetic field. This procedure sets the stage for more general gauge theories
to be discussed in the next chapter. We end this chapter with a discussion of the Lagrangian for the
electromagnetic field and show that its equations of motion together with the Bianchi identity gives us
Maxwell’s equations.

2.1 Maxwell’s equations in tensor formalism
One of the milestones in theoretical physics was the unification of the electric and magnetic forces at the
end of the 19th century. The work of several great physicists reached its culmination when James Clerk
Maxwell published his ”A treatise on Electricity and Magnetism” in 1873 [11]. Here he introduced for
the first time the four governing equations of electricity and magnetism. Because of his achievement we
therefore speak of them as Maxwell’s equations. In natural units these can be written, in a form due to
Oliver Heaviside1, as

∇ ·E = ρ , ∇×B = J + ∂E
∂t

, (2.1)

∇×E = −∂B
∂t

, ∇ ·B = 0 . (2.2)

Here E is the electric field, B the magnetic field, J the electric current and ρ the charge density. A
remarkable fact is that these equations cannot be fit into a Newtonian theory. In other words, the
equations are not invariant under Galilean transformations, instead, what Maxwell had found more than
30 years before Einstein was a theory that fits perfectly in the framework of special relativity. The Lorentz
invariance of Maxwell’s equations is by no means obvious from the way we expressed them above. To
see that this is the case we must recast them into the language of relativity, that is, the language of
four-vectors and tensors. If we can manage to do this, Lorentz invariance will be a consequence [12].

We will start our endeavour of rewriting Maxwell’s equations in terms of tensors by defining a scalar
potential φ and a vector potential A such that

E = −∇φ− ∂A
∂t

, B =∇×A . (2.3)

Notice that given E and B, the scalar potential and the vector potential, are not uniquely defined. To
see this explicitly we can transform our scalar and vector potential according to

φ 7→ φ′ = φ− ∂α

∂t
, A 7→ A′ = A+∇α , (2.4)

where α is an arbitrary scalar function. While these transformations obviously alter the scalar potential
and the vector potential, the electric and magnetic field remain unchanged. This can be seen by simply

1Oliver Heaviside (1850-1925), English mathematician, engineer and physicist. He did not only rewrite Maxwell’s
equations in the form as we know them today, but he actually employed the divergence and curl operators to vector
calculus.
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computing the fields for both potentials with the definition (2.3). What we have encountered is a redun-
dancy in the formulation of the theory. We call transformations with this property gauge transformations
and the procedure of eliminating the freedom to do these transformations is referred to as fixing a gauge.

A simple example of a tensor is a vector. Since the two potentials φ and A together have 4 components
they are the prime candidates for constructing a vector according to

Aµ = (φ,A) .

Here µ is an index taking the values 0,1,2,3. This notation should be familiar from a course in special
relativity and will be used heavily in this thesis. The vector Aµ is often referred to as the (four)-vector
potential.

We certainly would like to somehow relate E and B in a similar way but this is a bit trickier. The
reason is that E and B both have three components while a four-vector has four. However, we do have
a four-potential and from the defining relation (2.3) we can guess that we somehow want to form a
combination of derivatives and scalar potentials. There are three main candidates; the full tensor, ∂νAµ,
the symmetric tensor 2∂(νAµ) or the antisymmetric tensor 2∂[νAµ].2 However, the full tensor has 16
independent components, the symmetric 10 but the antisymmetric 6 components, precisely as many as
the electric and magnetic field. Thus the only plausible tensor is the antisymmetric and we refer to this
tensor as the field strength, Fµν [13]. In matrix form we have

Fµν = ∂µAν − ∂νAµ =


0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 , (2.5)

meaning that we can extract the electric and the magnetic field by the identities F 0i = Ei and 1
2εjk

iF jk =
Bi, where i, j, k ∈ {1,2,3}. Having identified the field strength we can now express Maxwell’s equations
as tensor equations:

∂νF
µν = Jµ , (2.6)

εµνρσ∂
νF ρσ = 0 . (2.7)

Not only are the equations manifestly Lorentz invariant, we now only have two equations. If written out
in terms of the electric and magnetic field we find that the first equation is equivalent to (2.1) and the
second to (2.2). The second equation is also known as the Bianchi Identity. The proof is rather short:

εµνρσ∂
νF ρσ = 2εµνρσ∂ν∂[ρAσ] = 2εµνρσ∂(ν∂ρ)Aσ = 0 ,

where we in the last step used that the contraction of a symmetric and anti-symmetric tensor vanishes.
Let us take a closer look at the field strength, Fµν , or more precisely: its definition. To define the

field tensor and then retrieve all of Maxwell’s equations we are only interested in the derivatives of the
four-potential. Consider the new four-potential (A′)µ = Aµ+∂µα, where α = α(x) is an arbitrary scalar
field. The new field strength then becomes

(F ′)µν = ∂µ(Aν + ∂να)− ∂ν(Aµ + ∂µα) = 2∂[µAν] + [∂µ,∂ν ]α︸ ︷︷ ︸
0

= Fµν ,

and hence the field strength is gauge invariant.

2.2 From symmetry to electromagnetism
In this section we will with the use of symmetry retrieve Maxwell’s equations. To do this we will use
the concept of a Lagrangian. Readers unfamiliar with the Lagrangian and its properties will find a
more thorough description in Appendix D. Since all dynamics and interactions can be derived from the
Lagrangian we can be certain that if our Lagrangian is invariant under a symmetry, so is our theory.
Now let us attack this problem from a different viewpoint. Given a Lagrangian let us modify it to
become invariant under a symmetry transformation. To proceed we need to know the general form of a

2The parentheses and brackets denote symmetrization and anti-symmetrization, 2∂(µAν) = ∂µAν+∂νAµ and 2∂[µAν] =
∂µAν − ∂νAµ.
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Lagrangian. In order not to stray too far from our path we will consider a complex scalar field φ(x) and
the Klein-Gordon Lagrangian

LKG = −1
2∂

µφ∂µφ−
1
2m

2φφ .

This is by no means the only fundamental Lagrangian but it possesses the properties we want to examine.
A short ”derivation” of the Klein-Gordon Lagrangian can be found in Appendix D. Notice that the
Lagrangian has two terms, one with derivatives and one without. If we want our Lagrangian to be
invariant under a symmetry transformation we simply need to make sure that each of the terms are. If
some term should not be invariant under the transformation we will have to modify it.

The first symmetries we will consider in this thesis are those of the group U(1). A full discussion on
groups and their properties can be found in Appendix E. Here we simply note that U(1) is the group
that contains all phase transformations. These transformations form an (abelian) group and we can
write a general element, g ∈ U(1), as g = eiα(x). The reason for studying this symmetry is that quantum
mechanics tells us that the phase of a state lacks physical meaning. If this should also be the case for
our theory we better have a Lagrangian that is invariant under phase transformations.

Let us first consider a global phase transformation that is

φ 7→ φ′ = eiαφ ,

where α is a constant. It is straightforward to check that both |φ|2 and |∂µφ|2 are invariant under
this transformation. To deal with the local case we must make our transformation become a function
of spacetime, thus we let our constant α become a scalar field α(x). The mass term, m2φφ, in our
Lagrangian is trivially invariant under a local phase transformation. However, terms with a derivative
are not. We can view this problem in two different ways, the first is strictly algebraic. By explicitly
writing out the transformation we find

∂µφ 7→ ∂µφ
′ = ∂µe

iα(x)φ = (i∂µ(α(x))φ+ ∂µφ)eiα(x) . (2.8)

The problematic part is of course the first term since this will produce a non-vanishing contribution to
all derivatives and |∂φ|2 is no longer invariant. Another way to understand this problem is to study the
definition of the derivative, as done in Peskin and Schroeder [14] on which we will base our discussion.

Remember that the derivative of φ(x) in the direction nν is defined as

nν∂νφ = lim
h→0

φ(x+ hn)− φ(x)
h

,

but here we are subtracting fields from points that differ in their transformation property. This is not
very physical at all. If we want to subtract these fields we need some way of relating them to each other.
A way of doing this is to introduce a scalar function U(x,y) with the transformation property

U(x,y) 7→ eiα(x)U(x,y)e−iα(y) .

Then both terms in the difference φ(x)−U(x,y)φ(y) transform the same way. Armed with this function
we choose to abandon our old derivative and define a new, meaningful one. This derivative takes the
form

nµDµφ(x) = lim
h→0

φ(x+ hn)− U(x+ hn,x)φ(x)
h

,

and is called the covariant derivative. To proceed we would like to find a new simpler expression for
this derivative, preferably without the limit. It is clear that we must have U(x,x) = 1 since the field
transforms identically at the same point. Thus we may expand our scalar function U(x,y) around the
identity according to

U(x+ hn,x) = 1− ihnµAµ +O(h2) .

By using this expansion in the definition of the covariant derivative we find

nµDµφ(x) = lim
h→0

φ(x+ hn)− (1− inµAµh+O(h2))φ(x)
h

= (nµ∂µ + inµAµ)φ(x) .

Cancelling the nµφ(x) on both sides we reach a much more practical expression

Dµ = ∂µ + iAµ .

5



Chapter 2. Electromagnetism

We now have a meaningful derivative, but to get a Lagrangian that is invariant under the phase trans-
formation we must specify the transformation of the field Aµ. By studying the appearance of the terms
containing the derivatives we can see that Dµ must satisfy

Dµφ 7→ (Dµφ)′ = eiα(x)(Dµφ) .

Since we have that (Dµφ)′ = (∂µ + iA′µ)φ′ we can use the transformation property of the covariant
derivative and the algebraic expression from equation (2.8) to write down an equation for the transformed
field A′µ. We find that

(Dµφ)′ = eiα(x)(i∂µ(α(x)) + ∂µ + iA′µ)φ = eiα(x)(∂µ + iA)φ ,

and solving for A′µ we reach the conclusion that Aµ must transform as

Aµ 7→ A′µ = Aµ − ∂µα(x) .

Let us first study our new Lagrangian, the one obtained by simply replacing all the ordinary derivatives
with the covariant derivative:

L = −1
2DµφD

µφ− 1
2m

2φφ = LKG + 1
2(−i∂µφφ+ iφ∂µφ)Aµ − 1

2A
µAµφ

2

= LKG + JµA
µ − 1

2A
µAµφ

2 .

(2.9)

Thus we obtain a coupling term in the Lagrangian between the original field and our connection, JµAµ
and a second term AµAµφ

2. The Jµ can be interpreted as a current as we will se in the next section
when we study the Maxwell Lagrangian. The term AµAµφ

2 is certainly interesting as well, it has the
appearance of a mass term due to the squares. It is terms like this that, very simplified, through the
Higgs mechanism can make scalar fields give mass to otherwise massless fields such as Aµ [14]. While
this certainly is intriguing the discussion of the Higgs field lies outside of the scope of this thesis.

We have thus made our theory invariant under local phase transformations, but that also led us to
introduce a new field Aµ. Because of how the field arose we sometimes refer to it as a connection. Of
course, we didn’t pick the name Aµ by accident, this is exactly the four-potential we studied earlier.
However, we are not truly ready to make that claim. It is natural to look for more terms to add to the
Lagrangian. Especially interesting would be a term containing only Aµ. This term would then describe
the dynamics of the field Aµ in the absence of φ. We should also demand that this term is invariant under
the local phase transformation, otherwise it would be pointless to introduce Aµ from the very beginning.
Since we know that the covariant derivative contains the field Aµ and transforms in the correct way, we
can study the commutator between two covariant derivatives:

[Dµ,Dν ]φ =
(

[∂µ,∂ν ]︸ ︷︷ ︸
0

+i[∂µ,Aν ] + i[Aµ,∂ν ]− [Aµ,Aν ]︸ ︷︷ ︸
0

)
φ = 2i∂[µAν]φ = iFµνφ ,

where we have once again found the field strength Fµν . This is of course the tensor introduced in the
previous section, but it and Aµ has now been recovered using only symmetry arguments. We have yet to
even mention the electric and magnetic field. Notice that because we know how the covariant derivative
transforms we must have

[Dµ,Dν ]φ 7→ ([Dµ,Dν ]φ)′ = e−α(x)[Dµ,Dν ]φ .

Using this we immediately see that Fµν must transform as

Fµν 7→ (Fµν)′ = e−α(x)Fµνe
α(x) = Fµν ,

thus our tensor Fµν is invariant under the transformation and is a perfect candidate to use for constructing
an additional term in the Lagrangian. Since we want to add a scalar term to our Lagrangian we contract
Fµν with itself before we add it to Lagrangian. We thus have

L = LKG + JµA
µ +AµAµφ

2 − 1
4FµνF

µν ,
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Chapter 2. Electromagnetism

the specific choice of sign and factor will be explained shortly. While we have so far only studied the
Klein-Gordon Lagrangian the form above is rather general and in it we have found what is often referred
to as the electromagnetic Lagrangian, defined as

LEM = −1
4FµνF

µν + JµA
µ .

We have dropped the terms LKG and AµAµφ
2 because they are results of the special case of a scalar

field and does not in general affect the dynamics of an electromagnetic field.

2.3 The electromagnetic Lagrangian
In the previous section we derived a Lagrangian containing a field Aµ and a tensor Fµν . As mentioned
these quantities are the four-potential and field strength of Maxwell’s theory of electromagnetism. But
to see this we need to find the equations of motion for these fields. In order to do so we will study the
electromagnetic Lagrangian as

LEM = −1
4FµνF

µν + JµA
µ . (2.10)

Let us first make a quick remark about sign convention. In analytical mechanics, i.e in a non-field
theory, we define the Lagrangian as the difference between the kinetic energy and the potential energy,
L = T − V . Using the anti-symmetry of the field strength we may write

−1
4FµνF

µν = −1
2Fµν∂

[µAν] = −1
2Fµν∂

µAν = −1
2(∂µAν − ∂νAµ)∂µAν .

Let us look at the particular terms with µ = 0 and ν = i ∈ {1,2,3}:

−1
2(∂0Ai − ∂iA0)∂0Ai = 1

2(∂0Ai − ∂iA0)∂0Ai = 1
2(∂0Ai)2 − 1

2∂iA0∂0Ai .

As we associate ∂0 with ∂
∂t we see that the first term is a kinetic term with the correct sign. This

motivates the sign convention used in (2.10).
We now proceed to find the equations of motion. Lagrangian mechanics tells us that to find the

equations of motion we need to find the stationary point of the action

S[A] =
∫

d4x(−1
4FµνF

µν + JµA
µ) ,

The action is as usual stationary if a small perturbation leaves the action invariant to first order,
δS[A] = 0. Notice that we now treat Aµ as our variable instead of xµ. To find the stationary point
we want to study a small variation δAµ. Varying the two contracted field strengths gives

δ
(1

4FµνF
µν
)

= 1
2FµνδF

µν = Fµν∂
[µδAν] = Fµν∂

µδAν = ∂µ(FµνδAν)− (∂µFµν)δAν .

The variation of the coupling term is much easier:

δ(JµAµ) = JµδA
µ .

We can now compute the variation of the action:

δS[A] =
∫

d4x
(
− ∂µ(FµνδAν) + (∂µFµν + Jν)δAν

)
= [FµνδAν ]︸ ︷︷ ︸

0

+
∫

d4x
(
∂µFµν + Jν

)
δAν = 0 .

Here we have used the fact that we have a total derivative and that we demand the variation to vanish
identically on the boundary. Now since δA is arbitrary the other term must be zero over all space.
We also note that the Bianchi Identity holds due to the definition of Fµν . Thus we recover Maxwell’s
equations

∂µF
νµ = Jν ,

εµνσρ∂
νFσρ = 0 .

In the next chapter we will continue to discuss gauge theories and we will make use of differential forms.
It is also possible to express Maxwell’s equations using differential forms. This is done in Appendix C.
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Chapter 3

Non-Abelian Gauge Theories
We begin this chapter by extending the symmetry approach in the previous chapter to non-abelian
symmetry groups, i.e. groups with elements that do not commute. This approach is intimately connected
with group theory, which we give an introduction to in Appendix E. We then introduce two different
approaches for constructing the Lagrangian of the theory, called Yang-Mills gauge theory and Chern-
Simons gauge theory, respectively. Yang-Mills theory is formulated in terms of the Hodge dual operator,
that depends on the metric of the space in which the theory is formulated. Chern-Simons theory is a
limiting case of Yang-Mills theory that is formulated in a coordinate independent fashion, making it
compatible with general relativity.

To formulate Chern-Simons gauge theory we need to use the formalism of differential forms, which
is covered in Appendix C. For instructive purposes the transition to differential forms is performed in
section 3.1, as we can begin the section on familiar ground, and accompany the transition with helpful
examples.

3.1 Yang-Mills gauge theory
The generalization of Maxwell’s equations to a non-abelian gauge symmetry was first performed in 1954
by Chen-Ning Yang (1922-) and Robert Mills (1927-1999). This section details this generalization, and
culminates in the Yang-Mills equations of motion. At first Yang-Mills theories were criticized, because
the quanta of a Yang-Mills field are required to be massless to preserve gauge invariance. With the
proposition of the Higgs-mechanism in the 1960s Yang-Mills theory gained traction, and the Standard
Model is now understood as a Yang-Mills theory of the gauge group SU(2)× U(1)× SU(3).

This theory will be formulated in terms of a matrix-valued transformation g acting on an abstract
vector field φ. The choice of the U(1) symmetry of electromagnetism is motivated by the fact that the
probability density of the electron is independent of the phase of its wavefunction. In a similar fashion,
observing that the neutron and proton are very similar in the absence of electromagnetic interaction, it
was concluded that the observables of proton-neutron system are invariant under a SU(2) transformation
acting on a two-vector containing their respective wavefunctions. The quantized Yang-Mills theory of
SU(2) describes the weak interaction.

As we saw in the previous chapter, the equations of motion for a system can be completely derived
from its Lagrangian. Because of this, we construct a gauge theory by demanding symmetries of the
Lagrangian, and the equations of motion that follow will inherit them. To begin with, we do not
write down an explicit Lagrangian, instead we assume it to be invariant under some global group of
transformations g. We can write a general local transformation as

φ(x)→ g(x)φ(x) = eα(x)aTaφ(x) , (3.1)

following the notation of Appendix E, where the Ta are the Lie algebra-valued generators of the trans-
formation group g. Because the transformation is local, partial derivatives acting on the transformed
scalar field will produce an additional term per group generator in g by the product rule:

∂µφ(x)→ ∂µ(eα
aTaφ(x)) = eα

aTa(φ(x)∂µα(x)aTa + ∂µφ(x)) . (3.2)

Just like in the case of Maxwell’s equations we now need to find a covariant derivative, Dµ, that acts
directly on the field, even after a transformation. That is, we want Dµ to fulfill the relation:

Dµφ(x)→ D′µ(eα
aTaφ(x)) = eα

aTa(Dµφ(x)) . (3.3)

Looking at the invariance-breaking term ∂µα(x)aTa in equation (3.2) we note that it is Lie algebra-valued
because ∂µα(x)a is just a scalar. This implies that our correction term must also be Lie algebra-valued.
We define

Dµ = (∂µ +AaµTa) ,
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Chapter 3. Non-Abelian Gauge Theories

where Aaµ is a collection of new gauge fields analogous to the connection field found in the previous
section. Inserting this Dµ into (3.3) we obtain:

eα
aTa(∂µ + (∂µα(x)a)Ta +A′aµ Ta)φ(x) = eα

aTa(∂µ +AaµTa)φ(x) .

For the equality to hold we see that Aaµ must transform as

Aaµ → A′aµ = Aaµ − ∂µα(x)a .

Making a callback once again to Maxwell’s equations we form the commutator of the covariant derivatives:

[Dµ, Dν ]φ = 2(1
2 [∂µ,∂ν ]︸ ︷︷ ︸

0

+∂[µA
a
ν]Ta +Aa[ν∂µ]Ta +Aa[µ∂ν]Ta︸ ︷︷ ︸

0

+1
2[AaµTa, AbνTb])φ ,

where the second and third terms come from the product rule of derivatives. We are left with terms two
and five, and the only difference to Maxwell’s equations is that the fifth term doesn’t cancel out because
the group generators do not commute. We are left with

[Dµ, Dν ] = ∂µA
a
νTa − ∂νAaµTa +AbµA

c
νf

a
bcTa = F aµνTa , (3.4)

where fabc is the structure factor belonging to the symmetry group of our gauge theory. We define this
commutator as the field strength tensor, F aµνTa. Contracting the a’s allows for the cleaner notation Fµν ,
but the reader must stay aware that F is Lie algebra-valued.

Because the field strength is the commutator of covariant derivatives it has the same transformation
properties when acting on φ. This lets us determine the transformation of the field strength tensor:

F ′µνg = gFµν =⇒ F ′µν = gFµνg
−1 .

Unlike the case with the U(1) symmetry g does not necessarily commute with F aµν , so our field strength
tensor is not gauge invariant. The field strength tensor not being an invariant might raise some worries
that we cannot use it to construct a gauge invariant Lagrangian. We can, however, pick some particular
matrix representation of the group g and form the trace of both sides:

tr [Fµν ]→ tr
[
gFµνg

−1] = tr [Fµν ] ,

where the last identity comes from the cyclicity of the trace. By applying the trace to the field strength
tensor we have obtained an invariant property which can be used for the Lagrangian.

For the next few chapters we will be considering only compact groups, which means that the basis
of their Lie algebra can be rescaled in such a way that tr [TaTb] = δab. We provide no general proof
for this, but instructive examples can be obtained from appendices E.5.1 and E.5.3. What this means,
in practice, is that all terms of tr [FµνFµν ] will have the same sign so that they can all correspond to
kinetic energy. This allows us to construct a meaningful Lagrangian:

L = −1
4 tr [FµνFµν ] .

To successfully make this theory a generalization of Maxwell’s theory of electromagnetism we need to
include the Noether current, J . This term was found for the special case of Maxwell’s equations in section
(2.2). It is expressed as JµAµ, defined as

JµA
µ = 1

2DµφDµφ−
1
2∂µφ∂µφ−

1
2AµA

µ|φ|2 = 1
2((∂µφ)T aφ+ T aφ∂µφ)Aµa , (3.5)

and can be seen as the coupling term between the connection and the derivative of the scalar field. For
this rewriting to work we note that the generators T must be attached to the current, Jµ, instead of the
connection field Aµ. That is, the Noether current is Lie algebra-valued, and the generators of the algebra
correspond to the preserved charges of the gauge theory. In the case of the quantum weak interaction,
the three generators of SU(2) roughly correspond to the W± and Z0 bosons respectively.

Just like the field strength was no longer a gauge invariant, the gauge current is not invariant. The
solution to constructing a gauge invariant current term is exactly the same as for the field strength; we
need only form the trace of JµAµ over the generators of the gauge group. At this point the Yang-Mills
Lagrangian is

LYM = tr [−1
4FµνF

µν + JµA
µ] .
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What we have arrived at is a generalization of the Maxwell Lagrangian, called the Yang-Mills Lagrangian.
To finish our preparations for finding the equations of motion for the Yang-Mills Lagrangian we will make
the transition to the language of differential forms. We first express the relevant objects of our theory
as differential forms:

A = Aµdx
µ , F = 1

2Fµνdx
µ ∧ dxν , J = Jµdx

µ .

We can also express F as a function of A according to:

F = dA+A ∧A
= ∂[µAν]dx

µ ∧ dxν +A[µAν]dx
µ ∧ dxν

=
(
∂[µAν] +A[µAν]

)
dxµ ∧ dxν ,

where a quick comparison of the term in parentheses with (3.4) shows that what we have is really 1
2Fµν ,

because of the normalization factor in the symmetrization brackets.
Recalling Maxwell’s equations (2.7), we see that for an abelian connection the Bianchi identity can

be formulated in differential forms as:

εµνσρ∂νFσρd
4x = ∂[νFρσ]dx

µ ∧ dxν ∧ dxσ ∧ dxρ ⇒ dF = ddA ≡ 0 ,

by the definition of the exterior derivative. We would like to generalize this identity to the non-abelian
case by introducing the exterior covariant derivative. Using the graded commutator defined in (C.8),
when acting on Lie algebra-valued forms, ω, of order p, the covariant exterior derivative is

Dω = dω + [A,ω] = dω +A ∧ ω − (−1)pω ∧A . (3.6)

Letting D act on F we obtain the Yang-Mills generalization of the Bianchi identity,

DF = d(dA+A ∧A) + [A, (dA+A ∧A)] (3.7)
= dA ∧A−A ∧ dA+ [A,dA] + [A,A ∧A]
= dA ∧A−A ∧ dA+A ∧ dA− dA ∧A+ [A,A ∧A]
= [A,A ∧A] = 0 .

Finally, the Yang-Mills Lagrangian, tr [− 1
4FµνF

µν + JµA
µ], is expressed in terms of differential forms as

LYM = tr [12F ∧ ∗F −A ∧ ∗J ] .

To make clear that this expression is indeed correct we evaluate it term by term.

F ∧ ∗F =
(

1
2Fµνdx

µ ∧ dxν
)
∧
(

1
4F

ρσερσαβdx
α ∧ dxβ

)
= 1

8FµνF
ρσερσαβdx

µ ∧ dxν ∧ dxα ∧ dxβ

= 1
8FµνF

ρσερσαβε
µναβd4x = −1

2FµνF
ρσδµνρσ

√
−gd4x

= −1
2FµνF

µν√−gd4x ,

where
√
−gd4x is the integration measure, as defined in Appendix C.

For the term A ∧ ∗J we have, using the same identities

A ∧ ∗J = Aµdx
µ ∧

(
1
6J

αεαβρσdx
β ∧ dxρ ∧ dxσ

)
= −AµJµ

√
−gd4x .

At this point we are ready to formulate the Yang-Mills action in terms of differential forms:

SYM =
∫

tr [12F ∧ ∗F −A ∧ ∗J ]
√
−gd4x. (3.8)

10



Chapter 3. Non-Abelian Gauge Theories

The equations of motion are found by demanding the principle of least action, i.e. δS = 0. We thus vary
the action with respect to the connection A:

δSYM =
∫

tr [12δF ∧ ∗F + 1
2F ∧ δ(∗F )− δA ∧ ∗J ]

√
−gd4x =

∫
tr [δF ∧ ∗F − δA ∧ ∗J ]

√
−gd4x,

where we used the property (C.11) in Appendix C. First, we vary F :

δF = dδA+ δA ∧A+A ∧ δA = dδA+ [A, δA] = DδA (3.9)

where it was used that δA is a one-form. Inserting this result into the action gives us the equation

DδA ∧ ∗F + F ∧ ∗DδA− δA ∧ ∗J = 0 . (3.10)

Using the fact that we are dealing with an expression inside an integral we can write

DδA ∧ ∗F = D(δA ∧ ∗F ) + δA ∧D ∗ F = δA ∧D ∗ F ,

where we used the fact that the D(· ∧ ·)-terms are vanishing boundary terms. Inserted into equation
(3.10) this gives us

δA ∧ (D ∗ F − ∗J) = 0 =⇒ D ∗ F = ∗J , (3.11)

which together with the Bianchi identity
DF = 0 (3.12)

constitutes the Yang-Mills equations of motion in differential form.
Assuming the background metric to be Minkowski in 3+1 dimensions, and picking U(1) as the gauge

group of the theory, one obtains Maxwell’s equations from (3.11) and the Bianchi identity (3.12). As a
final rematrk we note that the calculations here were carried out under the assumption of a 4-dimensional
background space. However, the definition of the Hodge dual as well as the contraction of the ε-symbols
will cancel out, yielding the same equations of motion regardless of the dimension of the background
space.

3.2 Chern-Simons gauge theory
A big problem in formulating a grand unified theory of quantum physics and gravity lies in a fundamental
incompatibility between the Yang-Mills action and Einstein’s theory of general relativity. As will be made
clear in section 4 and 5, general relativity is formulated in such a way that the metric tensor, gµν , is not
postulated, it has to be a solution to Einstein’s equations. In contrast, the Yang-Mills action

SYM =
∫

tr [F ∧ ∗F −A ∧ ∗J ] ,

depends on the Hodge dual operator (∗) that in turn depends on the metric of the underlying space.1
To construct a gauge theory that is not dependent on the background metric we can formulate the

Yang-Mills Lagrangian without the current term Jµ, and drop the Hodge dual operator. Equality with
the Yang-Mills Lagrangian then holds if F is self-dual (F = ∗F ) and the current Jµ is 0. This approach,
which we will detail here is called Chern-Simons gauge theory and is named after physicists Shiing-Shen
Chern (1911-2004) and James Harris Simons (1938-).

In 2j dimensions we can try a Lagrangian, called the j:th Chern character

LC = 1
j! tr [F ∧ F ∧ ... ∧ F ] = tr [F j ] ,

where F appears j times in the wedge product. Since tr[F ] is gauge invariant this Lagrangian is also
gauge invariant. However, we will find that this Lagrangian will yield no proper equations of motion
because all possible A are stationary points of the Lagrangian. From the previous section we have the
result δF = DδA, see (3.9), where "D" is the covariant exterior derivative. Applying this result to the
second Chern character we have

δ tr [F ∧ F ] = tr [δF ∧ F + F ∧ δF ] = 2 tr [DδA ∧ F ] ,
1The discussion here closely follows the one in ”Gauge Fields, Knots and Gravity” pg. 279 onwards [15].
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where the cyclicity and linearity of the trace was used. The term DδA∧F is actually when inserted into
the action,

DδA ∧ F = D(δA ∧ F )− δA ∧DF = 0 .

The first term on the right side is a vanishing boundary term while the second term is DF = 0 by the
Bianchi identity. This means we cannot obtain proper equations of motion since the equations will just
read 0 = 0. This result turns out to hold for a general Chern-character.

To obtain proper equations of motion some more work is needed. The Chern n-form can be locally
expressed as the exterior derivative of a (2n− 1)-form Ω, because all closed forms fulfilling dFn = 0 are
locally exact by the Poincaré lemma. Checking this for tr[Fn] we obtain

d tr [Fn] = n tr [Fn−1 ∧ dF ] = n tr [Fm−1 ∧ (d dA+ dA ∧A−A ∧ dA)] = 0 =⇒ tr[Fn] = dΩ ,

where we in the last step used the cyclicity of the trace.
An action using tr [Ω] as a Lagrangian does in fact generate proper equations of motion which we

will show explicitly for the second Chern character. Some statements from the previous paragraph will
also be made a lot more clear by way of the example.

To find the equations of motion we need to find Ω such that dΩ = F ∧ F . Assuming the symmetry
group G is simply connected, we can let As = sA, Fs = sdA+ s2A ∧A and use that parametrisation to
find Ω. This method works as follows:

tr [F ∧ F ] =
∫ 1

0

d
ds tr [Fs ∧ Fs]ds = 2

∫ 1

0
tr [dFsds ∧ Fs]ds

= 2d
∫ 1

0
tr [A ∧ Fs]ds = 2d

∫ 1

0
tr [sA ∧ dA+ s2A ∧A ∧A]ds

= d tr [A ∧ dA+ 2
3A ∧A ∧A] . (3.13)

Thus, the three-form tr [A ∧ dA+ 2
3A ∧A ∧A] can be related to tr [F ∧ F ] as a boundary term that

appears when when F ∧F is integrated across the manifold [0,1]×M whereM is some three-dimensional
manifold. This means that what we have obtained is the self-dual sourceless limit of a Yang-Mills theory,
formulated in terms of the boundary. We have, from Stokes’ theorem (C.13), the equality∫

[0,1]×M
tr [F ∧ F ] =

∫
1×M

tr [A ∧ dA+ 2
3A ∧A ∧A]−

∫
0×M

0 ,

where the right-hand side is the sum of two integrals at the boundaries 0 and 1 of [0,1]×M as parametrized
in equation (3.13). We can finally introduce the Chern-Simons action as follows:

SCS [A] = 1
2

∫
M

tr [A ∧ dA+ 2
3A ∧A ∧A] .

This action should have the reader a little worried, as it depends not on the gauge invariant F , but
instead on the gauge-variant connection A. It can be shown that under a general gauge transform the
action always changes by an integer multiple of 8π2. This action is often rescaled by a factor k

4π , so that
this change turns into an integer multiple of 2π, turning the expression exp

(
i
kSCS

)
gauge invariant. In

this thesis we will use this rescaled Chern-Simons action and treat it as gauge invariant:

SCS [A] = k

4π

∫
M

tr [A ∧ dA+ 2
3A ∧A ∧A] . (3.14)

The equations of motion for the Chern-Simons action can be obtained in the usual way by varying A:

δSCS = 1
2

∫
M

δ tr [A ∧ dA+ 2
3A ∧A ∧A] =

∫
M

tr [(dA+A ∧A) ∧ δA] =
∫
M

tr [F ∧ δA] ,

which vanishes for all variations if and only if F = 0. It might seem trivial that the field stength tensor F
is identically zero, however in a classical setting this action can be related to the Einstein-Hilbert action
in Cartan formalism. This relation is achieved by coupling the gauge connections Aµ to the vielbeins
eµ
a and spin connections ωµa of Einstein-Cartan theory that will be introduced in the next chapter.
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Chapter 4

General Relativity in Cartan
Formalism
The most accurate theory as of today for describing gravity at a macroscopic level is Einstein’s theory
of general relativity. This is a theory describing how the presence of matter and energy affects the
curvature of spacetime, which in turn is the cause of gravity. As such it is a highly geometrical theory
and its mathematical foundation is differential geometry. A brief and non-rigorous treatment of the most
important concepts of differential geometry is given in Appendix C. Because the metric is a fundamental
quantity in general relativity, we provide a reminder in Appendix B. Since our goal is to develop a theory
of gravity as a Chern-Simons gauge theory, we need to adapt Cartan formalism to general relativity1. The
Cartan formalism, developed by the French mathematician Élie Cartan (1869-1951), is not the standard
approach to general relativity. Besides being necessary for describing gravity as a Chern-Simons gauge
theory, the Cartan formalism has its advantages; it facilitates a lot of calculations and allows spinors
to be incorporated into the theory. However, this comes at a cost of the theory being somewhat more
conceptually difficult.

This chapter is devoted to developing the theory of general relativity in Cartan formalism. We
start off by discussing some general features of the mathematical framework of general relativity and
then proceed with developing the necessary mathematical tools for describing the theory. We introduce
Cartan’s structure equations and Einstein’s field equations, the latter partly by considering an action
formulation of the theory. Finally we present the Einstein-Hilbert action in Cartan formalism.

4.1 The mathematical framework of general relativity
In the theory of general relativity, spacetime is modeled as a differential manifold with a Lorentzian
metric. Physical quantities are described by scalars, vectors, more general tensors or spinors2. We will
equip the manifold with a set of smooth coordinates xµ.

The manifold will in general be curved and a subtle issue arises regarding how to compare vectors, or
more general tensors, at different points on the manifold. In particular, we might like to be able to add,
subtract and perform various other operations involving tensors at different points on the manifold. In
ordinary flat Euclidean space there is no problem here since we can simply move a vector from one point
to another while keeping the vector constant. Thus, we can for example add two vectors by moving one
of the vectors to the other, keeping it constant, and then performing the addition. However, when the
manifold is curved there is no longer any unambiguous way of comparing vectors defined on different
points on the manifold. One intuitive way of visualizing this is to consider transporting a geometrical
vector on a two-dimensional sphere embedded in a three-dimensional space, see Figure 4.1. We take the
vector to be a tangential vector to the sphere. Consider transporting the vector along the path on the
surface of the sphere indicated by the dotted line, starting and ending at the north pole, while keeping
the vector tangential to the surface and without rotating it. This is known as a parallel transport of the
vector. From the figure we see that the vector, after completing the loop once, does not point in the same
direction as it initially did. Parallel transporting a vector from a given point to another on the sphere,
will in general depend on the path taken. Furthermore, the parallel transport around a closed loop will
effectively rotate the vector by some angle. This is an inherent feature of curved spaces. Clearly, the
three-dimensional embedding space is merely a tool for us to visualize the sphere and is not necessary
to perform the parallel transport and reach the same conclusions.

Since transporting a vector from one point to another on our curved manifold will depend on the path
taken, and since there is no preferred path to choose, we can not find a meaningful way of comparing
vectors at different points on the manifold, i.e. at different tangent spaces.

1For a more complete treatment of general relativity see for example [16] or [12].
2We will not be considering spinors in this thesis.
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Chapter 4. General Relativity in Cartan Formalism

Figure 4.1: Parallel transport of a vector on a sphere. The vector maintains its orientation relative to the
surface of the sphere throughout the transportation process. As is apparent, a vector is not preserved
when transported around a closed loop on the sphere.

Having shed some light on this phenomenon of curved manifolds, we now proceed with developing
some fundamental quantities needed to formulate the theory of general relativity in Cartan formalism.

4.2 Frame fields, connections and the covariant derivative
Our chosen coordinates xµ on the manifold induces a natural and local covariant basis set ∂µ and a
local set of basis one-forms dxµ. These are basis sets for the tangent space and cotangent space at a
given point on the manifold, respectively. One of the key concepts of the Cartan formalism, as applied
to general relativity, is the fact that the manifold describing spacetime has a Lorentzian metric, and
as such we can always transform to a local Lorentz frame of flat spacetime. Thus we can form a local
orthonormal covariant basis at each point in the manifold by

ẽa(x) = ẽ µa ∂µ , (4.1)

and a local orthogonal basis one-forms at each point on the manifold by

ea(x) = e aµ dx
µ . (4.2)

These local orthonormal bases are called frame fields. The components ẽ µa and e aµ each form a n × n
matrix, which in the classical theory of general relativity is invertible. The entire object e aµ is called
vielbein3. Their inverses will be denoted by switching the upper index with the lower, i.e. ẽ aµ and e µa
are the inverses of ẽ µa and e aµ , respectively. This means they satisfy ẽ µa ẽ aν = e aν e

µ
a = δµν .

We will use the convention that Greek indices indicate an object in the curved coordinate basis ∂µ
or dxµ and Latin indices indicate an object in a flat orthonormal coordinate basis. Appropriately, the
Greek indices will be referred to as curved indices and the Latin indices as flat indices.

The local set of basis one-forms ea(x) may be chosen to be compatible with the local covariant basis
set ẽa(x), in a sense that

< ea(x) , ẽb(x) >= δab .

where < . , . > denotes a properly defined scalar product on the manifold. However, we will not need to
go any deeper into this issue nor define such a scalar product. The important observation is that we can
choose the local set of basis one-forms to be compatible with the local coordinate basis, and as a direct
consequence ẽ µa becomes the inverse of e aµ , and we can omit the tilde on the matrix components ẽ µa of
(4.1). However, we should keep the tilde on the local orthonormal covariant basis ẽa(x) to separate it
from ea(x), which is the local orthogonal set of basis one-forms with a lowered flat index. Indeed, these
two objects can not be the same as ẽa(x) is not even a differential form.

The vielbeins are simply the transformation matrices going from curved indices to flat indices, i.e.
the vielbeins can be used to convert between curved indices and flat indices of a vector, or a more general
tensor for that matter. Suppose we have a contravariant vector, V µ, with a curved index. Then we can
use the vielbein e aµ to express the vector with a flat index,

V a = e aµ V
µ .

3Vielbein is German for many legs.
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The generalisation to any tensor having a mixture of curved and flat, upper and lower indices, should
be clear.

Since the metric in the local flat orthonormal basis is just the usual Minkowski metric, ηab, we can
write the general curved metric in terms of the vielbeins as

gµν(x) = e aµ (x)e bν (x)ηab . (4.3)

Here we have explicitly indicated the dependence on the coordinates of the general metric gµν and the
vielbeins. This explicit coordinate dependence will often be omitted for brevity. Analogously the flat
metric can be expressed in terms of the general metric as

ηab = e µa e
ν
b gµν . (4.4)

The metrics gµν and ηab can be used to raise or lower curved indices and flat indices, respectively.
In conclusion, tensors with curved indices transform differently than tensors with flat indices. More
precisely, a tensor with curved indices transforms tensorially under a general coordinate transformation
xµ → x′µ, while a tensor with flat indices transforms tensorially under local Lorentz transformations
xa → x′a = Λabxb. Tensors with mixed indices transforms accordingly in its respective type of indices,
and a curved index does not transform under a local Lorentz transformation and similarly for a flat index
under a general coordinate transformation. For example, a rank-2 tensor with one lower and one upper
curved index transforms as

T ′µ
ν = ∂xρ

∂x′µ
∂x′ν

∂xσ
T σ
ρ , (4.5)

under a general coordinate transformation, while a similar tensor with flat indices transforms as

T ′a
b = Λ c

a Λ b
d Tc

d , (4.6)

under local Lorentz transformations.
The general metric tensor gµν can be written in terms of the spacetime interval ds2 and the local

basis set dxµ by the defining relation
ds2 = gµνdx

µdxν . (4.7)

Substituting the relation between the general metric tensor and the Minkowski metric tensor given by
(4.3) and using the definition of the frame field (4.2), we arrive at a particularly useful relation between
the spacetime interval and the frame field,

ds2 = ηabe
aeb = eaea . (4.8)

This relation provides a simple way of determining the vielbeins of a given metric when expressed in
terms of the spacetime interval.

If we take the determinant of each side of (4.2) we get

det(gµν) = det(e aµ e bν ηab) = det(e aµ )det(e bν )det(ηab) = −e2 .

Here we have introduced the notation e = det(e aµ ) as well as the fact that det(ηab) = −1. Writing
g = det(gµν) we can restate the relation above as

√
−g = e . (4.9)

Note that since the metric is Lorentzian, its determinant is negative, hence we need to insert a minus
sign under the square root above.

Since we need a way of relating vectors at different points on a curved manifold we need to introduce
a connection between the local tangent spaces as well as the local flat Minkowski spaces. For this
purpose we construct the covariant derivative operator as the partial derivative operator plus a linear
transformation4. We start by forming a covariant derivative operating on vector fields with curved indices
as

DµV
ν = ∂µV

ν + ΓνµρV ρ . (4.10)

The second term is a way of compensating for the fact that our space may be curved and it is called a
connection term. It is a linear transformation of the vector V and Γνµρ are the connection coefficients.

4If we require our covariant derivative operator to obey the Leibniz product rule on tensor products, then we can always
write our covariant derivative as a partial derivative plus a linear transformation. We will not prove this statement.
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We now require that the object DµV
ν be invariant under general smooth coordinate transformations, so

that it constitutes a proper tensor. Let us therefore apply a general coordinate transformation, xµ → x′µ,
to the above expression;

DµV
ν −→ (DµV

ν)′ =
(
∂xρ

∂x′µ
∂

∂xρ

)
∂x′ν

∂xσ
V σ + (ΓνµρV ρ)′

= ∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ + ∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
V σ + (ΓνµρV ρ)′ . (4.11)

Since we are dealing with general coordinate transformations, the second order derivative in the second
term in the last line of the expression above is not necessarily zero. Thus we need the connection term
in the definition of the covariant derivative to cancel this second order derivative in order to make the
covariant derivative transform covariantly. Hence, we must impose a certain transformational property
on the object Γνµρ. We define this object to transform as

Γνµρ −→ Γ′νµρ = ∂xσ

∂x′µ
∂x′ν

∂xλ
∂xτ

∂x′ρ
Γλστ −

∂xσ

∂x′µ
∂xτ

∂x′ρ
∂2x′ν

∂xσ∂xτ
, (4.12)

under a general coordinate transformation. This object is the Christoffel symbol5, and the corresponding
connection is sometimes referred to as the affine connection. It is not a proper tensor as it does not
transform as such. However, the defined transformation property of the Christoffel symbol does indeed
make the object DµV

ν transform as a tensor, which can be verified by inserting (4.12) into the last line
of (4.11). The result is

DµV
ν −→ (DµV

ν)′ = ∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ + ∂xρ

∂x′µ
∂2x′ν

∂xρ∂xσ
V σ + ∂xρ

∂x′µ
∂x′ν

∂xσ
∂xλ

∂x′ρ
Γσρλ

∂x′ρ

∂xτ
V τ

− ∂xσ

∂x′µ
∂xλ

∂x′ρ
∂2x′ν

∂xσ∂xλ
∂x′ρ

∂xτ
V τ

= ∂xρ

∂x′µ
∂x′ν

∂xσ
∂ρV

σ + ∂xρ

∂x′µ
∂x′ν

∂xσ
ΓσρλV λ

= ∂xρ

∂x′µ
∂x′ν

∂xσ
DρV

σ .

