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Static program analysis is used to summarize properties over all dynamic executions. In a unifying
approach based on 3-valued logic properties are either assigned a definite value or unknown. But in
summarizing a set of executions, a property is more accurately represented as being biased towards
true, or towards false. Compilers use program analysis to determine benefit of an optimization. Since
benefit (e.g., performance) is justified based on the common case understanding bias is essential in
guiding the compiler. Furthermore, successful optimization also relies on understanding the quality
of the information, i.e. the plausibility of the bias. If the quality of the static information is too low
to form a decision we would like a mechanism that improves dynamically.

We consider the problem of building such a reasoning framework and present the fuzzy data-flow
analysis. Our approach generalize previous work that use 3-valued logic. We derive fuzzy extensions
of data-flow analyses used by the lazy code motion optimization and unveil opportunities previous
work would not detect due to limited expressiveness. Furthermore we show how the results of our
analysis can be used in an adaptive classifier that improve as the application executes.

1 Introduction

How can one reconcile static and dynamic program analysis? These two forms of analysis complement
each other: static analysis summarizes all possible runs of a program and thus provide soundness guaran-
tees, while dynamic analysis provides information about the particular runs of a program which actually
happen in practice and can therefore provide more relevant information. Being able to combine these two
paradigms has applications on many forms on analyses, such as alias analysis [15, 19] and dependence
analysis [17].

Compilers use program analysis frameworks to prove legality as well as determining benefit of trans-
formations. Specifications for legality are composed of safety and liveness assertions (i.e. universal and
existentially quantified properties), while specifications for benefit use assertions that hold in the com-
mon case. This reason for adopting the common case is that few transformations improve performance
in general (i.e., for every input, environment). Similarly most transformations could potentially improve
performance in a least one case. As such, compiler optimizations are instead motivated based on (an
approximation of) the majority case, i.e. the (weighted) mean. While determining legality has improved
due to advances in the verification community the progress in establishing benefit has been slow.

In this paper we introduce fuzzy data-flow analysis, a framework for static program analysis based on
fuzzy logic. The salient feature of our framework is that it can naturally incorporate dynamic information
while still being a static analysis. This ability comes thanks to a shift from “crisp” sets where membership
is binary, as employed in conventional static analysis, to fuzzy sets where membership is gradual.
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We make the following contributions:
• Section 3 introduces our main contribution, the fuzzy data-flow framework.
• Section 4 demonstrates the benefit of our framework by presenting a generalization of a well-

known code motion algorithm and we show how this generalization provides new opportunities
for optimizations previous approaches would not discover.

• Section 4 shows how fuzzy logic can benefit program analysis by (1) using second-order fuzzy
sets to separate uncertainty in data-flow and control-flow and hence improve an inter-procedural
analysis and (2) using fuzzy regulators to refine the results of our static analysis, hence improving
the precision dynamically.

2 Preliminaries

We introduce and define fuzzy sets and the operators that form fuzzy logic. These concepts will be used
in Section 3 to define the transfer functions of our data-flow analysis.

2.1 Fuzzy set

Elements of a crisp set1 are either members or non-members w.r.t to a universe of discourse. A fuzzy set
(FS) instead allow partial membership denoted by a number from the unit interval [0,1]. The membership
degree typically denotes vagueness. The process to convert crisp membership to fuzzy grades is called
fuzzification and the inverse is called defuzzification. Following Dubois et al. [8, 7] let S be a crisp
set and µ : S 7→ [0,1] a membership function (MF) then 〈S,µ〉 is a fuzzy set. As a convention, if S is
understood from context we sometimes refer to µ as a fuzzy set. The membership function formalizes
the fuzzification. Fuzzy sets are ordered point-wise, i.e. (S,µA)≤ (S,µB)⇔∀s ∈ S : µA(s)≤ µB(s).

We can accommodate some notion about uncertainty of vagueness by considering a type-2 fuzzy
set where the membership degree itself is a fuzzy set. Type-2 FS (T2FS) membership functions are
composed of a primary (Js) and secondary (µ) membership {〈(s,u),µ(s,u)〉 | s ∈ S,u ∈ Js ⊆ [0,1]}.
Here uncertainty is represented by the secondary membership that define the possibility of the primary
membership. When for each x and u, it holds µ(x,u) = 1 the T2FS is called an interval T2FS. Gehrke
et al. [9] showed that this can equivalently be described as an interval valued fuzzy sets (IVFS) where
µ : S→{[l,u] |⊥ ≤ l ≤ u≤>}. IVFS are a special case of lattice valued fuzzy sets (L-fuzzy sets) where
the membership domain forms a lattice over [0,1]. Defuzzification of T2FS often proceeds in two phases.
The first phase applies type reduction to transform the T2FS to a type-1 FS (T1FS). The second phase
then applies a type-1 defuzzification.

2.2 Fuzzy logic

Fuzzy logic defines many-valued formal systems to reason about truth in the presence of vagueness.
Contrary to classical logic the law of excluded middle (p∨¬p = >) and the law of non-contradiction
(p∧¬p = ⊥) does not, in general, hold for these systems. Fuzzy logic uses T-, S- and C- norms to
generalize the logical operators ∧, ∨ and ¬. We compactly represent a fuzzy logic by 〈∧̃, ∨̃, ¬̃〉2 which
is sometimes called a De Morgan system [8] because it satisfies a generalization of De Morgans laws:
¬̃(P ∧̃Q)⇔ ¬̃P ∨̃ ¬̃Q and ¬̃(P ∨̃Q)⇔ ¬̃P ∧̃ ¬̃Q.

1In the context of fuzzy logic, crisp or Boolean set refer to a classical set to avoid confusion with fuzzy sets.
2Although one would expect the definition of a fuzzy logic to include a “fuzzy implication” operator in this work we do not

consider it.
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Fuzzy logic T-norm S-norm C-norm
1 Min-Max min(x,y) max(x,y) 1− x
2 Algebraic Sum-product xy x+ y− xy 1− x
3 Lukasiewicz max(x+ y−1,0) min(x+ y,1) 1− x

4 Nilpotent

{
min(x,y) x+ y > 1
0 otherwise

{
max(x,y) x+ y < 1
1 otherwise

1− x

Table 1: Common instantiations of fuzzy logics
Definition 1. Let U be a binary function [0,1]2→ [0,1] that is commutative, associative and increasing
and has an identity element e ∈ [0,1]. If e = 1 then U is a Triangular norm (T-norm) and if e = 0 then
U is a Triangular conorm (S-norm)3.

Definition 2. A C-norm is a unary function n : [0,1]→ [0,1] that is decreasing, involutory (i.e., n(n(x))=
x) with boundary conditions (i.e, n(0) = 1,n(1) = 0).

Standard examples of fuzzy logics are shown in Table 1 [8, 7]. Examples 1-3 are special cases (and
limits) of the Frank family of fuzzy logics that are central to our work and formally defined in Definition
3.

Definition 3. Let s ∈ [0,1]∪{∞} then the Frank family of T-norms is defined by:

T s(x,y) =


min(x,y) s = 0
xy s = 1
max(x+ y−1,0) s = ∞

logs

(
1+ (sx−1)(sy−1)

s−1

)
otherwise

The set of intervals in [0,1] forms a bounded partial order 〈I,v,>,⊥〉4 where [lx,ux]≤ [ly,uy]⇔ (lx ≤ ly)
∧ (ux ≤ uy) ,>= [1,1] and ⊥= [0,0]. As per Gehrke et al. [9] we can point-wise lift a T1FS fuzzy logic
〈∧̃, ∨̃, ¬̃〉 to a IVFS fuzzy logic, i.e., [lx,ux]� [ly,uy] = [lx� ly,ux�uy],�̂ ∈ {∧̃, ∨̃} and ¬̃[l,u] = [¬̃u, ¬̃ l].

3 Fuzzy data-flow analysis

Static data-flow analyses deduce values of semantic properties that are satisfied the dynamics of the appli-
cation. The dynamics is formalized as a system of monotone transfer functions and collector functions.
Transfer functions describe how blocks alter the semantic properties. Collectors functions merge results
from different, possibly mutual exclusive, branches of the application. The solution of the analysis is
obtained through Kleene iteration and is a unique fixed-point of the system of equations. In a classical
framework the domain of the values is binary, i.e. either true (1) or false (0). The interpretation of these
values depends on the type of analysis. The value true means that the property can possibly hold in a
may-analysis (i.e., it is impossible that the value is always false) while it means that the property always
holds in a must-analysis. The value false could mean either the opposite of true or that the result is
inconclusive.