Note that we have written the Christoffel symbol with the upper index right above the first lower index.
Since it is not a tensor there is no meaningful way of raising or lowering any of its indices.

The covariant derivative operating on a covariant vector (or a one -form) can analogously be expressed
as a partial derivative plus a connection term,

DµVν = ∂µVν + Γ̃ρµνVρ .

In general the connection coefficients Γ̃ρµν do not need to be related to the earlier connection coefficients
Γνµρ, although they obviously must satisfy the same transformation property (4.12). By requiring that
the covariant derivative commutes with contraction and reduces to the partial derivative when operating
on scalars, it is straightforward to show that the connection coefficients must be related through Γ̃ρµν =
−Γρµν . The expression for the covariant derivative acting on a covariant vector with a curved index is
then given by

DµVν = ∂µVν − ΓρµνVρ . (4.13)

We now proceed with developing the covariant derivative acting on tensors with flat indices. The
procedure is entirely analogous to the way we formed a covariant derivative acting on tensors with curved
indices. Acting on a vector with a contravariant flat index, we take the covariant derivative to be the
partial derivative plus a connection term,

DµV
a = ∂µV

a + ω a
µ bV

b . (4.14)

The object ω a
µ b is called a spin connection and can be regarded as a linear transformation matrix for

every value of the index µ. These are clearly seen to play the same role as the Christoffel symbol Γνµρ does
for the case of curved indices. Requiring that the covariant derivative should transform as a tensor under

5The Christoffel symbol is named after the German mathematician and physicist Elwin Bruno Christoffel (1829-1900),
one of many who made great contribution to the field of differential geometry.
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a local Lorentz transformation, the spin connection must transform in a similar way as the Christoffel
symbol, see equation (4.12). Demanding that the covariant derivative commutes with contraction and
reduces to the partial derivative when operating on scalars, the expression for the covariant derivative
acting on a vector with a lower flat index is

DµVa = ∂µVa − ω b
µ aVb . (4.15)

The covariant derivative as defined above can be generalized to act on more general tensors of arbi-
trarily many indices, upper and lower, curved and flat. As an illustrative example we write the explicit
expression for the covariant derivative acting on a tensor with two upper and two lower indices, one
curved and one flat each,

DµT
ρa
νb = ∂µT

ρa
νb + ΓρµσTσaνb − ΓσµνT

ρa
σb + ω a

µ cT
ρc
νb − ω

c
µ bT

ρa
νc . (4.16)

Hopefully, the generalization to more general tensors is clear. For each index of a tensor a corresponding
connection term is added to the covariant derivative of the tensor.

We can establish a relation between the Christoffel symbol, the spin connection and the vielbeins.
This is done by considering the covariant derivative of a vector expressed in the curved coordinate basis as
well as the local orthonormal basis. Exploiting the fact that a vector is an invariant object, independent
of the coordinates we choose to represent it in, we can then equate the different expressions. For this
purpose we make use of the tensor product explicitly, see Appendix A for a brief treatment of tensors
and the tensor product. The covariant derivative of a vector V in a curved coordinate basis may be
written as

DV = (DµV
ν)dxµ ⊗ ∂ν = (∂µV ν + ΓνµρV ρ)dxµ ⊗ ∂ν . (4.17)

In a local orthonormal basis, the covariant derivative of V may be expressed as

DV = (DµV
a)dxµ ⊗ ẽa

= (∂µV a + ω a
µ bV

b)dxµ ⊗ ẽa
= (∂µ(e aν V ν) + ω a

µ be
b
ν V

ν)dxµ ⊗ e ρa ∂ρ
= e ρa (e aν ∂µV ν + V ν∂µe

a
ν + e bν ω

a
µ bV

ν)dxµ ⊗ ∂ρ
= (δρν∂µV ν + (e ρa ∂µe aν )V ν + e ρa e

b
ν ω

a
µ bV

ν)dxµ ⊗ ∂ρ
= (∂µV ν + (e νa ∂µe aρ )V ρ + e νa e

b
ρ ω

a
µ bV

ρ)dxµ ⊗ ∂ν . (4.18)

Comparing (4.17) with (4.18), we find the following expression for the Christoffel symbol in terms of the
vielbeins and the spin connection:

Γνµρ = e νa ∂µe
a
ρ + e νa e

b
ρ ω

a
µ b . (4.19)

Equvalently, we can write this relation as an expression of the spin connection in terms of the vielbeins
and the Christoffel symbol,

ω a
µ b = e ρb e

a
ν Γνµρ − e

ρ
b ∂µe

a
ρ . (4.20)

Here we simply multiplied (4.2) by eρbe
a
ν and rearranged terms. If we instead multiply by e aν and

rearrange terms we find
0 = ∂µe

a
ρ + ω a

µ be
b
ρ − Γνµρe aν = Dµe

a
ρ . (4.21)

The vanishing of the covariant derivative of the vielbein is known as the tetrad postulate. However, by
the way we defined the frame fields and the covariant derivative, the vanishing of the covariant derivative
of the vielbein came as a consequence and we did not need to postulate this at all.

4.3 Cartan’s structure equations
A more classical treatment of general relativity might go on to define the torsion tensor as twice the
antisymmetric part of the affine connection, and the Riemann curvature tensor describing the curvature
of the space from the commutator of covariant derivative in the affine connection, as suggested by the
concept of parallell transport. Such a treatment is presented in Appendix G and some other useful results
are developed in the process. However, here we will present an alternative description of the theory of
general relativity, a formalism that utilize the frame fields developed at the beginning of this chapter.
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Chapter 4. General Relativity in Cartan Formalism

This is known as the Cartan formalism. As opposed to the rather cumbersome calculations that are
necessary in order to determine the curvature of space from its metric in the ordinary formulation of
general relativity, the Cartan formalism provides a fairly easy way of accomplishing this. This is due to
the Cartan structure equations,

T a = dea + εabcω
b ∧ ec , (4.22)

Ra = dωa + 1
2ε
a
bcω

b ∧ ωc . (4.23)

where T a is the torsion two-form, Ra is the curvature two-form and ωb is the spin connection one-form
expressed with one flat index,

ωa = 1
2ε
abcωµbcdx

µ . (4.24)

The Cartan structure equations can be seen as defining equations for the torsion and curvature of
spacetime. Physically, the torsion is a measure of the anti-symmetry of the connection on our space.
To establish a unique connection on our manifold, we must require our connection to be torsion-free,
meaning that T a = 0. The first of the Cartan structure equations above then essentially reduces to a
differential equation for determining the spin connection from the frame field,

dea + εabcω
b ∧ ec = 0 . (4.25)

Now we have a way of determining the curvature from the metric tensor; first the frame field can be
determined from the metric by (4.8), then we can solve (4.25) for the spin connection and finally we
solve (4.23) for the curvature. At this point a more physical description of curvature is in order.

The curvature tensor measures how the space locally deviates from a flat Minkowski space. It can be
defined as the commutator of the covariant derivative. The Riemann curvature tensor Rabµν is defined
in this way by

[Dµ,Dν ]V a = RabµνV
b , (4.26)

where V a is an arbitrary (differentiable) vector. By evaluating how the commutator of the covariant
derivative acts on V a it is possible to derive an explicit formula for the Riemann curvature tensor in terms
of the connections, and also a number of symmetry properties. However, we will not be needing such
an expression for the Riemann curvature tensor when performing any calculations later on. Therefore
we simply refer the interested reader to Appendix G where such derivations are performed for the affine
connection.

As a final note, the relation between the curvature two-form and the Riemann curvature tensor is

Ra = 1
2ε
abcRbcµνdx

µ ∧ dxν = 1
2ε
abcRbcdee

d ∧ ee , (4.27)

and defining the curvature by (4.26) is indeed equivalent to defining the curvature by (4.23), although
we will not prove this, however, compare (4.23) with (G.3).

The Cartan structure equations (4.22) and (4.23) describe the torsion and curvature of spacetime,
respectively, in terms of the frame field and spin connection. However, they do not give any information
about the physical sources which generate the curvature of spacetime. The theory of general relativity
tells us how gravitating sources curve spacetime, and we have yet to give a more precise description of
this. This description is given by the Einstein field equations. Before deriving these equations we need
to define the Ricci tensor and the Ricci scalar.

The Ricci tensor Rab is defined by contracting two of the indices of the Riemann curvature tensor,

Rab = Rcacb . (4.28)

Some authors define the Ricci tensor by contracting the first index with the last index, and this differs
from our definition only by a sign. The contraction of the first with the second index of the Riemann
curvature tensor is identically zero since it is anti-symmetric in these two indices. Furthermore, the
Ricci tensor is symmetric in its two indices, a consequence of the symmetry properties of the Riemann
curvature tensor, see Appendix G.

The Ricci scalar is formed by contracting the two indices of the Ricci tensor,

R = Raa = ηabRab , (4.29)

i.e. it is the trace of the Ricci tensor, which in turn is a kind of trace of the Riemann curvature tensor.
As such, the Ricci tensor contains less information about the curvature than the Riemann curvature
tensor, and the Ricci scalar contains less information than the Ricci tensor.
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4.4 Einstein’s field equations and the stress-energy tensor
Having developed the formalism of general relativity we now turn our attention to the Einstein field
equations, the Eimstein hilbert action and the stress-energy tensor.

We will be considering the specific case of 2+1 dimensions, but most of the results to be derived are,
however, easily generalized to higher dimensions. In order to derive the equations we will once again turn
to the principle of stationary action. Let us first consider the most simple case, a space without matter,
i.e. vacuum space. It is important to understand that the vacuum field equations are fully compatible
with the notion of matter, but they only describe the space where there is none. For example, if we
put a lot of mass in one place we will eventually create a black hole, but to describe this black hole
we only need the vacuum equations as long as we are not interested in the point where all the mass is
concentrated.

To find the vacuum equations we need an action and a Lagrangian. Now, a Lagrangian is by definition
a scalar and we have already come across a scalar associated with the curvature of space, the Ricci scalar
R. We consider the action:

SEH = 1
2κ

∫
d3x
√
−g(R− 2Λ) . (4.30)

This is the Einstein-Hilbert action, originally proposed by Hilbert.6 Here κ = 8πGc−4 is Einstein’s
constant, G is Newtons gravitational constant, c the speed of light in vacuum, g the determinant of the
metric, i.e. g = det(gµν) and Λ the cosmological constant. The cosmological constant was not present
in the original action but was later introduced by Einstein in order to achieve a theoretical model which
described a static universe. However, Einstein later abandoned the idea of a static universe for the
concept of an expanding universe, which physicists of today agree on. Nevertheless, the cosmological
constant is believed to describe the energy density of vacuum space and is yet of great importance,
nowadays mostly in the field of dark energy [17]. Furthermore, the Anti-de Sitter, or AdS, space will
be of great importance when considering black hole and wormhole solutions, as well as for formulating
a theory of gravity as a Chern-Simons gauge theory. The AdS space is defined as a spacetime with a
constant negative curvature and therefore we need to account for both terms in our Einstein-Hilbert
action.

To find the equations of motion we have to vary the action with respect to the metric. In order to
do this we make use of the following two identities:

δ
√
−g = −1

2
√
−ggµνδgµν , (4.31)

δR = δgµνRµν +D2gµνδg
µν −DµDνδg

µν . (4.32)

Proof of these identities can be found in Appendix H. Using these we may now vary the action

δSEH = 1
2κ

∫
d3x
(
δ
√
−g(R− 2Λ) +

√
−gδR

)
= 1

2κ

∫
d3x
√
−g
(−gµν

2 (R− 2Λ) +Rµν

)
δgµν+

1
2κ

∫
d3x
√
−g(D2gµν −DµDν)δgµν︸ ︷︷ ︸

0

, (4.33)

where the last term is a vanishing boundary term. Since we demand that δSEH = 0 for all variations
δgµν the quantity in the parenthesis must vanish identically. We have thus found Einstein’s vacuum
equations:

Gµν + Λgµν = Rµν −
1
2Rgµν + Λgµν = 0 , (4.34)

where we have introduced the Einstein tensor, Gµν . The Einstein tensor is a symmetric tensor since both
the Ricci tensor and the metric tensor are symmetric. Furthermore, it is divergence free: DµGµν = 0,
which follows from the fact that the Riemann curvature tensor satisfies the Bianchi identity, see Appendix
G.

These equations may be simplified even further. To do this we take the trace of the equations.
Remembering that tr[gµν ] = gµνg

µν = 3 since we are working in 2+1 dimensions,

tr[Rµν −
R

2 gµν ] = − tr[Λgµν ] =⇒ R = 6Λ ,

6There were several disputes between Hilbert and Einstein concerning the development of the field equations. No doubt,
Einstein got most of the glory.
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where we used the fact that tr [Rµν ] = Rµµ = R. Substituting this into the vacuum equations we find

Rµν = 2Λgµν . (4.35)

We are now ready to add the effect of matter. To do this we add a term to the action so that our full action
reads S = SEH + Smatter. To find the equations of motion we have to vary Smatter =

∫
d3x
√
−gLmatter

and we write this variation as

δSmatter =
∫
d3x
√
−g

δ
(√
−gLmatter

)
δgµν

δgµν√
−g

. (4.36)

The expression δ(
√
−gLmatter)
δgµν is to be interpreted as a functional derivative. If we now require that

δS = δSEH + δSmatter = 0 for all variations we find:

1
2κ (Gµν + Λgµν) = − 1√

−g
δ(Lmatter)
δgµν

,

where we have used (4.33) and (4.36). This equation can be written in a more sophisticated way by
defining the stress-energy tensor as7

Tµν ≡
−2√
−g

δSmatter

δgµν
. (4.37)

We may then write
Gµν + Λgµν = κTµν . (4.38)

These are Einstein’s famous field equations that tells us how the distribution of matter and energy curves
spacetime.

Since the stress-energy tensor might be an unfamiliar concept we will discuss its interpretation and
give an example in the familiar setting of electromagnetism. The diagonal elements of the stress-energy
tensor will be of particular interest to us, especially T 00. Formally we can think of Tµν as the flux of
momentum pµ through a surface. Since we know from the theory of special relativity that p0 can be
interpreted as the energy we will think of T 00 as the energy density of a system. The stress-energy
tensor also satisfies the conservation law DµT

µν = 0. This of course reduces to the familiar equation of
continuity in flat space time. For more details and a proof of the conservation law, we refer the reader
to Carroll [16].

Let us return to the electromagnetic field tensor and derive the stress-energy tensor in a curved space.
The electromagnetic Lagrangian in flat space is L = − 1

4F
µνFµν = − 1

4η
µρηνσFρσFµν as discussed in sec-

tion 2.3. The prescription to promote a flat action to an action in a curved spacetime is straightforward.
First we replace all the ηµν with the general metric tensor gµν and then we add a factor of

√
−g to make

an invariant volume measure d3x
√
−g. Explicitly, we find

SEM = −1
4

∫
d4x
√
−ggµρgνσFρσFµν .

To vary the action we need the identity (4.31) as well as

δgρσ = −gρµgνσδgµν . (4.39)

The proof of these may be found in Appendix H. Using this we now calculate the variation of the action:

δSMaxwell = −
√
−g
4

(1
2g

µνgαβgγλFαγFβλ − gαµgνβgγλFαγFβλ − gαβgγµgνλFαγFβλ
)
δgµν

= −
√
−g
4

(1
2g

µνFαβFαβ − FµλF νλ − F βµFβν
)
δgµν =

√
−g
2 FµαF να −

√
−g
8 gµFαβFαβ ,

and we may now compute the stress-energy tensor from our definition (4.37):

TµνEM = FµαF να −
1
4g

µνFαβFαβ . (4.40)

7The stress-energy tensor is also commonly referred to as the energy-momentum tensor.
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Notice the change in signs by the definition depending on if we consider Tµν or Tµν . Let us now investigate
the 00 component of the stress tensor in 3+1 dimensional flat space, i.e. g00 = η00 = −1,

T 00
EM = F 0αF 0

α + 1
4F

αβFαβ .

We saw in the chapter on electromagnetism that F 0α = Eα, and it thus follows that F 0αF 0
α = E·E = E2.

To evaluate FαβFαβ we note that this is the trace of a matrix-multiplication between the matrices Fαβ
and −F βα. Using the explicit matrix representation 2.5, we find that

FαβFαβ = −E2 + (B2
z +B2

y − E2
x) + (B2

z +B2
x − E2

y) + (B2
y +B2

x − E2
z ) = 2(B2 − E2) ,

and we thus conclude that
T 00
EM = 1

2(E2 +B2) ,

which may be familiar as the energy density of the electromagnetic field. We see that the interpretation
of the 00-component of the stress-energy tensor as an energy density makes sense in the electromagnetic
case.

4.5 Einstein-Hilbert action in Cartan formalism
In the last section we discussed the Einstein-Hilbert action, from which we derived Einstein’s field
equations. Armed with knowledge of Cartan’s formulation of general relativity we are now ready to
translate the action in terms of vielbeins and spin connections, i.e. S[gµν ] → S[e, ω]. and derive the
corresponding equations of motion, the analogue to Einstein’s equations. For convenience we provide
the Einstein-Hilbert action once again:

SEH [gµν ] = 1
2κ

∫
(R− 2Λ)ed3x , (4.41)

where we have used the relation (4.9) to express the determinant of the metric in terms of the determinant
of the veilbeins, denoted by e.

For reasons which will soon become apparent we consider the quantity ea ∧Ra. Using (4.27) we find

ea ∧Ra = 1
2εabce

a ∧Rbc .

Now we expand the one-form ea and the two-form Rbc in terms of the basis one-forms dxµ:

1
2εabce

a ∧Rbc = 1
4εabce

a
ρe
b
αe
c
βR

αβ
µνdx

µ ∧ dxν ∧ dxρ . (4.42)

The quantity dxµ ∧ dxν ∧ dxρ is related to the three-dimensional volume measure d3x as follows:

dxµ ∧ dxν ∧ dxρ = εµνρd3x ,

as stated in equation (C.12). Inserting this identity into equation (4.42) yields

1
4εabcε

µνρeaρe
b
αe
c
βR

αβ
µνd

3x . (4.43)

Now we consider the factor εabcεµνρeaρebαecβ . We find:

εabcε
µνρeaρe

b
αe
c
β = −e(δµαδνβ − δναδ

µ
β) .

Plugging this into equation (4.43) leading to

−1
4(δµαδνβ − δναδ

µ
β)Rαβµνed3x = −1

4e(R
µν
µν −Rνµµν)d3x = −eR2 d3x ,

where we used the fact that Rνµµν = −Rµνµν = −R, in the last step. We have thus found that
ea ∧ Ra = − eR2 and can rewrite the first term in our Einstein-Hilbert action in equation (4.41). The
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term involving the cosmological constant can be found as well. Consider the quantity Λεabcea ∧ eb ∧ ec.
If we rewrite the quantity by expand it in terms of its basis vectors, the calculation is straightforward:

Λεabcea ∧ eb ∧ ec = εabcΛeaµebνecρdxµ ∧ dxν ∧ dxρ = eεabcε
abcΛd3x ,

where we once again used the relationship between the wedge product and volume element. Finally we
make use of the identity εabcεabc = −6 where a,b and c are Lorentzian flat indices:

eεabcε
abcΛd3x = −6eΛd3x .

Thus we can rewrite the Einstein-Hilbert action in absence of matter as follows using Cartan formalism:

SEH [e,ω] = − 1
2κ

∫ [
2ea ∧ (dωa + 1

2εabcω
b ∧ ωc)− 1

3Λεabcea ∧ eb ∧ ec
]
. (4.44)

Now we conclude that we have found an equivalent action such that SEH [gµν ] = SEH [e,ω]. As usual
when having found the proper action we turn our attention to the equations of motion. These are
conventionally obtained from the principle of least action, i.e. by computing the variation and setting
δSEH = 0. However, in this case considering the Cartan form of SEH it is possible to do the variation
on both the spin connection fields ω and the frame fields connections e. This will yield two different
equations of motion. As a result of the equivalence between the Cartan action and the metric action the
equations of motion will of course be independent of the fashion they are derived. The Cartan equations
can therefore be translated into the original formulation and vice versa. Taking the variation of the
action with respect to the frame fields we deduce

δSEH =
∫

2δea ∧ (dωa + 1
2εabcω

b ∧ ωc)− 1
3Λεabc

[
δea ∧ eb ∧ ec + ea ∧ δeb ∧ ec + ea ∧ eb ∧ δec

]
= 0 .

The first and second term can be rewritten and we get

δSEH [e] =
∫

(dωa + 1
2εabcω

b ∧ ωc) ∧ 2δea − Λεabceb ∧ ec ∧ δea = 0 ,

resulting in the following equations of motion

dωa + 1
2εabcω

b ∧ ωc = Λ
2 εabce

b ∧ ec =⇒ Ra = Λ
2 εabce

b ∧ ec , (4.45)

where we used the identity dωa+ 1
2εabcω

b∧ωc = Ra. Continuing to the variation of the spin connections
ωa we have

δSEH [ω] =
∫
ea ∧ (δ dωa + 1

2εabc(δω
b ∧ ωc + ωb ∧ δωc)) .

We may rewrite the action further by using the fact that total derivatives are vanishing boundary terms
when performing the action integral, i.e.:

d(ea ∧ δωa) = dea ∧ δωa − ea ∧ dδωa = 0 ,

leading to dea ∧ δωa = ea ∧ dδωa and the action

δSEH [ω] =
∫

dea ∧ δωa + 1
2εabce

a ∧ (δωb ∧ ωc + ωb ∧ δωc) =
∫

(dec + 1
2ε
c
abe

a ∧ ωb)δωc .

Thus we have found our second equation of motion as follows

dec + 1
2ε
c
abe

a ∧ ωb = 0 , (4.46)

which is precisely Cartan’s first structure equation with vanishing torsion, i.e. T c = 0, see (4.22). Having
derived Einstein’s equations and recast them into the language of Cartan we are now ready to find the
solutions of the equations. This will be the main subject for next chapter.
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Chapter 5

Solutions of Einstein’s Field
Equations
In the previous chapter we found Einstein’s equations to which there are no known general solution.
Exact solutions to these equations only exist under simplifying assumptions such as radial symmetry or
very specific time dependencies [7].

We begin this chapter with a short discussion of Minkowski and Anti-de Sitter spacetime. These
are what is known as maximally symmetric spacetimes, meaning that the geometry of spacetime looks
identical from every point. We will see that more complicated solutions often approach these spacetimes
asymptotically.

We then discuss the first exact non-trivial solution to the Einstein field equations, namely the
Schwarzschild black hole. The Schwarzschild black hole contains geometrical peculiarities such as an
event horizon and a singularity. Remarkably, we find that the Schwarzschild solution can be interpreted
as a wormhole solution, meaning that it connects two separate regions of spacetime. This discovery
spurred the interest in traversable wormholes. Since we want to connect gravity to gauge theory we
primarily study solutions in 2+1 dimensions, leading us to investigate the BTZ black hole and eventually
the traversable Morris-Thorne wormhole. We study properties of the Morris-Thorne solution and find
that we are required to introduce exotic matter, i.e. matter with negative energy density, in order to
achieve a traversable wormhole. To find a theory that admits a traversable wormhole solution without
a necessity for exotic matter we express gravity as a Chern-Simons gauge theory, and then generalize it
by extending the symmetry group while preserving the original symmetry. This is the main subject of
chapters 6 and 7 respectively.

5.1 Minkowski and Anti-de Sitter space
Einstein’s equivalence principle states that the world is locally Minkowski, i.e. that it is described by the
Minkowski metric ηµν = diag(−1,1,1,1). This better then be a solution to the vacuum equations (4.46)
with Λ = 0. To verify this we note that the curvature two-form Ra is proportional to the derivative of the
vielbein. Since the vielbeins are constant for the Minkowski-metric the curvature two-form must vanish
and the vacuum equations are satisfied. However, if Λ 6= 0 Minkowski spacetime is no longer a solution
and we need to find an analogue. This space is known as de Sitter space, for Λ > 0, or Anti-de Sitter
space for Λ < 0. Both of these spaces have a constant curvature, positive for de Sitter and negative
for Anti-de Sitter. This follows immediately from equation (4.35). They are also, just as Minkowski
spacetime, maximally symmetric. This implies that we cannot distinguish any point in spacetime from
another. We will in this thesis primarily discuss Anti-de Sitter space and will provide a short description
below, a more thorough discussion can be found in Appendix F.2.

As mentioned earlier we will work primarily in 2+1 dimensions and hence our main interest is three-
dimensional Anti-de Sitter space, AdS3 for short. AdS3 is a spacetime with two spatial dimensions and
one time-like. However, its structure is most easily written down as a hypersurface in an embedding
four-dimensional space with two spatial dimensions and two time-like. The embedding space has a line
element

ds2 = −dV 2 − dU2 + dX2 + dY 2 ,

where U , V , X and Y are coordinates. In this embedding space AdS3 is the hypersurface satisfying

− V 2 − U2 +X2 + Y 2 = −l2 , (5.1)

where l is a length related to the cosmological constant by Λ = − 1
l2 . There exist several parametrizations

of AdS3, but one we will find particularly useful is a parametrization by hyperbolic coordinates t,ρ and
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φ given by

U = l cosh ρ cos t , V = l cosh ρ sin t ,
X = l sinh ρ cosφ , Y = l sinh ρ sinφ ,

where ρ, t ∈ (0,∞) and φ ∈ (0, 2π). These coordinates satisfy (5.1) and with them we can express the
line element of AdS3 as

ds2 = −l2 cosh2 ρdt2 + l2dρ2 + l2 sinh2 ρdφ2 . (5.2)
It is natural to define yet another coordinate r = l sinh ρ by which the line element becomes

ds2 = −(l2 + r2)dt2 + dr2

1 + r2

l2

+ r2dφ2 . (5.3)

We have stated that AdS3 is a solution of Einstein’s vacuum equations with Λ < 0, but we have not
shown it. The explicit calculation may be found in Appendix F.2.

5.2 The Schwarzschild black hole
The theory of black holes and wormholes has its roots in a fundamental solution to Einstein’s equations.
The well-known solution was found by the German physicist Karl Schwarzschild (1873-1916) over a
century ago (1915) and is considered to be the first exact solution to Einstein’s field equations. What
was not at all evident to Schwarzschild and the physics community back then was that the solution
possessed the properties of a black hole. Schwarzschild proposed the following four-dimensional metric
as a solution, here expressed in spherical coordinates:

ds2 = −
(

1− 2MG

r

)
dt2 +

(
1− 2MG

r

)−1
dr2 + r2dΩ2 , (5.4)

where dΩ2 = dθ2 + sin2 θdφ2, M is the mass of a gravitational source and G Newtons’s gravitational
constant. The solution is a spherically symmetric vacuum solution to Einstein’s equations. Schwarzschild
assumed the mass M had no electric charge or angular momentum and existed in a flat space, i.e. a
space with the cosmological constant equal to zero.

From the metric given in equation (5.4) we note that the solution becomes singular when r = 0. This
is a characterizing property of a black hole in 3+1 dimensions.1 An even more important property which
characterizes a black hole can be found by noting that the geometry of the Schwarzschild solution has a
surrounding spherical boundary situated at the radius r = 2MG, also called the Schwarzschild radius.
This spherical boundary is referred to as the event horizon. After passing the event horizon, towards the
origin at r = 0, nothing can escape the gravitational field. The Schwarzschild solution does indeed posses
the properties of a black hole in 3+1 dimensions [5]. Moreover, to make a connection to the previous
section, we note from the metric above that the Schwarzschild solution approaches the Minkowski metric
as r →∞, with a spacetime manifold resembling that of Minkowski space.

Not only can Schwarzschild’s solution be interpreted as a black hole, it can also be interpreted as a
wormhole after a proper extension of the spacetime. The theory of wormholes originates from Einstein
and Rosens’ idea of a geometric particle model which avoided point singularities caused by particles
with infinite mass or charge distributions. Fundamentally, Einstein and Rosen proposed a theory in
which one could connect two separated points in spacetime through a topological feature - or in other
words: a bridge. Today we call these bridges wormholes. By performing a coordinate transformation
in Schwarzschild’s metric, Einstein and Rosen were able to show that Schwarzschild’s solution could
also describe an Einstein-Rosen bridge, connecting two black holes. To see this, consider the coordinate
transformation

u2 = r − 2MG⇒ 2udu = dr ,

under which the Schwarzschild metric transforms to

ds2 = − u2

u2 + 2MG
dt2 + u2 + 2MG

u2 4u2du2 + (u2 + 2MG)2dΩ2

= − 1
1 + 2MG

u2

dt2 + 4u2(1 + 2MG

u2 )du2 + (u2 + 2MG)2dΩ2 .

1In 2+1 dimensions a curvature singularity is no longer characteristic for black holes, as we will see later when discussing
the BTZ black hole solution.
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Letting u ∈ (−∞,∞), we note from this substitution that r varies from −∞ to −2MG and from +2MG to
+∞. From this Einstein and Rosen concluded that the four-dimensional space could be mathematically
expressed by two congruent sheets, one sheet corresponding to u > 0 and another sheet corresponding
to u < 0. These sheets are joined by a hyperplane, r = 2MG (or u = 0), creating a bridge between
the sheets. In their paper from 1935, Einstein and Rosen also took it one step further and associated
their bridge with the presence of an elementary particle. Furthermore they investigated the possibility
of particles with negative mass by substituting the mass M in Schwarzschild’s metric for a negative one.
However, Einstein and Rosen argued that it was impossible to perform a proper change of variables in
order to achieve a bridge in the case of particles with negative mass, explaining why there were no neutral
particles with negative mass to be found in the universe [18]. Einstein and Rosens’ bridges were later
proven to be unsuccessful for describing particles. They are, however, yet of today seen as prototype
wormholes and are of great importance in gravitational physics. Moreover, ER-bridges triggered the
idea of traversable wormholes, which theoretical existence remained unclear until very late into the 20th
century [5].

5.3 Black holes in 2+1 dimensions
Let us now turn to the case of a 2 + 1-dimensional spacetime and derive a metric which we will later
interpret as a black hole. To do this we assume a radially symmetric metric and make the symmetry
obvious by using a time coordinate t, a radial coordinate r and an angular coordinate φ with 0 ≤ φ < 2π.
We start by writing down a quite general radially symmetric metric:

ds2 = −B2(r)dt2 +A2(r)dr2 + r2dφ2 . (5.5)

If this metric is to describe spacetime it must satisfy Einstein’s equations in three dimensions (equation
(4.45)), potentially with a cosmological constant. Using (4.8), we write down our vielbeins:

e0 = B(r)dt , e1 = A(r)dr , e2 = rdφ . (5.6)

We also require the spin connection to solve Einstein’s equations. We may find the components of this
by using Cartan’s first structure equation, dea = −εabcωb ∧ ec. This gives us three equations:

de0 = B′(r)dr ∧ dt = −ω1
t dt ∧ e2 − ω1

rdr ∧ e2 + ω2
t dt ∧ e1 + ω2

φdφ ∧ e1 , (5.7)
de1 = 0 = ω2

rdr ∧ e0 + ω2
φdφ ∧ e0 − ω0

t dt ∧ e2 + ω0
rdr ∧ e2 , (5.8)

de2 = dr ∧ dφ = ω0
t dt ∧ e1 + ω0

φdφ ∧ e1 − ω1
rdr ∧ e0 + ω1

φdφ ∧ e0 . (5.9)

We start by noticing that in (5.7) the only term with dr∧dt on the right hand side is w2
t dt∧e1. Similarly,

the only term on the right hand side in (5.9) with dr∧ dφ is ω0
φdφ∧ e1. Using this we may conclude that

ω0
φ = − 1

A(r) , ω2
t = −B

′(r)
A(r) . (5.10)

Returning to equation (5.9) we see that there is only one term with dt∧ dφ, more precisely ω1
t dt∧ e2, so

this has to be zero. The other terms, however, may cancel each other. The same analysis holds for the
other two equations. We therefore have

ω1
t = ω2

r = ω0
r = ω1

φ ≡ 0 .

The other terms form a new system of equations:

rω1
r +Aω2

φ = 0 , (5.11)
Bω2

φ + rω0
t = 0 , (5.12)

Aω0
t +Bω1

r = 0 . (5.13)

Substituting (5.11) and (5.12) into (5.13) we find that

Aω0
t +B(A

r

r

B
ω0
t ) = 2Aω0

t = 0 =⇒ ω0
t = 0 .
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The same is true for the rest of the spin connections. Thus, the only non-zero terms were the first ones
we found. To summarize, we have

ω0 = − 1
A(r)dφ , ω1 = 0 , ω2 = −B

′(r)
A(r) dt . (5.14)

We can now form the curvature two-form Ra = dωa+ 1
2ε
a
bcω

b∧ωc, and attempt to solve equation (4.45),
restated below for convenience:

Ra = Λ
2 ε

a
bce

b ∧ ec .

Since our indices run from 0 to 2 we have three equations to solve:

R0 = A′(r)
A2(r)dr ∧ dφ = ΛA(r)rdr ∧ dφ ,

R1 = −B
′(r)

A2(r)dt ∧ dφ = −ΛB(r)rdφ ∧ dt ,

R2 =
(
− B′′(r)

A(r) + B′(r)A′(r)
A2(r)

)
dr ∧ dt = −ΛB(r)A(r)dt ∧ dr .

These are three differential equations for A and B. By dropping the differentials we find them to be

A′(r) = ΛA3(r)r , (5.15)
B′(r) = −ΛA2(r)B(r)r , (5.16)
B′′(r)A(r)−B′(r)A′(r) = −ΛB(r)A3(r) . (5.17)

The first equation is a separable differential equation. Dividing by A3 on both sides and integrating
yields

− 1
A2(r) = Λr2 +M =⇒ A = 1√

−Λr2 −M
,

where M is a constant of integration. We may then attack the second equation, writing

B′(r)
B(r) = −Λr

−Λr2 −M
.

Integrating this gives us

lnB(r) = ln
√
−Λr2 −M =⇒ B(r) =

√
−Λr2 −M .

The sharp eyed reader will notice that we have set the integration factor to one in the previous equation.
We have now found the radial functions A(r) and B(r), and we may now write down the metric (5.5) as

ds2 = −
(r2

l2
−M

)
dt2 +

(r2

l2
−M

)−1
dr2 + r2dφ2 , (5.18)

where we substituted the cosmological constant Λ with Λ = − 1
l2 for AdS space. We clearly see that if

M > 0 we have an event horizon in the metric and therefore a potential black hole. However, if M < 0
there is no obvious singularity. The case M > 0 is the BTZ black hole [19]. Amazingly these results were
discovered very recently (1990s) by Bañados, Teitelbom and Zanelli, contradicting the old hypothesis
that black holes cannot exist in three dimensions due to the lack of local gravitational attraction. Hence,
black hole solutions to the Einstein equations in three dimensions are referred to as BTZ solutions or
BTZ black holes, named after the three brilliant physicists mentioned above.

Let us first make a quick comment about the asympotic behaviour of the metric as r → ∞. In this
limit it is clear that the metric approaches

ds2
r→∞ = −r

2

l2
dt2 + r2dφ2 ,

which is not Minkowski spacetime. Instead we have an asymptotic AdS3 spacetime, as can be seen by
comparison with the metric (5.3).
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We now discuss the parameterM more in-depth. First and foremost, let us go from AdS to Minkowski.
We will recover Minkowski spacetime if we let Λ → 0 =⇒ l →∞. In this limit the BTZ metric (5.18)
approaches

ds2 = Mdt2 − dr2

M
+ r2dφ2 .

This does not make much sense physically unless we setM < 0 becouse our spacetime must be Lorentzian.
We may then rescale the time coordinate t → t√

−M and the radial coordinate r → r
√
−M . This gives

us a new metric:
ds2 = −dt2 + dr2 + |M |r2dφ2 .

Now, if M = −1 this is simply Minkowski space and not of much interest. If we instead set M ∈ (−1,0)
we get the metric of a cone. This is seen by rescaling the angular variable φ by φ → φ√

|M |
. While

the explicit dependence of M disappears from the metric we now have that φ ∈ (0,2π
√
|M |) and our

spacetime is a cone. We conclude that when we let Λ→ 0, our black hole disappears. We therefore claim
that there are no three-dimensional black holes in Minkowski space.

Let us now return to AdS3. We will first consider the case M < 0 where we will once again find
conical solutions. One way to find out if we have a conical space around a point is to take the length
of a circle around the point and divide it by the length of a closed curved with a fixed distance from
the point. Then if we let the distance to the curve go to zero we will have a conical singularity if the
ratio is between zero and one. We will do this explicitly. If our space where flat the length of a circle a
coordinate-distance rd from the origin would be 2πrd. However, the distance measured by an observer
travelling from the origin (r = 0) to r = rd is∫ rd

0

dr√
r2

l2 −M
= l log

(
l

√
r2
d

l2
−M − rd

)
− l log

(
l
√
−M

)
.

Hence, we consider the limit

lim
rd→0

2πrd

2πl log
(
l

√
r2
d

l2 −M − rd
)
− 2πl log

(
l
√
−M

) ≈ lim
rd→0

rd

rd
1√
−M

=
√
−M , (5.19)

where we in the second step performed a Taylor expansion of the logarithm around rd = 0. From this
we see that for all values M ∈ (0, − 1) we have a conical singularity. However, if M = −1 there is no
conical singularity. There is no mystery here, the case M = −1 is precisely AdS3! Because the conical
singularities separate empty AdS3 (M = −1) and the BTZ black hole (M > 0) we speak of a mass gap.
However, these singularities turns out to be very interesting because they correspond to a point like
particle in the origin. To see this one considers a stress-energy tensor with a delta function in the origin,
T = mδ(xµ). From this it is possible to deduce that the geometry is indeed a cone and that the deficit
angle of the cone, α, is related to the mass, m, according to α = 8πGm [20]. Note that our result also
relates the deficit angle to M by (1− α

2π ) =
√
−M , so it is natural to interpret M as a mass parameter.

However, since α ∈ (0,2π) we have a natural upper bound on the mass of a particle before it collapses
into a black hole. In recent work Jonathan Lindgren has successfully used this geometrical approach to
study particle collisions and black hole formations [20].

Finally we turn to the case M > 0 where we will indeed have a black hole, the BTZ black hole. The
dr2-component of the metric (5.18) is clearly divergent at r = l

√
M . This is the horizon. To see that it is

indeed not a curvature singularity we can compute the Kretschmann scalar defined as K = RµνρσR
µνρσ.

The Kretschmann scalar is the standard tool to show that there is a singularity at the origin for a
Schwarzschild black hole. For the BTZ-hole the result is K = 12

l4 , constant everywhere. While this does
imply that there is no singularity at the horizon it also means that we do not have a curvature singularity
at the origin! However, there is another kind of singularity at r = 0, a causality singularity, although we
will not show this and instead refer the reader to [21].

We show in Appendix K that the parameter M will indeed depend on the energy of the system, but
we will here find a geometrical interpretation of M following a paper by Dieter Brill [22]. To do so we
first need a useful parametrization of the line element of AdS3. Remember that given four coordinates
X, Y, U and V that satisfy

− V 2 − U2 +X2 + Y 2 = −l2 , (5.20)
the line element for AdS3 can be written as

ds2 = −dV 2 − dU2 + dX2 + dY 2 .
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We may now introduce new parameters according to

U = l sinh ξ sinh t , V = l cosh ξ coshϕ ,

X = l cosh ξ sinhϕ , Y = l sinh ξ cosh t .

Notice that all our variables takes values in R and they will still satisfy (5.20). Let us now define the
radial component r̃ = l cosh ξ. This implies that r̃ ∈ (l,∞). The new line-element becomes, after some
manipulations,

ds2 = −
( r̃2

l2
− 1
)
dt2 +

( r̃2

l2
− 1
)−1

dr̃2 + r̃2dϕ2 .

This is indeed very similar to the metric for the BTZ black hole, but let us not forget that φ ∈ (0, 2π)
while ϕ ∈ (−∞,∞). How do we make these equal? We will identify different values of ϕ! While the
identification ϕ ∼ ϕ + 2π certainly is tempting we can do even better. Let us set ϕ ∼ ϕ + 2πa, and
rescale all our coordinates according to

ϕ 7→ aϕ , r̃ 7→ r̃

a
, t 7→ ta .

We then find the metric

ds2 = −
( r̃2

l2
−M

)
dt2 +

( r̃2

l2
−M

)−1
dr2 + r̃2dϕ2 ,

whereM = a2. Remember that with r̃ ∈ (l
√
M,∞) we can identify l

√
M as the horizon and furthermore

compute the minimal distance around the black hole to be 2πl
√
M . The constant M introduced in the

black hole metric (5.18) has thus been given a geometrical interpretation.

5.4 The construction of traversable wormholes
Having made a quick detour through the theory of black holes in AdS3 in the previous section, we
now continue where we left off in section 5.2 and ask ourselves if traversable wormholes exist in general
relativity. In 1988, American professor of theoretical physics Kip Thorne (1940-)2 and his graduate
student Mike Morris constructed a traversable wormhole,3 purely as a tool for learning general relativity
[23]. In order to construct a traversable wormhole, the time component of the metric was required to
always be non-zero, while having a divergent radial component of constant sign around r = 0. Based on
this, Morris and Thorne suggested the radially symmetric and time-independent metric

ds2 = −e2Φ(r)dt2 + dr2

1− b(r)
r

+ r2dϕ2 , (5.21)

where Φ(r) is referred to as the redshift function and is everywhere finite in order to prevent an event
horizon. The second radial dependent function, b(r), is called the shape function as it determines the
shape of the wormhole when observed in an embedding diagram [24].

This is really a special case of the ansatz considered earlier in the section 5.3, corresponding to
B2(r) = e2Φ(r) and A2(r) = 1

1− b(r)
r

. For convenience we restate the Riemann tensor components found
in section 5.3 in terms of the vielbeins e0, e1 and e2:

R0 = A′(r)
rA3(R)e

1 ∧ e2 , R1 = − B′(r)
A2(r)rB(r)e

0 ∧ e2 , R2 =
(
− B′′(r)
A2(r)B(r) + B′(r)A′(r)

A3(r)B(r)

)
e1 ∧ e0 .

By using the identities Ra = 1
2ε
abcRbc and Rab = Rcacb, we find the non-zero components of the Riemann

tensor of the Morris-Thorne metric in an orthonormal basis to be:

R1
212 = b′r − b

2r3 , R2
020 = (1− b

r
)Φ′

r
, R1

010 = (1− b

r
)(Φ′2 + Φ′′)− b′r − b

2r2 Φ′ .

2For those readers who are also into science fiction movies we may reveal that Thorne did scientific consulting for
Christopher Nolan’s film Interstellar in 2012.