Our fuzzy data-flow analysis instead computes the partial truth of the property, i.e. values are el-
ements of [0,1]. A value closer to 0 means that the property is biased towards false and vice versa.
Furthermore the transfer functions are logical formulas from a Frank family fuzzy logic and the collector

3The general concept, allowing any e ∈ [0,1], is called a uninorm [8] and is either orlike (i.e., U(0,1) = U(1,0) = 1) or
andlike (i.e., U(0,1) =U(1,0) = 0). Our work does not require the full generality.

4This should not be confused with the partial order used in the interval abstraction.
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functions are weighted average functions where the constant α is determined prior to performing the
analysis. In contrast to the classical framework Kleene iteration proceeds until the results differ by a
constant ε which is the maximal error allowed by the solution. The error can be made arbitrarily small.

This section introduces the fuzzy data-flow framework and we prove termination using continuity
properties and Banach’s fixed-point theorem. Section 4 then presents an example analysis to demonstrate
the benefit of the framework. The analysis is performed on a weighted flow-graph G = 〈V,E,α〉 where
V is a set of logical formulas (denoting the transfer function of each block), E ⊆ V ×V is a set of
edges (denoting control transfers) and αe ∈ [0,1] denotes the normalized contribution for each edge e.
As a running example we will use Figure 1 (left) which shows a flow-graph with four nodes and their
corresponding logical formula. The flow graph has four control edges denoting contributions between
nodes. For instance, Block 1 (B1) receives 0.1 of its contribution from B0 and 0.9 from B2, i.e. α〈B0,B1〉=
0.1 and α〈B2,B1〉 = 0.9.

Out = 0.0B0

Out = InB1

Out = 0.8∧ (¬In∨¬0.7)

B2

Out = In

B3

0.1

1.00.9

1.0


Out(B0) = 0.0
Out(B1) = 0.1Out(B0)+0.9Out(B2)
Out(B2) = min(0.8,max(1−Out(B1),0.3))
Out(B3) = Out(B1)

Figure 1: Example flow-graph (left) and its corresponding equation system (middle) and the analysis
result and error as a function of iteration (right)

Definition 4. Let P be a finite set of properties and V S : P 7→ [0,1] a valuation for each property.
We use [[φ ]] (V S) to denote the interpretation of the fuzzy formula φ given a V S. Given a flow-graph
G = 〈V,E,α〉 with a unique start node vstart the map GS : V 7→ V S describes the value of each property
at each node and a fuzzy data-flow analysis is a Kleene iteration of F : GS 7→ GS:

F(S) = λv.

S(vstart) v = vstart

∑
〈w,v〉∈E

α〈w,v〉[[v]] (S(w)) otherwise

Figure 1 (middle) shows the equation system, as implied by Definition 4, interpreted in a min-max fuzzy
logic for the example flow-graph. The red colored text corresponds to the collector function, i.e. the
weighted average, and the normal text is the interpretation of the logical formula. In order to prove
termination of a fuzzy analysis we need to introduce a continuity property.

Definition 5. A function f : [0,1]n 7→ [0,1] is K-Lipschitz continuous5 iff ∀x,h : | f (~x−~h)− f (~x)|1 ≤
K|~h|1. Where |~x|1 is l1-norm (i.e., the absolute value) of~x6. If 0 ≤ K < 1 then f is called a contraction
mapping and if 0≤ K ≤ 1 then f is called a non-expansive mapping.

In a sequence of applications of a contraction mapping the difference between two consecutive ap-
plications will decrease and in the limit reach zero. By imposing a bounded error we guarantee that this

5Our definition restricts the domain and metric of both metric spaces (i.e., for the domain and co-domain of f ) compared to
the more general, and common, definition of a Lipschitz continuous function.

6Other lp-norms can be used but only if we restrict the logic to the min-max fuzzy logic [14].
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sequence terminates in a bounded amount of time. The analysis error and result of B2 as a function of
iteration for the example is shown in Figure 1 (right). Note that the error (red line) is decreasing and the
value of B2 (blue line) tends towards a final value. We next proceed to prove that any fuzzy data-flow
analysis iteratively computes more precise results and terminates in a bounded amount of time for a finite
maximum error 1

2q from some q∈N−{0}. We let [0,1]q denote the maximal congruence set of elements
from [0,1] that are at least 1

2q apart, i.e. [0,1]q = { i
2q | 0≤ i≤ 2q}. The set of intervals on [0,1], i.e. I are

defined analogously. For this we prove the non-expansive property of fuzzy formulas.

Theorem 1. Let x,y,C,wi ∈ [0,1]q, for some i ∈ N, fi(~x) : [0,1]nq 7→ [0,1]q be 1-Lipschitz and
gi(~x) : [0,1]nq 7→ [0,1]q be Ki-Lipschitz.

• Functions x+ y, x− y, xy, min(x,y) and abs(x) are 1-Lipschitz. Constants are 0-Lipschitz.
• If ∑

N−1
i=0 wi = 1 then ∑

N−1
i=0 wi fi(~x) is 1-Lipschitz.

• The composition ga ◦gb is KaKb-Lipschitz.
Finally,

• Formulas defined in a Frank family Fuzzy logic are 1-Lipschitz.
• If F : In

q→ Iq satisfies ∀x ∈ In
q : y ∈ x⇒ f (y) ∈ F(x) then F is 1-Lipschitz.

In summary, as per Theorem 1:
• Transfer functions in a Frank family fuzzy logic are non-expansive mappings.
• S(vstart) is constant and hence a contraction mapping.
• The composition of 1) Two non-expansive functions is a non-expansive function and 2) A non-

expansive and a contraction function is a contraction function.
As the analysis is performed on the unit interval which together with the l1-norm forms a complete metric
space we can guarantee termination by Banach’s fixed-point theorem.

Theorem 2 (Banach fixed-point theorem). Let (X ,d) be a complete metric space and f : X 7→ X a
contraction. Then f has a unique fixed-point x∗ in X.

This concludes our development of fuzzy data-flow analysis.

4 Lazy code motion

Improving performance often means removing redundant computations. Computations are said to be
fully redundant, but not dead, if the operands at all points remain the same. For two such computations it
is enough to keep one and store away the result for later. We can eliminate this redundancy using (global)
common sub-expression elimination (GCSE). Furthermore a computation that does not change on some
paths is said to be partially redundant. Loop invariant code motion (LICM) finds partially redundant
computations inside loops and move these to the entry block of the loop. Lazy code motion is a compiler
optimization that eliminate both fully and partially redundant computations, and hence subsumes both
CSE and LICM. Knoop-Rüthing-Steffen (KRS) algorithm [12, 6] performs LCM in production compilers
such as GCC when optimizing for speed.
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void diffPCM ( ) {
b = 0 , A = 0 , B = 0 ;
f o r ( i = 0 ; i < N; i ++)

i f ( i n [ i ] != b )
b = abs ( i n [ i ]−b ) ;

B = Trans fo rm ( b ) ;
A = I n c R a t e ( i ) ;
o u t [ i ] = A*B ;

}

B0

i < N
B1

in[i] != bB2

b = abs(a[i]-b)

B3

B = Transform(b);
A = IncRate(i);
out[i] = A*B
i = i + 1

B4

B5

N−1
N

1
N

1− p

p

void diffPCM ( ) {
b = 0 , A = 0 , B = 0 ;
f o r ( i = 0 ; i < N; i ++)

Update← ANFIS decision of updating b
Leave← ANFIS decision of leaving b
i f ( i n [ i ] != b )

b = abs ( i n [ i ]−b ) ;
If Update < Leave: Decision error!

e l s e
If Update > Leave: Decision error!

B = Trans fo rm ( b ) ;
A = I n c R a t e ( i ) ;
o u t [ i ] = A*B ;

}

Figure 2: diffPCM function (left), the corresponding flow-chart (middle) and the version used in Section
4.3 which is annotated with ANFIS classifier invocations (right)

It consists of a series of data-flow analyses and can be summarized in these four steps:
1. Solve a very busy expression7 and an available expression data-flow problem [16].
2. Introduce a set that describes the earliest block where an expression must be evaluated.
3. Determine the latest control flow edge where the expression must be computed.
4. Introduce Insert and Delete sets which describe where expressions should be evaluated.

The target domain of the analysis is the set of static expressions in a program. Input to the analysis is
three predicates determining properties about the expressions in different blocks:

• An expression “e” is downward exposed if it produces the same result if evaluated at the end of the
block where it is defined. We use DEE(b,e) to denote if “e” is downward exposed in block “b”.

• An expression “e” is upward exposed if it produces the same result if evaluated at the start of the
block where it is defined. We use UEE(b,e) to denote this.

• An expression “e” is killed in block “b” if any variable appearing in “e” is updated in “b”. We use
KILL(b,e) to denote this.