3Unfortunately the wormhole in question was purely theoretical.
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Chapter 5. Solutions of Einstein’s Field Equations

We now compute the Einstein tensor. Using its definition: Gab = Rab − 1
2ηabR, we find that

G00 = R00 −
1
2η00R = R00 + 1

2(−R00 +R11 +R22)

= 1
2(R1

010 +R2
020 −R1

010 +R2
121 −R2

020 +R2
121) = R2

121 ,

G11 = ... = R2
020 , G22 = ... = R1

010 .

We start our investigation by considering the Ellis wormhole [25] which, as we will see, is a special case
of the Morris-Thorne wormhole4. The metric of the Ellis wormhole is given by

ds2 = −dt2 + dl2 + (l2 + b20)dϕ2 ,

where l ∈ (0,∞) and ϕ ∈ (0,2π). By setting r =
√
l2 + b20 we may rewrite the metric as

ds2 = −dt2 + dr2

1− b2
0
r2

+ r2dϕ2 .

This is precisely the metric we get if we set Φ(r) = 0 and b(r) = b2
0
r in the Morris-Thorne metric presented

above in equation (5.21). Using the previous results we can write down G00 as

G00 = −b
2
0
2

(
1
r4 + 1

r2

)
= − b

2
0
r4 .

It is interesting to note that G00 is negative, which implies that the 00-component of the stress-energy
tensor has to be negative as well. Let us return to our Morris-Thorne wormhole. Assuming we have a
stress-energy tensor with positive energy density (that is T00 > 0), then the Einstein tensor component,
G00, has to satisfy

b′(r)
2r2 −

b(r)
2r3 > 0 .

It is natural to consider the ansatz b(r) = rα which gives us the restriction α > 1. But if we allow the
radial component of our metric to change sign for a large enough value of r this is precisely the kind
of behaviour we want to avoid if we are to construct a traversable wormhole. So creating a traversable
wormhole will require us to construct a stress-energy tensor with negative energy density. Matter with
this property is called exotic matter.

To see whether this is possible we investigate two different possible stress-energy tensors. One from
the electromagnetic field and one from a scalar field. In this section we will work in curvilinear coordinates
and we will therefore have to convert G00 using the vielbeins. To avoid confusion we will denote the
00-component of the Einstein tensor in curvilinear coordinates with Gtt and we find it to be

Gtt = eat e
b
tGab = e0

t e
0
tG00 = e2Φ(r)G00 = e2Φ(r) b

′r − b
2r3 .

We start with the electromagnetic field. According to (4.40) the electromagnetic stress-energy tensor is

TµνEM = FµαF να −
gµν

4 FαβFαβ .

To tell if T ttEM is positive, negative or may change sign we rewrite the terms according to{
F tαF tα = grrF

trF tr + gϕϕF
tϕF tϕ

FαβFαβ = 2(gttgrrF trF tr + gttgϕϕF
tϕF tϕ + grrgϕϕF

rϕF rϕ)
.

Using this expression we find that the tt component of the stress-energy tensor may be written as

T tt = F trF tr
(
grr −

1
2grr

)
+ F tϕF tϕ

(
gϕϕ −

1
2gϕϕ

)
− 1

2F
rϕF rϕ

(
gttgrrgϕϕ

)
> 0 .

4Ellis wormhole was in fact constructed 1969 by H.G Ellis, presented in his paper ”Ether flow through a drainhole: A
particle model in general relativity” [25], more than a decade before Morris and Thorne proposed their solution. Back
then Ellis solution was referred to as a drainhole, but nevertheless making it the earliest-known model of a traversable
wormhole.
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Chapter 5. Solutions of Einstein’s Field Equations

As indicated this expression is positive since grr,gϕϕ > 0 and gtt < 0, otherwise we would not have a
traversable wormhole! Thus we cannot use the electromagnetic field to create negative energy density.
For a recent, more detailed attempt to use a modified electromagnetic field in AdS3 to create a wormhole
we refer the reader to [26]. The construction in this paper demands a divergent electromagnetic field in
the origin.

We now investigate if it is possible to create negative energy density using a scalar field. The scalar
field has the Lagrangian

LS = −1
2g

µν(∂µφ∂νφ)− 1
2m

2φ2 − ξ

2Rφ
2 − ξ′φ6 .

We will consider two different values for ξ. Either we set ξ = 0 which is known as a minimal coupling.
We will also consider the case ξ = 1

8 which is referred to as conformal coupling. The specific value of 1
8

has been determined by demanding invariance under a Weyl transformation, gµν → g′µν = Ω2gµν , where
Ω is a scalar function. We show the procedure explicitly in Appendix H. The term φ6 is also picked to
preserve the invariance under a Weyl transformation. To find the stress tensor several identities have to
be used and even then the full calculation is rather long. We will thus only quote the result and refer
the interested reader to Appendix H where all the calculation is written out and all necessary identities
are proven. The energy-momentum tensor for the scalar field is found to be

TµνS = ξGµνφ2 + ξ(gµν2(φ2)−DµDν(φ2))− gµνξ′φ6 − gµν

2 (∂ρφ∂ρφ+m2φ2) + ∂µφ∂νφ ,

where 2 = DµDµ is the D’ Alembert operator in curved spacetime. We will henceforth drop the subscript
S to avoid clutter. This result is a generalization of the stress-energy tensor presented in Zelnikov and
Frolovs’ Introduction to Black Hole Physics [27]. It is also shown in Appendix H that the equation of
motion for the scalar field is (

2−m2 − 1
8R
)
φ− 6ξ′φ5 = 0 . (5.22)

The expression for the energy-stress tensor is rather complicated and to be able to deal with it we
first make the natural assumption that our field only depends on the radius, φ = φ(r), precisely like our
wormhole metric. Now we can start to evaluate terms more explicitly. Below we give the time-component
of the stress-energy tensor:

Ttt = ξGttφ
2 + e2Φ

(
m2(1

2 − 2ξ)− 2ξ2R
)
φ2 + e2Φ(1

2 − 2ξ)(1− b

r
)(φ′)2 + e2Φ(r)(ξ′ − 12ξξ′)φ6 .

This component and the rest of the components (Trr and Tφφ) are evaluated explicitly in Appendix I for
the conformal case, i.e. ξ = 1

8 . As should be expected the minimally coupled case, ξ = 0 is the simplest.
We then find that (5.4) reduces to:

Ttt(ξ = 0) = 1
2e

2Φm2φ2 + 1
2e

2Φ(1− b

r
)(φ′)2 + e2Φξ′φ6 > 0 ,

which is strictly positive. Notice that this is true since we must have ξ′ > 0 due to the fact that it
is identified as a potential energy term and that (1 − b

r ) > 0 since this is precisely g11 which must be
positive for our wormhole.

The conformally coupled system is more complicated, we find that (5.4) now becomes

Ttt(ξ = 1
8) = 1

8Gttφ
2 − e2Φ

32 Rφ
2 + e2Φ

4 (1− b

r
)(φ′)2 − e2Φ(r)

2 ξ′φ6 .

which is very difficult to analyze when it comes to signature. We may instead investigate whether there
exist Morris-Thorne wormhole solutions which arise from a conformally coupled scalar field. We have
from Einstein’s equations (without the cosmological constant) that 1

κGµν = Tµν . With our stress-tensor
for a conformally coupled scalar field and our Einstein tensor components for the Morris and Thorne-
solution we thus have a system of coupled differential equations for the redshift function Φ(r), the shape
function b(r) and the scalar field φ(r). Additionally to these equations we have the equation of motion
of the scalar field, equation (5.22). Due to their complexity we will not bother to write the equations
down. Under certain simplifications (i.e. massless scalar field, ξ′ = 0) we may actually draw conclusions
about the existence of solutions. In Appendix I we provide a discussion on the differential equations.
In particular we find that there are none but trivial solutions in the case of a massless scalar field in
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Chapter 5. Solutions of Einstein’s Field Equations

2+1 dimensions. Interestingly, the situation is radically different in 3+1 dimensions. This is stressed
in e.g. "Traversable wormholes from massless conformally coupled scalar fields", in which Barcelo and
Visser state that they, in four dimensions, have found a conformally coupled scalar field stress-tensor
which violates the classical energy conditions, allowing for traversable wormhole solutions [28]. We omit
a complete treatment of the more general case, i.e. a scalar field with mass and ξ′ 6= 0, and refer to
Appendix I for a somewhat more detailed discussion on the subject.
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Chapter 6

Gravity From Chern-Simons Gauge
Theory

In this chapter we relate the Chern-Simons theory with the gauge group SO(2,2) to general relativity
with negative cosmological constant. To achieve this, we couple the frame field ea to the generalized
momentum generators Pa of SO(2,2), and the spin connections, ωa, to the Lorentz transforms generators,
Ma. This coupling is well justified, because the Lorentz generators correspond to an infinitesimal change
of coordinate systems, which is exactly what the spin connection ωa measures. Since the frame fields are
just the flat local basis of the manifold they measure infinitesimal translation, and the Pa generators are
related to the translation generators of the Poincaré group via the Inönu-Wigner contraction performed
in Appendix F.1.2.

We then split the symmetry group SO(2,2) up into SL(2)× SL(2) via the local isomorphism
so(2,2) ∼= sl(2)⊕ sl(2), resulting in two independent connections A and Ā. Combining the actions from
each of these two connections we obtain a Chern-Simons action that is equivalent to the Einstein-Hilbert
action with an appropriate choice of scale factor.

After showing that the Chern-Simons gauge theory of SO(2,2) is equivalent to general relativity in
2+1 dimensions we will investigate the possibility of extending the symmetry group in chapter 7. This
will, as we shall see in the next chapter, give us a higher spin theory of gravity.

6.1 Chern-Simons gravity on AdS3

As mentioned before Chern-Simons theory can be seen as a theory of gravity. Our goal with this section
is to give a motivation to this statement by showing that Chern-Simons action is in fact equivalent to the
Einstein-Hilbert action up to boundary terms and with a certain choice of cosmological constant. That
choice of cosmological constant happens to be − 1

l2 , which coincides well with our conclusions in the last
section, where we stated that AdS3 with Λ = − 1

l2 is a solution to Einstein’s equations. We therefore
initially show that Chern-Simons action in AdS3 is indeed equivalent to the Einstein-Hilbert action in
2+1 dimensions.

Having retrieved Einstein’s equations in the Cartan formalism and discussed Chern-Simons theory
we are now going to unite them. We are ready to investigate a Chern-Simons theory on AdS3. Recall
that the Chern-Simons action is written as

SCS [A] = k

4π

∫
tr[A ∧ dA+ 2

3A ∧A ∧A] . (6.1)

The trace reminds us that we are working with a Lie algebra-valued potential A. To find the Lie algebra
of the isometry group of AdS3 we turn to the metric of the embedding space and the restriction, equation
(5.1). Since both the metric and the restriction is unchanged under the SO(2,2) group of transformations
we recognise this as the isometry group of AdS3. The Lie algebra so(2,2) can be summarized with two
sets of generators, Ma and P b. They form the Lie algebra

[Ma,M b] = εabcM
c ,

[P a,M b] = εabcP
c ,

[P a,P b] = εabcM
c .

A possible interpretation is that Ma is the generator of Lorentz transformations and P a the generator
of generalized momentum. A derivation of these generators and their explicit form is found in Appendix
F.2.2. In the vielbein formalism we construct the Lie algebra-valued connection as

A ≡ 1
l
eaµPadx

µ + ωaµMadx
µ .
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Chapter 6. Gravity From Chern-Simons Gauge Theory

The identification of the vielbein indices with the generator indices is of fundamental importance for the
gauge-gravity equivalence. In the same sense as the vielbeins are a local approximation of a Riemannian
manifold, the Lie algebra generators are a local approximation of the Lie group manifold. Writing the
connection like this can be seen as an association of the six dimensions of the group manifold with the
three-dimensional local frames eaµ plus the three-dimensional spin connections ωaµ.

A remarkable feature of the Lie algebra of SO(2.2) is that we can decompose it according to so(2,2) '
sl(2,R) ⊕ sl(2,R). The six generators of so(2,2) then split into two sets, T a = 1

2 (Ma + P a) and T̄ a =
1
2 (Ma − P a) satisfying

[T a,T b] = εabcT
c ,

[T a,T̄ b] = 0 ,
[T̄ a,T̄ b] = εabcT̄

c .

We pick our representation to satisfy the trace relationship

tr[T aT b] = tr[T̄ aT̄ b] = 1
2η

ab .

This is furthered motivated in Appendix E.2.1 with use of Killing forms. Since these generators split
into two distinct sets we can use them to split the Chern-Simons action according to

SCS [A,Ā] = SCS [A]− SCS [Ā] . (6.2)

Having split the gauge group in this fashion, the new connections A and Ā are written as

A =
(
ωa + ea

l

)
Ta , Ā =

(
ωa − ea

l

)
T̄a .

The difference in sign being attached to ea instead of ωa is a result of the sign convention used when we
split up our action. Now, let us consider the first term in the Chern-Simons action, tr[A ∧ dA]. Using
our stated definitions we find

A ∧ dA = (ωa + ea

l
)Ta ∧ (dωb + deb

l
)Tb = (ωa ∧ dωb + ea ∧ dωb

l
+ ωa ∧ deb

l
+ ea ∧ deb

l2
)TaTb .

Remember that we are dealing with an expression under an integral sign, thus by performing a partial
integration on the third term and dropping the boundary term the expression can be simplified as

A ∧ dA = (ωa ∧ dωb + 2e
a ∧ dωb

l
+ ea ∧ deb

l2
)TaTb

Taking the trace of both sides gives us the first term in the Chern-Simons action:

tr[A ∧ dA] = (ωa ∧ dωb + 2e
a ∧ dωb

l
+ ea ∧ deb

l2
)ηab2 = 1

2(ωa ∧ dωa + 2e
a ∧ dωa
l

+ ea ∧ dea
l2

) ,

where we used the invariant bilinear form condition tr [TaTb] = ηab/2. Now we consider the second term
in the Chern-Simon action, tr [A ∧A ∧A]. Making the Lie algebra nature of A explicit we find

Aa ∧Ab ∧AcTaTbTc = 1
2A

a ∧Ab ∧AcTaTbTc −
1
2A

a ∧Ac ∧AbTaTbTc = 1
2A

a ∧Ab ∧AcTa[Tb,Tc] ,

where we in the last step simply renamed the dummy indices in the second expression. Now, since
[Tb,Tc] = εbc

dTd we see

tr[Aa ∧Ab ∧AcTaTbTc] = 1
2A

a ∧Ab ∧Acεbcd tr[TaTd] = 1
4A

a ∧Ab ∧Acεabc .

Writing out all the vielbeins and spin connections explicitly we finally reach

tr [A ∧A ∧A] = εabc
4 (ωa ∧ ωb ∧ ωc + ea ∧ eb ∧ ec

l3
+ 3
l
ea ∧ ωb ∧ ωc + 3

l2
ea ∧ eb ∧ ωc) .
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Analogously we find the corresponding Chern-Simons action for Ā, resulting in

tr [Ā ∧ dĀ] = 1
2(ωa ∧ dωa − 2e

a ∧ dωa
l

+ ea ∧ dea
l2

) , (6.3)

tr [Ā ∧ Ā ∧ Ā] = εabc
4 (ωa ∧ ωb ∧ ωc − ea ∧ eb ∧ ec

l3
− 3
l
ea ∧ ωb ∧ ωc + 3

l2
ea ∧ eb ∧ ωc) . (6.4)

To get our Chern-Simons action of AdS3 we need to subtract tr[A ∧ dA]−tr[Ā ∧ dĀ] and tr[A ∧A ∧A]−
tr [Ā ∧ Ā ∧ Ā]:

tr [A ∧ dA]− tr [Ā ∧ dĀ] = 2ea ∧ dωa
l

, (6.5)

tr [A ∧A ∧A]− tr [Ā ∧ Ā ∧ Ā] = εabc
2l3 e

a ∧ eb ∧ ec + 3εabc
2l ea ∧ ωb ∧ ωc , (6.6)

and if we plug these results into our original Chern-Simons action, equation 6.1, we find

SCS [A,Ā] = k

4π

∫
M

2ea ∧ dωa
l

+ 2
3

[
εabc
2l3 e

a ∧ eb ∧ ec + 3εabc
2l ea ∧ ωb ∧ ωc

]
.

In order to compare this expression with Einstein-Hilbert action we extract a factor of 2
l outside the

integral and collect terms:

SCS [A,Ā] = k

2πl

∫
M

ea ∧
[

dωa + εabc
2 ωb ∧ ωc

]
+ εabc

6l2 e
a ∧ eb ∧ ec . (6.7)

For convenience we restate the Einstein-Hilbert action in 2+1 dimensions

SEH [e,ω] = − 1
κ

∫
ea ∧

[
dωa + 1

2εabcω
b ∧ ωc

]
− 1

6Λεabcea ∧ eb ∧ ec , (6.8)

and we see from our expression above that we do indeed get the Chern-Simons action from Einstein-
Hilbert action if we set − 1

κ = k
2πl (leading to k = − l

4G ) and Λ = − 1
l2 ). The negative cosmological

constant, i.e. Λ = − 1
l2 , corresponds to an Anti-de Sitter gravitational theory. One may also consider

the case of an imaginary radius of curvature, leading to a positive cosmological constant. Then we
have to perform the same calculations as before but with the gauge group SL(2,C). This leads to the
concept of de Sitter gravity which will not be treated in this thesis [29]. We have now shown that we
can translate the Chern-Simons action in 2+1 dimensions in AdS3 space into an Einstein-Hilbert action.
The same equivalence holds for Minkowski space. This can be shown by using that the isometry group of
Minkowski space is SO(1,2) (or the Poincaré group), where the Lie algebra can be derived by performing
a Inönu-Wigner contraction on the AdS3 Lie algebra. The contraction and calculations are performed
in its entirety in Appendix F.2.3 and Appendix F.1.2 respectively.
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Chapter 7

Higher Spin Gravity
In section 5.3 we found that if we tried to force a wormhole solution to Einstein’s equations in 2+1
dimensions we had to introduce exotic matter. To resolve this we will attempt to generalize SL(2)×SL(2)
gravity by using a symmetry group of higher order. Since SL(2) is a subgroup of SL(3) a natural such
generalization is SL(2) × SL(2) → SL(3) × SL(3). In performing this extension we have obtained
a symmetry group that preserves the symmetries of SL(2) theory while adding new gauge degrees of
freedom. The theory obtained is a particularly simple higher spin gravity theory. The term higher spin
refers to the fact that conventional gravity is mediated by spin-2 particles, gravitons, and when extending
the gauge group we couple these particles to a massless higher spin field, in our case a spin-3 field [10].

The formulation of gravity as a SL(3)×SL(3) gauge theory introduces some problems. In particular,
we show that the previously central metric tensor is no longer a gauge invariant quantity since the spin-3
field act non-trivially on the metric. This is shown explicitly by performing a trivial gauge transformation
of empty AdS3, yielding a singular geometry. This shows that the connection between a solution to the
equations of motion and the geometry is no longer clear.

To resolve the problem of classifying solutions we then turn to a new fundamental property, namely
the holonomy around a closed loop. The holonomy measures the extent to which a coordinate system
is changed by parallel transport on a manifold, and we show that it is gauge invariant under a trivial
gauge transformation.

7.1 Chern-Simons as a higher spin theory
In the last section we formulated gravity as a Chern-Simons gauge theory on AdS3 with the gauge group
SL(2) × SL(2). To this regular theory of 2+1-dimensional gravity we couple a massless higher spin
field to gravity by promoting the group SL(2) to SL(3). As we promote our group we keep the old
generators from sl(2), which is possible because SL(2) is a subgroup of SL(3). We also introduce five
new symmetric traceless generators, Tab. The purpose of this is that our Lagrangian will end up with
terms that look exactly like the equations for spin-2 gravity, and we will have additional spin-3 terms
that act as our additional degrees of freedom. Together with our previous three generators they form
the Lie algebra sl(3,R):

[Ta,Tb] = εab
cTc , (7.1)

[Ta,Tbc] = 2εda(bTc)d , (7.2)
[Tab,Tcd] = −2

(
ηa(cεd)b

e + ηb(cεd)a
e
)
Te . (7.3)

With our gauge group being SL(3)× SL(3) we want to form the gauge connections A and Ā in analogy
with section 6.1, which we restate here for convenience:

A = ω + e

l
, Ā = ω − e

l
.

where under a gauge transformation with g in our gauge group, we have

A→ A′ = g−1Ag + g−1 dg , A→ A
′ = gAg−1 + g dg−1 .

To generalize the gauge connections we need to express the additional degrees of freedom gained from
the promotion of SL(2) to SL(3) through generalized frame fields eµab and spin connections ωµab. We
define

A = dxµ
(
ωaµ +

eaµ
l

)
Ta + dxµ

(
ωµ

bc + eµ
bc

l

)
Tbc , (7.4)

Ã = dxµ
(
ωaµ −

eaµ
l

)
T̄a + dxµ

(
ωµ

bc − eµ
bc

l

)
T̄bc . (7.5)
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Our action is as usual
SCS [A,A] = SCS [A]− SCS [A] , (7.6)

and the Chern-Simons equations of motion are given by:

F = dA+A ∧A = 0 .

We can, using the connections of equation (7.4), find the equations for the SL(3) connection. We begin
by writing down F (A) for the A-connection in an appropriate form and can then very easily see what
terms change sign for Ā. We then add/subtract the equations of motion for A and Ā to obtain four
independent equations of motion. The method described is performed explicitly in Appendix J.1. We
state the resulting spin-3 equations of motion below:

dea + εabce
b ∧ wc − 4εafcebc ∧ w

f
b = 0 ,

dwa + 1
2ε
a
bc

(
wb ∧ wc + eb ∧ ec

l2

)
− 2εafc

(
wbc ∧ wfb +

ebc ∧ efb
l2

)
= 0 ,

deab + 2εga(a|wa ∧ ee|b) + 2εga(e|ea ∧ we|f) = 0 ,
dwef + 2εag(e|ea ∧ eg |f) + 2εga(e|wa ∧ we|f) = 0 .

(7.7)

We could also have derived the spin-3 equations of motion from a corresponding action, similar to the
discussion in the spin-2 case where we derived our structure equations by taking the variation of the
Einstein-Hilbert action, see section 4.5. However, having already found the equations of motion for
spin-3, we settle for finding the corresponding action instead.

From [29] we find that the action (7.6) can be rewritten according to

SCS[A,Ã] = k

2π

∫
M

tr [e ∧R+ 1
3l2 e ∧ e ∧ e] , (7.8)

where l is the radius of curvature. As in the spin-2 case we wish to translate this action into the language
of Cartan, i.e. in terms of vielbeins and spin connections, in order to get a modified Einstein-Hilbert
action. After a rather cumbersome calculation we reach the following result:

SCS = k

πl

∫
M

ea ∧Ra + 1
6l2 e

a ∧ eb ∧ ecεabc − 2ea ∧ ωbc ∧ ω e
b εeca + 2eab ∧ dωab

+eabεih(a|ω
h ∧ ω i

|b) −
2
l2
ea ∧ ebc ∧ e eb εaec .

The full derivation can be found in Appendix J. Note, when we set k = − 1
8G and 1

l2 = −Λ we partly
recover our Einstein-Hilbert action. The rest of the terms are due to the extension to a higher spin field.
Our derived equations of motion and the corresponding action are written in the same fashion as the
e.o.m. and action as presented in Campoleoni et al’ [30].

In the Cartan formalism of gravity we have Lorentz transformations and spatial translations that
transform our coordinates, vielbeins and spin connections. We should now expect these transformations
to be generated by gauge transformations. This is the case for SL(2) × SL(2) as was shown by James
H. Horne (1964-2012) and Edward Witten in 1989 [31]. We will instead treat the SL(3)×SL(3) case. A
vector is a tensor, thus it transforms according to v′µ(x′) = dxµ

dx′µ vµ(x) under a coordinate transformation
xµ → x′µ. By simply interchanging x and x′ we find that

v′aµ (x) = dx′ν

dxµ
vaν (x′) = (δνµ + ∂µξ

ν)(vaν (x) + ξρ∂ρv
a
ν (x)) = vaµ(x) + ξρ∂ρv

a
µ(x) + (∂µξν)vaν (x) ,

to first order in ξ. The variation becomes

δξv
a
µ(x) = ∂µ(ξνvaν (x)) + ξν(∂νvaµ(x)− ∂µvaν (x)) .

Let us now turn to the effect of a gauge transformation with gauge group element g = exp(Λ), where Λ
is a gauge parameter. The variation of the connection due to an infinitesimal gauge transformation is

δA = A′ −A = g−1Ag + g−1 dg −A = dΛ + [A,Λ] .
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A transform almost identically but with a different transformation g = exp(Λ). The variation of the
vielbeins and spin connections are

δe = δA− δA
2 = dΛ− + [e,Λ+] + [ω,Λ−] , δω = δA+ δA

2 = dΛ+ + [e,Λ−] + [ω,Λ+] ,

where Λ± = Λ±Λ
2 . This is really four equations since we have that eµ = e aµ + e bcµ , and similarly for

ωµ. The complete explicit expressions are rather long but the full calculation can be found in Appendix
J.3. We will be content with stating the fact that if we pick Λ± = τa±T

a + τ bc± T
bc with τa+ = ξρω a

ρ

and τa− = ξρe aρ , then all differences between coordinate transformations and gauge transformations, i.e.
δea − δξea vanishes precisely when the e.o.m. (7.7) are satisfied.

7.2 Gauge transformations in higher spin gravity
A key ingredient when it comes to describing gravity as a Chern-Simons theory is that the theory should
possess gauge symmetries, i.e. be invariant under gauge transformations. However, in higher spin gravity
we are describing a gravitational theory coupled to massless higher spin fields, in this case a spin-3 field,
and in general performing a gauge transformation will mix the ordinary metric and the spin-3 field in
a complicated way. Thus standard invariant notions, e.g. curvature invariants and causality associated
with the metric, are no longer gauge invariant quantities. In this way we may construct a singular metric
from a smooth and regular metric by simply performing a gauge transformation, and the other way
around. This is done explicitly in this section. The discussion below follows closely the discussion given
in Castro et als’ ”Black Holes and Singularity Resolution in Higher Spin Gravity” [32].

The sl(3,R) gauge connections A and A, as defined in equation (7.4), can be rewritten by introducing
a spin-2 connection A(2), according to

A = A(2) + dxµ
(
ωµ

bc + eµ
bc

l

)
Tbc , A = A(2) + dxµ

(
ωµ

bc − eµ
bc

l

)
Tbc , (7.9)

where A(2) = dxµ
(
ωaµ + eaµ

l

)
Ta and A(2) = dxµ

(
ωaµ −

eaµ
l

)
T̄a. Having defined these gauge fields we may

construct the spacetime metric gµν and the corresponding spin-3 field ψµνρ as follows

gµν = 1
2 tr[eµeν ] , ψµνρ = 1

9 tr [eµeνeρ] , (7.10)

where the vielbein is given by e = 1
2 (A−A).

Consider the purely spin-2 gauge connections1

A(2) = (eρL1 − Le−ρL−1)dx+ + L0dρ , (7.11)
A(2) = −(eρL−1 − Le−ρL1)dx− − L0dρ , (7.12)

where x± = t ± φ and φ ∼ φ + 2π. Here L1, L0 and L−1 are generators formed by linear combinations
of the regular generators Ta, Tb etc. to sl(2,R), see Appendix E.5.2. Given these gauge connections we
may construct a metric by using equations (7.10). Thus we need to compute the vielbeins:

e = 1
2(A(2) −A(2)) = L0dρ+ 1

2

(
(eρ − Le−ρ)(L1 + L−1)dt+ (eρ + Le−ρ)(L1 − L−1)dφ

)
. (7.13)

Before taking the trace we also need to compute the product e2:

e2 = (L0)2dρ2 + 1
4

(
(eρ − Le−ρ)2(L1 + L−1)2dt2 + (eρ + Le−ρ)2(L1 − L−1)2dφ2

)
+Kmixed , (7.14)

where Kmixed are terms containing mixed differentials (dtdφ etc.). The only non-zero traces are

tr [L0L0] = 2 , tr [L1L−1] = tr [L−1L1] = −4 , (7.15)
1The stated gauge connections are supplied with a subscript ”(2)”, indicating they are only coupled to spin-2 generators.

Thus we consider the special case A = A(2).
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as seen in Appendix E.5.2. Hence tr[Kmixed] vanishes and we may finally write down the metric:

ds2 = gµνdx
µdxν = 1

2 tr[eµeν ]dxµdxν = dρ2 − (eρ − Le−ρ)2dt2 + (eρ + Le−ρ)2dφ2 . (7.16)

The real parameter L does actually determine whether the metric is that of a black hole or contain
conical singularities. In particular, we shall see that a certain choice of L leads to the metric being
equivalent to global AdS3. In order to be able to compare this metric with our BTZ black hole metric
as stated in the Chapter 5, equation (5.18), we perform a change of variables. Let

(eρ + Le−ρ)2 = r2 ⇒ dρ = dr

(eρ − Le−ρ) .

Since (eρ+Le−ρ)2 = e2ρ+2L+L2e−2ρ = r2, it follows that (eρ−Le−ρ)2 = e2ρ−2L+L2e−2ρ = r2−4L.
Thus the metric in our new radial variable is

d̃s2 = −dt2(r2 − 4L) + dr2(r2 − 4L)−1 + r2dφ2 .

Upon comparison with our original BTZ metric, equation (5.18), we note that whenever L ≥ 0 we have
a BTZ black hole. Moreover we conclude that the case L = − 1

4 corresponds to global AdS3. In analogue
with the discussion in Section 5.3, we have a conical singularity in our metric whenever L ∈ (− 1

4 ,0).
Having found and analyzed our metric we are now ready to perform a gauge transformation of our gauge
connections A and A. In the spin-2 case (SL(2,R)) performing a gauge transformation will just lead
to a diffeomorphism2 of the regular metric gµν . However, in higher spin (here n = 3 and SL(3,R)) we
will see that the properties of the metric will change dramatically and we will also get a non-zero spin-3
field. When performing a (trivial) gauge transformation we want to be able to write our modified gauge
connection A′ as

A′ = g−1
new dgnew ,

where gnew = goldgΛ and gΛ is the gauge transformation matrix. Remember that our original gauge
connection A where constructed from the condition A = g−1

old dgold. We now let A′ and A′ be of the form

A′ = b−1(L1 − LL−1 + αW−1)dx+b+ b−1 db ,

A
′ = −b(L−1 − LL1 + αW1)dx−b−1 + bdb−1 ,

with b = eρL0 and α constant. W1 and W−1 are generators formed from linear combinations of the
generators of SL(3,R), see Appendix E.5.2. Given the explicit representations of A and A′, the group
elements gold and gnew are known. In particular, they are

gold = eρL0ex
+(L1−LL−1) ,

gnew = ex
+(L1−LL−1+αW−1)eρL0 ,

which are seen to hold from the conditions A′ = g−1
new dgnew and A = g−1

old dgold. From this we can now
solve for gΛ which relate the group elements gold and gnew:

gΛ = g−1
oldgnew = e−ρL0e−x

+(L1−LL−1)ex
+(L1−LL−1+αW−1))eρL0 . (7.17)

We may, by expanding the exponential in a Taylor series, compute the matrix gΛ explicitly.3 One finds
that all off-diagonal terms are zero, why we only state the non-zero diagonal terms below:

g00
Λ = 1

8e−ix+
(

1 + eix+(2− 8α) + 4α+ e2ix+(1 + 4α)
)

(1 + cosx+)

g11
Λ = 1

2e−ix+(1 + e2ix+) cosx+

g22
Λ = − 1

8e−ix+
(
− 1 + 4α+ e2ix+(−1 + 4α)− 2eix+(1 + 4α)

)
(1 + cosx+)

,

2A diffeomorphism is an isomorphism of a smooth manifold. It can be interpreted as an invertible function mapping
one differential manifold to another in such a way that the function and its inverse are non-singular. In other words, the
metric remains regular when performing a gauge transformation in the spin-2 case.

3These calculations were also performed with the use of the symbolic computation program Mathematica, which
moreover was used to greatly simplify the result.
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where we recall that x+ = t+φ. From the stated terms above it is evident that the matrix gΛ is invariant
under the identification φ ∼ φ+ 2π (the complex exponential and the cosine are both 2π-periodic), and
thus gΛ constitutes a trivial gauge transformation.

In the same fashion as before we may construct a corresponding metric to A′. We simply state the
result here:

ds2 = dρ2 −
(

(eρ − Le−ρ)2 − α2e−2ρ
)
dt2 +

(
(eρ + Le−ρ)2 − α2e−2ρ

)
dφ2 , (7.18)

where we have chosen α = −α. With the connections A′ and A′ we will, on the contrary to our former
connections, have a non-zero spin-3 field:

ψµνρ = −8αdρdφdt , (7.19)

which can be computed from the relation ψµνρ = 1
9 tr [eµeνeρ], but this is a rather tedious process why we

simply rely on [32]. It may not be obvious that the metric (7.18), derived from the gauge connection A′,
possesses very different properties compared to our original metric as given in equation (7.16). However,
if we restrict to the case L = − 1

4 i.e. AdS3, this will become evident. For convenience we restate the
original metric in the case L (here denoted with subscript ”AdS”):

ds2
AdS = dρ2 − (eρ + 1

4e−ρ)2dt2 + (eρ − 1
4e−ρ)2dφ2 .

This metric is completely smooth and its individual components (gtt, gφφ etc.) are non-zero for all values
of ρ, i.e. it has no singularities. If we instead consider our new metric derived from the gauge equivalent
connections A′ and A′, we eventually notice something non regular:

ds′2AdS = dρ2 −
(

(eρ + 1
4e−ρ)2 − α2e−2ρ

)
dt2 +

(
(eρ − 1

4e−ρ)2 − α2e−2ρ
)
dφ2 .

For a particular value of ρ > 0 the components g′tt and g′φφ may vanish, leading to a singular metric.4
Thus to wrap this discussion up, we started with a completely smooth spacetime (and a vanishing spin-3
field) and ended up with a singular spacetime (and a non-zero spin-3 field) simply by performing a trivial
gauge transformation.

It may not seem so desirable to get a singular spacetime from a regular one. We would probably be
more delighted if we were able to deform a singular spacetime into a smooth spacetime. Amazingly this
is possible for the singularity of the Milne universe as discussed in [29].

7.3 Holonomies
In the last section we found that when we introduced a higher spin field we where able to deform or
resolve singularities in the metric using gauge transformations. This implies that we cannot use the
metric to label different solutions, instead we need a better tool: holonomies. To describe these we will
make use of parallel transport, introduced in 4.1. Parallel transport can be explained through a transport
of a vector U(t), with t ∈ (0,T ), from an original position x0 along a path γ(t), while keeping the vector
constant in a local frame. The requirement that the vector is constant locally may be realized by the
differential equation

DγU(t) = 0 =⇒ d

dt
U(t) = A(γ′(t))U(t) . (7.20)

With the initial condition U(0) = 1, we can solve this equation implicitly by:

U(t) = 1 +
∫ t

0
A(γ′(t1))U(t1)dt1 .

Now this equation does not help us to find U(t) since it appears both in the left-hand side and the
right-hand side. However, we can plug the right-hand side into the left-hand side. Doing this gives us

U(t) = 1 +
∫ t

0
A(γ′(t1))dt1 +

∫ t

0

∫ t

0
A(γ′(t1))A(γ′(t2))U(t2)dt1dt2 .

4The particular value of ρ can be computed as a function of α. This can be done by performing the change of variables
eρ = x which leads to a fourth degree polynomial equation with only even powers of x, solvable by algebraic means!
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At first this might seem pointless. But if we continue on and do this an infinite amount of times we will
find that the series converges! Thus the last term on the right-hand side containing the function U must
vanish in the limit. We may therefore write

U(t) =
∞∑
0

∫
t>t1...>tn

A(γ′(t1))...A(γ′(tn))dtdt1...dtn .

By introducing the path ordering symbol, P, which acts according to∫
t>t1...>tn

A(γ′(t1))...A(γ′(tn))dtdt1...dtn = 1
n!P

(∫
A(γ′(s))ds

)n
,

we can rewrite the above expression as

U(t) = P exp
(∫

γ

A

)
.

The use of an exponential is furthered motivated by the fact that if we let A be independent of position,
and thus abelian, we may remove the path ordering prescription. This follows since then (7.20) can easily
be solved according to

d

dt
U(t) = AU(t) =⇒ U(t) = exp(tA) .

If γ is a smooth closed curve this is the holonomy around that curve, which we will denote by

Holγ(A) = P exp
(∮

γ

A

)
.

Having introduced holonomies we will now specialize to our specific case of a Chern-Simons theory. Since
the equations of motion implies that F = 0 we have a flat connection. This fact is essential because
if the connection is flat two homotopic curves have the same holonomy. This result immediately tells
us that the holonomy of all contractible curves is the identity since they have the same holonomy as a
point. However, if the curve is non-contractible we may have a non-trivial holonomy. This fact is crucial
when we construct our connection. Since F = 0 it is tempting to believe that our connection will be pure
gauge, i.e A = g−1 dg. However, if we transport this around a non-contractible curve our connection
will pick up a factor of the holonomy and thus g must be a multivalued function. This fact allows us
to classify connections depending on their holonomies around a non-contractible curve. This will be the
way we label solutions from now on, not with the metric. We will in the rest of this thesis only consider
connections with one non-contractible curve. As an example, let us return to the connection (7.11) and
study the holonomy around the φ-cycle. To simplify our calculations we want to use a gauge in which
we eliminate all explicit dependence on ρ. This is possible if we set

A = b−1(L1 − LL−1)dx+b+ b−1 db , (7.21)

with b = exp(ρL0). If this is to be the same connection we must have

b−1L1b = eρL1 , b−1L−1b = e−ρL−1 . (7.22)

We will calculate the first term explicitly. The goal is to move the exponential b past L1 and cancel it
with b−1. The definition of an exponentiated matrix is eX =

∑
Xn

n! , so it follows that L1b = L1
∑ (ρL0)n

n! .
Acting with L1 termwise and using the commutator of L0 and L1 we see that

L1L
n
0 = (L0L1 + [L1,L0])Ln−1

0 = (L0 + 1)L1L
n−1
0 = ... = (L0 + 1)nL1 ,

and accordingly we must have

L1b = L1
∑ (ρL0)n

n! =
(∑ (ρ(L0 + 1))n

n!

)
L1 = beρL1 .

The calculation for L−1 is identical up to a sign, L−1b = be−ρL−1. From this the relations (7.22) follows
immediately. Let us now finally consider the holonomy of (7.21) around the φ-cycle, that is

Holφ(A) = P exp(Aφdφ) = exp(2π(L1 − LL−1)) .
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Since we have not yet involved higher spin fields we can pick the 2× 2 matrix representation of SL(2,R)
and get

exp(2π(L1 − LL−1)) = exp

2π
[
0 L
1 0

]
︸ ︷︷ ︸

X

 .

Writing out the first four terms in the expansion eX =
∑

Xn

n! , we find

X = 2π
[
0 L
1 0

]
, X2 = (2π)2

[
L 0
0 L

]
, X3 = (2π)3

[
0 L2

L 0

]
, X4 = (2π)4L2

[
1 0
0 1

]
.

We can see that because of the identity matrices we get a repeating sequence. Using this we find that

exp(X) =
∑
n=0

Xn

n! =


∑ (

2π
√
L
)2n

(2n)!
√
L
∑ (

2π
√
L
)2n+1

(2n+1)!

1√
L

∑ (
2π
√
L
)2n+1

(2n+1)!
∑ (

2π
√
L
)2n

(2n)!

 =
[

cosh 2π
√
L

√
L sinh 2π

√
L

1√
L sinh 2π

√
L cosh 2π

√
L

]
,

(7.23)
which is the same result as reached by Bañados, Castro et al [33]. We showed earlier that we get standard
AdS3 if we set L = − 1

4 . The holonomy becomes Holφ(AAdS) = −1. Now this is minus the identity, and
not the identity but it is still in the center of the group. Thus it is possible to interpret our result as a
trivial holonomy, exactly what is expected from empty AdS3 [32].

It is now possible to classify solutions with one non-contractible cycle using the holonomy. Remember
that a holonomy is only defined up to conjugation. However, all matrices that are related by conjugation
have the same eigenvalues. The characteristic equation for the holonomy matrix (7.23) is

det(exp(X)− λI) = 1− 2λ cosh 2π
√
L+ λ2 = 0 =⇒ λ =

{
e2π
√
L

e−2π
√
L .

We earlier discussed how different values of L gave rise to different solutions. Using this we may iden-
tify BTZ solutions as those with real, non-degenerate eigenvalues (L > 0). Conical singularities have
imaginary non-degenerate eigenvalues (L < 0). The special case of L = 0 led to degenerate eigenvalues
and is usually interpreted as an extremal black hole [33]. In many cases it might be cumbersome or
even impossible to evaluate the holonomy matrix exactly, as was done above. But often we do not need
the full matrix and will be satisfied with knowledge of the eigenvalues of the exponentiated matrix, that
is P

(∮
A
)
. To easily classify these eigenvalues we use the Cayley-Hamilton theorem which states that

every matrix satisfies its own characteristic equation. This means that we may express X, a general 3×3
matrix, as

X3 = α+ βX + γX2 , (7.24)

where α, β and γ are (in general) complex coefficients. To find the coefficients we consider the general
characteristic equation of X, explicitly (λ− λ1)(λ− λ2)(λ− λ3) = 0 , where λi is the i:th eigenvalue of
X. Expanding and rearranging in powers of λ, we find

λ3 = λ1λ2λ3 − (λ1λ2 + λ2λ3 + λ1λ3)λ+ (λ1 + λ2 + λ3)λ2 .

We can now use the identities

tr[X] =
∑
i

λi , det(X) = Πiλi , (7.25)

to identify the coefficients in (7.24) as

α = det(X) , β = −1
2

(
tr2[X]− tr[X2]

)
, γ = tr[X] .

If we let X ∈ sl(3) we have that tr[X] = 0 due to the fact that the generators of sl(3) are traceless. The
defining equation then becomes

X3 = det(X) + 1
2 tr[X2]X . (7.26)
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This implies that instead of finding the explicit holonomy we can compute det(X) and 1
2 tr[X2]. These

coefficients are referred to as the holonomy invariants and are often denoted with Θi, where Θ0 = det(X)
and Θ1 = 1

2 tr[X2]. We will in the next chapter often consider the case of a trivial holonomy around a
contractible cycle. If a holonomy is trivial the exponentiated matrix, X = P

(∮
A
)
, must have eigenvalues

0, 2πi,−2πi. Hence, using (7.25), it follows that

det(X) = 0 , tr[X2] + 8π2 = 0 . (7.27)
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Chapter 8

Black Holes and Wormholes in
Higher Spin Gravity
Having developed the theory of spin-2 and spin-3 gravity, and having introduced holonomies, we are now
ready to start investigating spin-3 black hole and wormhole solutions in 2+1 dimensions. First, we find a
higher spin black hole, that is a black hole that carries higher spin charge. In the limit where the spin-3
field is turned off it is a spin-2 BTZ solution. We then use a trivial gauge transformation to resolve a
conical singularity resulting in a wormhole geometry. Similarly we can transition between a black hole
and a wormhole using the same gauge transformation. Finally, we study a black hole in a wormhole
gauge, which may also be interpreted as a traversable wormhole.