Very busy expression analysis is a backward-must data-flow analysis that depends on UEE and KILL and
computes the set of expressions that is guaranteed to be computed at some time in the future. Similarly
Available expression analysis is a forward-must data-flow analysis that depends on DEE and KILL and
deduces the set of previously computed expressions that may be reused. The fixed-point system of these
two analyses are shown in Figure 3. It is beyond the scope of this paper to further elaborate on the details
of these analyses, the interested reader should consider Nielson et al. [16]. Here the LCM algorithm and
the data-flow analyses it depends on, are applications we use to demonstrate the benefit of our framework.
As such a rudimentary understanding is sufficient.

Consider the simplified differential pulse-code modulation routine diffPCM in Figure 2 (left). We
assume that N and the relative number of times block B3 (denoted p) is statically known8. In each
iteration diffPCM invokes the pure functions Transform, to encode the differential output, and IncRate
to get a quantification rate. We use the KRS-LCM algorithm to determine if these invocations can be
made prior to entering the loop and contrast this to a situation where the data-flow analyses are performed

7Knoop et al. [12] refer to this as anticipatable expression data-flow problem.
8In this demonstration we let p = 0.999 and N = 1000, but our conclusions hold as N increases and p approaches 1.
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Knoop-Ruthing-Steffen LCM
Available
expression

{
AvIn(b) =

∧
b′∈Pred(b) AvOut(b′),b 6= B0

AvOut(b) = DEE(b)∨ [AvIn(b)∧¬Kill(b)]

Very busy
expression

{
AnIn(b) =

∧
b′∈Succ(b) AnOut(b′),b 6= B5

AnOut(b) =UEE(b)∨ [AnIn(b)∧¬Kill(b)]

(1)

Earliest(i, j) =

{
AnIn( j)∧¬AvOut(i)∧ [Kill(i)∨AnOut(i)] i 6= B0
AnIn( j)∧¬AvOut(B0) otherwise

(2)

{
LaterIn( j) =

∧
j′∈Pred( j) LaterOut(:, j), j 6= B0

LaterOut(i, j) = Earliest(i, j)∨ [LaterIn(i)∧¬UEE(i)]
(3)

Insert(i, j) = LaterOut( j)∧¬LaterIn( j)
Delete(k) =UEE(k)∧¬LaterIn(k),k 6= B0(4)

Block DEE UEE KILL
6543210 6543210 6543210

B0 0000000 0000000 1111111
B1 0000001 0000001 0000000
B2 0000010 0000010 0000000
B3 0000000 1000000 1100010
B4 0101000 0110100 1011111
B5 0000000 0000000 0000000

Edge Insert Block Delete
6543210 6543210

B0→B1 0000000 B0 0000000
B1→B5 0000000 B1 0000000
B1→B3 0000000 B2 0000000
B2→B3 0000000 B3 0000000
B2→B4 0000000 B4 0000000
B3→B4 0000000 B5 0000000
B4→B1 0000000

Block DEE
6 5 4 3 2 1 0

B0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
B2 0.0 0.0 0.0 0.0 0.0 1.0 0.0
B3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 0.0 1.0 0.0 1.0 0.0 0.0 0.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Block UEE
6 5 4 3 2 1 0

B0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
B2 0.0 0.0 0.0 0.0 0.0 1.0 0.0
B3 1.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 0.0 1.0 1.0 0.0 1.0 0.0 0.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Block KILL
6 5 4 3 2 1 0

B0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B3 1.0 1.0 0.0 0.0 0.0 1.0 0.0
B4 1.0 0.0 1.0 1.0 1.0 1.0 1.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Edge Insert
6 5 4 3 2 1 0

B0→B1 0.001 0.998 0.001 0.000 0.001 0.001 0.000
B1→B5 0.001 0.001 0.001 0.000 0.001 0.001 0.000
B1→B2 0.001 0.001 0.001 0.000 0.001 0.001 0.000
B2→B3 0.001 0.001 0.001 0.000 0.001 0.000 0.000
B2→B4 0.001 0.001 0.001 0.000 0.001 0.000 0.000
B3→B4 0.000 0.998 0.001 0.000 0.001 0.000 0.000
B4→B1 0.001 0.000 0.001 0.000 0.001 0.001 0.000

Block Delete
6 5 4 3 2 1 0

B0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B2 0.000 0.000 0.000 0.000 0.000 0.001 0.000
B3 0.001 0.000 0.000 0.000 0.000 0.000 0.000
B4 0.000 0.998 0.001 0.000 0.001 0.000 0.000
B5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Expression abs(a[i]-b) Transform(b) IncRate(i) A*B i+1 in[i] != b i≤ N
Index 6 5 4 3 2 1 0

Figure 3: Knoop-Rüthing-Steffen LCM formulation (middle) using classical (left) and fuzzy (right/bot-
tom) data-flow analysis
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in the fuzzy framework. As we will show the “fuzzy KRS-LCM” allows us to uncover opportunites the
classical KRS-LCM would miss.