We have already seen how Chern-Simons gauge theory with gauge group SL(2)×SL(2) is classically
equivalent to 2+1-dimensional Einstein gravity formulated on AdS3.1 When generalizing this spin-2
gravity theory to a spin-3 gravity theory we extend the gauge group of our Chern-Simons gauge theory
to SL(3) × SL(3). This will be equivalent to AdS3 Einstein gravity coupled to two additional higher
spin degrees of freedom, which we will refer to as higher spin charges. However, depending on how
the spin-2 subgroup SL(2) × SL(2) is embedded into the full spin-3 SL(3) × SL(3) gauge group, we
can interpret a variety of different higher spin theories from our Chern-Simons gauge theory. Hence, a
black hole solution may be interpreted differently depending on this embedding [32]. This raises difficult
questions about the physical meaning of higher spin gravity solutions. Furthermore, as mentioned in the
last chapter, the metric is not an adequate quantity to classify solutions as a trivial gauge transformation
may drastically alter its characteristic properties. For example, a black hole metric can be transformed
into a metric which cannot be interpreted as a black hole. Thus, the metric is not an observable physical
quantity in higher spin theories, as such physical quantities are necessarily gauge invariant. Instead, the
observable physical quantity that will specify a black hole or wormhole solution is the holonomy around
a non-contractible cycle, i.e. a cycle around the singularity. Such an holonomy will be non-trivial. In this
thesis we will restrict ourselves to one of the possible embeddings of SL(2)× SL(2) into SL(3)× SL(3),
namely the principal embedding.

8.1 Black holes in spin-3 gravity
Before looking for black hole solutions in our spin-3 gravity theory, we need to be more precise about
what we mean by a spin-3 black hole. We may expect the metric of a black hole to have an event horizon.
The only black hole solution in 2+1 dimensions we have encountered so far, the BTZ black hole, did not
have a curvature singularity, see section 5.3. We therefore have no reason to expect a black hole solution
in spin-3 gravity in 2+1 dimensions to have a curvature singularity.

Since the metric is not a gauge invariant quantity, a given connection may have multiple geometrical
interpretations. This gauge symmetry may be exploited to put the metric in a form which allows it to
be interpreted as a black hole. Still, we need to ask ourselves what the properties are of an interesting
black hole solution in higher spin theory. The black hole solutions we will be interested in are required
to satisfy the following properties:

• The black hole should have a smooth BTZ limit.

• It should have a Lorentzian horizon and a regular Euclidean continuation.

• It must allow for a thermodynamical interpretation.

These conditions are the same as the ones stated in [34]. The first property is perhaps the most natural
one. We already know that the BTZ black hole is a solution to spin-2 gravity theory in 2+1 dimensions.

1Technically, the gauge group corresponding to a negative cosmological constant is SL(2)×SL(2)/Z2. For our purposes
it makes no difference in omitting the Z2 factor.
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The two extra higher spin charges arose from two additional degrees of freedom, and should therefore
be independent. Hence, we should be able to smoothly set each of them to zero while keeping the other
degrees of freedom finite, i.e., the mass and angular momentum of the black hole. The second and third
conditions are more subtle, and we will completely omit a treatment and explanation of the latter.

A defining property of a black hole in general is that it has a smooth horizon. We will choose a
set of coordinates (t,ρ,φ). The ρ coordinate is a radial coordinate, i.e., ρ ∈ [0,∞). The φ coordinate
is an angular coordinate periodic with period 2π. The horizon is located at some radial distance ρh in
this coordinate system, and at the horizon the time component of the metric vanishes. A Lorentzian
signature can conveniently be turned into a Euclidean signature by the Euclidean time, tE , defined by

t = itE , (8.1)

where t is the Lorentzian time coordinate.2 Our condition above about a regular Euclidean continuation
requires that the black hole solution has a smooth geometry in Euclidean signature at ρh. This requires
the Euclidean time and angular coordinates to have a definite periodicity,

(tE ,φ) ∼ (tE ,φ) + 2π(β,βΩ) ,

where β3 and Ω are the temperature and angular potential, respectively [35]. These periodicities can be
conveniently formulated by introducing a new variable z = φ+ itE . Then we can write

z ∼ z + 2πτ ,

where τ = βΩ + iβ.
The condition about a regular Euclidean geometry at the horizon is realized by statements involving

the coordinates, and hence the metric. But we know that the metric is not gauge invariant and hence
the above conditions about the periodicities of tE and φ are not necessarily gauge invariant. However, it
is possible to translate the conditions about the periodicities of tE and φ into a gauge invariant condition
on the holonomy. The Euclidean geometry has two different cycles; the spatial cycle φ ∼ φ + 2π and
the thermal cycle z ∼ z + 2πτ . The non-contractible spatial cycle has to do with the size of the horizon
and the mass, angular momentum and the two higher spin charges defined by the holonomy around the
spatial cycle. The requirement of a smooth Euclidean horizon implies that the holonomy around the
thermal cycle is trivial. More explicitly, this condition can be formulated as

Holτ (A) = ±1 , Holτ (Ā) = ±1 , (8.2)

where 1 is the identity element of the gauge group and the holonomies are taken over the thermal cycle, as
denoted by the subscript. These conditions, which will be referred to as the trivial holonomy constraint,
can be seen as equations which define τ and constrain the connections A and Ā. One remark about the
sign of the identity element in (8.2) is in order. Minus the identity also acts trivially on the field and
simply reflects the fact that the we have omitted the factor of Z2 in the subgroup SL(2) × SL(2). In
doing so we have effectively obtained a gravity theory whose solutions are manifolds equipped with a
spin structure. Having a holonomy around the thermal cycle equal to minus the identity element means
that half integer spin particles will pick up a minus sign when translated around the contractible thermal
cycle, which is equivalent to a rotation by 2π around the horizon. This is a characteristic property of
a spin structure. However, for the principal embedding, the corresponding spin-3 theory does not have
a spin structure. The trivial holonomy constraints (8.2) then simply states that the holonomies around
the thermal cycle is exactly equal to the identity element of the gauge group [32].

Implementing the trivial holonomy constraint or calculating the holonomy around the spatial cycle
may be very difficult in practice. A way around this difficulty is to express the holonomy matrix by its
characteristic polynomial as in equation (7.26). First however, the connections we will consider allows
us to simplify the holonomy matrix a bit.

We will exclusively work with connections of the form

A = b−1ab+ b−1db , Ā = bāb−1 + bdb−1 , (8.3)
2This transformation was used (and ”invented”) by Gian-Carlo Wick (1909-1992) in his method of finding a solution

in Minkowski space from a solution in Euclidean space and vice versa. Thus the transformation t → it in the Minkowski
metric leading to an Euclidean metric (and the other way around) is referred to as Wick rotation.

3This is the inverse of the Boltzmann constant times the temperature, as usually seen in statistical physics.

44



Chapter 8. Black Holes and Wormholes in Higher Spin Gravity

where a, ā and b ∈ sl(3), and ”d” is the exterior derivative. The holonomy of A around the spatial cycle
is defined as

Holφ(A) = P exp
(∮

Aφdφ

)
, (8.4)

where Aφ is the φ component of A, i.e. the part of A proportional to dφ. Of course, an analogous
expression holds for the holonomy of Ā around the spatial cycle. If the connection A does not depend
on φ, then the integral may be evaluated directly:

P exp
(∮

Aφdφ

)
= exp(2πAφ) . (8.5)

For the particular connections (8.3) we will be considering, Aφ = b−1aφb, where aφ is the φ component
of a, and by expanding the exponential (8.5) in its Taylor series expansion we find

exp(2πAφ) = exp
(
2πb−1aφb

)
=
∞∑
n=0

(2πb−1aφb)n

n! = b−1
∞∑
n=0

(2πaφ)n

n! b = b−1 exp(2πaφ)b .

Furthermore, flat connections are only uniquely specified by their holonomies around the non-contractible
cycles of spacetime up to an overall gauge transformation, see section 7.3. If the eigenvalues of a and ā
are non-degenerate, the holonomy of A and Ā around the spatial cycle is specified by the invariants

Θ0,A = 2πdet[aφ] , Θ1,A = 2π2tr[a2
φ] , (8.6)

and
Θ0,Ā = 2πdet(āφ) , Θ1,Ā = 2π2tr(ā2

φ) , (8.7)

respecively, compare with (7.26). The eigenvalues of the connections we will be considering in this chapter
are in fact non-degenerate. Hence, these holonomy invariants, as opposed to the actual holonomy matrix
are convenient for specifying the physical invariants corresponding to a black hole (or wormhole) solution.

As for the trivial holonomy constraint, it will suffice to only consider the holonomy of the Euclidean
time component of the connection around the thermal cycle. And by the Euclidean time component
AtE of a connection A, we mean the part of the connection proportional to dtE = −idt, i.e. AtE = iAt
where At is the regular time-component of the connection. Since the connections we will consider does
not depend on time, we get

Holτ (AtE ) = P exp
(∮

τ

AtEdtE

)
= exp

(∫ 2πβ

0
AtEdtE

)
= exp(−2πβiAt) .

Once again, the holonomy matrix is only uniquely specified up to an overall gauge transformation, i.e.
an overall conjugation by an element of the gauge group. From this it follows that

exp(−2πβiAt) = exp(−2πβiat) ,

where at is the time component of a. The eigenvalues of at will be non-degenerate for the connections
considered here. Hence, we can use (7.27) with X = −2πβiat to write the trivial holonomy constraint
in a more practical form. After simplifying the resulting expression a bit, we arrive at

det(at) = 0 , 1
2β

2tr[a2
t ] = 1 . (8.8)

Analogous equations hold for Ā, although it will suffice to consider only the constraints on A due to the
symmetry of the connections we are considering in this thesis.

We have now seen how the holonomy of an SL(3) connection around a non-contractible cycle is
parametrized by two gauge invariant variables, see (8.6). In general our solution will contain four
independent charges, since we have two connections A and Ā. Two of these charges will be related
to the mass and angular momentum of the black hole while the other two will be non-trivial higher
spin charges. However, for simplicity, we will only consider a non-rotating black hole solution for which
Hol(A) = Hol(Ā). In that case the angular momentum of the black hole is zero, and since we have
reduced the total number of degrees of freedom from four to two, one of the higher spin charges also
vanishes. The black hole will then only carry mass and one higher spin charge.
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8.1.1 A black hole solution
We are now ready to investigate a non-rotating black hole solution in spin-3 gravity with higher spin
charge. This is done by constructing SL(3) connections which leads to a black hole metric. We will
consider connections of the form (8.3) with b = eρL0 and

a = a+dx
+ + a−dx

− , ā = ā+dx
+ + ā−dx

− ,

where x± = t ± φ. Here L0 is a generator of SL(3) (see Appendix E.5.2) and a± and ā± are matrix
representations of the Lie algebra sl(3). We will make a particular ansatz for the a± and the bared
counterparts, proposed by [32]:

a = [lDW2 +WW−2 −QW0]dx+ + [lPL1 − LL−1 + ΦW0]dx− , (8.9)

and
ā = [lDW−2 +WW2 −QW0]dx− − [lPL−1 − LL1 − ΦW0]dx+ . (8.10)

Here Li and Wi are generators of SL(3) given explicitly in Appendix E.5.2, and lD, lP , W, L, Q and Φ
are parameters specifying the charges of the black hole. However, as mentioned earlier a non-rotating
black hole in spin-3 gravity has only got two independent charges which are completely specified by two
independent parameters. Hence, the six parameters in our connections are not all independent of each
other. The equations of motion of Chern-Simons gauge theories state that the connections are flat, i.e.
dA+A ∧A = 0 and similarly for Ā. As a consequence we obtain the following restrictions:

Q = 2WlP
L

,
L2

l2P
= W
lD

. (8.11)

For a complete derivation of this result see Appendix J.4.1.
By first calculating the frame field by e = 1

2 (A − Ā), the spacetime interval by ds2 = 1
2 tr[e

2] and
using (8.11), we find the metric in the principal embedding which corresponds to our connections:

ds2 = −
[

4l2D
(
e2ρ − e−2ρL2

l2P

)2

+ l2P

(
eρ − e−ρ L

lP

)2
]
dt2 + dρ2

+
[

4l2D
(
e2ρ + e−2ρL2

l2P

)2

+ l2P

(
eρ + e−ρ

L
lP

)2
+ 4

3(Q+ Φ)2

]
dφ2 . (8.12)

This calculation is provided in its entirety in Appendix J.4.1.
We see that the time component of the metric (8.12) vanishes when

eρ − e−ρ L
lP

= 0 .

It follows that there is a horizon at
eρh =

√
L
lP

. (8.13)

Furthermore, the black hole approaches AdS3 with radius of curvature l
2 in the limit ρ → ∞ and there

is no curvature singularity, which is consistent with having a smooth BTZ limit.
It is still possible to restrict the parameters of the connections further by invoking the trivial holonomy

constraint (8.8). From (8.9) we can read off the at-component as

at = [lDW2 +WW−2 −QW0] + [lPL1 − LL−1 + ΦW0] .

Using the explicit form of the generators Li and Wi given in Appendix E.5.2, it is straightforward to
show that (8.8) implies

4
27(Q− Φ)3 + 2

3(Q− Φ)(lPL − 8lDW) + 4lDL2 = 0 ,

and
4
3β

2(Q− Φ)2 + 4β2(lPL+ 4lDW) = 1 .
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Solving these equations simultaneously for β2 and Φ yields

β2 = L2

4lP
(16W2lP + L3)−1 , Φ = 8WlP

L
. (8.14)

In Appendix J.4.1 we show that β is exactly the periodicity of Euclidean time that removes the conical
singularity from the horizon of the black hole metric (8.12). Thus, we have shown explicitly that the
trivial holonomy constraint is sufficient to assure a regular Euclidean horizon.

This rather simple black hole solution satisfies all of the three desired properties of black hole solutions
stated above. In particular, the BTZ black hole can be obtained smoothly by taking either the limit
lD =W = 0 or lP = L = 0.

The holonomy invariants around the spatial cycles are

Θ0,A = −Θ0,Ā = 32π
27 (Q+ Φ)3 + 16π

3 (Q+ Φ)(lPL − 8lDW) + 32πL2lP , (8.15)

and
Θ1,A = Θ1,Ā = 48π2

9 (Q+ Φ)2 + 16π2(lPL+ 4lDW) . (8.16)

These are the gauge invariant physical quantities that classify the black hole solution, and they are
related to the mass of the black hole and one additional higher spin charge.

In addition to the metric there is also an associated spin-3 field to a given set of connections A and
Ā. This spin-3 field is specified by ψ = 1

9 tr[e
3], with the frame field e given by e = 1

2 (A− Ā). The spin-3
field for the connections of our black hole solution is given explicitly in [32]. This concludes our analysis
of spin-3 black hole solutions.

8.2 Wormholes in spin-3 gravity
The theory of wormholes in higher spin gravity is, as of today, still a very unexplored area. In fact,
there have yet to be any serious attempts to properly define a wormhole solution in higher spin gravity.
Nor have the qualities of a physically interesting wormhole solution been treated to any greater extent.
Although, our aim is not to fully resolve these matters, we hope to give at least some insight regarding
these questions. Of course it is not by any means obvious that any kind of interesting wormhole solution
should even exist in spin-3 gravity theory, and in particular in 2+1 dimensions. However, previous work
by [34] has found that a black hole solution in 2+1 dimensions expressed in a particular gauge (often
referred to as the wormhole gauge) allows it to be interpreted as a wormhole. We will investigate further
this black hole solution in the wormhole gauge, as it may actually be a natural way of describing a
wormhole in spin-3 theory. Before doing so, it will be worth discussing the physical interpretation of
spin-3 gravity solutions.

As we have already seen, the metric is not a gauge invariant quantity in spin-3 gravity and hence
can not represent a physically observable quantity. Instead, the observable quantity is the holonomy
around a non-contractible cycle of spacetime. Yet, in the case of finding a black hole solution earlier, we
choose to represent a solution to our theory in a particular gauge which made it possible to interpret the
corresponding metric as one describing a black hole. A trivial gauge transformation could change the
metric to a form which does not allow for a black hole interpretation while keeping the physical observable
fixed. A solution may then have multiple geometrical interpretations. Thus, to find a wormhole solution,
we could look for a particular gauge which allows a solution to be geometrically interpreted as a wormhole
by its metric. This is perhaps the best way of defining a wormhole solution in higher spin gravity, although
the same solution may also be a black hole or something else depending on which gauge it is represented
in.

Our interpretation of the theory of higher spin gravity relies heavily on our previous knowledge of the
role the metric plays in spin-2 gravity, i.e. conventional Einstein gravity theory. There the metric is a
physical observable and describes the geometry of spacetime. In spin-3 gravity, however, the metric is no
longer a physical observable and there is also an additional spin-3 field present. Gauge transformations
may alter the form of the metric and the spin-3 field; for example a singularity may be removed from the
metric and incorporated in the spin-3 field by a trivial gauge transformation. This provides a possible
way of resolving singular metrics. However, for a better understanding of higher spin gravity theories,
we need to better understand the role of the higher spin fields and how to interpret them physically.
This is an active topic in current research of higher spin gravity and will most likely have to be resolved
before we will see any physical applications of the theory.
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With these remarks in mind, we will continue by investigating a simple wormhole solution obtained
by gauge transforming a conical singularity or a BTZ black hole to a wormhole. Then we finish our
investigation of wormholes by considering a more general ansatz which will lead to a solution which may
be interpreted as a traversable wormhole in our particular choice of gauge, although it is perhaps best
interpreted as a black hole expressed in a wormhole gauge [34].

8.2.1 A simple spin-3 wormhole
Here we will show how a trivial gauge transformation can resolve a conical singularity and also bring a
BTZ black hole to a wormhole. The connection is given by

A = b−1(L1 − LL−1)bdx+ + b−1 db , A = b(L−1 − LL1)b−1dx− + bdb−1 .

where we have a conical singularity if L ∈ (− 1
4 ,0) or a BTZ black hole if L > 0. We now perform the

trivial gauge transformation (7.17) with parameters α = α = √γ > 0. The result is the new connections

A′ = b−1(L1 − LL−1 +
√
αW−1)bdx+ + b−1 db , A

′ = b(L−1 − LL1 +
√
αW1)b−1dx− + bdb−1 .

which gives us a metric

ds2 = dρ2 −
(

(eρ − Le−ρ)2 + γe−2ρ
)
dt2 +

(
(eρ + Le−ρ)2 + γe−2ρ

)
dφ2 . (8.17)

It is straightforward to check that these new connections have the same holonomy invariants as the old
ones. The metric (8.17) has the appearance of a wormhole since none the components of the metric ever
vanish. We can thus let ρ ∈ (−∞,∞). To obtain a more familiar form we perform a change of variables:

r2 = (eρ +
√
L2 + γe−ρ)2 , b20 = 4(

√
L2 + γ) ,

which brings the metric to the form

ds2 = −(r2 − 1
2b

2
0 − 2L)dt2 + dr2

r2(1− b2
0
r2 )

+ (r2 − 1
2b

2
0 + 2L)dφ2 . (8.18)

We can clearly see a resemblance to the Morris-Thorne wormhole, see (5.21). The main difference is the
factor of r2 appearing in the denominator of dr2 and before dt2. This is simply because this wormhole is
asymptotically AdS3 as opposed to Minkowski, as can easily be seen by comparing to the AdS3 metric.
However, while not strictly a Morris-Thorne wormhole it still requires exotic mass if it is to be constructed
without higher spin as can be determined by computing the Einstein tensor from the metric. In contrast
to this, interpreting wa and ea classically and rewriting the second equation of motion(7.7) of the theory,

dwa + 1
2ε
a
bc

(
wb ∧ wc + eb ∧ ec

l2

)
= 2εafc

(
wbc ∧ wfb

ebc ∧ efb
l2

)
,

we have a candidate for an equivalent of the stress-energy tensor on the right-hand side. The right-hand
side evaluates to 0, so our equations of motion indicate that there is no equivalent to the stress-energy
tensor present in this solution. Thus, attempting to interpret the geometry in two classically equivalent
ways we obtain opposite results, demonstrating that a classical geometric interpretation requires more
work.

It is interesting to note that both the conical singularity and the BTZ black hole become wormholes
in this gauge. Notice that it does not matter if L is positive or negative, the dt2 and dφ2 terms never
vanish since r ∈ (−∞,− b0) ∪ (b0,∞).

8.2.2 A black hole in a wormhole gauge
We start by making a semi-general ansatz for the connections A and Ā of the form (8.3), with b = eρL0 ,

a = (lPL1 − LL−1 −WW−2)dx+ + (lDW2 +AL−1 + BW−2 − CW0)dx− ,

and
ā = −(lPL−1 − LL1 +WW2)dx− + (lDW−2 −AL1 + BW2 − CW0)dx+ .
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Here Li and Wi are the usual generators of SL(3) given explicitly in Appendix E.5.2, and lP , lD, L,
W, A, B and C are parameters which specify the properties of the wormhole. This ansatz is highly
inspired by our knowledge about solutions from [34] and [35], although, it is probably more natural to
make an ansatz for a solution by considering the physical meanings of the parameters. We have instead
written down an ansatz that we know will give us the desired solution, without regarding its physical
interpretation. The purpose of making such an ansatz in the first place, as opposed to just writing down
the correct solution, is solely for illustrating how to find a solution from a fairly general ansatz.

Since a pair of general spin-3 connections A and Ā has a maximum of four independent charges,
only four independent parameters are needed to specify the solution. The seven parameters used in our
ansatz can therefore not be independent.

To keep the equations a bit simpler we completely eliminate one of the parameters by choosing units
in which lP = 1. Introducing new parameters l0 = L/lP , w0 = W/lP , µ = lD/lP , α = A/lP , β = B/lP
and γ = C/lP , we write

a = (L1 − l0L−1 − w0W−2)dx+ + (µW2 + αL−1 + βW−2 − γW0)dx− ,

and
ā = −(L−1 − l0L1 + w0W2)dx− + (µW−2 − αL1 + βW2 − γW0)dx+ .

Furthermore, the equations of motion of our Chern-Simons gauge theory requires that the connections
be flat. Solving dA+A ∧A = 0 we find that

α = 8µw0 , β = µl20 , γ = 2µl0 . (8.19)

A derivation of this is provided in Appendix J.4.2. The flatness condition applied to Ā will also result
in (8.19), and no further restrictions, as a consequence of the symmetry between a and ā made in our
ansatz.

Using (8.19), we turn our ansatz to a solution of our spin-3 gravity theory:

a = (L1 − l0L−1 − w0W−2)dx+ + µ(W2 + 8w0L−1 + l20W−2 − 2l0W0)dx− , (8.20)

and
ā = −(L−1 − l0L1 + w0W2)dx− + µ(W−2 − 8w0L1 + l20W2 − 2l0W0)dx+ . (8.21)

The solution is written in the highest weight gauge, meaning that the sources and charges are explicitly
decoupled in the Chern-Simons connection.

As usual the frame field is given by e = 1
2 (A − Ā), and the spacetime interval by ds2 = 1

2 tr[e
2]. In

Appendix J.4.2 we perform these calculations in greater detail, here we simply state the resulting metric:

ds2 = −
(
[eρ + (8µw0 − l0)e−ρ]2 + 4[µe2ρ + (w0 − µl20)e−2ρ]2

)
dt2 + dρ2

+
(

[eρ + (8µw0 + l0)e−ρ]2 + 4[µe2ρ + (w0 + µl20)e−2ρ]2 + 16
3 l

2
0

)
dφ2 . (8.22)

Performing the substitutions l0 = 2π
k L and w0 = π

2kW, we reach exactly the metric stated in Kraus and
Gutperles’ ”Higher Spin Black Holes” (equation (5.8)) [34].

We see that the time component of the metric never vanishes, i.e. there is no event horizon. In fact,
the metric describes a traversable wormhole connecting two asymptotic regions at ρ → ±∞. However,
by performing a complicated spin-3 gauge transformation, the metric of the solution can be transformed
to describe a black hole with a smooth horizon. Such a gauge transformation is performed explicitly in
[35], where they also argued that the solution is that of a black hole since it satisfies the stated conditions
of a higher spin black hole. Without first giving a more complete definition of a wormhole in a higher
spin gravity theory, we can not say for sure whether or not our solutions can be properly interpreted as
wormholes. Although, we could settle for defining a wormhole in terms of the metric and then we would
have found an honest wormhole solution. However, in doing so the notion of geometry in higher spin
gravity would become even more ambiguous than it already is.
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Conclusions
In this thesis we successfully managed to express Einstein’s theory of gravity as a gauge theory in 2+1
dimensions, eventually allowing us to study interesting phenomena such as black holes and wormholes
in a higher spin toy model. Before performing this unification of gauge theory and general relativity an
essential knowledge of both theories was required, and thus we initially provided proper introductions
to these subjects.

In conventional 2+1-dimensional Einsteinian gravity we constructed a general radial symmetric solu-
tion. From this we obtained both the BTZ black hole and a conical singularity, which could be interpreted
as a free particle. Another radial symmetric solution of interest is Morris and Thornes’ traversable worm-
hole solution, which we found out required exotic matter, i.e. having negative energy density, to exist.
This fact is well-known[23] and numerous attempts have been made to resolve the issue, see e.g. [26],
[28], [36]. We investigated the possibility of using the electromagnetic field or a conformally coupled
scalar field to create the wormhole. These attempts were, as expected, unsuccessful.

Wormholes have also recently had their interest revived in the context of string theory [37], [38].
However, the complexity of string theory may be prohibitive, and as such we instead studied a higher
spin theory. Higher spin theory is considered to be the tensionless limit of string theory, and serves as
a simpler toy model [32]. To extend 2+1 dimensional Einsteinian gravity to a higher spin theory we
expressed it as a Chern-Simons gauge theory of SL(2) × SL(2), and then extended its gauge group to
SL(3)× SL(3) thus yielding a spin-3 formulation of gravity.

Exploring the consequences of our spin-3 gravity theory we found that the conventional geometry
of the spacetime described by the metric, is no longer gauge invariant. For instance we performed
a gauge transformation that deformed empty space into a geometry containing a singularity. Thus
new gauge invariant tools with which to classify our solutions were needed, leading to the concept of
holonomies. Relating the holonomy invariants of known solutions in spin-2 gravity, and requiring our
gauge transformations to preserve the holonomy, we were able to interpret the new solutions in terms of
classical objects. Specifically, we investigated the higher spin BTZ black hole, and its definition through
a trivial holonomy around the thermal cycle.

In this thesis we have also regularized the singular spacetimes of a cone yielding a wormhole. The
procedure was also shown to transform a black hole into a wormhole. Thus we have side-stepped the
problem of exotic matter and created wormholes through gauge transformations. However, it is difficult
to interpret these results since we in the process have been forced to give up the notion of gauge invariant
geometry, at least in the conventional sense. In particular, a better understanding of the higher spin
fields and its interaction with the spin-2 metric is required if we are to obtain a geometrical interpretation
of higher spin gravity theories. To this end, a metric formulation may be useful. Attempts at such a
formulation have been made, but the theory obtained is too complicated to constitute a useful toy
model [39], [40]. Another approach could be the AdS/CFT correspondence, a conjecture proposed by
Maldacena which states that string theory formulated on AdS is equivalent to a conformal field theory
on its boundary [41]. For example, it has been shown that the general (traversable) wormhole considered
in section 8.2.2 is actually an honest black hole solution using tools from the AdS/CFT correspondence.
In short, it could be shown by coupling dynamical matter to the higher spin gravity theory [42].

Another useful aspect of the AdS/CFT correspondence is that it is well known how to quantize
conformal field theories. Therefore, it provides a way of quantizing gravity theories in the form of string
theories on AdS space, by quantizing its dual CFT. Higher spin gravity theories lies somewhere in the
borderline of string theory and supersymmetry, and there is a dual CFT to higher spin gravity theories
on AdS. The CFT corresponding to our spin-3 gravity theory on AdS3 is the Wn minimal model [43],
and a natural continuation of our work would be to investigate and quantize this CFT. Undoubtedly,
there is more to be said about our black holes and wormholes solutions by analysing them in the dual
CFT.
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Appendix A

Tensors

A.1 Definition and transformation properties
Tensors are probably the most ubitiqous objects in this entire paper and are of immensely great impor-
tance in different fields of physics, not least in relativity and quantum field theory. In short tensors are
geometric objects which are used to describe linear relations of vectors, matrices or even other tensors
and that allows one to express a physical theory independent of coordinate basis. To start off simple,
consider a vector v. We may express v in a basis ei, i = 1...N according to

v =
N∑
i=1

vi · ei , (A.1)

where N is the dimension of the vector space spanned by the basis vectors ei. However, this can
be written in a more elegant manner by introducing the Einstein summation convention. Einstein’s
summation convention states that terms with the same indices imply that the terms should be summed
over for all values of the indices. In this case we may rewrite the equation above as follows

v = viei . (A.2)

Thus, essentially we just omit the summation sign when using Einstein convention.
As we stated earlier tensors are very handy when it comes to choosing coordinate systems due to its

independence of coordinate basis. A coordinate system can therefore be chosen completely arbitrarily!
However, once a tensor is attached to a given coordinate basis a transformation matrix is needed to
switch the basis. From linear algebra a coordinate basis ei is related to another basis e′i according to

e′i = T j
i ej ,

where T is the transformation matrix between the bases. Using v from our previous example we find
that its components in the basis ei

′ is given by

v′i = (T−1) ij vj .

Vectors transformed in this way are called contravariant vectors. If there are contravariant vectors then
there are of course covariant vectors as well. If u is another vector given in the basis ei, whose basis
vectors transform using the inverse transformation matrix, (T−1)ij , then its components in another basis
e′i are given by

u′i = T i
j u

j ,

and u is a covariant vector. From transformations of vectors it is not hard to generalize the transformation
properties to general tensors. In general a tensor can be seen as a tensor product of vector spaces
according to

A = Aµ1...νn
ν1....νmeµ1 ⊗ ...⊗ eµn ⊗ eν1 ⊗ ...⊗ eνm .

In order to express A in another basis we transform each basis vector with free indices according to

A′µ1...µn
ν1...νm = Tµ1

ρ1...T
µn
ρn(T−1)ν1

σ1...(T−1)νmσ1A
ρ1...ρn

σ1...σm ,

in analogy to ordinary vectors. Using the tensor product one can construct new tensors. For example a
tensor Aρµν can be constructed from tensors Bρµ and Cν :

Aρµν = BρµCν .
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Moreover tensors can be constructed by contracting indices. Consider the tensor T abbc. This is a tensor
of type (2,2) with a repeated index b, why we may use Einstein’s summation convention:

T abbc = T a1
1c + ...+ T annc = P ac ,

where we introduced the tensor P ac as the contracted version of T abbc. Note that the contracted tensor
P ac now is of rank (1,1), i.e of type (1,1). If we contract a type (1,1) tensor we retrieve a generalized
trace:

P aa = P 1
1 + P 2

2 + ...+ Pnn = tr [P ] .

A.2 Symmetries and famous tensors
In this thesis several calculations are performed using different symmetry properties of tensors. For
example, consider a tensor Aµν . If Aµν is invariant under a change of indices the µ and ν, i.e Aµν = Aνµ,
the tensor Aµν is called symmetric. On the other hand, if Aµν = −Aνµ, the tensor Aµν is antisymmetric.
A very important antisymmetric tensor is the electromagnetic tensor, Fµν , used to derive Maxwell’s
equations in tensor formalism (see section 2.1). However, it is also used as a gauge invariant quantity in
Yang-Mills theory and Chern-Simons theory.
Many calculations are simplified using the fact that a general tensor can be divided into its symmetric
and its anti-symmetric parts:

A[µν] = 1
2(Aµν −Aνµ) ,

A(µν) = 1
2(Aµν +Aνµ) ,

where A[µν] is the anti-symmetric part of the tensor and A(µν) is the symmetric part. In particular
we find

Aµν = A[µν] +A(µν) .

Returning to the electromagnetic tensor Fµν usually defined (in an abelian theory) as

Fµν = ∂µAν − ∂νAµ ,

and using the fact that Fµν is anti-symmetric and using the definitions above we deduce

Fµν = ∂µAν −Aµ∂ν = 2∂[µAν] .

This relation is used extensively in the paper. Another very useful property is that the contraction of a
symmetric and an antisymmetric tensor is identically zero. To prove this let Sµν be a symmetric tensor
and Aµν an anti-symmetric tensor, then

SµνAµν = −SµνAνµ = −SνµAνµ = −SµνAµν ,

and since the quantity is equal to itself negative we conclude it has to be zero.
In addition to contraction of tensors it is often useful in calculations to be able to raise and lower indices
on tensors. This can be done using the metric tensor, gµν (we often tend to work in Minkowski space
with gµν = ηµν). Consider a general tensor Tαβγδ. Using this tensor we may create new tensors by
applying the metric:

gµδTαβγδ = Tαβµγ ,

gµβT
αβ
γδ = Tαγδµ ,

gµαgνβg
ργgσδTαβγδ = T ρσµν .

We continue our venture by turning dual vectors into vectors and vice versa using the metric:

V µ = gµνVν ,

and
ωµ = gµνω

ν .

From these manipulations and the fact that gµν = δµν in Euclidean space we conclude that the compo-
nents of a dual vector which is transformed to a vector are the same. However, in Minkowski spacetime
this is not the case (due to the component η00 = −1).
Not only the symmetry properties of tensors are helpful when it comes to cumbersome and lengthy ten-
sor calculations. Some calculations can be very reduced with the use of other tensors. The Levi-Civita
tensor is an example of such a tensor.
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A.2.1 The Levi-Civita tensor
Our treatment of the Levi-Civita tensor follows closely the material of [44].

We start by defining the totally-antisymmetric Levi-Civita symbol in n dimensions

εµ1...µn =


+1, if µ1...µn is an even permutation of 0 1 ... n− 1
−1, if µ1...µn is an odd permutation of 0 1 ... n− 1
0, else

(A.3)

Furthermore we define the Levi-Civita symbol to have the same value in all coordinate systems, i.e. we
require it to be invariant under a general coordinate transformation;

ε′µ1...µn = εµ1...µn . (A.4)

Consider a general coordinate transformation from coordinates xµ to coordinates x′µ, denoted by xµ →
x′µ. If the Levi-Civita symbol were to transform as a tensor under such a coordinate transformation, we
then would have

ε̃′µ1...µn = ∂x′µ1

∂xν1
...
∂x′µn

∂xνn
εν1...νn =

∣∣∣∣∂x′∂x

∣∣∣∣ εµ1...µn , (A.5)

where
∣∣∣∂x′∂x ∣∣∣ is the Jacobian of the transformation. However, the Jacobian of the transformation does

not necessarily equals one for a general coordinate transformation so ε̃′µ1...µn 6= εµ1...µn in general. By
the defining property (A.4) it follows that the Levi-Civita symbol does not transform as a tensor under
a general coordinate transformation, and hence it does not consititute a proper tensor. It does however
constitute a tensor density.
Definition A.2.1. A tensor density of weight w is a quantity with components Bµ1...µp which transforms
as

B′µ1...µp =
∣∣∣∣ ∂x∂x′

∣∣∣∣−w ∂x′µ1

∂xν1
...
∂x′µp

∂xνp
Bν1...νp , (A.6)

under a general coordinate transformation xµ → x′µ.
Note how a tensor is actually a special case of a tensor density; it is a tensor density of weight zero.

Furthermore, since
∣∣ ∂x
∂x′

∣∣ =
∣∣∣∂x′∂x ∣∣∣−1

, the Levi-Civita symbol transforms as a tensor density of weight −1;

ε′µ1...µn =
∣∣∣∣ ∂x∂x′

∣∣∣∣−(−1)
∂x′µ1

∂xν1
...
∂x′µn

∂xνn
εν1...νn =

∣∣∣∣ ∂x∂x′
∣∣∣∣ ∣∣∣∣∂x′∂x

∣∣∣∣ εµ1...µn = εµ1...µn ,

as required by the defining coordinate invariant property (A.4).
By multiplying the Levi-Civita symbol by a scalar density of weight 1 we can construct a tensor.

This scalar density of weight 1 can be built from the metric tensor gµν . Consider the determinant of
the metric tensor, which we will frequently denote by g, i.e. g = det(gµν). The determinant of any
n× n matrix (or rank-2 tensor for that matter) can be expressed in index notation by the use of the
Levi-Civita symbol as

det(M) = 1
n!Mi1j1 ... Minjnε

i1...inεj1...jn ,

where Mij are the components of the matrix. Using this result we can write down an expression for the
determinant of the metric tensor in terms of the Levi-Civita symbol as following

g = 1
n!gµ1ν1 ... gµnνnε

µ1...µnεν1...νn .

Now we perform a general coordinate transformation xµ → x′µ, while remembering that the Levi-Civita
symbol is an invariant under such a transformation. The determinant of the metric tensor transforms as

g′ = 1
n!g
′
µ1ν1

... g′µnνnε
µ1...µnεν1...νn

= 1
n!gµ1ν1 ... gµnνn

∂xµ1

∂x′ρ1
...
∂xµn

∂xρn
∂xν1

∂x′σ1
...
∂xνn

∂x′σn
ερ1...ρnεσ1...σn

= 1
n!gµ1ν1 ... gµnνn

∣∣∣∣ ∂x∂x′
∣∣∣∣2 εµ1...µnεν1...νn

=
∣∣∣∣ ∂x∂x′

∣∣∣∣2 g , (A.7)
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under this transformation. By (A.6) this directly implies that g is a scalar density of weight −2, and
hence

√
|g| is a scalar density of weight −1. Now the determinant of the inverse of the metric tensor

is 1
g , and by inverting (A.7), this is a scalar density of weight 1. The totally-antisymmetric Levi-Civita

tensor may may now be defined as
εµ1...µn = 1√

|g|
εµ1...µn . (A.8)

We will consistently use the notation ε for the Levi-Civita tensor and ε for the Levi-Civita symbol.
We define the Levi-Civita symbol with downstairs indices to be numerically given by

εµ1...µn = (−1)tεµ1...µn , (A.9)

where t is the number of negative eigenvalues of the metric tensor, (a Euclidian metric will have t = 0
and a Lorentzian metric will have t = 1 or t = 3 depending on the choice of time signature). It follows
directly that εµ1...µn is invariant under a general coordinate transformation since this is true for εµ1...µn .
Performing a general coordinate transformation xµ → x′µ we show that εµ1...µn must be a tensor density
of weight 1 in order to be invariant under the transformation;

ε′µ1...µn =
∣∣∣∣ ∂x∂x′

∣∣∣∣−1
∂xν1

∂x′µ1
...
∂xνn

∂x′µn
εν1...νn =

∣∣∣∣ ∂x∂x′
∣∣∣∣−1 ∣∣∣∣ ∂x∂x′

∣∣∣∣ εµ1...µn = εµ1...µn .

Hence we can make a tensor with downstairs indices from εµ1...µn in complete analogy to the making of
the Levi-Civita tensor with upstairs indices above; we simply multiply εµ1...µn by

√
|g|, which is indeed

a scalar density of weight 1 by (A.7). We write

εµ1...µn =
√
|g|εµ1...µn . (A.10)

For consistency we should check whether or not εµ1...µn as given by (A.10) is the same tensor as εµ1...µn ,
as defined by (A.8), with all indices lowered. Indeed, since εµ1...µn is a proper tensor we can raise its
indices by using the metric tensor. Using (A.9) and (A.8) we find that

εµ1...µn = gµ1ν1 ... gµnνnε
ν1...νn = gµ1ν1 ... gµnνn

1√
|g|
εν1...νn

= g
1√
|g|
εµ1...µn = (−1)t

√
|g|εµ1...µn = (−1)2t

√
|g|εµ1...µn

=
√
|g|εµ1...µn ,

which is consistent with (A.10), thereby justifying our use of notation.
A useful identity for contracting p = n− q indices on a pair of Levi-Civita tensors is

εµ1...µqλ1...λpεν1...νqλ1...λp = (−1)tp!q!δµ1...µq
ν1...νq , (A.11)

where δµ1...µk
ν1...νk

is the generalized Kronecker-delta, defined as

δµ1...µk
ν1...νk

= δ
[µ1
[ν1
δµ2
ν2
... δ

µk]
νk] . (A.12)

By (A.8) and (A.10) it follows that

εµ1...µqλ1...λpεν1...νqλ1...λp = εµ1...µqλ1...λpεν1...νqλ1...λp ,

so (A.2.1) actually holds for both the Levi-Civita tensor and the Levi-Civita symbol, although contracting
one kind with the other will produce a factor proportional to

√
|g|. Two interesting special cases of are

the contraction of all of the indices,

ελ1...λnελ1...λn = (−1)tn! , (A.13)

and the contraction of none of the indices,

εµ1...µnεν1...νn = (−1)tn!δµ1...µn
ν1...νn . (A.14)

The identity (A.2.1) is perhaps best verified by enumerating both sides for a particular choice of
values for the indices µ1, ... , µp and ν1, ... , νp. Since both sides are manifestly totally-antisymmetric in
these indices, it follows that if they agree for one particular choice of index values, they must agree for
all possible choices of index values.
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Metric and Metric Tensors
Throughout this thesis the term metric is used extensively. In this appendix we give a brief introduction
to the metric, assuming the reader is familiar with changes of variables under the integral sign in multiple
dimensions. Through the metric, or the spacetime interval, the geometric and causal structure of a
spacetime can be determined, and thus the metric can help us define curvature, volume, distance and
other geometrical quantities. As such the spacetime interval is the fundamental object which classifies
our solutions in regular Einstein gravity.

The reader should be familiar with an object very similar to the metric from vector calculus, namely
the Jacobian integration measure. The Jacobian integration measure J is related to the metric as g =
JTJ . In general the diagonal elements of g will be positive definite in a Euclidean space unless the
Jacobian contains complex elements. In general relativity one instead assumes that the base space is a
Minkowski space. Minkowski space has the metric ηµν = diag(−1,1,1,1) in 3+1 dimensions.1 The metric
in Minkowski space is related to the Jacobian as ηJTJ . Thus, the Jacobian can be seen as measuring
the difference between a choice of coordinates and the base space on which a differential volume element
is defined.

By introducing metric components with negative sign, space and time can be combined into a single
space, called spacetime. In spacetime, the metric measures the infinitesimal distance between events,
that is a point that has a location both in space and in time. A time-like component of the metric
tensor conventionally has a negative sign, opposite to the space-like components. This allows for the
infinitesimal displacement ds2 to be 0 in multiple points, introducing the notion of simultaneity. Two
events are considered simultaneous if they are separated by ds2 = 0. In special relativity this says that
to an observer an event happens when the light it generates reaches the observer. By fixing dt2 = 0 one
recovers the usual notion of space and distance, where no two points are simultaneous.

Mathematically, we may define the metric in some coordinates xµ through an infinitesimal displace-
ment ds2 according to

ds2 = gµνdx
µdxν , (B.1)

where gµν is the metric tensor. In Euclidean space in three dimensions this is simply

gµν = δµν , (B.2)

where δµν is the identity matrix. However, in Minkowski space the metric tensor has a time-like compo-
nent, i.e. a component gµν < 02:

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (B.3)

One may also define the Minkowski metric as gµν = diag(1,−1,−1,−1), it is just a matter of conventions.
Throughout our thesis we use the signature (−,+ ,+ ,+ ...). The metric tensor gµν is commonly denoted
ηµν in Minkowski space. From now on follows a pair of examples of metrics in different coordinate
systems.

In spherical coordinates we may write down the metric directly as

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 , (B.4)

and from equation (B.4) we deduce that grr = 1, gθθ = r2 and gφφ = r2 sin2 θ, and the rest of the
elements in gµν are zero.

1The signature of the metric is just a matter of conventions, the signature (1,-1,-1,-1) is also used extensively in literature.
Throughout this thesis we use the signature (-1,1,1,1).