4.1 Type-1 static analysis

The data-flow problems of the KRS algorithm use expressions as domain. The mapping between expres-
sions of diffPCM and indexes are listed in Figure 3 (bottom) together with the values of DEE, UEE and
KILL for each block (top right). The classical KRS algorithm conclude that both calls must be evaluated
in B4 (bottom light gray box, “Delete” matrix, Column 4 and 5).

For the fuzzy data-flow analyses we use the Type-1 Min-Max fuzzy logic. The corresponding fuzzy
sets of DEE, UEE and KILL are given in Figure 3 (top dark gray box). Step (1) of the fuzzy KRS-LCM
is hence the fixed-point to below system of equations:

Available expression
analysis system



AvOut(B0) = 0.0
AvOut(B1) = DEE(B1)∨

([ 1
N AvOut(B0)+ N−1

N AvOut(B4)
]
∧¬Kill(B1)

)
AvOut(B2) = DEE(B2)∨ (AvOut(B1)∧¬Kill(B2))
AvOut(B3) = DEE(B3)∨ (AvOut(B2)∧¬Kill(B3))
AvOut(B4) = DEE(B4)∨ ([pAvOut(B2)+(1− p)AvOut(B3)]∧¬Kill(B4))
AvOut(B5) = DEE(B5)∨ (AvOut(B1)∧¬Kill(B4))

Very busy expression
analysis system



AnOut(B0) =UEE(B0)∨ (AnOut(B1)∧¬Kill(B1))
AnOut(B1) =UEE(B1)∨

([N−1
N AnOut(B2)+ 1

N AnOut(B5)
]
∧¬Kill(B1)

)
AnOut(B2) =UEE(B2)∨ ([pAnOut(B4)+(1− p)AnOut(B3)]∧¬Kill(B2))
AnOut(B3) =UEE(B3)∨ (AnOut(B4)∧¬Kill(B3))
AnOut(B4) =UEE(B4)∨ (AnOut(B1)∧¬Kill(B4))
AnOut(B5) = 0.0

Steps (2) and (4) introduce (constant) predicates and are performed outside the analysis framework.
Step (3) is done similarly to step (1). Figure 3 (bottom dark gray box) shows the result from step (4).
In contrast to the classical LCM the result implies that it is very plausible (0.998) that we can delete the
invocation of Transform (“Delete” matrix, Column 5) from block B4 and instead add it at the end of B0
and B3 (or start of B1 and B4). However, result for the invocation of IncRate remains. This is because
the invocation depends on the value of i which is updated at the end of B4.

4.2 Type-2 static analysis

To increase data-flow analysis precision a function call is sometimes inlined at the call site. The im-
provement can however be reduced if the control-flow analysis is inaccurate and multiple targets are
considered for a particular call site. We show how the uncertainty in control-flow and data-flow can be
quantified in two different dimensions using type-2 interval fuzzy sets. As per Section 2 we can lift an
arbitrary fuzzy predicate to intervals. Here we assume no knowledge about the relative number of calls
to each target and treat the different calls non-deterministically.

We assume two different IncRate functions, as in Figure 4 (left), have been determined as targets.
Their respective UEE and Kill entries are the same but since i is updated at the end of block B4 their DEE
entry will differ. The result of IncRate_1 depends on the variable i and therefore DEE(B41) = 0101000,
in contrast the entry for IncRate_2 is DEE(B42) = 0111000, where 0 = [0,0] and 1 = [1,1]. The new
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B = Transform(b);
... = IncRate(i);

A = ...
out[i] = A*B
i = i + 1

i n t IncRate 1 ( i n t i ) {
re turn 2* i ;

}

i n t IncRate 2 ( i n t i ) {
re turn 1 ;