2We tend to be working in 2+1 dimensions in this thesis, with two spatial dimensions and one time dimension, and thus
naturally the Minkowski metric reduces to a 3 by 3 matrix, gµν = diag(−1,1,1)
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Consider the equation
x2 + y2 − z2 = ±R2 . (B.5)

This equation describes a hyperboloid with its center rotated around either the x-axis or the z-axis
depending on the sign of R. We begin with the equation x2 + y2 − z2 = +R2. We may write this as

x2 + y2 − z2 = r2 − z2 = R2 , (B.6)

where we used that x2 + y2 describes a circle with the polar radius r. Furthermore we can write down
the expression for the metric in polar coordinates (in Minkowski space) according to

ds2 = dx2 + dy2 − dz2 = dr2 + r2dθ2 − dz2 . (B.7)

Differentiating equation B.6 yields

2rdr − 2zdz = 0⇒ dz = rdr

z
. (B.8)

Using r2 − z2 = R2 we find the metric as

ds2 = dr2 + r2dθ2 − dz2 = dr2(1− r2

r2 −R2 ) + r2dθ2 = 1
1− (r/R)2 dr

2 + r2dθ2 , (B.9)

from which we note that grr = 1
1−(r/R)2 and gθθ = r2. We may also note that grr < 0 for ∀r with z 6= 0,

thus g has a time-like component. To conclude we find the metric tensor as

grθ =
[ 1

1− r2
R2

2 0

0 r2 .

]
(B.10)

The case x2 + y2 − z2 = −R2 yields, after an analogous calculation, a metric tensor g:

grθ =
[ 1

1+ r2
R2

0

0 r2 .

]
(B.11)

All elements in g are obviously ≥ 0, to compare with the other metric tensor in equation B.10 which has
a time-like component.
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Differential Geometry
Since Einstein’s discovery of general relativity, differential geometry has been of fundamental importance
to physics as it is the mathematical framework upon which the concept of spacetime is built upon. As a
field of mathematics, it is the study of calculus on differential manifolds. A manifold is a special type of
a topological space and a differential manifold is in turn a smooth manifold. The precise mathematical
definitions of these concepts is rather abstract and since we will not be needing any deeper knowledge
of this for our purposes. We refer the interested reader to [16] and [1] for a more rigorous treatment of
the field. Although, a somewhat less rigorous explanation of the concept of a differential manifold is in
order.

We can think of a differential manifold as a smooth space that may or may not be curved. Three
concrete examples of differential manifolds are Euclidean space Rn, the n-dimensional sphere Sn and the
four-dimensional Minkowski space which the theory of special relativity is founded upon. Introducing
curved spaces complicates the notion of vectors, and more general tensors, on the space. In particular
we can not think of a vector as an object connecting two different points. A resolution to this problem
is the introduction of a tangent space at each point, which is a vector space consisting of every vector at
a certain point on the manifold. This is in complete analogy to the notion of a tangent plane as a local
approximation to a curved surface. A natural basis for this tangent space is ∂µ, and a vector at a specific
tangent space can then be written as V = V µ∂µ. In the language of tensors we see that the vectors of a
tangent space are contravariant vectors. The dimension of the tangent spaces of a manifold is the same
as the dimension of the manifold itself. There is an associated vector space to each tangent space known
as the cotangent space. They consist of the dual vectors (or covariant vectors) corresponding to the
vectors (or contravariant vectors) of the tangent spaces. A natural set of bases for the cotangent space
is dxµ, and a dual vector in a cotangent space at a certain point can be written as V ∗ = Vµdx

µ.1 More
general tensors can now be constructed by the use of the tensor product as usual. The properties and
operations of tensors that we developed earlier still hold but one has to be careful and remember that
each vector or tensor is defined only in one point on the manifold. In physics we are mainly interested
in vector or tensor fields, which is a collection of tensors, one for every point on a manifold.

An important mathematical formalism we will have to introduce is the formalism of differential
forms. A great advantage of differential forms is that they allow for differentiation and integration to be
generalized from a Euclidean space to a more general differential manifold in a natural way. The next
section is devoted to developing the most important definitions and results we will be needing concerning
differential forms.

C.1 Differential forms
Differential forms, (or in short ”forms”), are a special class of tensors. More specifically; a scalar-valued
k-form is a completely antisymmetric (0,k)-tensor, thus zero-forms are scalars and one-forms are dual
vectors (or covariant vectors). More generally a completely antisymmetric (m,k)-tensor is a tensor valued
k-form with m upper indices. In this section we will almost exclusively treat scalar valued differential
forms, simply because there will be somewhat fewer indices to keep track of, although every definition
and result applies equally well to more general tensor-valued differential forms.

In terms of the basis vectors dxµ for the cotangent space a general one-form can be written as

ω = ωµdx
µ . (C.1)

The set of all k-forms form a vector space which we will denote Λk. Moreover, the space of all k-form
fields over a manifold M is denoted by Λk(M), and this also constitutes a vector space.

We would like to be able to evaluate the products of differential forms. For this purpose we define
the wedge product, which is an antisymmetric tensor product.

1The asterisk * is a common way of denoting a dual vector. We will not be working with these kinds of dual vectors in
this thesis and the asterisk will be reserved for the Hodge dual operator which we will define later in this appendix.
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Definition C.1.1. The wedge product is an operator ∧ : Λk × Λl → Λk+l. If A ∈ Λk and B ∈ Λl then
the wedge product A ∧B is defined as the antisymmetrized tensor product of A and B,

(A ∧B)µ1µ2...µk+l = (k + l)!
k!l! A[µ1µ2...µkBµk+1µk+2...µk+l] . (C.2)

As a consequence of the definition above we get the following important property of the wedge
product:

A ∧B = (−1)klB ∧A, A ∈ Λk, B ∈ Λl . (C.3)
This directly implies that the wedge product of a k-form with it self is identically zero whenever k is an
odd number. We can now express a general k-form A in terms of the basis vectors dxµ as

A = Aµ1...µkdx
µ1 ⊗ ...⊗ dxµk = 1

k!Aµ1...µkdx
µ1 ∧ ... ∧ dxµk . (C.4)

The basis vectors dxµ are one-forms so from property (C.3) it follows that dxµ1 ∧ ... ∧ dxµk = 0 if
any of the wedged basis vectors are identical. Constructing linearly independent k-form fields on a n-
dimensional manifold M is therefore equivalent to picking k of the n different basis vectors. It follows
that the dimension of Λk(M) is n!/(k!(n− k)!). Note that if k > n then at least two of the wedged basis
vectors in (C.4) above must equal, since there are only n different basis vectors, and such a k-form is
therefore identically zero.

One final remark; since the quantity dxµ1 ∧ ... ∧ dxµk is completely antisymmetric it extracts the
antisymmetric part of the coefficients Aµ1...µk in (C.4). Thus, in general, even if the coefficients Aµ1...µk

are not antisymmetric, we have the relation

Aµ1...µkdx
µ1 ∧ ... ∧ dxµk = A[µ1...µk]dx

µ1 ∧ ... ∧ dxµk . (C.5)

As mentioned earlier one of the great advantages of differential forms is that they allow for differen-
tiation and integration. We are now ready to define a derivative operator called the exterior derivative.

Definition C.1.2. The exterior derivative is an operator d : Λk → Λk+1 defined as an antisymmetric
normalized partial derivative,

(dA)µ1...µk+1 = (k + 1)∂[µ1Aµ2...µk+1] . (C.6)

An important consequence of this definition is that d2A = 0 for any k-form A, (often simply denoted
as d2 = 0). This follows from the antisymmetry property of the exterior derivative and the fact that
partial derivatives commute. The linearity property of the partial derivative is inherited by the exterior
derivative. Note that the exterior derivative of a zero-form is just the familiar differential of a scalar
function. Another property of the exterior derivative that follows from the definition is that it satisfies
the Leibniz product rule,

d(A ∧B) = dA ∧B + (−1)kA ∧ dB, A ∈ Λk, B ∈ Λl . (C.7)

A k-form A is said to be closed if dA = 0 and exact if A = dB for some (k − 1)-form B. All exact
forms are closed since d2 = 0 but the converse is not true in general. In Minkowski space all closed forms
are exact except for zero-forms which cannot be exact since there are no k-forms for negative integers
k. When we have a k-form expressed in terms of the basis vectors dxµ, as in (C.4), there is a more
useful representation of the exterior derivative than the one given in the definition above. In terms of
the basis vectors for the cotangent space and tangent space the exterior derivative can be represented as
d = dxµ∂µ ∧ [ ], where any k-form can be inserted in to the square brackets. As a demonstration of this,
consider a general k-form A of the form (C.4). The exterior derivative of A can then be expressed as

dA = dxµ∂µ ∧A = dxµ1∂µ1 ∧
1
k!Aµ2...µk+1dx

µ2 ∧ ... ∧ dxµk+1 = 1
k!∂µ1Aµ2...µk+1dx

µ1 ∧ ... ∧ dxµk+1 .

We see that the above representation of the exterior derivative is indeed equivalent to our definition
(C.6).

In the context of gauge theory it is useful to define the graded commutator for Lie algebra-valued
forms:

Definition C.1.3. For Lie algebra-valued p- and q-forms ω and η, we define the graded commutator [·,·]
according to

[ω,η] = ω ∧ η − (−1)pqη ∧ ω . (C.8)
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There is another important operator on forms to be defined, namely the Hodge dual operator (or
Hodge star operator).

Definition C.1.4. Let A be a k-form on an n-dimensional manifold M . The Hodge dual operator
∗ : Λk(M)→ Λn−k(M) is defined in terms of the Levi-Civita tensor ε as

(∗A)µ1...µn−k = 1
k!ε

ν1...νk
µ1...µn−k

Aν1...νk . (C.9)

Since the Levi-Civita tensor is dependent on the metric of the manifold, so is the Hodge dual operator,
(see Appendix A.2.1 for a treatment of the Levi-Civita tensor). It is worth noting that the dimensions
of Λk(M) and Λn−k(M) are equal since the number of ways of picking k of n basis vectors equals the
number of ways of picking n− k of n basis vectors, (see the discussion after (C.4)). If we want to apply
the Hodge dual operator to a k-form A expressed in terms of the coefficients Aµ1...µk and basis vectors
dxµ, as in (C.4), it may be more convenient to use the following formula, (as opposed to the definition
(C.9)):

∗ (Aµ1...µkdx
µ1 ∧ ... ∧ dxµk) = 1

(n− k)!Aµ1...µkε
µ1...µk

µk+1...µn
dxµk+1 ∧ ... ∧ dxµn . (C.10)

It can be shown that the Hodge dual satisfies the following relation

A ∧ ∗B = B ∧ ∗A . (C.11)

As a specific example we can consider differential forms on the three-dimensional Euclidean space R3.
The Hodge dual of two one-forms A and B is

∗(A ∧B)k = εijkAiBj .

Since there is no distinction between contravariant and covariant vectors in Euclidean space, one-forms
are just vectors. The operation above on A and B is therefore just the conventional cross product.

Earlier we mentioned that differential forms allow for differentiation and integration to be defined
operations on a general differential manifold. So far we have only been concerned with differentiation
by the exterior derivative operator. As we will not need a theory of integration on a general differential
manifold, we will not treat this subject to any greater extent. However, we will at least mention the
relation between differential forms and the volume element dnx through the Levi-Civita tensor density,
and state the general Stokes theorem.

Recall how in ordinary calculus on the Euclidean space Rn, the volume element dnx transforms as

dnx′ =
∣∣∣∣∂x′∂x

∣∣∣∣ dnx ,
under a change of coordinates x → x′. Here

∣∣∣∂x′∂x ∣∣∣ is the Jacobian of the coordinate transformation.
From (A.6) we see that the volume element transforms exactly as a tensor density of weight one. On a
n-dimensional manifold, however, the integrand is really a n-form. Thus we need to construct a n-form
from the tensor density dnx. Since a n-form is an antisymmetric tensor, an invariant object, we should
try to construct an object with these qualities from the volume element. This can be done by multiplying
the volume element with an antisymmetric tensor density of weight −1. In Appendix A.2.1 we derived
such an object, the Levi-Civita symbol εµ1...µn . A n-form is related to the volume element by

dxµ1 ∧ ... ∧ dxµn = εµ1...µndnx . (C.12)

This provides a way of converting an integral over a general differential manifold to an integral over
Euclidean space, where the usual results of ordinary calculus applies.

Finally, we state the general Stokes theorem:∫
M

dω =
∫
∂M

ω , (C.13)

where ω is a differential form defined on a differential manifold M with boundary ∂M . All the familiar
integration theorems of vector calculus, such as Greens theorem, Gauss theorem and Stokes (not so
general) theorem are actually special cases of C.13.
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C.2 Maxwell’s equations in differential forms
As another illustration of differential forms we can consider the covariant form of Maxwell’s equations.
As we have seen in 2.1 Maxwell’s equations can be stated as two tensorial equations, containing the
antisymmetric electromagnetic field strength Fµν and the four-current Jµ. These tensorial equations are

∂νF
µν = Jµ , (C.14)

and
∂[µFνσ] = 0 . (C.15)

In the formalism of differential forms the electromagnetic field strength is a two-form F = 1
2Fµνdx

µ∧dxν .
From the definition of the exterior derivative above we see that equation (C.15) is nothing but the
statement that F is closed, that is, dF = 0. Since Maxwell’s theory of electromagnetism is formulated
on Minkowski space, it follows from the discussion above that F must also be exact, which means that it
can be written as F = dA for some one-form A. This one-form A is nothing but the dual of the familiar
four-vector potential Aµ. We might have started from the vector potential one-form A. Then equation
(C.15) would have followed as an identity of the formalism. Equation (C.14) can in turn be expressed
as an equation between 3-forms by the use of the Hodge dual operator as d∗F = ∗J . Here J = Jµdx

µ is
the current one-form. Let us prove this equation. First we begin by calculating ∗F using (C.10) above.
The result is

∗F = ∗
(

1
2Fµνdx

µ ∧ dxν
)

= 1
(4− 2)!

1
2Fρσε

ρσ
µνdx

µ ∧ dxν = 1
4F

ρσερσµνdx
µ ∧ dxν .

Applying the exterior derivative to this expression, and change some of the dummy indices, yields

d ∗ F = dxµ∂µ ∧
(

1
4F

αβεαβνρdx
ν ∧ dxρ

)
= 1

4∂µF
αβεαβνρdx

µ ∧ dxν ∧ dxρ .

Next we calculate the Hodge dual of the one-form J . Using (C.10) once again we find

∗J = ∗(Jµdxµ) = 1
(4− 1)!Jσε

σ
µνρdx

µ ∧ dxν ∧ dxρ = 1
6J

σεσµνρdx
µ ∧ dxν ∧ dxρ .

It is not immediately obvious from the expressions above for d∗F and ∗J that the equation d∗F = ∗J
is equivalent to ∂µF νµ = Jν . To see that this is indeed the case, we apply the Hodge dual operator to
both sides of the equation d∗F = ∗J . Starting with the left hand side, we find

∗d ∗ F = ∗
(

1
4∂µF

αβεαβνρdx
µ ∧ dxν ∧ dxρ

)
= 1

(4− 3)!
1
4∂µF

αβεαβνρε
µνρ

σdx
σ

= 1
4∂µF

αβεαβνρε
µνρκgκσdx

σ

= 1
4∂µF

αβεαβνρε
µκνρgκσdx

σ

= −1
2∂µF

αβδµκαβgκσdx
σ

= −1
2∂µ(Fµκ − Fκµ)gκσdxσ

= ∂µF
κµgκσdx

σ

= Jκgκσdx
σ

= Jσdx
σ = J . (C.16)

Here we have used properties of the Levi-Civita tensor (see Appendix A.2.1) as well as the covariant
inhomogeneous Maxwell equation (C.14)). Now we compute the Hodge dual of the right hand side of
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the equation d∗F = ∗J . The steps are

∗ ∗ J = ∗
(

1
6J

σεσµνρdx
µ ∧ dxν ∧ dxρ

)
= 1

(4− 3)!
1
6J

κεκµνρε
µνρ
σdx

σ

= 1
6J

κεκµνρε
µνρ

σdx
σ

= 1
6J

κεκµνρε
µνρτgτσdx

σ

= −1
6J

κεκµνρε
τµνρgτσdx

σ

= Jκδτκgτσdx
σ

= Jσdx
σ = J . (C.17)

Properties of the Levi-Civita tensor were once again used in this calculation, (see Appendix A.2.1). We
have now proved by (C.16) and (C.17) that ∗(d∗F ) = ∗(∗J), and since the Hodge dual operator is
bijective it follows that d∗F = ∗J .

As a summary, Maxwell’s equations can be formulated in terms of differential forms by

dF = 0 , (C.18)

and
d ∗ F = ∗J . (C.19)

Note that in vacuum, where J = 0, these equations become invariant under the ”duality transformations”
F → ∗F , ∗F → −F . There is much more to be said about this and for more information we refer to
[16]. Finally, the gauge invariance of Maxwell’s theory is incorporated in the formalism by the fact that
d2 = 0. This implies that the equations will be invariant under the transformation A → A+df for any
zero-form (scalar) f , since the equations only involve exterior derivatives of the field strength F = dA
and its Hodge dual.
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Lagrangians in Field Theory
In this thesis Lagrangians, or to be more specific, Lagrangian fields are frequently used to derive equations
of motion of systems involving scalar fields, vector fields or more general tensor fields. The term La-
grangian usually refer to discrete systems, where the Lagrangian is a function of generalized coordinates
(often denoted qi), whereas Lagrangian field density is the correct term to use in the continuous case.
However, for the sake of simplicity and due to the fact that we have considered only systems with infinite
degrees of freedom, i.e. continuous systems, we simply refer to Lagrangian field densities as Lagrangians.
Nevertheless, it is important to state the less obvious differences between the discrete Lagrangian and
the Lagrangian field density. Lagrangian mechanics, or analytical mechanics, is a reformulation of the
classical Newtonian mechanics where one expresses the physics through so called action integrals. The
action integral, commonly denoted S, is defined as

S =
∫
Ldt , (D.1)

where L = T − V is the scalar Lagrangian depending on the kinetic energy (T ) and the potential
energy (V ). By demanding the principle of least action and thus requiring that the Lagrangian is a
stationary point of the action the system’s development can be determined. In other words, the action
is invariant under an infinitesimal change in the Lagrangian, i.e. δS = 0. Using this one can derive the
Euler-Lagrange equation

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 , (D.2)

where we introduced generalized coordinates qi and velocities q̇i. This Euler-Lagrange equation, however,
is the equation of motion for a discrete system with finite degrees of freedom. To establish the behavior
of a continuous system one has to define the Lagrangian field density. The definition of this is easily seen
from the action integral:

S =
∫ (∫

L dnx
)

dt =
∫
L dnxdt , (D.3)

where L is the Lagrangian field density. To retrieve the scalar Lagrangian L one therefore has to
integrate the field density over the whole space. The Lagrangian field density is a very powerful tool
when it comes to developing gauge theories. If L (or more precisely the action) is invariant under a
symmetry transformation it follows that the equations of motion (the corresponding Euler-Lagrange
equations in the continuous case) are invariant as well.

As an example of a field Lagrangian we will explicitly construct the Klein-Gordon Lagrangian, often
denoted LKG. In order to do this we will first derive the Klein-Gordon equation and then guess the
correct Lagrangian. The Klein-Gordon equation was actually first written down by Schrödinger before
he settled on his most famous equation, the Schrödinger equation. The equation was then rediscovered
in 1926 by Klein1 and Gordon2in an attempt to create a relativistic theory of the electron. Nowadays we
know that this endeavour was doomed to fail since the Klein-Gordon equation describes particles of spin
0, not of one half. To derive the Klein-Gordon equation we start from Einstein’s famous energy identity,
with c = 1

E2 = m2 + p2 ,

wherem is mass and p is momentum. We then perform the standard substitutions of quantum mechanics
(with ~ = 1)

p 7→ −i∇ E 7→ i
∂

∂t
.

1Oskar Klein (1894-1977) was a Swedish theoretical physicist most famous for Kaluza-Klein theory, a unified theory of
electromagnetism and gravity.

2Walter Gordon (1893-1939), German physicist.
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Since a derivative does not make much sense unless it has a function to act on we also introduce a wave
function, φ. Rearranging some terms we reach the equation

2φ−m2φ = 0 ,

where we have introduced the d’Alembert operator defined as 2 ≡ ∂µ∂µ = − ∂2

∂t2 + ∇2. To derive the
Lagrangian we practice the fine art of trial and error, guessing our way to the correct answer:

LKG = −1
2∂

µφ∂µφ−
1
2m

2φ2 .

That this indeed does give us the Klein-Gordon equation is easily seen by applying the Euler-Lagrange
equation. Explicitly

∂LKG
∂φ

− ∂µ
∂LKG
∂(∂µφ) = m2φ− ∂µ∂µφ = 0 .

The reason for our particular sign convention can be understood by writing out the whole derivative
term explicitly

−1
2∂

µφ∂µφ = 1
2(+ ∂2

∂t2
−∇2)φ .

Since it is natural to associate 1
2
∂2

∂t2φ with kinetic energy we choose this term positive since we define
the Lagrangian (from analytical mechanics) as L = T − V .
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Group Theory
In this appendix we give an introduction to group theory as it is applied in physics. We will be covering
the basic definition of a group, and provide some additional definitions. After this we give a brief
introduction to representation theory, and then discuss a special class of groups called Lie groups. A Lie
group is a group that is also a differential manifold, which is of fundamental importance in physics. To
provide a more thorough understanding and some physical context, we also provide a cursory introduction
to group manifolds and spin representations. The chapter is then concluded with explicit calculations of
Lie algebras for use throughout the thesis.

Definition E.0.1. A group is defined as a set of unique elements (G) which together with an operation
(∗) fulfills the following:

Closure : if a and b ∈ G, then a ∗ b ∈ G.

Associativity : ∀a, b and c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

Unit element : there exists an object e ∈ G such that a ∗ e = e ∗ a = a.

Inverse element : for each a ∈ G, there is an element b ∈ G such that a ∗ b = b ∗ a = e.

The most common example of an easy to understand group is the set of all integers combined with the
operation of addition. The sum of two integers is always an integer, and we already know that addition
is associative. The unit element of the group is 0, since adding it to any integer will yield that integer
as a result. Finally, the inverse element of any integer is just the same integer with opposite sign.

In physics we use the group structure to express certain symmetries of a system, such as invariance
under a rotation, or Lorentz invariance. It can be shown that, with an appropriate operator, these
symmetries can be expressed as groups and represented as matrices. Group theory can then be used to
find the equations of motions for a system purely by using the symmetries that the theory possesses.

To make use of group theory there are some tools we need to understand and use, so we continue
with a few more definitions:

Definition E.0.2. A group is called abelian if the elements commute with regards to the group oper-
ation (∗), that is:

∀a,b ∈ G : a ∗ b = b ∗ a .

This is important because the difference between what mathematical tools are applicable to abelian
and non-abelian groups is very big. A prime example of a non-abelian group is the set of all invertible
n×nmatrices combined with the matrix multiplication operator. The difference is also readily observable
in sections 2.2 and 3.

Definition E.0.3. If G and H are two groups with the same group operator (∗), H is said to be a
subgroup of G if

a ∈ H ⇒ a ∈ G

There are always two trivial subgroups; the unit element and the group itself.

Definition E.0.4. A map ψ : G 7→ H is a homomorphism if

gi ∗ gj = gk ,

and
ψ(gi) ∗ ψ(gj) = ψ(gk) .

where gi, gj , gk ∈ G, ψ(gi) ∗ ψ(gj), ψ(gk) ∈ H. If ψ is also bijective it is an isomorphism, which we
denote with G ∼= H.
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E.1 Representation theory
The most simple, but perhaps most instructive example of a continuous group is the group of all rotations
in two dimensions. While we can write down a general element of the group of all rotations in two
dimensions as g(θ), where θ is a continuous parameter, we would like to construct a more explicit
representation. To do this we associate each element of the group with a matrix, taking the matrix
multiplication as the group operator. If we fix a coordinate system we may express g(θ) with the
rotations matrix R(θ) defined as

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
.

The idea of associating group elements with matrices is formally known as representation theory. In
mathematics group theory and representation theory can certainly be considered different subjects but
in physics a distinction is seldom made.

Now that we have introduced the idea of representing group elements with matrices we are ready to
continue. While it was easy to write down the rotation matrix in two dimensions we would certainly
like to be able to rotate things in more than one plane. Since our intuition as humans is for the most
part only good in two to three dimensions we would like to find a general way of constructing rotation
matrices in arbitrary dimension. Thus, we must ask ourselves what property defines a rotation. The
common answer is that a rotation is a transformation that preserves the length of vectors. Thus we want
to find all matrices that leaves the quantity xTx invariant. We consider an arbitrary transformation with
a matrix M

xTx 7→ (Mx)T (Mx) = xTMTMx .

Now, if this quantity is to be equal to xTx we must have MTM = 1. We call matrices that satisfies
this condition orthogonal. But we are not done, if we take the determinant of the defining equation of
a orthogonal matrix we find that det(M) = ±1. Matrices which switch parity are orthogonal matrices
with determinant −1. To exclude these we also demand that a rotation matrix M satisfies det(M) = 1.
These two demands are usually summarized by saying that a rotation is an element of the group SO(n)
where S stands for special, meaning that we have a determinant of one. O is for orthogonal and n is the
dimension of the matrix and, obviously, of the space.

E.2 Lie Groups
In physics we are mostly interested in continuous groups. A simple example apart from rotations are
the group of real numbers. Of special interest are the continuous groups known as Lie groups (named
after the brilliant Norwegian mathematician Sophus Lie (1842-1899)), as they are differential manifolds
meaning they describe some continuous geometry. This allows us to perform certain operations on the
group manifolds, namely integration and differentiation. Lie groups are defined as follows:

Definition E.2.1. A Lie group (G) is a finite-dimensional differential manifold with an associated
smooth multiplication map:

(gj ,gi) ∈ G×G→ gigj ∈ G

and a smooth inverse map
g ∈ G→ g−1 ∈ G

that satisfy the group axioms in E.0.1.

When we construct the covariant derivative in section 2.1 there is a necessity for a theory of the
first spatial derivative of the transformations corresponding to the Lie groups. We refer to these terms
as being Lie algebra-valued. The theory regarding these objects is that of Lie algebra. The Lie algebra
can be seen as a minimal representation of a group using group elements infinitely close to the identity
element as generators that can span the entire group.
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Definition E.2.2. A Lie algebra g is a vector space which has a bilinear mapping [.,.] : g× g 7→ g such
that:

For all X,Y ∈ g
[X,Y ] = −[Y,X] .

The Jacobi identity,
[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y ]] = 0 .

The objects X,Y, Z of this definition are usually denoted Ti where i is some index, and are called
generators. The brackets([.,.]) are generally referred to as Lie brackets.

Now, how can we construct our original rotation matrix from these generators? To proceed we will
have to use a idea, courtesy of Sophus Lie. Lie proposed that instead of performing the whole transfor-
mation at once, we can split it into many small transformations. Let U(φ) be a rotation transformation
and, as discussed before, also a matrix. For a small transformation we may expand our transformation
around the identity as

U(δφ) = 1+ δφT .

Now we can express a full transformation U(φ) by first dividing up the parameter in N pieces, φ = Nδφ.
To compensate we of course have to perform the transformation N times. We can now take the limit as
N tends towards infinity of N infinitesimal transformations performed in succession:

U(φ) = lim
N→∞

(1 + φT

N
)N .

The infinity-limit on N defines the exponential, so we have

U(φ) = eφT .

We see that to construct a full transformation we only need to find the generator and then exponentiate
it. It is important that the exponential of a matrix should be interpreted as an infinite series according
to

eX =
∞∑
i=0

Xn

n! .

Let us return to our rotation matrix and find it again using the method described above. First we need
to find the generator T . By expanding the defining equation for SO(2) infinitesimal we find

(1+ iδφT )T (1+ iδφT ) = 1 =⇒ TT + T = 0 ,

if the equation is to hold to first order. Now, there are not many 2 × 2 matrices which satisfy this
condition. Truth is, down to a scale factor, c, there is only one:

T = c ·
[

0 1
−1 0

]
.

Now, using the exponential equation we find

eφcT =
∑ (φcT )n

n! =
[∑

n=1
(−c)(n+1)(φ)2n

(2n)!
∑ (−c)n+1(φ)2n−1

(2n−1)!

−
∑ (−c)n+1(φ)2n−1

(2n−1)!
∑ (−c)n+1(φ)2n

2n!

]
c=1

=
[

cosφ sinφ
− sinφ cosφ

]
,

where we in the last step see that we need to set c = 1 to get the rotation matrix out of our endeavour.
We have managed to retrieve the classical rotation matrix, and now you may wonder for which groups
are these manipulations actually allowed. It turns out that this procedure works for any group whose
elements we may write as U(φ1,φ2,..φn) given that the parameters are continuous and that there exists
U(φ1,φ2,..φn) = 1 for some set of φ. This restriction is the same as saying that the parameters define a
differentiable manifold, as a manifold consisting of a set of orthogonal, continuous parameters is trivially
differentiable.
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Now that we have confirmed that Lie’s claim holds we can do this the other way around! Remembering
that U(φ) = eTφ, differentiating both sides with respect to φ and then letting φ→ 0 we get:

d
dφU(φ) = TU(φ) , (E.1)[

d
dφU(φ)

]
φ=0

= T · U(0) , (E.2)

since U is a transformation around the unit element U(0) is just the identity, giving us an expression for
the generator T in terms of the parametrized representation matrix.

Now we have only discussed groups with one parameter, so we turn our attention to groups with
multiple parameters. For groups with multiple generators we can further develop our understanding of
them by attempting to combine them. We begin with expanding the group operator according to

Ua(δφ) = e(Ta δφa) = 1 + Taδφa + 1
2T

2
a (δφa)2 .

Using this notation we can combine two generators Ta and Tb:

U−1
b U−1

a UbUa = 1 + δφaδφb[Ta,Tb] + ... .

We can choose to ignore higher order terms because we have assumed δφa, δφb to be small. Since the
group is closed [Ta,Tb] must either be a group generator or zero. We see from this that

[Ta, Tb] = fab
cTc , (E.3)

must hold. Tc denotes some arbitrary group generator for the same group as Ta, Tb. The constants,
fab

c are called the structure constants. It can be shown that fabc is antisymmetric in its three indices,
although some care needs to be taken when exchanging raised and lowered indices. The structure constant
provides a representation independent characterization of a Lie group. This is a good time to look again
at the definition of a Lie algebra. The commutator is the bilinear operation in its definition and it fulfills
the Jacobi identity.

Finally, we note that the sum of two elements in the Lie algebra are in the Lie algebra, since the
product of two elements in the Lie group is in the Lie group, and multiplication corresponds to addition
in the exponent.

E.2.1 Killing forms
So far we have introduced the Lie bracket of a Lie algebra so that given two elements in the algebra we
may construct a third one. However, we may ask for another operator that given two group elements
returns a scalar. What we are seeking is thus a generalisation of the scalar product from linear algebra.
Before we define this operator we first introduce a new notation for the Lie bracket with

adx(y) = [x,y] .

The operator adx(y) is called the adjoint action. The reason we introduce this notation is because the
use of Lie brackets may become cumbersome. For example consider the expression

[x[x,[x,[x,y]]]] = adx ◦ adx ◦ adx ◦ adx(y) = ad4
x(y) .

It is clear that the right hand side is a more appropriate notation. We are now ready to give a definition:

Definition E.2.3. Given a finite-dimensional Lie algebra g its Killing form is the symmetric bilinear
form given by the formula

κ(x,y) = tr[adx ◦ ady] .

Remember that in our notation this reads adx ◦adx = [x[y,·]]. The Killing form is therefore a matrix,
given a basis. Of course we shouldn’t be surprised, there is after all a trace in the definition. Now, let us
consider the special case of the adjoint action of a generator. To emphasize we write x = T a. Its action
on another generator is by definition

adTa(T b) = [T a,T b] = fabcT
c ,
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where f is the structure constant. Since all elements of a Lie algebra can be written as a linear combina-
tion of the generators we can use these as a basis. Construct a vector, x, where the a:th entry indicates
the multiplicity of T a. Then we may write down a matrix for the adjoint action as

(adTa)bc = fabc .

Just applying the same idea we find

adTa ◦ adT b = (adTa)cd(adT b)de = facdf
bd
e ,

and we thus reach
tr[adTaadT b ] = tr[facdf bde] = facdf

bd
c ,

where we have summation over c and e.

E.3 An introduction to group manifolds
The properties of the group manifold has some implications for the physics that come from that group.
Because of this it is necessary to be at least somewhat familiar with group manifolds, so we introduce
them here. In general, the group manifold is an isomorphism class of manifolds, rather than some
particular manifold. One way of finding a manifold that is part of this isomorphism class for a matrix
representation of a group is by finding the parameter space of the matrix representation. To build
intuition we will go over a few examples and discuss them afterwards.

The purpose of this section is for the reader to gain some understanding for the group manifold, a
general manifold and the direct product. Examples of direct products relevant throughout this thesis are
SL(2) × SL(2) and SL(3) × SL(3), which are the basis of the theory of Chern-Simons gravity that we
present.

The special unitary group of order 2 can be written on the following parametric form[
a+ ib −c+ id
c+ id a− ib

]
,

with the restriction a2 + b2 +c2 +d2 = 1 coming from the restriction on the determinant. It is easily seen
that the group manifold of SU(2) in this representation is a hypersphere. The hypersphere is isomorphic
to the three dimensional ball by isomorphisms of the form

x = a ,

y = b ,

z = c ,

r2 = 1− d2 .

We see this because all of a,b,c,d are already limited by values between 0 and 1, and we’ve transferred
the equation to one of the form x2 + y2 + z2 = r2 where the radius can be between 0 and 1.

The group SO(1,1) is just the group of all Lorentz tranformations in one direction. The transformation
matrix can be written as [

p s
s p

]
where the orthogonality condition is taken care of by the Minkowski metric. The determinant re-

striction gives us the parameter restriction p2− s2 = 1 which defines the unit hyperbola. The hyperbola
is an obvious example of a non-compact Lie group, as the hyperbola continues off into infinity meaning
there is no well-defined final point. It is also not fully connected, because the allowed values for p are
p ≤ −1, p ≥ 1, leaving a hole in the middle.

As we have seen in E.5.1 rotations in three dimensions can be represented as a multiplication of three
rotations around different axes by some angle. Each of these matrices takes as a parameter an angle,
that can take any real value. What is interesting is that this space is degenerate since two points 2π
apart in the parameter space correspond to the exact same transformation. This means that all points
in the R3 space are identified with a set of points contained within a sphere of radius π, so the group
manifold of SO(3) is actually a sphere with radius π.
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We can choose this sphere to be centered on the origin, so that the range of each of the parameters
is given by θ2 + φ2 + ψ2 ≤ π2. At this point we have almost defined the group manifold of SO(3). To
complete the description we have to note that a rotation by π and −π around some axis is equivalent,
so the points on the boundary of the ball are identified with their antipodal points.

In conclusion, the group manifold of SO(3) is a ball, of radius π in the parameter space of the matrix
representation. The antipodal points of the surface of the ball are connected by an identity, that is, we
identify them as the same point. An important consequence of this is that SO(3) is not simply connected.

On a simply connected manifold any closed curve can be shrunk to a point by a continuous transfor-
mation. If we connect two antipodal points of the ball with some curve, that curve is closed, but cannot
be continuously shrunk to a point since its’ end points have to remain antipodal or the closed curve will
open up. It turns out that if we let a curve run through two adjacent spheres in the parameter space this
curve will in fact be shrinkable to a point. To show this we will provide a simple illustration, restricting
us to the θ − φ axis cross-section of the sphere for graphical simplicity.

Beginning with a straight line from φ = −3π to π, we can continuously deform the line, keeping the
points φ = −3π,−π, π stationary. We can do this until the lines are on the boundary of the sphere as in
stage 2 in the image. We then use the identity to transfer the line at the boundary of the extra sphere
to the primary sphere. We now have a curve that can be trivially closed by continuous deformation, as
is illustrated below

Comparing the manifolds of SO(3) and SU(2) we see that they are very similar, and they also have
the same Lie algebra. This connection is no accident, if two groups have sufficiently similar manifolds
their Lie algebra is the same. This also shows us a clear example of a group property not given by the
Lie algebra, namely simple connectedness.

With this introduction to group manifolds we are ready for another definition:

Definition E.3.1. The direct product, G×H between the groups G,H with operators ∗,· is defined as
follows

Elements in the new group are defined according to the Cartesian product, as (g, h) : g ∈ G, h ∈ H
on these elements we define the group operator (?) according to

(g,h) ? (g′,h′) = (g ∗ g′,h · h′) .

Some obvious consequences of this definition is that the direct product always has the two constituent
groups as subgroups, corresponding to elements of the type g,1 and (1,h). In addition, it is clear that the
Lie algebra of the composite group is g ⊕ h because the subgroups approach the identity independent
of each other. The group manifold of the composite group is the Cartesian product of the constituent
group manifolds. In the examples in fig. E.1 the isomorphism symbol is used instead of equality because
we are only interested in the isomorphism class of a manifold.

Furthermore, the definition of the direct product makes it straightforward to construct a matrix
representation of the composite group. Picking two matrix representations of G and H according to
TG, TH it is easy to see that the block diagonal matrix is in accordance with the definition:[

TG 0
0 TH

]
.
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Figure E.1: Two different direct products between manifolds. The direct product of a line and a circle
is shown to be a cylinder. The direct product of a circle and a disk embedded in two separate spaces
should normally be embedded in 4-space, but it is isomorphic to the solid torus in three dimensions.

E.4 Spin representation
In this thesis we discuss Yang-Mills theory, which is formulated in terms of a group transformation acting
on an abstract vector field. In section 2.2 the field was a scalar, and in 3.1 it was unspecified. Apart
from the scalar field, classifications include tensor- and spinor fields. In this section we provide a basic
discussion on classifying fundamental fields by their spin j. A similar classification can also be applied
to the symmetry group itself, independent of whether it acts on any fundamental field. In this case, the
group is a spin j representation of the special orthogonal group SO(n,k). For the gauge group itself to
be classified in this manner it must be decomposable into subgroups that are isomorphic to SO(n,k).

The importance of this classification lies in quantum physics, where the spin-statistics theorem re-
stricts the statistics of a quantized field theory. In particular, quantized spinor fields must obey Fermi-
Dirac statistics and quantized scalar and tensor fields must obey Bose-Einstein statistics. That is, a
quantized spinor field obeys the Pauli exclusion principle while scalar and tensor fields do not.

The definitions of scalars, spinors and tensors all specify how they transform under a rotation. For
some arbitrary field, we can find out how it transforms under a rotation by relating the generators of its
gauge group to the generators of the rotation group. For any gauge group, if we can rescale its generators
in a way such that it has the same commutation relations as the special orthogonal group (E.5.1), it
means that the group manifolds of the gauge groups are locally isomorphic. A local isomorphism of the
group manifolds is a local equivalence between the transforms that they perform. If this isomorphism
exists, we can characterize a fundamental field by performing a rotation infinitesimally.

If we denote this angle of rotation as Ω, we can define the spin j of the fundamental field as the
largest j such that

exp
(

2π
j
T

)
= I (E.4)

where T is the generators of the gauge group in question, rescaled to fulfill the commutation relations of
SO(k,n).

As an example of this, we use the isomorphism between the gauge groups SU(2) and SO(3). The
rotation matrix is given, denoting its generators as Tn and the angle of rotation as Ω, by

UΩ = exp (ΩxT1 + ΩyT2 + ΩzT3) .

The Pauli matrices E.5.3, with slight modifications fulfill the same commutation relations, so locally a
rotation can be expressed as

UΩ = exp
(
iΩxσ1

2 + iΩyσ2

2 + iΩzσ3

2

)
= exp

(
i

2

[
Ωz Ωx − iΩy

Ωx + Ωy −Ωz

])

=

cos
(
|Ω|
2

)
+ iΩz 1

|Ω| sin
(
|Ω|
2

)
i(Ωx − iΩy) 1

Ω sin
(
|Ω|
2

)
i(Ωx + iΩy) 1

Ω sin
(
|Ω|
2

)
cos
(
|Ω|
2

)
− iΩz 1

|Ω| sin
(
|Ω|
2

) .
We see that under a rotation Ω by a total of 2π radians the result is

UΩ =
[
−1 0
0 −1

]
,

71



Appendix E. Group Theory

and to return to the identity, a rotation by 4π radians is required. From (E.4) we see that the fundamental
field coupled to the gauge group SU(2) has spin 1/2. A fundamental field with a half-integer spin is
called spinor, and SU(2) is referred to as a spinor representation of SO(3). In general, this method
cannot be applied to a completely general gauge group because isomorphies like SU(2) ∼= SO(3) do not
nessecarily exist. In a similar fashion it can be shown that sl(2) ∼= so(1,2) is a spinor representation of
SO(1,2). For the rotation group of arbitrary order and signature, SO(k,n), it’s spinor representation is
called Spin(k,n). In section 6 and onwards we investigate theories that we refer to as spin-2 and spin-3
gravity, respectively. The spin in this refers to the properties of the metric tensor gµν and the metric-like
higher-spin field ψ(µνρ). The metric tensor is a symmetric tensor of rank two. A rotation is given locally
by exp(ΩT ). Acting infinitesimally on gµν , we have that

δgαβ = δΩ(Tµα δνβ + T νβ δ
µ
α)gµν

= 2δΩTµα gµβ

where symmetry was used to exchange α,β and µ, ν in the second term in the parenthesis. Thus, the
rotation generators acting on gµν act as exp(2ΩT ), which just a rotation by an angle of 2Ω. We see that
the spin of the metric tensor must be two. In the same way we have for ψ(µνρ) that

δψαβσ = δΩ(Tµα δ
νρ
βσ + (T νβ δρµσα + (T ρσ δ

µν
αβ)ψµνρ

= 3δΩTµαψµβσ,

and we see that ψ(µνρ) is a spin-3 field.

E.5 Special Lie groups
In this section we will present some of the Lie groups that will be important throughout our work. We
will present their generators, Lie algebra and dimensions. We also note some important Lie algebra
isomorphisms that are used throughout the thesis.

In general we will refer to groups by their abbreviation, followed by brackets containing the dimension
of the group. For example, SO(5) would be the special orthogonal group in five dimensions. If we have
two indices inside the brackets as in SO(m,n) this means that the group describes a geometry with m
time-like dimensions, and n space-like dimensions. The difference between the timelike and space-like
dimensions are what metric they have, which will make the representation of SO(1,2) different from
SO(3) despite them having the same dimension. The generators for SO(1,2) are calculated in E.5.1.
When referring to the Lie algebra of a Lie group we denote the Lie algebra with the abbreviation of the
group in lowercase letters. This is standard convention used in order to avoid confusion when referring
to Lie groups and Lie algebras simultaneously.
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E.5.1 Special orthogonal group, SO(n)
The SO(n) group is the special orthogonal group in n dimensions. Special denotes a determinant of 1,
and orthogonal refers to matrix orthogonality.

SO(2)

One of the most familiar groups in SO(n) is SO(2), which is the group of rotations in R2, represented
by the single operation

U(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
. (E.5)

To obtain the Lie algebra we apply equation (E.1) to get

T = −[
[
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

]
φ=0

=
[

0 1
−1 0

]
.

Since SO(2) only contains one generator, it has a trivial Lie algebra.

SO(3)

To apply the same method to SO(3) we first need its matrix representation. We can split SO(3) up into
a rotation in each orthogonal 2d plane in 3d space, that is, a rotation in the xy-plane, a rotation in the
yz-plane and a rotation in the xz-plane.

U0(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 , U1(φ) =

cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 , U2(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


(E.6)

Which yield the following generators (once again by applying (E.1)):

T0 =

0 0 0
0 0 1
0 −1 0

 , T1 =

0 0 −1
0 0 0
1 0 0

 , T2 =

 0 1 0
−1 0 0
0 0 0

 . (E.7)

Finally, we find the structure factor by commuting all possible combinations of T0, T1, T2. We will
only show two commutators here, and then write down a general expression for the structure factor.

[T0, T1] = T0T1 − T1T0 =

 0 1 0
−1 0 0
0 0 0

 = T2

[T0, T2] = T0T2 − T2T0 =

 0 0 1
0 0 0
−1 0 0

 = −T1 .

These two commutators show the beginnings of a symmetry for the structure factor, and the general
formula becomes

[Ti, Tj ] = εijkTk . (E.8)

We see that the structure constants fijk = εijk as per the notation in eq (E.3).

SO(1,2)

SO(1,2) is the special orthogonal group with associated metric−1 0 0
0 1 0
0 0 1

 .
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Inutitively, we want to have one length-preserving parametric transformation for every orthogonal
plane we can find in Rn. If a plane consists of one space-like coordinate and one time-like coordinate
then the length preserving transformation is the Lorentz transformation instead of the rotation that we
have seen before.

The regular Lorentz transformation with an inertial system S and a boosted system S′, S′ travelling
with velocity v with respect to S, is defined as follows (in x variable and t variable):

x′ = γ(x− vt) , (E.9)

t′ = γ(t− vx/c2) , (E.10)

where γ is the Lorentz factor, γ = 1√
1−v2/c2

.

If we introduce the hyperbolic parameter θ, also called rapidity, defined as eθ = γ(1 + v/c) we may
rewrite the Lorentz transform [12]. We compute sinh θ and cosh θ for reasons which will become apparent
soon. We do moreover, from now and on, set c = 1 for simplicity:

sinh θ = eθ − e−θ

2 = γ(1 + v)− 1/(γ(1 + v))
2 = γ2(1 + v)2 − 1

2γ(1 + v) = 1 + v − (1− v)
2γ(1− v2) = vγ ,

and
cosh θ = eθ + e−θ

2 = γ(1 + v) + 1/(γ(1 + v))
2 = γ2(1 + v)2 + 1

2γ(1 + v) = 1 + v + (1− v)
2γ(1− v2) = γ .

Now we can express the Lorentz transform on hyperbolic form, yielding:

x′ = x cosh(θ)− t sinh(θ) , (E.11)
t′ = t cosh(θ)− x sinh(θ) . (E.12)

Equation (E.11) is very conveniently dependent on a parameter θ so that we can apply equation (E.1).
The transformation matrices for SO(1,2) are then simply:

U0(θ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , U1(θ) =

 cosh(θ) − sinh(θ) 0
− sinh(θ) cosh(θ) 0

0 0 1

 , U2(θ) =

 cosh(θ) 0 − sinh(θ)
0 1 0

− sinh(θ) 0 cosh(θ)

 .

(E.13)
Inserting into equation (E.1) we get the generators

T0 =

0 0 0
0 0 −1
0 1 0

 , T1 =

 0 −1 0
−1 0 0
0 0 0

 , T2 =

 0 0 −1
0 0 0
−1 0 0

 . (E.14)

We find the structure factor to be fijk = −εkij . To lower the k we need to note that for k = 0 we get
an extra minus sign because the manifold of the group has a Minkowski metric. This we see is the only
difference between the Lie algebra of SO(3) and SO(1,2).

E.5.2 Special linear group, SL(n)
SL(n) is the group of n × n matrices with determinant 1. We will explicitly calculate the Lie algebra
for n = 2,3. To find the Lie algebrae of SL(2) and SL(3) we will use LU-factorization, meaning we split
the the arbitrary square matrix into a lower triangular matrix and an upper triangular matrix. This
operation in reality depends on none of the diagonal elements of the matrix in question being 0, so it is
only valid around the identity. Also, the decomposition actually adds n degrees of freedom, so we must
add another restriction to obtain a unique decomposition. A valid such restriction is the requirement
that the lower triangular matrix must be a unit triangular matrix, that is all of its diagonal elements are
1.
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SL(2)

We write down SL(2) as the product of a lower- and upper triangular matrix right away:

g =
[
1 0
a 1

] [
r b
0 r−1

]
,

where the rs come from the determinant condition. As usual, using (E.1) we obtain the generators:

S0 =
[
1 0
0 −1

]
, S1 =

[
0 1
0 0

]
, S2 =

[
0 0
1 0

]
.

To obtain a simple form of the commutation relations we rescale the generators as

S0 = 1
2

[
1 0
0 −1

]
, S1 = 1√

2

[
0 1
0 0

]
, S2 = 1√

2

[
0 0
1 0

]
.

making the commutation relations

[S0,S1] = S1 , [S2,S0] = S2 , [S1,S2] = S0 .

We can recombine the generators of SL(2) so that its isomorphism to SO(1,2) is readily apparent. We
define a new set of generators as:

T0 = S0 = 1
2

[
1 0
0 −1

]
,

T1 = S1 + S2√
2

= 1
2

[
0 1
1 0

]
,

T2 = S1 − S2√
2

= 1
2

[
0 1
−1 0

]
.

We evaluate the commutators of rising order and then write down the general expression:

[T0,T1] = 1√
2

[S0,S1 + S2]

= S1 − S2√
2

= T2 ,

[T2,T0] = 1√
2

[S1 − S2,S0]

= −S2 + S3√
2

= −T1 ,

[T1,T2] = 1
2 [S1 + S2,S1 − S2] ,

= 1
2 ([S2,S1]− [S1,S2]) = 1

2(−S0 − S0) = −T0 .

Going off of these commutators we can write down the commutation relations as

[Ta,Tb] = εab
cTc ,

where, as usual, the c can be lowered by the Minkowski metric, however in this case the minus sign
is attached to the three. For the Minkowski metric to follow the convention of the rest of this appendix
we switch the names of T0 and T2 so that our final generators are:

T0 = 1
2

[
0 1
−1 0

]
, T1 = 1

2

[
0 1
1 0

]
, T2 = 1

2

[
1 0
0 −1

]
.

and the structure constants are still εabc.
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SL(3)

We will find the Lie algebra of SL(3), and then show how to find a diagonal embedding of SL(2) in the
larger SL(3) gauge group. For ease of finding, we have split off the other possible recombinations of the
SL(3) Lie algebra to their own Appendix, E.5.2. We do not try to show how to find these particular
recombinations, but rather just present their matrices and commutation relations. These recombinations
specify a principal embedding, where the commutation relations between the sl(2) subalgebra and the
five remaining generators are non-trivial.

We write down the LU-decomposition of a three-dimensional matrix with a determinant equal to one:

g =

1 0 0
a 1 0
b c 1

 ,

k−1 d e
0 kr f
0 0 r−1

 .

The generators can easily be read off, as the off-diagonal parameters are entirely free:

Tk =

1 0 0
0 −1 0
0 0 0

 , Tr =

0 0 0
0 −1 0
0 0 1

 ,

Ta =

0 0 0
1 0 0
0 0 0

 , Tb =

0 0 0
0 0 0
1 0 0

 ,

Tc =

0 0 0
0 0 0
0 1 0

 , Td =

0 1 0
0 0 0
0 0 0

 ,

Te =

0 0 1
0 0 0
0 0 0

 , Tf =

0 0 0
0 0 1
0 0 0

 ,

where we number the matrices by the usual reading order, and the subscript indicates from which
parameter the generator was obtained.

Performing a recombination according to:

T0 = −1
2Tk = 1

2

−i 0 0
0 i 0
0 0 0

 ,

T1 = Td + Ta
2 = 1

2

 0 −i 0
−i 0 0
0 0 0

 ,

T2 = Td − Ta
2 = 1

2

0 −i 0
i 0 0
0 0 0

 ,

we see that these three generators T1, T2, T3 obviously satisfy the commutation relations in E.5.2.
Finding the matrices fulfilling the sl(2) commutation relations by replicating the sl(2) algebra in 2 our
of the three indices of sl(3) is called the diagonal embedding. The remaining five generators W1...5 are
just Tk − Tr together with Tb, Tc, Te, Tf . The most important property of this embedding is that the
higher spin generators Wa have trivial commutation relations with the SL(2) generators Tb. Listing a
preliminary set of higher spin generators in a diagonal embedding, we have

W1 =

1 0 0
0 1 0
0 0 −1

 , W2

0 0 0
0 0 0
1 0 0

 , W3 =

0 0 0
0 0 0
0 1 0

 ,

W4 =

0 0 1
0 0 0
0 0 0

 , W5

0 0 0
0 0 1
0 0 0

 .
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Since we do not use this embedding in our thesis, we do not present any commutation relations. It is
likely that the higher spin generators W should be recombined to obtain simple commutation relations
before they are employed in an actual gauge theory. The purpose of showing these generators is to
illustrate the difference between a diagonal and a principal embedding, such as the recombinations of
SL(3) that we will state now.

Conventions for Lie algebras in spin-3

Here we state the explicit matrix form of the different generators used in higher spin calculations. We
follow the conventions of [32]. We also give the Lie algebra and commutators. The standard sl(3) algebra
is generated by Ta and Tab where Ta forms a sl(2) subalgebra.

[Ta,Tb] = εab
cTc ,

[Ta,Tbc] = 2εda(bTc)d ,

[Tab,Tcd] = −2
(
ηa(cεd)b

e + ηb(cεd)a
e
)
Te .

The invariant bilinear form denoted by "tr" gives

tr[TaTab] = 2ηab ,
tr[TaTbc] = 0 ,

tr[TabTcd] = −4
3ηabηcd + 2(ηacηbd − ηadηbc) .

It is useful to define new generators, Li and Wj , by linearly combining Ta and Tab according to

T0 = 1
2(L1 + L−1) , T1 = 1

2(L1 − L−1) , T2 = L0 ,

T00 = 1
4(W2 +W−2 + 2W0) , T01 = 1

4(W2 −W−2) , T02 = 1
2(W1 +W−1) ,

T11 = 1
4(W2 −W−2 − 2W0) , T12 = 1

2(W1 −W−1) , T22 = W0 .

The generators L and W obey the following commutation relations

[Li,Lj ] = (i− j)Li+j ,
[Li,Wj ] = (2i− j)Wi+ j ,

[Wi,Wj ] = −1
3(i− j)(2i2 + 2j2 − ij − 8)Li+j .

and all the non-zero components of the invariant bilinear form are

tr[L0L0] = 2, tr[L1L−1] = −4 ,

tr[W0W0] = 8
3 , tr[W1W−1] = −4 , tr[W2W−2] = 16 .

The explicit matrix representation of the generators Li and Wj is

L0 =

1 0 0
0 0 0
0 0 −1

 , L1 =

0 0 0
1 0 0
0 1 0

 , L−1 =

0 −2 0
0 0 −2
0 0 0

 ,

W0 =2
3

1 0 0
0 −2 0
0 0 1

 , W1 =2
3

0 0 0
1 0 0
0 −1 0

 , W2 =2

0 0 0
0 0 0
1 0 0

 ,

W−1 =

0 −2 0
1 0 2
0 −1 0

 , W−2 =2

0 0 4
0 0 0
0 0 0

 .
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E.5.3 Special unitary group, SU(n)
The SU(n) group is the group of unitary matrices with determinant 1. To find the generators for some
arbitrary matrix A that fulfills A†A = 1 we will begin by observing that such a matrix can be written
as its Cholesky decomposition:

A = U†U , (E.15)

where U is an upper diagonal matrix. This makes enforcing the determinant equal to one condition a
lot easier then for an arbitrary general n × n matrix A. The diagonal of U will have n − 1 degrees of
freedom since we have an equation of n real variables equal to a constant. Off the diagonal we have two
degrees of freedom per index, for a total of 2 · 1

2 ((n− 1)2 + n− 1). The sum of the degrees of freedom is
then n2 − 1.

SU(2)

SU(2) is a convenient example to start with due to its simplicity and importance in particle physics. The
symmetries of the group play a crucial role when describing electroweak interaction. SU(2) is represented
by matrices of rank 2 and determinant 1. These matrices are also unitary. From the fact that SU(2)
is special, i.e. its group elements have determinant 1, it follows that the trace of the generators of the
group are zero. This can be shown by using the exponential relationship between the generators (Ti),
free parameters θi and the group elements U :

U(θi) = eθ
iTi , (E.16)

and the following identity1
det(eR) = etr [R] , (E.17)

where R is a matrix.
If we substitute R = θiTi we find

det(eθ
iTi) = det(U) = 1 = etr[θiTi].⇒ tr[Ti] = 0 , (E.18)

where we used the linearity property of the trace. We moreover note that the generators Ti are anti-
hermitian. This follows directly from expanding the exponential in equation (E.16) to first order and
compute the product U†U :

U†U ' (1 + θiT †i )(1 + θiTi) = 1 + θi(Ti + T †i ) + ... = 1⇒ Ti = −T †i . (E.19)

Thus we conclude that these generators of SU(2) are both traceless and anti-hermitian.2 In SU(2) the
generators are therefore given of the form

Ti =
[
α β
β∗ −α

]
, (E.20)

where α ∈ R and β ∈ C. By setting α = 0 we find two different kind of generators:

T1 =
[
0 1
1 0

]
, (E.21)

and
T2 =

[
0 −i
i 0

]
. (E.22)

The third and last generator of SU(2) we get by setting β = 0:

T3 =
[
1 0
0 −1

]
. (E.23)

1This identity can be shown by triangulizing R, i.e let R = PTP−1, where T is upper-triangular with eigenvalues
λ1...λn on the diagonal. Then it follows that eT is a diagonal matrix with eλ1 ...eλn on the diagonal. Since the determinant
is the product of eigenvalues it directly follows that det(eT ) = etrT . Finally we observe that R and T have the same
eigenvalues, thus we must have trR = trT . Moreover P eTP−1 = eR (from PTkP−1 = Rk for all k) and therefore
det(eR) = det(eT ) = etrT = etrR and we have proven our identity.

2Particle physicists often tend to choose a different representation of SU(2), where the matrices are hermitian.
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Note that the derived generators are not unique, however they form the smallest non-trivial representation
of the Lie algebra, also called the fundamental representation which is unique for SU(2). The generators
T1, T2 and T3 are called Pauli matrices and are commonly denoted σ1, σ2 and σ3. From now on we stick
to conventional notation and simply let T1 = σ1, T2 = σ2 and T3 = σ3. To derive the Lie algebra
to SU(2) we simply compute the commutators [σ1,σ2], [σ2,σ3] and [σ1,σ3] (the rest follow in the same
manner):

[σ1,σ2] =
[
i 0
0 −i

]
−
[
−i 0
0 i

]
=
[
2i 0
0 −2i

]
= 2iσ3 ,

[σ2,σ3] =
[
0 i
i 0

]
−
[

0 −i
−i 0

]
=
[

0 2i
2i 0

]
= 2iσ1 ,

[σ1,σ3] =
[
0 −1
1 0

]
−
[

0 1
−1 0

]
=
[
0 −2
2 0

]
= 2iσ2 .

We can thus summarize the Lie algebra of SU(2) according to3

[Ta,Tb] = [σa,σb] = 2iεabcσc , (E.24)

where εabc is the completely antisymmetric Levi-Civita symbol and the structure constant(s). From the
Lie algebra of SO(3) and the commutator relation in equation (E.8) we deduce that the structure factors
of SO(3) and SU(2) only differ in sign why we may conclude that SU(2) is isomorphic to SO(3).

SU(3)

We may generalize the discussion in the last section by considering the group SU(3). The matrix U can
be written as:

U =

a d+ iρ e+ iε
0 b f + it
0 0 c

 . (E.25)

We then use the restriction abc = 1 to rewrite (E.25) as a = cr, b = r−1, c = c−2. To get a matrix to plug
into equation (E.1) we just need to evaluate U†U . We will do this and evaluate the partial derivatives
in each of the parameters around the unit matrix (r = c = 1, e = ε = d = ρ = f = t = 0).

U†U = A =

 cr 0 0
d− iρ r−1 0
e− iε f − it c−1

cr d+ iρ e+ iε
0 r−1 f + it
0 0 c−1


=

 c2r2 cr(d+ iρ) cr(e+ iε)
(d− iρ)cr d2 + ρ2 + r−2 (d− iρ)(e+ iε) + r−1(f + it)
(e− iε)cr (e− iε)(d+ iρ) + (f − it)r−1 e2 + ε2 + f2 + t2 + c−2

 .

We continue by evaluating the partial derivatives around the identity matrices, defining V = {r,c,e,ε,d,ρ,f,t}
with A(V0) defining the identity matrix.

T1 = −i
[
∂A

∂r

]
V=V0

= −i

2 0 0
0 −2 0
0 0 0

 , T2 = −i
[
∂A

∂c

]
V=V0

= −i

2 0 0
0 0 0
0 0 −2

 ,

T3 = −i
[
∂A

∂d

]
V=V0

= −i

0 1 0
1 0 0
0 0 0

 , T4 = −i
[
∂A

∂ρ

]
V=V0

= −i

 0 i 0
−i 0 0
0 0 0

 ,

T5 = −i
[
∂A

∂e

]
V=V0

= −i

0 0 1
0 0 0
1 0 0

 , T6 = −i
[
∂A

∂ε

]
V=V0

= −i

 0 0 i
0 0 0
−i 0 0

 ,

T7 = −i
[
∂A

∂f

]
V=V0

= −i

0 0 0
0 0 1
0 1 0

 , T8 = −i
[
∂A

∂t

]
V=V0

= −i

0 0 0
0 0 i
0 −i 0

 .

3One can get rid of the factor 2 in the commutator by normalizing the generators Ti such that Ti = σi
2 . This is

conventionally done to yield a neater expression.
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It is very common to rescale this Lie algebra to another form so that the algebra is more similar to that
of SU(2). Replacing S1, S2 with T1 = 1

2S1 and T2 = 2S2−S1
2
√

3 one gets the Gell-Mann matrices. This
particular set of generators (which clearly spans all of SU(3)) were chosen by the American physicist
Murray Gell-Mann (1929-) because they naturally extend the Pauli matrices from SU(2) to SU(3), which
formed the basis for his model of quarks [45].

SO(2,2)

The Lie group SO(2,2) consisting of all 4×4 matrices with determinant 1 and that forfill the orthogonality
relation X†ηX = η with respect to the Lorentzian metric η = diag(−1,1, 1, 1) is of great importance in
fundamental physics as it is the isometry group of AdS3, the three-dimensional Anti de-Sitter space. In
this thesis we make use of the fact that the Lie algebra of SO(2,2) is isomorphic to that of SO(1,2) ×
SO(1,2) when relating the Chern-Simons gauge action to Einstein-Hilbert action. From the orthogonality
relation for an elementX in SO(2,2) we may derive a condition for the generators of SO(2,2) by expanding
the exponential definition of the group element:

X = exp(θiAi)⇒ X ' 1 + θiAi . (E.26)

For simplicity we consider only real elements X and generators Ai. Plugging the expansion into the
orthogonality relation we find

XT ηX = (1 + θiATi )η(1 + θiAi) = η ⇒ ATi η + ηAi = 0 . (E.27)

Moreover, since SO(2,2) is a special group its generators are traceless. We have therefore two conditions
which have to be satisfied by the generators. We do now perform a block decomposition of our generators
Ai according to

Ai =
[
S T
U V

]
,

where S,T,U and V are real 2 × 2 matrices. Substituting the decomposition into our derived equation
(I.3) we find [

ST UT

TT V T

] [
−1 0
0 1

]
+
[
−1 0
0 1

] [
S T
U V

]
=
[
−ST − S UT − T
−TT + U V T + V

]
=
[
0 0
0 0

]
.

From this relation we may rewrite our generators as follows

Ai =
[
S T
TT V

]
,

and we find that S,T, U and V must obey the following relations
U = TT

V = −V T

S = −ST
.

From these conditions combined with the condition tr [Ai] = 0 it is possible to find six different generators
in a fundamental representation. This should be no surprise since there are six orthogonal planes in 4
dimensions to Lorentz boost and rotate in. We list these generators:

A1 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , A3 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0



A4 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , A5 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , A6 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 .

It is a quite tedious task to compute the commutators [Ai,Aj ] in order to derive the Lie algebra of
SO(2,2) so this is done numerically. However, at this point we are settled for showing the isomorphism
between SO(2,2) and SO(1,2)× SO(1,2), since this result is of importance in our thesis.
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What does it even mean that the algebra of SO(2,2) is isomorphic to that of SO(1,2)× SO(1,2)? In
proper English we have verified the statement if we can show that SO(2,2) can be separated into two
parts, each part having its own subalgebra, in this case that of SO(1,2). To prove this it will be useful to
consider linear combinations of the derived generators Ai, i = 1...6. Consider the cleverly chosen linear
combinations4 

A11 = 1
2 (A1 +A2), A21 = 1

2 (A1 −A2)
A12 = 1

2 (X + Y ), A22 = 1
2 (X − Y )

A13 = 1
2 (P +Q), A23 = 1

2 (P −Q)
,

where X,Y , P and Q are yet unknown 4× 4 matrices and the factor 1
2 a normalization factor. We begin

with the condition [A1i,A2j ] = 0 and construct our unknowns A12, A22, A13 and A23 from it. Starting
off by evaluating [A11,A22] we obtain:

[A11,A22] = 1
4([A1,X] + [A1,− Y ] + [A2,X] + [A2,− Y ]) .

We now make the ”arbitrary” choice X = A3 leading to

[A11,A22] = 1
4([A1,A3] + [A1,− Y ] + [A2,A3] + [A2,− Y ]) = 1

4(−A4 + [A1,− Y ]−A5 + [A2,− Y ]) ,

where we used [A1,A3] = −A4 and [A2,A3] = −A5. In order to achieve [A11,A22] = 0 we must now
choose Y = −A6, due to the fact that [A1,A6] = +A5 and [A2,A6] = +A4. Thus we have X = A3 and
Y = −A6 and deduce A12 = 1

2 (A3−A6) and A22 = 1
2 (A3 +A6). We use the same procedure to solve for

P and Q. Consider

[A13,A22] = 1
4([P,A3] + [P,A6] + [Q,A3] + [Q,A6]) ,

and let P = A4, leading to

1
4([A4,A3] + [A4,A6] + [Q,A3] + [Q,A6]) = 1

4(−A1 +A2 + [Q,A3] + [Q,A6]) ,

and to get [A13, A22] = 0 we therefore have to choose Q = A5:

1
4(−A1 +A2 + [A5,A3] + [A5,A6]) = 1

4(−A1 +A2 +A1 −A2) = 0 .

Thus we have found A13 = 1
2 (A4 + A5) and A23 = 1

2 (A4 − A5). Well, is all work done now?
No, we obviously need to check that all commutators [A1i,A2j ] vanish and not just a few of them.
This is done numerically and amazingly the relation holds for our seemingly non-arbitrary choices of
A11, A12, A13,A21, A22 and A23! Thus we have shown that A1i and A2j can be separated and form their
own subalgebra. By forming the commutators [A1i,A1j ] and [A2i,A2j ] we find

[A1i,A1j ] = −εijkA1k ,

[A2i,A2j ] = −εijkA2k ,

and this is precisely the Lie algebra of SO(1,2) (see section E.5.1). Thus A1i and A2j each constitute a
SO(1,2) algebra.

4the choices of combinations are inspired by Thyssen and Ceulemans Shattered Symmetry: Group Theory From the
Eightfold Way to the Periodic Table, page 307 [46].
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Anti-de Sitter and Minkowski
Spacetime

F.1 The Poincaré group
When we study Chern-Simons theory of gravity we will need to investigate the symmetries of both Anti-
de Sitter space and Minkowski space. This is done by studying the group of transformations that leaves
the metric invariant. We call this group the isometry group of the space. Since the Minkowski metric is
rather familiar to us it is not to hard to guess which transformations should leave the metric invariant,
however since this is certainly not the case for Anti-de Sitter space we need a general method to generate
the transformations. Remember that a general transformation of the metric can be written as

g(x)µν 7→ g′νµ(x′) = g(x)ρσ
∂xρ

∂x′µ
∂xρ

∂x′ν
,

In order for this transformation to preserve the metric we require that g′µν(x) = gµν(x) and we rewrite
the first equation as

gνµ(x′) = g(x)ρσ
∂xρ

∂x′µ
∂xσ

∂x′ν
. (F.1)

We will not attempt to solve this equation, instead we will study the specific case of an infinitesimal
transformation. We thus write x′ρ = xρ + εξρ. With this expansion we get gνµ(xρ + εξρ) = gνµ(xρ) +
εξρ∂ρgνµ(xρ) and ∂xρ

∂x′µ = δρµ − ε∂µξρ. With these transformation equation (F.1) becomes

gνµ + εξρ∂ρgνµ = gρσ(δρµ − ε∂µξρ)(δσν − ε∂νξσ) .

If this equation is to hold to first order we must have

ξρ∂ρgνµ + gρν∂µξ
ρ + gµσ∂νξ

σ = 0 . (F.2)

Let us consider a scalar field φ(x) and study its transformation under x′ρ = xρ+ εξρ where the ξ satisfies
equation (F.2). We have

ψ(x′ρ) ≈ ψ(xρ) + εξµ∂µψ(xρ) = (1 + εξµ∂µ)ψ(xρ) = U(ε)ψ(xρ) .

The point is that we can pretend that this transformation is actually an infinitesimal transformation due
to an operator U(ε). Since we know that this particular transformation leaves the metric invariant, so
must the operator. To construct the full operator we use the exact same trick we did with the Lie group.
That is, we divide the operator’s argument into N pieces and take the limit. In this way we find

U(ϕ) = lim
N→∞

UN
( ϕ
N

)
= lim
N→∞

(1 + ϕξµ∂µ
N

)N = eϕξ
µ∂µ .

We now see clearly the use of ξµ. By constructing ξµ∂µ, known as a Killing vector (field), we have
actually found a generator to a group of transformations that leaves the metric invariant. We say that
the Killing vectors generate the isometry group.
Let us now turn our attention to the specific case of the Minkowski metric and thus set gµν = ηµν . Since
this metric is constant we must have ξρ∂ρηνµ ≡ 0. We can thus reduce equation (F.2) to

ηρν∂µξ
ρ + ηρµ∂νξ

ρ = 0 . (F.3)

We first notice that this is a symmetric tensor equation in the free µ and ν indices. Since there exist 10
independent elements we expect to find ten equations for the ξ. If they are all linearly independent we
will find a total of ten Killing vectors. The first four solutions are very easy. Since the equation above
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involves derivatives we can simply set ξµ equal to a constant in one of the indices. Since there is no need
to be fancy we simply choose the constant to equal 1. Thus we have ξµ(1) = (1,0,0,0), ξµ(2) = (0,1,0,0) and
so on. To find the remaining six ξ we have to be a bit more crafty. Let us make the specific choice of
ν = 0 and µ = 1 in equation (F.3). Then we have two equations of interest, namely

−∂1ξ
0 + ∂0ξ

1 = 0 ,
∂1ξ

1 = 0 .

Acting with ∂1 on the first equation and using the second we find

∂2
0ξ = 0 .

Since the choice of ν = 0 and µ = 1 was arbitrary we will get the same identity for all choices of ν and
µ. The conclusion is thus that ξµ have to be linear in all variables except the one corresponding to the
position. With this restriction and of course demanding that ξ solves the Killing equation we quickly
find all ten solutions as

ξµ(1) = (1,0,0,0) , ξµ(2) = (0,1,0,0) , ξµ(3) = (0,0,1,0) , ξµ(4) = (0,0,0,1) ,

ξµ(5) = (x,t,0,0) , ξµ(6) = (y,0,t,0) , ξµ(7) = (z,0,0,t) ,

ξµ(8) = (0,− y,x,0) , ξµ(9) = (0,0,− z,y) , ξµ(10) = (0,z,0,− x) .

With these identities we can now form 10 Killing vectors and find the generators of 10 different trans-
formations. But since the linear combination of one or more Killing vectors is still a Killing vector we
will group the generators as indicated by the rows in the listing of the ξ. The first combination we will
form is a combination of the first four and defined as

Pµ ≡ ∂µ .

We call Pµ the generator of translations. The second row gives the generator of Lorentz boosts defined
as

Ki ≡ xi∂0 + x0∂i .

Finally we use the last row to define the generator of rotations as

Jij ≡ xj∂k − xk∂j .

It simplifies things if we combine the rotations and the boosts in a single entity defined as

Mµν = xµ∂ν − xν∂µ

We have thus found the generators of the Minkowski isometry group. We refer to this group, consisting
of Lorentz transformations, rotations and translations, as the Poincaré group.

Lie algebra of the Poincaré group

We now turn our attention to the problem of determining the Lie algebra of the Poincaré group. We
begin with the commutator [Mµν ,Mρσ]. First observe that

[xµ∂ν , xρ∂σ] = xµ(∂νxρ)∂σ − xρ(∂σxµ)∂ν = ηνρxµ∂σ − ησµxρ∂ν ,

then we have that
[Mµν ,Mρσ] = [xµ∂ν , xρ∂σ]− [xν∂µ, xρ∂σ] + [xµ∂ν , xσ∂ρ]− [xν∂µ, xσ∂ρ]

= ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ .
(F.4)

It is a bit easier to calculate the commutator between the Lorentz transformation and the translation
generator

[Mµν , P ρ] = [xµ∂ν − xν∂µ,∂ρ] = −(∂ρxµ)∂ν + ∂ρ(xν)∂µ

= −ηρµ∂ν + ηρν∂µ = −ηρµP ν + ηρνPµ .
(F.5)

and finally
[Pµ,P ν ] = [∂µ,∂ν ] = 0 ,

since derivatives commute. To summarize we have

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ , (F.6)
[Mµν , P ρ] = −ηρµP ν + ηρνPµ , (F.7)

[Pµ,P ν ] = 0 . (F.8)
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F.1.1 The special case of 2+1 dimensions
When we study Chern-Simons theory we will do so in 2+1 dimensions. This will further simplify our
commutators. Remember that the indices in Mνµ represent the axis in the plane in which we rotate
or boost. In three dimensions we have a very special relation, the number of components in a vector
is precisely equal to the number of planes we can rotate in! Thus, we expect that we can write the
generator Mνµ as a vector Ma. We define Ma as

Ma = 1
2ε
a
µνM

µν . (F.9)

It is possible to express Mµν as a function of Ma. To do so we contract both sides of (F.9) with εaρσ
reaching

1
2εa

ρσεaµνM
µν = −δρσµνMµν = −Mσρ ,

where we in the last step used the anti-symmetry of Mσρ. Thus we may write

Mµν = −εµνaMa .

Using this we may now start to simplify our commutators. Starting with the commutator of Mµν , (F.6),
we first see that

[Mµν ,Mρσ] = εµνaε
ρσ
b[Ma,M b] . (F.10)

The epsilon symbols may be eliminated by contraction with new epsilon symbols, explicitly

εµν
cερσ

dεµνaε
ρσ
b[Ma,M b] = 4δcaδdb [Ma,M b] = 4[M c,Md] . (F.11)

We now also want to contract the right hand side of (F.6) with εµν
cερσ

d. The first term, ηνρMµσ,
becomes

εµν
cερσ

d(ηνρMµσ) = εµρcερσeη
de(Mµ

σ) = 2δµcσeηdeMµ
σ = −ηdeMe

c

= M cd = εcdaM
a . (F.12)

This calculation may be used to easily calculate the rest of terms by rearranging and renaming indices
until we reach the identity above. For example the second term in the right hand side of (F.6)

εµν
cερσ

d(−ηµρMνσ) = ενµ
cερσ

d(ηµρMνσ) = {ν → µ, µ→ ν} =
εµν

cερσ
d(ηνρMµσ) = εcdaM

a ,

where we in the last step used (F.12). We summarize the result for all terms as

εµν
cερσ

d
(
ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ

)
= εcdaM

a + εcdaM
a + εcdaM

a + εcdaM
a = 4εcdaMa . (F.13)

Finally we are ready to state the commutator of Mµν . Using that the right hand side is given by (F.13)
and the left hand side by (F.11) we see that

[Ma,M b] = εabcM
c . (F.14)

Moving on, we want to compute the commutator [Ma,P b]. To do so we start out with (F.7) and use our
ability to rewrite the Mµν as Ma. We also contract with an epsilon symbol just as before.

εµν
a[Mµν ,P b] = −εµνaεµνc[M c,P b] = 2ηadδcd[Mc,P

b] = −2[Ma,P b] . (F.15)

Contracting the right hand side of (F.7) gives

εµν
a
(
− ηbµP ν + ηbνPµ

)
= 2εabµPµ , (F.16)

and combining (F.15) with (F.16) gives us

[Ma,P b] = εabcP
c .

The commutator [P a,P b] = 0 is of course unchanged. We end this section by summarizing the results,
demonstrating the Lie algebra of the Poincaré group:

[Ma,M b] = εabcM
c ,

[Ma,P b] = εabcP
c ,

[P a,P b] = 0 .
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F.1.2 Chern-Simons and Einstein-Hilbert equivalence for Minkowski
In section 6.1 we showed that we can translate the Chern-Simons action in 2+1 dimensions in AdS3 space
into an Einstein-Hilbert action. We now wish to show the same equivalence but in Minkowski space. As
done previously we have to choose a gauge group to express the Chern-Simons action in. The isometry
group of Minkowski space in 2+1 dimensions is SO(1,2) or the Poincaré group consisting of two sets of
generators Pa and Ma which form the Lie algebra:

[Ma,M b] = εabcM
c ,

[Ma,P b] = εabcP
c ,

[P a,P b] = 0 .

Furthermore we construct the generators in such a way that they obey the following trace relations

tr [PaMb] = ηab , (F.17)
tr [PaPb] = tr [MaMb] = 0 . (F.18)

We have now specified the gauge group of the gauge connection, A, and wish to express the gauge
connection in terms of frame fields and spin connections in order to relate the Chern-Simons action
to Einstein-Hilbert action. If we associate the frame fields with the translation generators and spin
connection with the Lorentz boosts generators we may define the gauge connection as

A = eaPa + ωaMa ,

and now we have all we need in order to express Chern-Simons action in 2+1 dimensions in the language
of vielbeins and spin connections. Consider the first term in the CS-action as stated in equation (6.1):

tr [A ∧ dA] = tr [(eaPa + ωaMa) ∧ (debPb + dωbMb)] .

Using the trace relations tr [MaMb] = tr [PaPb] = 0 we can rewrite the expression:

tr [A ∧ dA] = ea ∧ dωb tr [PaMb] + ωa ∧ deb tr [MaPb] = ea ∧ dωa + ωa ∧ dea ,

where we used the trace relations and the cyclicity property of the trace on the last term. By performing
a partial integration and dropping the boundary term on the second term the expression reduces to

ea ∧ dωa + ωa ∧ dea = 2ea ∧ dωa .

The second term in the Chern-Simons action requires a little more work:

tr [A ∧A ∧A] = tr [(eaPa + ωaMa) ∧ (ebPb + ωbMb) ∧ (ecPc + ωcMc)] .

However, expanding this expression may seem horrifying, but it is not so bad if we make use of the
commutator relations between our generators and thus can state the following relations

eaPa ∧ ebPb = 1
2e

a ∧ eb[Pa,Pb] = 0 , (F.19)

ωaMa ∧ ωbMb = 1
2ω

a ∧ ωb[Ma,Mb] = 1
2ε
c
abω

a ∧ ωbMc . (F.20)

Thus only three terms will survive in our former complicated expression:

tr [A ∧A ∧A] = ea ∧ ωb ∧ ωc tr [PaMbMc] + ωa ∧ eb ∧ ωc tr [MaPbMc] + ωa ∧ ωb ∧ ec tr [MaMbPc] .

We consider each term individually. The first term gives us

ea∧ωb∧ωc tr [PaMbMc] = 1
2e

a∧ωb∧ωc tr [Pa[Mb,Mc]] = 1
2εbc

dea∧ωb∧ωc tr [PaMd] = 1
2εabce

a∧ωb∧ωc ,

where we used the trace relation tr [PaMd] = ηad. The second term can be rewritten by using the
commutator relation MaPb = PbMa + εab

dPd:

ωa ∧ eb ∧ ωc tr [MaPbMc] = ωa ∧ eb ∧ ωc(tr [PbMaMc] + εab
d tr [PdMc])

= ωa ∧ eb ∧ ωc(1
2 tr [Pb[Ma,Mc]] + εabc)

= ωa ∧ eb ∧ ωc(1
2εac

d tr [PbMd] + εabc)

= 1
2εabce

a ∧ ωb ∧ ωc .
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Now only the last term in tr [A ∧A ∧A] remains:

ωa ∧ ωb ∧ ec tr [MaMbPc] = 1
2ω

a ∧ ωb ∧ ec tr [[Ma,Mb]Pc]

= 1
2εab

dωa ∧ ωb ∧ ec tr [MdPc]

= 1
2εabce

a ∧ ωb ∧ ωc ,

where we once again used tr [MdPc] = ηdc. Thus all three terms contribute with 1
2εabce

a ∧ ωb ∧ ωc and
we conclude

tr [A ∧A ∧A] = 3
2εabce

a ∧ ωb ∧ ωc .

Substituting this term and tr [A ∧ dA] into the original Chern-Simons action, equation (6.1) we find

SCS [e,ω] = k

2π

∫
M

ea ∧ dωa + εabc
2 ea ∧ ωb ∧ ωc = k

2π

∫
M

ea ∧Ra ,

where we have extracted a factor of 2 in order to compare this action to Einstein-Hilbert action. We
note, upon comparison with EH-action, that our Chern-Simons action in Minkowski space is equivalent
to Einstein-Hilbert action if we set k = − 1

4G and the cosmological constant to zero corresponding to flat
space.

F.2 Anti-de Sitter space
We now turn our attention to flat three-dimensional Anti-de Sitter space, or AdS3 for short. One can
realize AdSd, where d is the dimension of the spacetime, by embedding a hyperboloide in d+1 dimensions.
In the case d = 3 we may therefore express the hyperboloide as

− U2 − V 2 +X2 + Y 2 = −l2 , (F.21)

where µ = 0,1,2 and 3 are indices in the Minkowski space Minkowski2 ×Minkowski2 with the metric

gµνdx
µdxν = −dU2 − dV 2 + dX2 + dY 2 = ds2 . (F.22)

By introducing parameters 
U = l cosh ρ cos t ,
V = l cosh ρ sin t ,
X = l sinh ρ cosφ ,
Y = l sinh ρ sinφ ,

(F.23)

we manage to solve equation (F.21). We now calculate the metric by computing the derivatives dxµ:
dU = l sinh ρ cos tdρ− l cosh ρ sin tdt ,
dV = l sinh ρ sin tdρ+ l cosh ρ cos tdt ,
dX = l cosh ρ cosφdρ− l sinh ρ sinφdφ ,
dY = l cosh ρ sinφdρ+ l sinh ρ cosφdφ ,

(F.24)

which inserted in equation (F.22) yields the metric ds2:

ds2 = −l2 cosh2 ρdt2 + l2dρ2 + l2 sinh2 ρdφ2 , (F.25)

and from equation (F.25) we conclude that gρρ = l2, gφφ = l2 sinh2 ρ and gtt = −l2 cosh2 ρ. Now we are
able to construct the metric tensor:

gµν =

−l2 cosh2 ρ 0 0
0 l2 0
0 0 l2 sinh2 ρ

 . (F.26)
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F.2.1 AdS3 and Einstein’s field equations
Having derived the metric of AdS3 we ask the natural question: does it solve Einstein’s equations? For
the sake of the reader we once again state Einstein’s field equations expressed in Cartan formalism:

dea = −εabceb ∧ ωc ,

Ra = Λ
2 εabce

a ∧ eb .
(F.27)

Using the hyperbolic coordinates introduced in the previous section we may read the correct vielbeins
from equation (F.25) as

e0 = l cosh ρdt , e1 = ldρ , e2 = l sinh ρdφ .

To find the spin connection we use the equation

dea = −εabceb ∧ ωc ,

which gives

de0 = l sinh(ρ)dρ ∧ dt = −e1 ∧ ω2 + e2 ∧ ω1 =⇒ ω2
t = − sinh(ρ) ,

de2 = l cosh(ρ)dρ ∧ dφ = e0 ∧ ω1 − e1 ∧ ω0 =⇒ ω0
φ = − cosh(ρ) .

It is straightforward to see that all other spin-connections vanish. Summarizing we have

ω0 = cosh(ρ)dφ , ω1 = 0 , ω2 = − sinh(ρ)dt .

Finally we can write down Ra.

R0 = dω0 + 1
2ε0bcω

b ∧ ωc = sinh(ρ)dρ ∧ dφ ,

R1 = sinh(ρ) cosh(ρ)dφ ∧ dt ,
R2 = cosh(ρ)dt ∧ dρ .

Turning our attention to (F.27) we compute the right hand side and find

Λ
2 ε0bce

b ∧ ec = −Λl2 sinh(ρ)dρ ∧ dφ ,

Λ
2 ε1bce

b ∧ ec = −Λl2 sinh(ρ) cosh(ρ)dφ ∧ dt ,

Λ
2 ε2bce

b ∧ ec = −Λl2 cosh(ρ)dt ∧ dρ .

Upon comparison with Ra we see that if we set Λ = − 1
l2 , AdS3 will indeed be a solution to the Einstein

equations.

F.2.2 Lie algebra of AdS3

For reasons that will become apparent we will use from now on use coordinates x,y,τ and t such that

−τ2 − t2 + x2 + y2 = −l2 , (F.28)
ds2 = −dτ2 − dt2 + dx2 + dy2 . (F.29)

Thus these coordinates parametrize AdS3.
To study AdS3 we want to find its isometry group. That is the group of all transformations that

preserves the metric and equation (F.28). But this is precisely the isometry group of the embedding
space if we do not allow translations. So the isometry group of AdS3 must be SO(2,2). Another example
of this kind of reasoning is that the isometry group of Sd is SO(d + 1). To find the generators we thus
face the Killing equation

gρν∂µξ
ρ + gµσ∂νξ

σ = 0 .

87



Appendix F. Anti-de Sitter and Minkowski Spacetime

Notice that while ξ = const is a solution this transformation will not preserve (F.28). We can find the
remaining six Killing generators by the same procedure as for the Poincaré group. The result is:

ξ(1) = (0,x,t,0) , ξ(2) = (0,y,0,t) , ξ(3) = (0,0,− y,x) ,
ξ(4) = (x,0,τ,0) , ξ(5) = (y,0,0,τ) , ξ(6) = (−t,τ,0,0) .

With these we can constructMa and P a through linearly combining the Killing vectors. We define them
to be

Ma = (y∂x − x∂y, y∂t − t∂y, t∂x − x∂t) ,
P a = (τ∂t − t∂τ , τ∂x − x∂τ , τ∂y − y∂τ ) .

Notice that the first vector is precisely the generator of Lorentz transformations in three dimensions!
(This is of course why we defined it this way). It is tempting to associate the P a with translations, but
we have some more work to do before we can make any sort of claim.

With these generators we obviously want to write down the corresponding Lie algebra. The first
commutator involving only Ma is easy since we can use our result from Minkowski spacetime. We must
therefore have

[Ma,M b] = εabcM
c .

The remaining commutators can be computed by hand, or by using matrices. We will be content with
summarizing the result

[Ma,M b] = εabcM
c ,

[Ma,P b] = εabcP
c ,

[P a,P b] = εabcM
c .

If we define

Ja+ ≡
1
2

(
Ma + P a

)
,

Ja− ≡
1
2

(
Ma − P a

)
,

we can compute

[Ja+,Jb−] = 1
4 [Ma + P a,M b − P b] = 1

4

(
[Ma,M b]− [Ma,P b] + [P a,M b]− [P a,P b]

)
= 1

4

(
εabcM

c + εabcP
c − εabcP c − εabcM c

)
= 0 ,

(F.30)

and

[Ja±,Jb±] = 1
4

(
[Ma,M b]± [Ma,P b]± [P a,M b] + [P a,P b]

)
=

1
2ε
ab
c

(
M c ± P c

)
= εabcJ

c
± ,

Thus we can write down a new Lie algebra of SO(2,2) as

[J+
a ,J

+
b ] = εab

cJ+
c , (F.31)

[J−a ,J−b ] = εab
cJ−c , (F.32)

[J+
a ,J

−
b ] = 0 . (F.33)

The surprise here is that we can clearly see that the algebra of the two generators is isomorphic to
so(2,1), we have thus found that

SO(2,2) = SO(2,1)× SO(2,1) .
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F.2.3 From AdS3 to Minkowski
Let us now discuss something rather remarkable, the contraction of the AdS3 Lie algebra to the Poincaré
algebra. First, let us single out the τ -dimension. This dimension is indeed rather confusing, what do we
mean with another time-like dimension? Let us try to get rid of it! The procedure is surprisingly trivial.
First we define P aτ = limτ→∞

Pa

τ . The commutator involving only Ma is of course unchanged but so is
the commutator involving both Ma and P aτ

[Ma,P aτ ] = lim
τ→∞

1
τ

[Ma,P bτ ] = lim
τ→∞

1
τ

[Ma,P b] = lim
τ→∞

εabc
1
τ
P c = εabcP

c
τ .

The only difference from the algebra of AdS3 is

[P aτ ,P bτ ] = lim
τ→∞

1
τ2 [P a,P b] = lim

τ→∞

1
τ2 ε

ab
cP

c = 0 ,

so we may state our new algebra as

[Ma,M b] = εabcM
c ,

[Ma,P bτ ] = εabcP
c
τ ,

[P a,P b] = 0 ,

which is precisely the algebra of the Poincaré group! This method of taking a limit in a Lie algebra to
obtain a new one is called a Inönu-Wigner contraction. But we can go even further, let us observe that
using the explicit form of P a we find that

P aτ = lim
τ→∞

1
τ

(
τ∂t − t∂τ , τ∂x − x∂τ , τ∂y − y∂τ

)
= ∂a .

So if we contract P a we actually get the generator of translations in Minkowski spacetime. This is why
we spoke of P a as a momentum generator earlier. We started out in AdS3 and ended up in Minkowski,
what happened to the cosmological constant? The defining equation of AdS3 is

−τ2 − t2 + x2 + y2 = −l2 .

If we now let τ →∞ we still have to satisfy this equation. However, we do not want to touch t,x nor y
so we are only left with the alternative that limτ→∞

l
τ = 1 and thus we see that l→∞ at the same rate

as τ . This explains why we end up in Minkowski space since the cosmological constant, Λ = 1
l2 , vanishes

as we let τ and therefore also l goes to infinity.
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Appendix G

General Relativity in Affine
Connection
In this appendix we derive the torsion tensor, the Riemann curvature tensor (as well as the related Ricci
tensor and Ricci scalar) and Einstein’s field equations, in the affine formulation of general relativity.
Some other useful results and properties of the various quantities are derived in the process. Most of the
results and the discussion follows the chapter 3 of [16].

The difference between two connections Γ̃ρµν and Γρµν , transforming as (4.12), is a tensor. In partic-
ular, this applies to both the affine connection and the spin connection.

Let T ρµν = Γ̃ρµν − Γρµν . Under a general coordinate transformation, xµ → x′µ, the object T ρµν
transforms as

T ρµν −→ T ′ρµν = Γ̃′ρµν − Γ′ρµν

= ∂xσ

∂x′µ
∂xλ

∂x′ν
∂x′ρ

∂xτ
Γ̃τσλ −

∂xσ

∂x′µ
∂xλ

∂x′ν
∂2x′ρ

∂xσ∂xλ
− ∂xσ

∂x′µ
∂xλ

∂x′ν
∂x′ρ

∂xτ
Γτσλ

+ ∂xσ

∂x′µ
∂xλ

∂x′ν
∂2x′ρ

∂xσ∂xλ

= ∂xσ

∂x′µ
∂xλ

∂x′ν
∂x′ρ

∂xτ
(Γ̃τσλ − Γτσλ)

= ∂xσ

∂x′µ
∂xλ

∂x′ν
∂x′ρ

∂xτ
T τσλ ,

which shows that T ρµν indeed transforms as a tensor, proving our earlier assertion. As a consequence of
this result the variation of a connection is a tensor.

There is a particularly interesting tensor that can be formed from any connection in this manner.
From the Christoffel connection Γρµν we can form a new connection by permuting its lower indices.
Taking the difference between our original connection and the one with permuted lower indices produces
the torsion tensor :

T ρµν = Γρµν − Γρνµ = 2Γρ[µν] . (G.1)

To establish a unique connection on a manifold with a metric gµν we impose two additional conditions.
First, we require the connection to be torsion-free, a condition which is realized by demanding the
connection to be symmetric in its lower indices. Secondly, we require the connection to be metric
compatible, meaning that the covariant derivative of the metric with respect to that connection vanishes
everywhere. Using these two requirements we can prove our assertion that the connection now is uniquely
determined from the metric by finding a unique expression of the connection in terms of the metric. To
find such an expression we start by writing out the covariant derivative of the metric„

Dρgµν = ∂ρgµν − Γτρµgτν − Γτρνgµτ = 0 .

Using this formula together with the symmetric property of the lower indices of the Christoffel symbol
as well as the metric tensor, we find that

Dρgµν −Dµgνρ −Dνgρµ = ∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γτµνgτρ = 0 .

After rearranging terms and multiplying by 1
2g
σρ we find the following expression of the Christoffel

symbol in terms of the metric tensor:

Γσµν = 1
2g

σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (G.2)

There remains yet to prove that a connection of this form transforms as (4.12). This is indeed the case,
but for the sake of brevity we omit to perform this calculation.
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It would be useful to have a local description of the curvature of our space. For this purpose we
introduce the Riemann curvature tensor. Perhaps the most straightforward way to derive this object is
to evaluate the commutator of the covariant derivative. Using the earlier imposed condition that the
Christoffel symbol be symmetric in its lower indices we find that

[Dµ,Dν ]V ρ = (∂µΓρνσ − ∂νΓρµσ + ΓρµτΓτνσ − ΓρντΓτµσ)V σ . (G.3)

We identify the expression inside the bracket of the right-hand side as the Riemann curvature tensor,

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµτΓτνσ − ΓρντΓτµσ . (G.4)

Since we have expressed the Riemann curvature tensor in terms of non-tensorial elements it is by no
means obvious that it actually is a tensor. By making a general coordinate transformation it is possible
to show that it indeed transforms as a tensor. However, we will omit from presenting the details of this
calculation.

From the formula (G.4) the anti-symmetry of Rρσµν in its last two indices is apparent, as we would
expect from the way we derived it from the commutator of the covariant derivative,

Rρσµν = −Rρσνµ . (G.5)

A number of other useful symmetries of the Riemann curvature tensor can be derived. We will settle for
stating some of these symmetry relations and refer the reader to [16] for a derivation of a few of them.
The Riemann curvature tensor is anti-symmetric in its first two indices:

Rρσµν = −Rσρµν , (G.6)

and it is symmetric under an interchange of the first pair of indices with the second pair of indices:

Rρσµν = Rµνρσ . (G.7)

The anti-symmetric part of the last three indices vanishes:

Rρ[σµν] = 0 , (G.8)

and finally the Riemann curvature tensor satisfies the Bianchi identity:

D[µRρσ]µν = 0 . (G.9)

Not all of these symmetry relations are independent but they are all useful in their own way. It should
also be pointed out that it is of fundamental importance that the connection be torsion-free in order for
these symmetry relations to hold.

By contracting indices of the Riemann curvature tensor we can produce other useful tensors. The
Ricci tensor is defined in the following way:

Rµν = Rρµρν . (G.10)

Note that without involving the metric tensor in the process there are only three possible contractions
of Rρσµν . Because the Riemann curvature tensor is anti-symmetric in its first two indices (see (G.6)),
the contraction of its first two indices vanishes,

Rρρµν = gρσRσρµν = −gσρRρσµν = −Rρρµν ⇒ Rρρµν = 0 .

Since the Riemann tensor is also anti-symmetric in its last two indices by (G.5) it follows that contracting
the first and last index will result in the Ricci tensor, up to a minus sign. Some authors choose to define
the Ricci tensor in this way so one has to be careful about sign conventions.

As a consequence of the symmetry (G.7) of the Riemann curvature tensor, the Ricci tensor is com-
pletely symmetric,

Rµν = Rρµρν = gρσRσµρν = gσρRρνσµ = Rσνσµ = Rνµ .

By contracting the Ricci tensor we form the Ricci scalar R. This time, however, we do need to use
the metric tensor to perform the contraction,

R = Rµµ = gµνRµν . (G.11)
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In other words, the Ricci scalar is the trace of the Ricci tensor.
Compared with the Riemann curvature tensor the Ricci tensor contains somewhat less information

about the curvature of the space, and the Ricci scalar contains even less information than the Ricci ten-
sor. Essentially, the Ricci tensor and the Ricci scalar contains information about traces of the Riemann
curvature tensor. However, Einstein’s field equations, the governing physical equations of general relativ-
ity describing how the curvature of space is affected by the presence of matter and energy, is formulated
solely in terms of the Ricci tensor and the Ricci scalar as far as the curvature describing objects goes.

Before presenting Einstein’s field equations we first introduce the Einstein tensor Gµν . It is defined
in terms of the Ricci tensor, Ricci scalar and the metric tensor in the following way:

Gµν = Rµν −
1
2gµνR . (G.12)

Clearly, it is a symmetric tensor. Furthermore, as a consequence of the Bianchi identity, this tensor is
divergence-free:

DµGµν = 0 . (G.13)

Finally, we present the Einstein field equations:

Gµν + Λgµν = 8πG
c4

Tµν , (G.14)

where Λ is the cosmological constant, G is Newton’s gravitational constant, c is the speed of light in
vacuum and Tµν is the stress-energy tensor. The stress-energy tensor describes the gravitating sources
which curve spacetime. For a treatment of the cosmological constant and the stress-energy tensor, see
chapter (4.4).
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Appendix H

Stress-Energy Tensor for a
Conformally Coupled Scalar Field in
2+1 Dimensions
The main purpose of this appendix is to derive the stress-energy tensor for the scalar field

LS = −1
2g

µν(∂µφ∂νφ)− 1
2m

2φ2 − 1
2ξRφ

2 − ξ′φp , (H.1)

under the assumption that we have a conformal coupling. The result is

TµνS = ξGµνφ2 + ξ(gµν2(φ2)−DµDν(φ2))− gµνξ′φ6 − gµν

2 (∂ρφ∂ρφ+m2φ2) + ∂µφ∂νφ .

However, in order to reach this result we require several identities for which we present proofs. The
derivation of the stress-energy tensor start in section H.5.

H.1 Variation of determinant of metric
Let g denote the determinant of the metric tensor gµν . In other words, let

g = det(gµν) .

Now we make use of the very handy matrix identity

ln
(

det(A)
)

= tr [ln(A)] ,

where A is a matrix. This relation follows directly from taking the logarithm of equation E.17. If we set
A = gµν and take the variation of the left hand side we find

δ(ln(det(gµν))) = δln(g) = δg

g
,

and doing the same on the right side yields

δ tr (ln[gµν ]) = tr (gνσδgσµ) = gµνδgµν ,

where we in the first step substituted (g−1)σν for gνσ and in the second step we renamed our indices.
By now comparing the right hand side and the left hand side we find the variation of the determinant g
in terms of the variation of the metric:

δg = ggµνδgµν . (H.2)

By using this equation we can find an expression for δ(
√
−g)1:

δ
√
−g = − δg

2
√
−g

= −gg
µνδgµν

2
√
−g

= 1
2
√
−ggµνδgµν . (H.3)

1We could of course be more general and compute δf(g) where f is a function. However, in order to compute the stress
tensor of a Klein Gordon Lagrangian coupled to a scalar field we only need f(g) =

√
−g.
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H.2 Variation of Ricci scalar
Before we get started with this quite cumbersome derivation we remind ourselves that the Ricci scalar
R is formed by contracting the Ricci tensor Rµν and the metric gµν according to

R = Rµνg
µν .

If we now take the variation of this object we get stuck with taking the variation of the Ricci tensor
instead:

δR = δgµνRµν + gµνδRµν ,

However, recall that the Ricci tensor is a contracted Riemann tensor. From equation (G.4) we found
that the Riemann tensor can be written in terms of the Christoffel symbol:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµτΓτνσ − ΓρντΓτµσ ,

and the Christoffel symbol is related to the metric as seen in appendix G restated here for convenience:

Γσµν = 1
2g

σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) .

Thus, when taking the variation of the Riemann tensor above and performing a contraction we will be
able to rewrite the Ricci scalar in terms of variation of the metric alone. Eventually we have to tackle
some obstacles on the way. Let us compute the variation of the Riemann tensor:

δRρσµν = ∂µδΓρνσ − ∂νδΓρµσ + δΓρµτΓτνσ + ΓρµτδΓτνσ − δΓρντΓτµσ − ΓρντδΓτµσ .

It may seem we didn’t get anywhere since we still do not know how to take the variation of a Christoffel
symbol. However, before we continue we try to rewrite the expression. While the Christoffel symbol is
not a tensor the variation of it is as proven in Appendix G. Thus, we are allowed to compute its covariant
derivative D:

Dτ (δΓσµν) = ∂τδΓσµν + ΓστλδΓλµσ − ΓλτµδΓσλν − ΓλτνδΓσµλ .

where we used the definition of the covariant derivative.
Using this fact we may simplify the variation of the Riemann tensor by noting that it is a difference

between two covariant derivatives Dµ and Dν :

δRρσµν = Dµ(δΓρνσ)−Dν(δΓρµσ) .

and the second term in the variation of the Ricci scalar can be rewritten as

gµνδRµν = gµνδRρµρν = gµν
[
Dρ(δΓρνµ)−Dν(δΓρρµ)

]
= Dγ(gµνδΓγνµ − gµγδΓρρµ) ,

where we in the last step contracted indices to be able to express the variation with only one covariant
derivative. Now we are ready for taking the variation of the Christoffel symbol. From equation (G.2) it
follows

δΓσµν = 1
2δg

σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) + 1
2g

σρ (∂µδgνρ + ∂νδgρµ − ∂ρδgµν)

= δgσρgργΓγµν + 1
2g

σρ (∂µδgνρ + ∂νδgρµ − ∂ρδgµν)

= 1
2g

σρ(Dµδgνρ +Dνδgρµ −Dρδgµν)

= −1
2(gναDµδg

aσ + gµβDνδg
σβ − gµαgνβDσδgαβ) , (H.4)

where we in the last step used the fact that δgµν = −gµαgνβgαβ . Now let’s consider the terms gµνδΓγνµ
and gµγδΓρρµ:

gµνδΓγνµ = −1
2(Dαδg

αγ +Dβδg
γβ − gαβDγδgαβ) = −Dαδg

αγ + 1
2gαβD

γδgαβ , (H.5)

gµγδΓρρµ = −1
2(Dρδg

γρ + gαβD
γδgαβ − δgγαDα) = −1

2gαβD
γδgαβ . (H.6)
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We are almost done, we just need to subtract the terms and take the covariant derivative in order to get
the second term in the variation of the Ricci scalar. We have

gµνδΓγνµ − gµγδΓρρµ = gαβD
γδgαβ −Dαδg

αγ .

Finally we take the covariant derivative Dγ :

gµνδRµν = Dγ(gµνδΓγνµ − gµγδΓρρµ) = D2gαβδg
αβ −DγDαδg

αβ , (H.7)

and at last we have found our identity for δR (renaming the indices α→ µ, β → ν):

δR = δgµνRµν +D2gµνδg
µν −DµDνδg

µν . (H.8)

H.3 d’Alembert operator on a scalar field in curved spacetime
In this section we prove that

DµDµφ = 1√
−g

∂µ

(
gµν
√
−g∂νφ

)
, (H.9)

for a scalar field φ. Let us first consider the right hand side. We have to be a bit careful here because we
can not, in general, raise or lower indices on partial derivatives. This is because ∂µV ν is not a tensor!
However, since ∂µφ = Dµφ if φ is a scalar field we may write gµν∂νφ = Dµφ. Using this and acting with
the second derivative gives

1√
−g

∂µ

(√
−gDµφ

)
= ∂µD

µφ+ (∂µg)
2g Dµφ .

We can compute the derivative of the metric just as we did the variation of it. Since this has already
been done we simple state the slightly altered version of (H.2)

∂µg = ggσρ∂µ(gσρ) ,

and we can conclude that

1√
−g

∂µ

(√
−gDµφ

)
= ∂µD

µφ+ gσρ∂µ(gσρ)
2 Dµφ .

We now move on to the left hand side of (H.9)

DµD
µφ = ∂µD

µφ+ ΓµµρDρφ .

The last term may be simplified further

Γµµρ = 1
2g

µν (∂µgνρ + ∂ρgνµ − ∂νgµρ) = 1
2g

µν∂ρgνµ ,

since the metric is symmetric. Thus the left hand side becomes

DµD
µφ = ∂µD

µφ+ gµν∂ρ(gνµ)
2 Dρφ ,

which is equal to the right hand side. With this we have proven equation (H.9).

H.4 Weyl transformation of the Ricci scalar
In this section we will prove that the Ricci scalar, R, transforms according to

R 7→ R̃ = Ω−2(R− 42 ln(Ω)− 2(∂a ln Ω)(∂a ln Ω) ,

under the conformal (Weyl) transformation gµν 7→ g̃ab = Ω2(x)gab in 2 + 1 dimensions. We will do this
the long way, that is we will first construct the transformed Christoffel symbol, use it to find our Riemann
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tensor and finally contract it twice to get the Ricci scalar. The transformation of the Christoffel symbol
is straight forward to find using its definition and the identity g̃ab = Ω2(x)gab. Explicitly

Γ̃µνρ = g̃µλ
1
2(∂ν g̃λρ + ∂ρg̃λν − ∂λg̃νρ) = Ω−2gµλ

1
2

(
∂ν(Ω2gλρ) + (∂ρΩ2gλν)− ∂λ(Ω2gνρ)

)
(H.10)

= Γµνρ +
(
δµρDν ln Ω + δµνDρ ln Ω− gνρDµ ln Ω

)
= Γµνρ + f(Ω)µρν , (H.11)

where we in the third step used that gµνgνρ = δµρ and the fact that since Ω is a scalar we may write
∂µ ln Ω = Dµ ln Ω. Dµ is of course the standard covariant derivative. We can also see that fµρν is
symmetric in its lower indices. Next we consider the Riemann tensor which can be written as Rµνρλ =
∂ρΓµνλ − ∂λΓµνρ + ΓµσρΓσνλ − ΓµσλΓσνρ. Plugging in the expression for Γ̃ derived above we find that

R̃µνρλ = Rµνρλ + 2∂[ρ|f
µ
ν|λ] + 2fµσ[ρ|f

σ
ν|λ] − 2fµσ[λ|Γσν|ρ] + 2Γµσ[ρ|f

σ
ν|λ]

= 2D[ρ|f
µ
ν|λ] + 2fµσ[ρ|f

σ
ν|λ] . (H.12)

While this expression is nice and short we will have use for a more explicit. We start by examining the
expression D[ρ|f

µ
ν|λ].

D[ρ|f
µ
ν|λ] = δµνD[ρDλ] ln Ω +D[ρδ

µ
λ]Dν ln Ω− gν[λDρ]D

µ ln Ω .

While it is not true that covariant derivatives commute in general we may use the fact that ours act on
a scalar function to see that

DρDλ ln Ω = ∂ρ∂λ ln Ω− Γσρλ∂σ ln Ω = ∂λ∂ρ ln Ω− Γσλρ∂σ ln Ω = DλDρ ln Ω ,

from which we may conclude that δµνD[ρDλ] ln Ω = 0 and that

D[ρ|f
µ
ν|λ] = D[ρδ

µ
λ]Dν ln Ω− gν[λDρ]D

µ ln Ω .

We move on to the second term in (H.12).

fµσρf
σ
νλ =

(
δµσDρ ln Ω + δµρDσ ln Ω− gρσDµ ln Ω

)(
δσνDλ ln Ω + δσλDν ln Ω− gλνDσ ln Ω

)
.

Now, antisymmetrize the whole equation in order to achieve the second term in the transformed Riemann
tensor. We moreover expand the parenthesis:

fµσ[ρ|f
σ
ν|λ] = δµν (D[ρ| ln Ω)(D|λ] ln Ω) + δµ[λ|(Dν ln Ω)(D|ρ] ln Ω)− gν[λ|(Dµ ln Ω)(D|ρ] ln Ω)

+δµ[ρ|(Dν ln Ω)(D|λ] ln Ω) + δµ[ρ|(Dλ] ln Ω)(Dν ln Ω)− δµ[ρ|gν|λ](Dσ ln Ω)(Dσ ln Ω)

−gν[ρ|(Dµ ln Ω)(D|λ] ln Ω)− g[ρλ](Dν ln Ω)(Dµ ln Ω) + gν[λ|(D|ρ] ln Ω)(Dµ ln Ω) .

and after some cancellations we find

fµσ[ρf
σ
|ν|λ] = δµ[ρ|(D|λ] ln Ω)(Dν ln Ω)− δµ[ρ|gν|λ](Dσ ln Ω)(Dσ ln Ω)− gν[ρ|(D|λ] ln Ω)(Dµ ln Ω) .

Summarizing we have found

R̃µνρλ = Rµνρλ+2
(
δµ[ρ(Dλ] ln Ω)(Dν ln Ω)− δµ[ρ|gλ]ν(Dσ ln Ω)(Dσ ln Ω)

− gν[ρ|(Dλ] ln Ω)(Dµ ln Ω) +D[ρδ
µ
λ]Dν ln Ω− gν[λDρ]D

µ ln Ω
)
.

We may now procceed and calculate the Ricci tensor, Rνλ. By definition we have that Rνλ = Rµνµλ.
We remember that, since we work in 2 + 1 dimensions, we have δµµ = 3, the rest of the calculation is
straight-forward and gives

R̃νλ = Rνλ + (3− 1)(Dλ ln Ω)(Dν ln Ω)− (3− 1)gλν(Dσ ln Ω)(Dσ ln Ω)− (Dλ ln Ω)(Dν ln Ω)
+ gλν(Dσ ln Ω)(Dσ ln Ω) + (1− 3)DλDν ln Ω− gλν(DσDσ ln Ω) +DλDν ln Ω
= Rνλ + (Dλ ln Ω)(Dν ln Ω)− gλν(Dσ ln Ω)(Dσ ln Ω)− gλν(DσD

σ ln Ω)−DλDν ln Ω .

We have finally reached the last step. By using that R̃ = g̃νλR̃νλ we can write down the transformed
Ricci scalar as

R̃ = Ω−2
(
R+ (1− 3)(Dσ ln Ω)(Dσ ln σ)− (1 + 3)(DσD

σ ln Ω)
)

= Ω−2
(
R− 2(Dσ ln Ω)(Dσ ln σ)− 42 ln Ω

)
.

which is precisely what we set out to prove.
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H.5 The stress-energy tensor
Consider the Lagrangian for a real scalar field φ:

L = −1
2g

µν(∂µφ∂νφ)− 1
2m

2φ2 − 1
2ξRφ

2 − ξ′φp , (H.13)

where R is the Ricci scalar and ξ, ξ′ and p are constants. By rewriting the first term gµν(∂µφ∂νφ) =
∂µφ∂

µφ = (∂φ)2 we note that the first two terms in the Lagrangian is precisely the Klein-Gordon
Lagrangian, LKG, which is derived in Appendix D. The third and fourth terms are coupling terms. We
may now write down the corresponding action

Sscalarfield =
∫ √

−gd3x(−1
2g

µν(∂µφ∂νφ)− 1
2m

2φ2 − 1
2ξRφ

2 − ξ′φp) ,

where g denotes the determinant of the metric gµν . Are there any constraints on ξ and ξ′ and p? These
constants are often picked so that the scalar field is conformally coupled to gravity. This means that our
matter action is unchanged, up to a boundary term, under the transformations

gµν 7→ Ω2(x)gµν , φ 7→ Ω−1/2(x)φ ,

where Ω(x) is a scalar function and we set m = 0 [47]. The transformation considered above is a rescaling
of the metric, thus invariance under this transformation means that we will have scale-invariance. We
can now understand why we set m = 0, this is since m induces a natural length-scale and thus spoil
conformal invariance. The transformation of the scalar field can be understood through a dimensional
argument since a scalar field in 2 + 1 dimensions has the dimension of [L]−1/2. We can also use the
above transformations to see that

√
−g 7→ Ω3(x)

√
−g and gµν 7→ Ω−2(x)gµν . The first identity follows

simply because the determinant will make the transformation cubic and the second because the inverse
relationship must hold. The transformation of the Ricci scalar was worked out in section H.4. The result
is R 7→ Ω−2

(
R − 42 ln Ω − 2∂µ(ln Ω)∂µ(ln Ω)

)
. Using these transformation identities we can compute

the transformation of the action as

SScalarfield 7→
∫
d3x
√
−g
(
− Ω

2 g
µν∂µ(Ω−1/2φ)∂ν(Ω−1/2φ)

−1
2ξ
(
R− 42 ln Ω− 2∂µ(ln Ω)∂µ(ln Ω

)
φ2 − Ω−p/2+3ξ′φp

)
. (H.14)

We now use the result from section H.3 as well as partial integration on the term with the d’Alembert
operator resulting in

2ξ
∫
d3x
√
−g2 ln Ωφ2 = 2ξ

∫
d3x∂µ(

√
−g∂µ ln Ω)φ2

= −4ξ
∫
d3x
√
−g∂µ(ln Ω)∂µ(φ)φ+ Boundary term .

If we drop the boundary term and set p = 6 we can write (H.14) as

Sscalarfield 7→ Sscalarfield + (ξ − 1
8)
∫
d3x
√
−g
( 1

Ω2 ∂
µ(Ω)∂µ(Ω)φ2 − 4

Ω(∂µ)(Ω∂µφ)φ
)
,

and we can clearly see that our action will indeed be invariant under a conformal transformation if we
set ξ = 1

8 . Because of this we usually refer to this specific value as a conformal coupling. Before we
continue and calculate the stress-energy tensor we derive the equation of motion for the scalar field φ.
This is as usual given by the Euler-Lagrange equation

∂ν
∂
(√
−gL

)
∂
(
∂νφ

) −
∂
(√
−gL

)
∂φ

= 0 .

The first term can be rewritten as

∂ν
∂
(√
−gL

)
∂
(
∂νφ

) = ∂ν
∂
(
−
√
−g 1

2∂
µφ∂µφ

)
∂
(
∂νφ

) = −∂ν
(√
−ggνµ∂µφ

)
= −
√
−g2φ ,
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where we in the last step used the identity 1√
−g∂ν

(√
−ggνµ∂µφ

)
= gνµD

νDµφ = 2φ shown in section
H.3. The second term in the Euler-Lagrange equations becomes

∂
(√
−gL

)
∂φ

= −
√
−g
(
m2φ+ ξRφ+ 6ξ′φ5

)
,

and so the Euler-Lagrange equations give the equation of motion(
2−m2 − ξR

)
φ− 6ξ′φ5 = 0 , (H.15)

We now consider the stress-energy tensor. For simplicity we divide the total action Sscalarfield into
three parts such that

Sscalarfield = SKG + S1 + S2 ,

where SSKG is the Klein-Gordon action (generated by LKG), S1 =
∫
− 1

2ξRφ
2√−gd3x and S2 =

−
∫
ξ′φ6√−gd3x. Using the action Sscalarfield we wish to derive the corresponding stress-energy ten-

sor Tµν . For this purpose we need to find the variation of the action with respect to the metric gµν and
then use the fact that

Tµν = 2√
−g

δSscalarfield

δgµν
.

For the variation of Sscalarfield we make great use of the following identities

δ
√
−g = 1

2
√
−gδgµνgµν ,

δgρσ = −gρµδgµνgνσ ,

moreover, when varying S1 the following result is needed:

δR = Rµνδg
µν −DµDνδg

µν + gµνD
2δgµν ,

where D represents a covariant derivative. These results are by no means obvious, and rather tedious to
prove, why refer to the earlier sections of this appendix. Now we are settled for taking the variation of
our action. Starting off with the Klein-Gordon action:

δSKG = δ(
√
−g(−1

2g
ab(∂aφ∂bφ)− 1

2m
2φ2)) = δ(

√
−g)LKG +

√
−g(−1

2δg
ab(∂aφ∂bφ)) ,

= 1
2
√
−gδgµνgµνLKG +

√
−g(1

2g
aµδgµνg

νb(∂aφ∂bφ) ,

= 1
2
√
−gδgµν(gµνLKG + ∂µφ∂νφ) ,

and thus we can find the first part of our stress-energy tensor by cancelling the factor in front of the
parenthesis:

TµνKG = gµνLKG + ∂µφ∂νφ = −g
µν

2 (∂ρφ∂ρφ+m2φ2) + ∂µφ∂νφ .

It remains to vary S1 and S2. Before attacking S1 we consider the much simpler action, S2. S2 is only
affected by the variation of

√
−g and thus we may write

δS2 = −δ
√
−gξ′φ6 = −1

2
√
−gδgµνgµνξ′φ6 ,

and we conclude that
Tµν2 = 2√

−g
δS2

δgµν
= −gµνξ′φ6 .

Finally, we are ready to attack the variation of S1. By definition we have

δS1 = −1
2δ(
√
−gξRφ2) = −1

2(δ
√
−gξRφ2 +

√
−gξδRφ2) .

The first term is easy: − 1
2δ
√
−gξRφ2 = − 1

4
√
−gδgµνgµνξRφ2 (from our beloved identity above). The

second term is more tricky:

−1
2
√
−gξδRφ2 = −1

2
√
−gξ(Rabδgab −DaDbδg

ab + gabD
2δgab)φ2 ,

= −1
2
√
−gξ(−Rabgaµgνbδgµν +DaDbg

aµgνbδgµν − gabD2gaµgνbδgµν)φ2 .
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= −1
2
√
−gξ(−Rµνδgµν +DµDνδgµν − gµνD2δgµν)φ2 .

The first term in this expression contains the Ricci tensor and combined with the term− 1
4
√
−gδgµνgµνξRφ2

containing the Ricci scalar we may form the Einstein tensor Gµν :

−1
2
√
−gξδgµν(−Rµν + 1

2g
µνR)φ2 = 1

2
√
−gξδgµνGµνφ2 .

Thus δS1 can be rewritten as

δS1 = 1
2
√
−gξδgµνGµνφ2 + 1

2(gµνD2δgµν −DµDνδgµν)φ2√−gξ .

Now we remind ourselves that the variation of the action δS does really sit under an integral sign why
we are allowed to perform integration by parts. Thus, we can rewrite the terms involving the covariant
derivatives. Let us attack the integral

1
2

∫
d3x
√
−gξφ2(gµνD2δgµν −∇µDνδgµν) = 1

2

∫
d3x
√
−gξ(gµνD2(φ2)δgµν −DµDν(φ2)δgµν)

= 1
2

∫
d3x
√
−gξ(gµνD2(φ2)−DµDν(φ2))δgµν .

(H.16)

We have thus rewritten δS1 according to

δS1 = 1
2
√
−gξδgµνGµνφ2 + 1

2
√
−gξ(gµνD2(φ2)−DµDν(φ2))δgµν ,

leading to the final contribution of the stress tensor

Tµν1 = 2√
−g

δS1

δgµν
= ξGµνφ2 + ξ(gµνD2(φ2)−DµDν(φ2)) .

Now, at last, we are ready to present the total stress tensor Tµν :

Tµν = Tµν1 +Tµν2 +TµνKG = ξGµνφ2+ξ(gµν2(φ2)−DµDν(φ2))−gµνξ′φ6− g
µν

2 (∂ρφ∂ρφ+m2φ2)+∂µφ∂νφ ,

where we substituted D2 for the D’ Alembert operator 2. Precisely this result can also be found in
Zelnikov and Frolovs’ Introduction to Black Hole Physics, written in a covariant way (lowered indices),
omitting the ξ′-term [27].
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Appendix I

More on Morris-Thorne Solutions
from Conformally Coupled Scalar
Fields
Here we provide the rest of the components of the energy momentum-tensor for a conformally cou-
pled scalar field in the Morris-Thorne case and a more detailed discussion on the differential equations
which appear when relating the stress-tensor of the conformally coupled scalar field to the Einstein ten-
sor obtained from the Morris and Thorne-solution. Remember that we consider the stress-tensor of a
conformally coupled scalar field:

Tµν = 1
8Gµνφ

2 + 1
8(gµν2φ2 −DµDνφ

2)− gµνξ′φ6 − gµν
2 (∂ρφ∂ρφ) + ∂µφ∂νφ ,

where Gµν is the Einstein tensor. We first consider

2φ2 = gµνDµDνφ
2 = gµνDµ(2φDνφ) = 2gµν(DµφDνφ) + 2gµν(φDµDνφ) = 2gµν(∂µφ∂νφ) + 2φ2φ ,

where we have used the fact that a covariant derivative acting on a scalar is just the partial derivative.
Now using the e.o.m for our scalar field, (5.22), and exploiting the fact that it only depends on r we see
that

2φ2 = 2grr(φ′)2 + 2φ
(1

8Rφ+ 6ξ′φ5
)

= 2(1− b

r
)(φ′)2 + 1

4Rφ
2 + 12ξ′φ6

Using the fact thatDtDtφ2 = 0 since φ only depends on r we may now write down the time-component
of our stress-energy tensor:

Ttt = 1
8Gttφ

2 − e2Φ

16 Rφ
2 + e2Φ

4 (1− b

r
)φ′2 − e2Φ

2 ξ′φ6 .

When computing the rr-component we note that

gµν2φ2 −DµDνφ
2 = gµνg

ρσDσDρφ
2 −DµDνφ

2

= gµrg
rσDσ∂rφ

2 −Dµ∂rφ
2 = grrg

rrDr∂rφ
2 −Dr∂rφ

2 = 0 .

Thus all we have for the rr-component is

Trr = 1
8Grrφ

2 − grrξ′φ6 − grr
2 grr(φ′)2 + (φ′)2

= 1
8Grrφ

2 − 1
(1− b

r )
ξ′φ6 + (φ′)2

2 .

Lastly, for the ϕϕ-component we again use the identity 2φ2 = 2gµν∂µφ∂ν + 2φ2φ (since DϕDϕφ
2 = 0)

and we find

Tϕϕ = 1
8Gϕϕφ

2 + r2

16Rφ
2 − r2

4 (1− b

r
)φ′2 + r2

2 ξ
′φ6 .

Ttt and Tϕϕ can also be written in a way which allows us to relate the components:

Ttt = 1
8Gttφ

2 + gttC ,

Tϕϕ = 1
8Gϕϕφ

2 + gϕϕC ,
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where we introduced the term C = 1
16Rφ

2 − 1
4 (1 − b

r )φ′2 + 1
2ξ
′φ6. Now, reminding ourselves that

Tµν = 1
κGµν in the absence of a cosmological constant, where κ = 8πG

c4 we have

Gtt
gtt

( 1
κ
− 1

8φ
2) = C = Gϕϕ

gϕϕ
( 1
κ
− 1

8φ
2)⇒ Gϕϕ

gϕϕ
= Gtt

gtt
. (I.1)

Given the explicit expression for G00 and G22, in an orthonormal basis as G00 = b′r−b
r3 and G22 =

1
1− br

(Φ′′+ (Φ′)2) + b−b′r
2r2 Φ′ and the fact that G00 = gttGtt, G22 = gϕϕGϕϕ with gtt = e−2Φ and gϕϕ = 1

r2

we must have

Gϕϕ
gϕϕ

= Gtt
gtt

=⇒ G00 = G22 , (I.2)

and thus get the differential equation

b′r − b
r3 = 1

1− b
r

(Φ′′ + (Φ′)2) + b− b′r
2r2 Φ′ . (I.3)

This is a very complicated differential equation and we will not solve it in general. We will instead
consider the equation in a specific case. If we let the redshift function Φ(r) = 0 (negectible tidal forces)
the equation reduces to a simple Euler equation1

b′r − b
r3 = 0 =⇒ b(r) = Kr , (I.4)

with K being a constant. This implies that the metric component, grr = 1
1−K , is constant, not very

interesting! If we want non-trivial solutions we should look for Φ(r) 6= 0. We could for example specify
to the case of a Ellis wormhole, i.e with b(r) = b2

0
r . Then we have the following equation

−2b20
r4 = 1

1− b2
0
r2

(Φ′′ + (Φ′)2) + b20
r3 Φ′ , (I.5)

which is exactly soluble, but with a very tedious solution. Let us attack the problem from a different
point of view, namely from the equation of motion for our conformally coupled scalar field φ:

2φ = 1
8Rφ+ 6ξ′φ5 . (I.6)

2φ can be rewritten

2φ = gµνDνDµφ = gµνDν∂µφ

= gµν(∂µ∂νφ− ∂σφΓσµν) = grrφ′′ − grrφ′Γrrr − gϕϕφ′Γrϕϕ

= grrφ′′ − grrφ′ g
rr

2 ∂r(grr)− gϕϕφ′
1
2g

rr(∂ϕgϕr + ∂ϕgrϕ − ∂rgϕϕ)

= grrφ′′ − (grr)2φ′
1
2∂r(grr) + gϕϕφ′

1
2g

rr∂r(gϕϕ)

= (1− b

r
)φ′′ + φ′

[
b

2r2 −
b′

2r + 1
r

(1− b

r
)
]
,

resulting in another complicated differential equation for φ and b(r):

(1− b

r
)φ′′ + φ′

[
b

2r2 −
b′

2r + 1
r

(1− b

r
)
]

= 1
8Rφ+ 6ξ′φ5 . (I.7)

One could, once again, consider the case b(r) = b2
0
r , i.e. Ellis wormhole. However, this also leads to

a very difficult differential equation, this time for φ, which we will not bother to solve here. It seems
we could not get any new information from either our equation of motion, (I.6), or the stress tensor
for the conformally coupled scalar field, (I.1). We may notice something interesting if we combine the

1We could of course also consider the more general case Φ(r) = const and get the same result. This solution will be
encountered later on.
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equations (I.6) and (I.1) and omit the φ5/φ6-term in (I.6) and (I.1) respectively. With these restrictions
the equations reduce to{

Tµν = 1
8Gµνφ

2 + 1
8 (gµν2φ2 −DνDµφ

2)− gµν 1
2 (∂ρφ∂ρφ) + ∂νφ∂µφ ,

(2− 1
8R)φ = 0 .

If we take the trace of the reduced stress-tensor we find:

gµνTµν = 1
8g

µνGµνφ
2 + 1

8(32φ2 −DµDµφ
2)− 3

2(∂ρφ∂ρφ) + ∂µφ∂µφ

= − R16φ
2 + 1

4(DµDµφ
2)− 1

2∂
µφ∂µφ

= − R16φ
2 + 1

4g
µνDν(2φDµφ)− 1

2∂
µφ∂µφ

= − R16φ
2 + 1

4g
µν(2DνφDµφ+ 2φDµDνφ)− 1

2∂
µφ∂µφ

= − R16φ
2 + 1

2φD
µDµφ

= φ

2 (DµDµ −
R

8 )φ = φ

2 (2− R

8 )φ = 0 ,

where we in the last step used our equation of motion. Thus we have shown that the stress-energy tensor
is traceless in the case of (massless) conformal coupling in 2+1 dimensions (the result can of course be
generalized to higher dimensions). Moreover, since we also have Tµν = 1

κGµν and

gµνGµν = gµνRµν −
1
2g

µνgµνR = R− 3
2R = −R2 , (I.8)

we must have

gµνTµν = 1
κ
gµνGµν = − 1

κ

R

2 = 0 =⇒ R = 0 . (I.9)

This means that we have a Ricci scalar which is zero in the case of conformal coupling with massless
scalar field! We may also note that, since

R = −R00 +R11 +R22 = 2(R0
101 +R2

121 +R0
202) , (I.10)

and G00 = R2
121, G22 = R0

101, found in section 5.4, and G00 = G22 from equation (I.2) we must have

R = 2(R0
101 +R2

121 +R0
202) = 2(G00 −G22 +R0

202) = 2R0
202 = 0 , (I.11)

leading to

R0
202 = 1− b/r

r
Φ′ = 0 , (I.12)

which implies Φ(r) = const and/or b(r) = r. The case Φ(r) = const results in b(r) = Kr from equation
(I.3), which we earlier discarded as an uninteresting solution. The case b(r) = r corresponds to a divergent
differential equation (I.3). Thus we have no interesting solutions! This means that we can not find a
(traversable) wormhole solution to a conformally coupled (massless) scalar field in 2+1 dimensions!2

2In four (3+1) dimensions the situation is radically different, see e.g. [28]
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Appendix J

Miscellaneous Calculations in Higher
Spin Gravity
In this appendix we carry out some of the calculations that are too tedious for the main text of chapter
7. We do this to prevent the obfuscation of the main points of the chapter by hiding it behind a big wall
of math.

J.1 Chern-Simons equations of motion for SL(3)× SL(3)
The Chern-Simons equations of motion are given by:

F = dA+A ∧A = 0 .

where the connections are given by

A = dxµ
(
ωaµ +

eaµ
l

)
Ta + dxµ

(
ωµ

bc + eµ
bc

l

)
Tbc ≡ EaTa + EbcTbc , (J.1)

Ā = dxµ
(
ωaµ −

eaµ
l

)
T̄a + dxµ

(
ωµ

bc − eµ
bc

l

)
T̄bc ≡ ĒaTa + ĒbcT̄bc . (J.2)

Using the connections find the equations of motion. We begin by writing down F (A) for the A-connection
in an appropriate form, we can then easily see what terms change sign for Ā. We then add/subtract
the equations of motion for A and Ā to obtain four independent equations of motion. Calculations are
performed in Appendix J.1.

F (A) = d
(
EaTa + EbcTbc

)
+
(
EaTa + EbcTbc

)
∧
(
EdTd + EefTef

)
= d

(
EaTa + EbcTbc

)
+ 1

2[Ta,Td]Ea ∧ Ed + 1
2[Ta,Tef ]Ea ∧ Eef + 1

2[Tbc,Td]Ebc ∧ Ed + 1
2[Tbc,Tef ]Ebc ∧ Eef

= d
(
EaTa + EbcTbc

)
+ 1

2εad
gTgE

a ∧ Ed + εga(eTf)gE
a ∧ Eef

+ εga(eTf)gE
d ∧ Ebc −

(
ηb(eεf)c

g + ηc(eεf)b
g
)
TgE

bc ∧ Eef ,

where we may rewrite the last term
(
ηb(eεf)c

g + ηc(eεf)b
g
)
TgE

bc ∧ Eef = 2εgfcTgEbc ∧ E
f
b.

The index a is name choice for the free index of all terms. The terms attached to single-index Lie
algebra coffecients and double-index coefficients are linearly independent, so this equation can be split
into two:

F1(A) =
(

dEa + 1
2ε
a
bcE

b ∧ Ec − 2εafcEbc ∧ E
f
b

)
Ta = 0 ,

F2(A) = dEbcTbc + 2εga(eTf)gE
a ∧ Eef = 0 .

We expand the E-terms and drop the radius of curvature, the l:s, from the vielbeins for brevity,
reintroducing them later via dimensional analysis:

F1(A) = d(wa + ea) + 1
2ε
a
bc

(
wb ∧ wc + 2eb ∧ wc + eb ∧ ec

)
(J.3)

− 2εafc
(
wbc ∧ wfb + 2ebc ∧ wfb + ebc ∧ efb

)
, (J.4)

F2(A) = d(wbc + ebc)Tbc + 2εga(eTf)g
(
wa ∧ eef + wa ∧ wef + ea ∧ wef + ea ∧ eef

)
, (J.5)
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where all of the generators can be dropped in the first equation because their indices are termwise
free. F (Ā) is just F (A) with a minus sign in front of every term containing only one e-term. Using this
we can write down two equations of motion as the difference and sum of F1(A) and F1(Ā):

F1(A)− F1(Ā)
2 = dea + εabc

(
eb ∧ wc

)
− 4εafcebc ∧ w

f
b = 0 ,

F1(A) + F1(Ā)
2 = dwa + 1

2ε
a
bc

(
wb ∧ wc + eb ∧ ec

l2

)
− 2εafc

(
wbc ∧ wfb +

ebc ∧ efb
l2

)
= 0 .

To give the same treatment to F2(A) we first want to be able to drop the generators. To do this we need
to move the symmetrization brackets from the generator to the e, w.

F2(A) = d(wbc + ebc)Tbc + 2εga(eTf)g
(
wa ∧ eef + wa ∧ wef + ea ∧ wef + ea ∧ eef

)
⇒ d(wbc + ebc)Tbc + 2εga(e|Tfg

(
wa ∧ ee|f) + wa ∧ we|f) + ea ∧ we|f) + ea ∧ ee|f)

)
⇒ d(wbc + ebc) + 2εga(e|

(
wa ∧ ee|f) + wa ∧ we|f) + ea ∧ we|f) + ea ∧ ee|f)

)
= 0 .

With this, we can construct two more equations of motion for F2(A):

F2(A)− F2(Ā)
2 = deab + 2εga(a|wa ∧ ee|b) + 2εga(e|ea ∧ we|f) = 0 ,

F2(A) + F2(Ā)
2 = dwef + 2εag(e|ea ∧ eg |f) + 2εga(e|wa ∧ we|f) = 0 .

At this point we can write down all four equations of motion in one place, according to:

dea + εabce
b ∧ wc − 4εafcebc ∧ w

f
b = 0 ,

dwa + 1
2ε
a
bc

(
wb ∧ wc + eb ∧ ec

l2

)
− 2εafc

(
wbc ∧ wfb +

ebc ∧ efb
l2

)
= 0 ,

deab + 2εga(a|wa ∧ ee|b) + 2εga(e|ea ∧ we|f) = 0 ,
dwef + 2εag(e|ea ∧ eg |f) + 2εga(e|wa ∧ we|f) = 0 .

(J.6)

J.2 Turning Chern-Simons action into a modified Einstein-Hilbert
action in spin-3

In section 7.1 we postulated that a spin 3 Chern-Simons action can be expressed as the regular Einstein-
Hilbert action combined with some extra terms due to spin-3. At first we considered a Chern Simons
action of the form

SCS = k

2π

∫
M

tr [e ∧R] + 1
3l2 tr [e ∧ e ∧ e] , (J.7)

where e = eaTa + ebcTbc, Ta and Tbc denote generators of the gauge group SL(3,R) obeying the Lie
algebra

[Ta,Tb] = ε cabTc , (J.8)
[Ta,Tbc] = 2ε da(bTc)d , (J.9)

[Tab,Tcd] = −2(ηa(cε
e
d)b + ηb(cε

e
d)a)Te . (J.10)

(J.11)

Consider the first term in (J.7): tr [e ∧R]. We remind ourselves that we may write

R = dω + ω ∧ ω , (J.12)
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where ω can be expanded in terms of the generators Ta and Tab according to ω = ωaTa + ωbcTbc. Thus
we have

dω + ω ∧ ω = dωaTa + dωabTab + ωaTa ∧ ωbTb + ωabTab ∧ ωcdTcd + 2ωaTa ∧ ωbcTbc

= dωaTa + dωabTab + 1
2ω

a ∧ ωb[Ta,Tb] + 1
2ω

ab ∧ ωcd[Tab,Tcd] + ωa ∧ ωbc[Ta,Tbc]

= dωaTa + dωabTab + 1
2ω

a ∧ ωbε cabTc − ωab ∧ ωcd(ηa(cε
e
d)b + ηb(cε

e
d)a)Te + ωa ∧ ωbc(ε dabTcd + ε dacTbd)

= (dωa + 1
2ε

a
bcω

b ∧ ωc − 2ωbc ∧ ωdeηb(dε ae)c)Ta + (dωab + ωc ∧ ωdaε bcd + ωk ∧ ωalε bkl)Tab

= (Ra − 2ωbc ∧ ωdeηb(dε ae)c)Ta + (dωab + ωc ∧ ωdaε bcd + ωk ∧ ωalε bkl)Tab ,

where we made use of the fact eaTa ∧ ebTb = 1
2e
a ∧ eb[Ta,Tb] and Ra = dωa + 1

2ε
a
bcω

b ∧ ωc. Now we are
almost ready for taking the trace tr (e ∧R), but we will need some trace relationships first:

tr [TaTb] = 2ηab , (J.13)
tr [TaTbc] = 0 , (J.14)

tr [TabTcd] = −4
3ηabηcd + 2(ηacηbd + ηadηbc) . (J.15)

Taking the wedge product e ∧R and invoking these relations lead to

tr [e ∧R] = 2ea ∧ (Ra − 2ηb(dεe)caωbc ∧ ωde) + eab ∧ (dωcd + ωh ∧ ωicε dhi + ωk ∧ ωclε dkl) tr [TabTcd]

= 2ea ∧ (Ra − 2ηb(dεe)caωbc ∧ ωde) + 4eab ∧ dωab + eab ∧
[
ωh ∧ ω i

a εbhi + ωh ∧ ω i
b εahi + ωk ∧ ω l

a εbkl + ωk ∧ ω l
b εahl

]
= 2ea ∧ (Ra − 2ηb(dεe)caωbc ∧ ωde) + 4eab ∧ dωab + 4eab ∧

[
ωh ∧ ω i

a εbhi + ωh ∧ ω i
b εahi

]
.

The last term can be written in a more compact and sophisticated way with the use of symmetrization:

4eab ∧
[
ωh ∧ ω i

a εbhi + ωh ∧ ω i
b εahi

]
= 2eab ∧ εhi(a|ωh ∧ ω i

|b) .

We have now rewritten the first term in (J.7) according to

tr [e ∧R] = 2ea ∧ (Ra − 2ηb(dεe)caωbcωde) + 4eab ∧ dωab + 2eabεhi(a|ωh ∧ ω i
|b) .

However, the expression can be further simplified. The term ηb(dεe)caω
bcωde can be rewritten:

ηb(dεe)caω
bc ∧ ωde = 1

2[ηbdεecaωbc ∧ ωde + ηbeεdcaω
bc ∧ ωde]

= 1
2 [εecaωbc ∧ ω e

b + εdcaω
bc ∧ ω d

b ] = ωbc ∧ ω e
b εeca ,

and we conclude

tr [e ∧R] = 2ea ∧Ra − 4ea ∧ ωbc ∧ ω e
b εeca + 4eab ∧ dωab + 2eabεih(a|ω

h ∧ ω i
|b) .

Moving on to the second term, tr (e ∧ e ∧ e). By expanding e in terms of the generators of SL3 we find

e ∧ e ∧ e = (eaTa + edeTde) ∧ (ebTb + efgTfg) ∧ (ecTc + ehiThi)
= eaTa ∧ ebTb ∧ ecTc + eaTa ∧ efgTfg ∧ ehiThi + edeTde ∧ ebTb ∧ ehiThi + edeTde ∧ efgTfg ∧ ecTc +X ,

where ”X” denotes terms which will vanish when taking the trace, i.e. tr [X] = 0. Thus we conclude
that we need to compute four different traces:

tr [e ∧ e ∧ e] = [1] + [2] + [3] + [4] ,

where

[1] := tr [eaTa ∧ ebTb ∧ ecTc]
[2] := tr [eaTa ∧ efgTfg ∧ ehiThi]
[3] := tr [edeTde ∧ ebTb ∧ ehiThi]

[4] := tr [edeTde ∧ efgTfg ∧ ecTc] .
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Let’s start with [1]. We recall that eaTa ∧ ebTb = 1
2e
a ∧ eb[Ta,Tb] and find:

tr [eaTa ∧ ebTb ∧ ecTc] = 1
2e

a ∧ eb ∧ ecε dab tr [TcTd] = ea ∧ eb ∧ ecεabc ,

where we in the last step used tr [TcTd] = tr [TdTc] = ηdc. The second term ([2]) requires a bit more
work:

tr [eaTa ∧ efgTfg ∧ ehiThi] = tr [eaTa ∧ ebcTbc ∧ edeTde]

= − tr [ea ∧ ebc ∧ ede(ηb(dε fe)c + ηc(dε
f
e)b)TaTf ]

= −2ea ∧ ebc ∧ ede(ηb(dε fe)c + ηc(dε
f
e)b)ηaf = −ea ∧ ebc ∧ ede

[
ηbdεaec + ηbeεadc + ηcdεaeb + ηceεadb

]
,

where we once again used the commutator (in this case [Tbc,Tde]) and the trace relationship (J.13). The
third term [3] follows from a completely analogous computation (same commutator and trace as [2]) and
we find

tr [edeTde ∧ ebTb ∧ ehiThi] = ... = −2ea ∧ ebc ∧ ede(ηb(dε fe)c + ηc(dε
f
e)b)ηaf = [2] .

The fourth term in tr [e ∧ e ∧ e] is the most cumbersome. We remind ourselves of the commutator relation
TbcTa = TaTbc − 2ε fa(bSf) and may then rewrite [4] as follows

tr [ebcTbc ∧ eaTa ∧ edeTde] = ebc ∧ ea ∧ ede tr [TaTbcTde − 2ε fa(bTf)] . (J.16)

By swapping the wedge product ebc ∧ ea and thus obtaining a minus sign we may rewrite the first part
of the expression

tr [ebc ∧ ea ∧ ede(TaTbcTde)] = − tr [eaTa ∧ ebcTbc ∧ edeTde] = −[2] .

The second term in (J.16) needs to get investigated as well:

−2 tr [ebc ∧ ea ∧ edeε fa(bTf)] = 2 tr [ea ∧ ebc ∧ edeε a(b
f Tc)fTde]

= tr [ea ∧ ebc ∧ edeε abf TcfTde] + tr [ea ∧ ebc ∧ edeε acf TbfTde]

= ea ∧ ebc ∧ ede
[
− 4

3ε
ab
f ηcfηde + 2ε abf (ηcdηfe + ηceηfd)−

4
3ε

ac
f ηbfηde + 2ε acf (ηbdηfe+ ηbeηfd

]
= 2ea ∧ ebc ∧ ede

[
εeabηcd + εdabηce + εeacηbd + εdacηbe

]
.

Thus [4] can be rewritten according to

[4] = −[2] + 2ea ∧ ebc ∧ ede
[
εeabηcd + εdabηce + εeacηbd + εdacηbe

]
.

Adding [2], [3] and [4] together we find

[2] + [3] + [4] = ea ∧ ebc ∧ ede
[
2εeabηcd + 2εdabηce + 2εeacηbd + 2εdacηbe − ηbdεaec − ηbeεadc − ηcdεaeb − ηceεadb

]
= −ea ∧ ebc ∧ ede

[
2ηbdεaec + 2ηcdεaeb − 4εeabηcd − 4εeacηbd

]
= −ea ∧ ebc ∧ ede

[
6ηbdεaec + 6cdεaeb

]
= −12ea ∧ ebc ∧ edeεaecηbd = −12ea ∧ ebc ∧ e eb εaec .

Now we add all terms together to find tr [e ∧ e ∧ e] at last

tr [e ∧ e ∧ e] = ea ∧ eb ∧ ecεabc − 12ea ∧ ebc ∧ e eb εaec .

Substituting this term and our expression for tr [e ∧R] into the C-S action we find

SCS [e,ω] = k

π

∫
M

ea ∧Ra + 1
6e

a ∧ eb ∧ ecεabc − 2ea ∧ ωbc ∧ ω e
b εeca + 2eab ∧ dωab

+eabεih(a|ω
h ∧ ω i

|b) − 2ea ∧ ebc ∧ e eb εaec .
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J.3 Gauge transformations and coordinate transformations
In section 7.1 we stated that the variations:

δe = δA− δA
2 = dΛ− + [e,Λ+] + [ω,Λ−] , δω = δA+ δA

2 = dΛ+ + [e,Λ−] + [ω,Λ+] ,

can be seen to vanish if we pick Λ± correctly. Let us first simply consider Λ± = τa±T
a + τ bc± T

bc where
τ± is a constant parameter and T a, T bc are the usual sl(3) generators. To evaluate the commutators
we use (7.1). The calculations resembles those from the previous section and we will be content with
summarizing the results:

δeaµ = ∂µτ
a
− + εabce

b
µτ

c
+ − 4εabcecdµ τ+db + εabcω

b
µτ

c
− − 4εabcωcdµ τ−db ,

δeabµ = ∂µτ
ab
− + 2εcd(a|ecτ+d

|b) − 2εcd(a|τ+ced
|b) + 2εcd(a|ωcτ−d

|b) − 2εcd(a|τ−cωd
|b) ,

δωaµ = ∂µτ
a
+ + εabce

b
µτ

c
− − 4εabcedcτ−db + εabcω

b
µτ

c
+ − 4εabcωdb ∧ τ+db ,

δωabµ = ∂µτ
ab
+ + 2εcd(a|ecτ−d

|b) − 2εcd(a|τ−aed
|b) + 2εcd(a|ωcτ+d

|b) − 2εcd(a|τ+cωd
|b) .

We are now ready to see that the variation under a gauge transformation is precisely that of the variation
under a coordinate transformation. We set τa+ = ξρωaρ and τa− = ξρeaρ then

δea − δξea = 2ξν(∂[µe
a
ν] + εabce

b
[µω

c
ν] − 4εabcecd[µωbν]d) = 0 ,

δeab − δξeab = 2ξν(∂[µe
ab
ν] + 2εcd(a|ec[µων]d

|b) + 2εcd(a|ωc[µeν]d
|b)) = 0 ,

δωa − δξωa = 2ξν(∂[µω
a
ν] + εabc

2 (eb[µecν] + ωb[µω
c
ν])− 2εakc(ebc[µeν]b

k + ωbc[µων]b
k) = 0 ,

δωab − δξωab = 2ξν(∂[µω
ab
ν] + 2εcd(a|ec[µeν]d

|b) + 2εcd(a|ωc[µων]d
|b)) = 0 .

As indicated all the equations equal zero. This is because the second identity is precisely the equations
of motion for the higher spin Chern-Simons action.

J.4 Calculations of black holes and wormholes in spin-3 gravity
This section is devoted to make explicit some of the more lengthy calculations concerning black holes
and wormholes in spin-3 gravity theory.

J.4.1 Calculations of a spin-3 black hole
We consider the connections

A = b−1ab+ b−1db , Ā = bāb−1 + bdb−1 , (J.17)

with b = eρL0 and

a = [lDW2 +WW−2 −QW0]dx+ + [lPL1 − LL−1 + ΦW0]dx− , (J.18)

ā = [lDW−2 +WW2 −QW0]dx− − [lPL−1 − LL1 − ΦW0]dx+ . (J.19)

Here we have used the notation x± = t ± φ. We have chosen a coordinate system with coordinates
(t,ρ,φ) as discussed in (8.1). The generators Li and Wi as well as their Lie algebra and trace relations,
is presented in Appendix E.5.2. lD, lP , W, L and Φ are parameters specifying the charges of our black
hole.

First of all we want to rewrite our connections in a more convenient form. The second terms in the
expressions for A and Ā is straight forward to compute;

b−1db = e−ρL0deρL0 = L0dρ , (J.20)

and similarly
bdb−1 = −L0dρ . (J.21)
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To perform an analogous evaluation of the first terms in (J.17), we need to calculate the commutation
relations of b with the generators Li and Wi. This is shown explicitly for the W2 generator; from
Appendix E.5.2 we find the commutation relation [W2,L0] = 2W2 and

b−1W2b = b−1W2

∞∑
n=0

ρnLn0
n! = b−1

∞∑
n=0

ρn(L0W2 + [W2, L0])Ln−1
0

n!

= b−1
∞∑
n=0

ρn(L0 + 2I)W2L
n−1
0

n! = ... = b−1
∞∑
n=0

ρn(L0 + 2I)n

n! W2

= b−1eρ(L0+2I)W2 = b−1be2ρW2

= e2ρW2

By analogous calculations, using the commutation relations between the generators Li and Wi stated in
Appendix E.5.2, we find

b−1W2b = e2ρW2 , bW2b
−1 = e−2ρW2

b−1W−2b = e−2ρW−2 , bW−2b
−1 = e2ρW−2

b−1W0b = W0 , bW0b
−1 = W0

b−1L1b = eρL1 , bL1b
−1 = e−ρL1

b−1L−1b = e−ρL−1 , bL−1b
−1 = eρL−1 (J.22)

With these relations, (J.20) and (J.21), we can rewrite the connections (J.17) as

A = [e2ρlDW2 + e−2ρWW−2 −QW0]dx+ + [eρlPL1 − e−ρLL−1 + ΦW0]dx− + L0dρ , (J.23)

Ā = [e2ρlDW−2 + e−2ρWW2 −QW0]dx− − [eρlPL−1 − e−ρLL1 − ΦW0]dx+ − L0dρ . (J.24)

The equations of motion for our connections in higher spin theories is F = dA + A ∧ A = 0, and
similarly for Ā. We continue by working out what the equations of motion imply for the parameters.
The exterior derivative of A is straightforward to evaluate;

dA = (∂tdt+ ∂ρdρ+ ∂φdφ) ∧A
= ∂ρdρ ∧

(
[e2ρlDW2 + e−2ρWW−2 −QW0]dx+ + [eρlPL1 − e−ρLL−1 + ΦW0]dx− + L0dρ

)
= 2[e2ρlDW2 − e−2ρWW−2]dρ ∧ dx+ + [eρlPL1 + e−ρLL−1]dρ ∧ dx− . (J.25)

When calculating A ∧ A it is convenient to introduce some shorthand notation in order to make the
calculation more transparent. We write A = A+dx

+ + A−dx
− + L0dρ for the connection A given by

(J.23), that is
A+ = e2ρlDW2 + e−2ρWW−2 −QW0 , (J.26)

and
A− = eρlPL1 − e−ρLL−1 + ΦW0 . (J.27)

Now we can evaluate A ∧A in terms of A+, A− and L0;

A ∧A = (A+dx
+ +A−dx

− + L0dρ) ∧ (A+dx
+ +A−dx

− + L0dρ)
= A+A−dx

+ ∧ dx− +A+L0dx
+ ∧ dρ+A−A+dx

− ∧ dx+

+A−L0dx
− ∧ dρ+ L0A+dρ ∧ dx+ + L0A−dρ ∧ dx−

= [A+, A−]dx+ ∧ dx− + [L0, A+]dρ ∧ dx+ + [L0, A−]dρ ∧ dx− (J.28)

To evaluate the commutators we need to use the commutation relations of the generators Li and Wi, see
Appendix E.5.2. By the use of these commutation relation, (J.26) and (J.27) we find

[A+, A−] = [(e2ρlDW2 + e−2ρWW−2 −QW0), (eρlPL1 − e−ρLL−1 + ΦW0)]
= e3ρlDlP [W2, L1]− eρlDL[W2, L−1] + e2ρlDΦ[W2,W0] + e−ρWlP [W−2, L1]
− e−3ρWL[W−2, L−1] + e−2ρWΦ[W−2,W0]− eρQlP [W0, L1] + e−ρQL[W0, L−1]

= 2eρ(lPQ− 2lDL)W1 + 2e−ρ(LQ− 2lPW)W−1 .
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In the same way we find that

[L0, A+] = −2(e2ρlDW2 − e−2ρWW−2) ,

and
[L0, A−] = −eρlPL1 + e−ρLL−1 .

Comparing the latter two commutation relations with (J.25) we see that (J.28) can be rewritten as
A ∧A = [A+, A−]dx+ ∧ dx− − dA, so the equation of motion simply states that

dA+A ∧A = [A+, A−]dx+ ∧ dx− = 0 .

This directly implies that [A+, A−] = 0, that is

2eρ(lPQ− 2lDL)W1 + 2e−ρ(LQ− 2lPW)W−1 = 0 .

The coefficient of each generator must equal to zero in order for this equality to hold since the generators
are linearly independent. Therefore we find the following relations between the parameters;

lPQ = 2lDL , LQ = 2lPW .

We restate these relations as
Q = 2WlP

L
,

L2

l2P
= W
lD

. (J.29)

These are the restrictions of the parameters of (J.23) and (J.24) by the flatness condition on the connec-
tions. Note that we have not yet derived how the equation dĀ + Ā ∧ Ā = 0 constrain the connections.
However, if one performs this calculation in an analogous manner one finds that this restricts the pa-
rameters exactly as the flatness condition on A did, i.e. by (J.29).

Having investigated the equations of motion for the connections A and Ā, given by (J.23) and (J.24),
respectivly, we now calculate the corresponding metric.

In the principal embedding of SL(2) into SL(3), the metric tensor is given by

gµν = 1
2 tr[e(µeν)] , (J.30)

where the vielbein is defined as eµ = e aµ Ja + e abµ Tab. The vielbein can be expressed in terms of the
connections A and Ā as

e = eµdx
µ = 1

2(A− Ā) , (J.31)

(see (insert ref)). Using (J.23) and (J.24) for A and Ā we find

e = 1
2([e2ρlDW2 + e−2ρWW−2 −QW0]dx+ + [eρlPL1 − e−ρLL−1 + ΦW0]dx− + L0dρ

− [e2ρlDW−2 + e−2ρWW2 −QW0]dx− + [eρlPL−1 − e−ρLL1 − ΦW0]dx+ + L0dρ)

= 1
2 [(e2ρlD − e−2ρW)(W2 −W−2) + (eρlP − e−ρL)(L1 + L−1)]dt+ L0dρ

+ 1
2[(e2ρlD + e−2ρW)(W2 +W−2)− (eρlP + e−ρL)(L1 − L−1)− 2(Q+ Φ)W0]dφ . (J.32)

At last, to calculate the metric tensor, or rather the spacetime interval ds2 = gµνdx
µdxν , we make use of

some trace relations for the generators Li andWi, (see Appendix E.5.2). We restate these trace relations
here for convenience. The only nonzero trace of a product of two generators Li and Wi are

tr[L0L0] = 2 , tr[L1L−1] = −4

tr[W0W0] = 8
3 , tr[W1W−1] = −4 , tr[W2W−2] = 16 . (J.33)
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Using these trace relations and (J.32) we calculate the metric;

ds2 = 1
2 tr[e

2] = 1
8 [−2(e2ρlD − e−2ρW)2tr[W2W−2] + 2(eρlP − e−ρL)2tr[L1L−1]]dt2

+ 1
8[2((e2ρlD + e−2ρW)2tr[W2W−2]− 2(eρlP + e−ρL)2 + 4(Q+ Φ)2tr[W 2

0 ]]dφ2

+ 1
2 tr[L

2
0]dρ

= −
[

4l2D
(
e2ρ − e−2ρW

lD

)2
+ l2P

(
eρ − e−ρ L

lP

)2
]
dt2 + dρ2

+
[

4l2D
(
e2ρ + e−2ρW

lD

)2
+ l2P

(
eρ + e−ρ

L
lP

)2
+ 4

3(Q+ Φ)2

]
dφ2 .

Finally, by invoking the relations (J.29), we arrive at

ds2 = −
[

4l2D
(
e2ρ − e−2ρL2

l2P

)2

+ l2P

(
eρ − e−ρ L

lP

)2
]
dt2 + dρ2

+
[

4l2D
(
e2ρ + e−2ρL2

l2P

)2

+ l2P

(
eρ + e−ρ

L
lP

)2
+ 4

3(Q+ Φ)2

]
dφ2 . (J.34)

We continue by imposing the trivial holonomy constraint to further restrict the parameters of our
black hole solution. This is done by solving (8.8). We restate these equations here for convinience:

det(at) = 0 , 1
2β

2tr[a2
t ] = 1 , (J.35)

where at is the part of a, given by (J.18), proportional to dt. Since x± = t± φ, we have

at = lDW2 +WW−2 −QW0 + lPL1 − LL−1 + ΦW0 ,

To calculate the determinant of at and the trace of a2
t we need to calculate the matrix representations

of at and a2
t by using the matrix representations of the generators Li and Wi given in Appendix E.5.2.

Actually, we only need the diagonal elements of the matrix a2
t to calculate its trace. We find

at =

 2
3 (Φ−Q) 2L 8W

lP − 4
3 (Φ−Q) 2L

2lD lP
2
3 (Φ−Q)

 , (J.36)

and

a2
t =

 4
9 (Φ−Q)2 + 2lPL+ 16lDW − −

− 16
9 (Φ−Q)2 + 4lPL −

− − 4
9 (Φ−Q)2 + 2lPL+ 16lDW

 . (J.37)

The determinant of at is

det(at) = 16
27(Q− Φ)3 + 8

3(lPL − 8lDW)(Q− Φ) + 16lDL2 ,

where we have used (J.29) to simplify the expression. The trace of a2
t is simply the sum of the diagonal

elements of (J.37):
tr[a2

t ] = 8
3(Q− Φ)2 + 8lPL+ 32lDW .

We can now restate the trivial holonomy constraint (J.35) as two algebraic equations:

4
27(Q− Φ)3 + 2

3(lPL − 8lDW)(Q− Φ) + 4lDL2 = 0 ,
4
3β

2(Q− Φ)2 + 4β2(lPL+ 4lDW) . (J.38)
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Using (J.29) and solving the first of the above equations above for Q − Φ (preferably by the aid of a
computer) we find

Q− Φ = −6WlP
L

, (J.39)

and hence (by (J.29))
Φ = 8WlP

L
. (J.40)

Substituting (J.39) in the second equation of (J.38), we can solve for β2. After some algebraic manipu-
lations, we arrive at

β2 = L2

4lP
(16W2lP + L3)−1 . (J.41)

The trivial holonomy constraint is seen to restrict the parameters of the connection by (J.40) and
specifying the temperature potential β by (J.41).

Next, we calculate the holonomy invariants around the spatial cycle given by

Θ0,A = 2πdet(aφ) , Θ1,A = 2π2tr[a2
φ] , (J.42)

and
Θ0,Ā = 2πdet(āφ) , Θ1,Ā = 2π2tr[ā2

φ] , (J.43)

where aφ and āφ are the parts of a and ā proportional to dφ, respectively. It follows from (J.18) and
(J.19) that

aφ = lDW2 +WW−2 − (Q+ Φ)W0 − lPL1 + LL−1 ,

and
āφ = −lDW−2 −WW2 + (Q+ Φ)W0 − lPL−1 + LL1 .

Using the explicit matrix representations of the generators Li and Wi given in Appendix E.5.2, we
evaluate the matrix representations of aφ and āφ:

aφ =

− 2
3 (Q+ Φ) −2L 8W
−lP 4

3 (Q+ Φ) −2L
2lD −lP − 2

3 (Q+ Φ)

 ,

āφ =

 2
3 (Q+ Φ) 2lP −8lD
L − 4

3 (Q+ Φ) 2lP
−2W L 2

3 (Q+ Φ)

 . (J.44)

Calculating the determinant of these matrices and multiplying by 2π, we find

Θ0,A = −Θ0,Ā = 32π
27 (Q+ Φ)3 + 16π

3 (Q+ Φ)(lPL − 8lDW) + 32πL2lP , (J.45)

Again, for the other holonomy invariants, it suffices to calculate only the diagonal elements of a2
φ and

ā2
φ since we are only interested in their traces. Doing so, and then summing these respective diagonal

elements and multiplying by 4π2, we find

Θ1,A = Θ1,Ā = 48π2

9 (Q+ Φ)2 + 16π2(lPL+ 4lDW) . (J.46)

Finally, we calculate the periodicity of the Euclidean time that assures regularity at the horizon.
By performing a Wick rotation, t → itE , where tE is the Euclidean time, we express our black hole

metric (J.34) in Euclidean geometry:

ds2 =
[

4l2D
(
e2ρ − e−2ρL2

l2P

)2

+ l2P

(
eρ − e−ρ L

lP

)2
]
dt2E + dρ2

+
[

4l2D
(
e2ρ + e−2ρL2

l2P

)2

+ l2P

(
eρ + e−ρ

L
lP

)2
+ 4

3(Q+ Φ)2

]
dφ2 . (J.47)
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We consider a Taylor expansion to second order of the metric near the horizon and determine the
periodicity of the Euclidean time that assures regularity at the horizon in this quadratic approximation.
We introduce a new radial coordinate

r = eρ − eρh
eρh

,

which is zero at the horizon and in units of the radial distance of the horizon. It follows that

eρ = eρh(1 + r) , dρ = 1
1 + r

dr ,

and substituting this in the metric (J.47) above, yields

ds2 =
[

4l2D
(
e2ρh(1 + r)2 − e−2ρh(1 + r)−2L2

l2P

)2

+ l2P

(
eρh(1 + r)− e−ρh(1 + r)−1 L

lP

)2
]
dt2E + 1

(1 + r)2 dr
2

+
[

4l2D
(
e2ρh(1 + r)2 + e−2ρh(1 + r)−2L2

l2P

)2

+ l2P

(
eρh(1 + r) + e−ρh(1 + r)−1 L

lP

)2
+ 4

3(Q+ Φ)2

]
dφ2 .

(J.48)

The horizon is located at eρh =
√
L
lP

(see (8.13)). Using this and expanding near r = 0, neglecting terms
of cubic or higher order in r, yields

ds2 =
[
4l2D

(
e2ρh(1 + 2r)− e2ρh(1− 2r)

)2 + l2P (eρh(1 + r)− eρh(1− r))2
]
dt2E + 1

(1 + r)2 dr
2

+
[
4l2D

(
e2ρh(1 + 2r) + e2ρh(1− 2r)

)2 + l2P (eρh(1 + r) + eρh(1− r))2 + 4
3(Q+ Φ)2

]
dφ2

=
[
64l2De4ρhr2 + 4l2P e2ρhr2] dt2E + 1

(1 + r)2 dr
2 +

[
16l2De4ρh + 4l2P e2ρh + 4

3(Q+ Φ)2
]
dφ2

= [64lDW + 4lPL] r2dt2E + 1
(1 + r)2 dr

2 +
[
16lDW + 4lPL+ 4

3(Q+ Φ)2
]
dφ2 , (J.49)

where we in the last step also used (J.29) to simplify the expression. To remove the conical singularity
at the horizon we must require tE to be periodic with period

2π√
64lDW + 4lPL

.

This shows that the trivial holonomy constraint is consistent with a regular Euclidean horizon.

J.4.2 Calculations of a spin-3 black hole in a wormhole gauge
Our starting point here are the connections A and Ā of the form (J.17) with b = eρL0 ,

a = (L1 − l0L−1 − w0W−2)dx+ + (µW2 + αL−1 + βW−2 − γW0)dx− ,

and
ā = −(L−1 − l0L1 + w0W2)dx− + (µW−2 − αL1 + βW2 − γW0)dx+ .

Here l0, w0, µ, α, β and γ are parameters, Li and Wi are the usual generators of SL(3) and the
coordinates are (t,ρ,φ) with x± = t± φ. Using (J.22) we can write

A = (eρL1−e−ρl0L−1−e−2ρw0W−2)dx+ +(e2ρµW2 +e−ραL−1 +e−2ρβW−2−γW0)dx−+L0dρ , (J.50)

and

Ā = −(eρL−1−e−ρl0L1 +e−2ρw0W2)dx−+(e2ρµW−2−e−ραL1 +e−2ρβW2−γW0)dx+−L0dρ . (J.51)

The connections should satisfy the Chern-Simons equations of motion dA+A∧A = 0 (and the same
equation for Ā) in order to be a solution of our spin-3 gravity theory. We solve these equations for A
explicitly. The equations for Ā is solved analogously and the resulting restrictions on the parameters are
identical to those imposed by the equations of motion for A.
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We start by calculating the exterior derivative of A:

dA = (∂tdt+ ∂ρdρ+ ∂φdφ) ∧A
= ∂ρdρ ∧ [(eρL1 − e−ρl0L−1 − e−2ρw0W−2)dx+

+ (e2ρµW2 + e−ραL−1 + e−2ρβW−2 − γW0)dx− + L0dρ]
= (eρL1 + e−ρl0L−1 + 2e−2ρw0W−2)dρ ∧ dx+

+ (2e2ρµW2 − e−ραL−1 − 2e−2ρβW−2)dρ ∧ dx− . (J.52)

To evaluate the second term A ∧ A, we once again make use of the shorthand notation A = A+dx
+ +

A−dx
− + L0dρ so that we can write

A ∧A = [A+, A−]dx+ ∧ dx− + [L0, A+]dρ ∧ dx+ + [L0, A−]dρ ∧ dx− ,

just as we did in (J.28). Making use of the commutation relations of the generators Li and Wi stated in
Appendix E.5.2, we find

[A+, A−1] = 2(α− 8µw0)L0 + 2eρ(2µl0 − γ)W1 + 2e−ρ(2β − l0γ)W−1 , (J.53)

and
[L0, A+]dρ ∧ dx+ + [L0, A−]dρ ∧ dx− = −dA (J.54)

with dA given by (J.52). Thus, the equations of motion reads

dA+A ∧A = [A+, A−]dx+ ∧ dx− = 0 ,

and for this equation to hold we must have [A+, A−] = 0. The coefficient of each generator of (J.53) must
then equal to zero. We can formulate this condition as a system of three equations in three unknowns
α, β and γ: 

α− 8µw0 = 0
2µl0 − γ = 0
2β − l0γ

It is straightforward to solve this system to get
α = 8µw0

β = µl20
γ = 2µl0

(J.55)

Substituting (J.55) into our connections (J.56) and (J.57) we get

A = (eρL1 − e−ρl0L−1 − e−2ρw0W−2)dx+

+ µ(e2ρW2 + 8w0e
−ρL−1 + l20e

−2ρW−2 − 2l0W0)dx− + L0dρ , (J.56)

and

Ā = −(eρL−1 − e−ρl0L1 + e−2ρw0W2)dx−

+ µ(e2ρW−2 − 8w0e
−ρL1 + l20e

−2ρW2 − 2l0W0)dx+ − L0dρ . (J.57)

These connections are a proper solution of our spin-3 gravity theory, and we continue by calculating the
corresponding metric.

The vielbein is given in terms of the connections by (J.31). Inserting our connections (J.56) and
(J.57) in this formula yields

e = 1
2(A− Ā)

= 1
2 [(eρ + (8µw0 − l0)e−ρ)(L1 + L−1) + (µe2ρ + (w0 − µl20)e−2ρ)(W2 −W−2)]dt+ L0dρ

+ 1
2[(eρ + (8µw0 + l0)e−ρ)(L1 − L−1)− (µe2ρ + (w0 + µl20)e−2ρ)(W2 +W−2) + 4l0w0]dφ , (J.58)
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and the spacetime interval is given in terms of this vielbein by ds2 = 1
2 tr[e

2]. Most of the terms of tr(e2)
vanishes since most products of two sl(3) matrices Li and Wi are traceless. The only five non-zero traces
are given by (J.33), and we find that

ds2 = −
(
[eρ + (8µw0 − l0)e−ρ]2 + 4[µe2ρ + (w0 − µl20)e−2ρ]2

)
dt2 + dρ2

+
(

[eρ + (8µw0 + l0)e−ρ]2 + 4[µe2ρ + (w0 + µl20)e−2ρ]2 + 16
3 l

2
0

)
dφ2 . (J.59)
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Appendix K

Hamiltonian and Energy in
Chern-Simons Theory
In this section we give further evidence to why we can associate the constant M in the BTZ metric,
equation (5.18), with the energy of a black hole. We will do so by investigating the Hamiltonian of a
Chern-Simons Lagrangian. Our discussion will be based on a paper by M. Bañados and I. Reyes where
a more detailed discussion can be found, see [48]. The Hamiltonian, H(q,q̇) (q denoting a generalized
coordinate), can be seen as the total energy of a system. It is related to the Lagrangian through a
Legendre transform:

L = piq̇
i −H(q,q̇),

where pi ≡ ∂L
∂q̇i is the conjugate momentum and qi our fields or generalized coordinates. We have also

used the notation q̇ = d
dtq. The action will then take the following form

S =
∫
d3x(piq̇i −H(p,q) + λaφa). (K.1)

The λa introduced here are Lagrange multipliers and φa are constraints. For the reader’s convenience
we restate the Chern-Simons action as

SCS = k

4π

∫
tr[A ∧ dA+ 2

3A ∧A ∧A] .

Let us now try to manipulate the Chern-Simons action so that we may simply read off the Hamiltonian.
First we ”split” the connection according to Aµ = (A0,Ai) where i ∈ (1,2). We start by manipulating
the first term

A ∧ dA = (A0dt+Aidx
i) ∧ d(A0dt+Ajdx

j)
= A0dt ∧ dAjdxj +Aidx

i ∧ dA0dt+Aidx
i ∧ dAjdxj

= A0dt ∧ (dAjdxj − dAidxi) + d(Aidxi ∧A0dt)︸ ︷︷ ︸
0

+Aidxi ∧ dAjdxj

= εij(A0(∂iAj − ∂jAi)−AiȦj)d3x ,

where we have discarded a surface term as indicated. Proceeding with the second term and making the
trace explicit

tr[23A ∧A ∧A] = 2
3 tr[A0AiAj −AiA0Aj +AiAjA0]dt ∧ dxi ∧ dxj (K.2)

= 2
3 tr[2A0AiAj −A0AjAi]dt ∧ dxi ∧ dxj (K.3)

= 2 tr[A0AiAj ]dt ∧ dxi ∧ dxj (K.4)
= 2εij tr[A0AiAj ]d3x . (K.5)

Notice that the relative minus sign in the first step is due to the wedge product. We use the cyclicity of
the trace in the second step and in the third step we once again make use of the anti-symmetry of the
wedge product. If we now use the trick of writing AiAj = 1

2 [Ai,Aj ], remember that A is matrix-valued,
we find

tr[A ∧ dA+A ∧A ∧A] = εij tr[(A0(∂iAj − ∂jAi + [Ai,Aj ])−AiȦj ]d3x (K.6)
= εij tr[A0Fij −AiȦj ]d3x (K.7)

= 1
2η

abεij(Aa0F bij −AiȦj)d3x . (K.8)
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In the last step we used, as introduced in the previous section that tr[AiAj ] = tr[Aai SaAbjSb] = 1
2η
abAaiA

b
j .

The Chern-Simons action thus takes the following form

SCS = k

8π

∫
d3xεijηab[−AaiȦbj +Aa0F

b
ij ] . (K.9)

Comparing with (K.1) we may now identify Aa0 = λa as a Lagrange multiplier with a constraint φb =
F bij = 0. We also notice that we have H ≡ 0, does this mean that we have zero energy? No, the
answer is that our action is incomplete, we are missing a boundary term. Remember that the e.o.m
for a Chern-Simons theory is F = 0. We must now check that our action truly is stationary when we
satisfy our e.o.m. To derive our equations of motion we vary the action with respect to all connections
(independently) and find

δSCS = k

8π

∫
d3xεijηab(−δAai Ȧbj −Aai

d

dt
δAbj + δAa0F

b
ij +Aa0δF

b
ij)

= k

8π

∫
d3xεijηab(−δAai Ȧbj + Ȧai δA

b
j + δAa0F

b
ij +Aa0δF

b
ij + d

dt
(AiδAj)︸ ︷︷ ︸

0

)

= k

8π

∫
d3xεijηab(2Ȧai δAbj + δAa0F

b
ij +Aa0δF

b
ij) .

(K.10)

We can modify the term εijAa0δF
b
ij into a more convenient form.

εijAa0δF
b
ij = εijAa0

(
∂iδAj − ∂jδAi

)
= 2εijAa0∂iδAj = 2εij

(
∂i(Aa0δAj)− δAj∂i(A0)

)
,

and thus we can see that

εij(2Ȧai δAbj +Aa0δF
b
ij) = 2εij

(
∂i(Aa0δAj) + F b0iδAj

)
.

Using this we may restate (K.10) as

δSCS =
∫

e.o.m + k

4π

∫
d3xεij∂i tr[A0δAj ]︸ ︷︷ ︸

δE

.

This term spoils our theory since our equation of motions will not be stationary points of the action.
Fortunately we can easily deal with this problem by redefining our original H according to H ′ = H +E.
The action is thus written as

SCS = k

8π

∫
d3xεij tr[−AiȦj +A0F ij ]− E .

The reason for this negative sign can be seen to arise naturally from (K.1). With this modification our
action is well defined. The name E is certainly no coincidence. Since the old Hamiltonian simply was
a constraint εij tr[A0Fij ] we will interpret this new term as the energy. Before we proceed we also note
that the expression for δE may be simplified if we use Stoke’s theorem, then

δE = k

4π

∫
d3xεij∂i tr[A0δAj ] = k

4π

∫
dt

∫
ρ→∞

dφ tr[A0δAφ] ,

where ρ is a radial variable and φ is an angular variable.
Let us now turn to the specific case of the BTZ black hole. For the BTZ black hole we have the

connections

A = (eρL1 − e−ρLL−1)(dt+ dφ) + L0dρ,

A = (−eρL−1 + Le−ρL1)(dt− dφ)− L0dρ ,

as introduced in the chapter on higher spin 7. In order to evaluate our boundary term and the energy we
would like to find a way of relating Aφ andA0 when r →∞. It is easy to see that we have Aφ = A0 and
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Aφ = −A0. We call this a chiral symmetry. Using this fact we may rewrite the variation of the energy
term according to

δE = k

4π

∫
dt

∫
r→∞

dφ tr[A0δAφ] = δ
k

4π

∫
dt

∫
r→∞

dφ tr
[A2

φ

2

]
,

and we can see that

E[A] = k

4π

∫
dt

∫
r→∞

dφ tr
[A2

φ

2

]
.

The trace can be evaluated using the explicit matrix representation for L1 and L−1 found in appendix
E.5.2. The result is

1
2 tr[A2

φ] = 1
2 tr[(eρL1 − Le−ρL−1)2] = 4L ,

1
2 tr[A2

φ] = 1
2 tr[(eρL−1 − Le−ρL1)2] = 4L .

There is an analogous expression for A, the only difference is a sign. It is now time to evaluate the energy
of our BTZ black hole. It is important to remember that our action, as described in the previous section,
is the difference between two Chern-Simons actions. The trace can be evaluated using the explicit matrix
representation for L1 and L−1 found in appendix E.5.2. So our total energy is

E = E[A]− E[A] = k

4π

∫
dt

∫
r→∞

dφ
(

tr
[A2

φ

2

]
+ tr

[A2
φ

2

])
= 2k

π

∫
dtL ∝ kL ,

It is possible to evaluate the integral by going to Euclidean time, but we will be satisfied with the
knowledge that it must be proportional to kL. We can now see that the energy depends on kL and since
k is proportional to 1

G it is natural to assume that L ∝ GM where M is the mass of the BTZ black
hole.
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