}

Block Kill DEE UEE
6 [1.0,1.0] [0.0,0.0] [0.0,0.0]
5 [0.0,0.0] [1.0,1.0] [1.0,1.0]
4 [1.0,1.0] [0.0,1.0] [1.0,1.0]
3 [1.0,1.0] [1.0,1.0] [0.0,0.0]
2 [1.0,1.0] [0.0,0.0] [1.0,1.0]
1 [1.0,1.0] [0.0,0.0] [0.0,0.0]
0 [1.0,1.0] [0.0,0.0] [0.0,0.0]
Edge Insert Block Delete
B0→B1 [0.001,0.999] B0 [0.000,0.000]
B1→B5 [0.001,0.999] B1 [0.000,0.000]
B1→B3 [0.001,0.999] B2 [0.000,0.000]
B2→B3 [0.001,0.999] B3 [0.000,0.000]
B2→B4 [0.001,0.999] B4 [0.002,0.999]
B3→B4 [0.001,0.999] B5 [0.000,0.000]
B4→B1 [0.000,0.999]

Figure 4: Implementations of IncRate inlined in block B4 (left); DEE, UEE and Kill vectors of block
B4 and Delete Insert analysis result for expression IncRate(i) (right)

entry for block B4 is given by DEE(B4) = DEE(B41) ∨̃DEE(B42) = 〈0,1, [0,1],1,0,0,0〉. The new
Kill, DEE and UEE sets are given in Figure 4 (right).

Applying the fuzzy KRS-LCM, but with Type-1 min-max fuzzy logic lifted to Interval type-2 min-
max fuzzy logic gives the values of Delete and Insert for expression IncRate(i) in Figure 4 (right).
The result for invoking IncRate prior to the loop is [0.001,0.999] as opposed to 0.001 from the Type-1
analysis in Section 4.1. The added dimension in the result of the type-2 fuzzy analysis allows us to
differentiate uncertain results from pessimistic results. In the given example we showed that the result of
Section 4.1 is a pessimistic over-generalization and that the two paths need to be considered seperately
to increase precision.

4.3 Hybrid analysis

The result from a fuzzy data-flow analysis is a set of fuzzy membership degrees. This section shows how
the result can automatically be improved following the static analysis using a fuzzy regulator/classifier, if
more specific information is provided at a later point. The classifier, a Takagi-Sugeno Adaptive-Network-
based fuzzy inference system (TS-ANFIS) [10, 11] shown in Figure 5, is composed of five layers:

1. Lookup fuzzy membership degree of the input value.
2. Compute the firing strength of a rule, i.e. conjunction of all membership degrees from each rule.
3. Normalize the firing strengths, i.e., w̄i = wi/∑ j w j.
4. Weight the normalized firing strength to the consequent output of the rule fi(x).
5. Combine all rule classifiers, i.e. f = ∑i w̄i fi .

This classifier uses a polynomial (i.e., the consequent part of the adaptive IF-THEN rules) to decide
the output membership. The order of the TS-ANFIS is the order of the polynomial. The classification
accuracy of the TS-ANFIS can be improved online/offline by fitting the polynomial to the input data. For
a first-order TS-ANFIS this can be implemented as follows:

• (Offline) (Affine) Least square (LS) optimization [10] is a convex optimization problem that finds
an affine function (i.e., y = a0 +∑

n
i=1 aixi) which minimizes ||A[1;X ]−Y ||22 where X and Y are the

input and output vectors of the training set.

• (Online) Least mean square (LMS) [10] is an adaptive filter that gradually (in steps of a given
constant µ) minimizes E

[
|y− f (x)|2

]
, where 〈x,y〉 is an input/output sample.
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IF x0 is A0 and x1 is B0 THEN f = c(1,0)+ c(1,1)x0 + c(1,2)x1
IF x0 is A1 and x1 is B1 THEN f = c(2,0)+ c(2,1)x0 + c(2,2)x1

x0

x1

A0

A1

B0

B1

∏

∏

N

N

x0x1

x0x1

∑ f

w1

w2

w̄1

w̄2

w̄1 f1

w̄2 f2

µA0 µB0

µA1 µB1

0.6
0.5

x0 = 0.6

0.286

x1 = 0.2
0.1

Figure 5: First-order Takagi-Sugeno ANFIS with two rules and two variables (left) and four example
fuzzy sets (right)

To exemplify the functionality of the TS-ANFIS we consider the classification of~x = 〈0.6,0.2〉 using the
two rule TS-ANFIS from Figure 5 (left). Let f1(~x) = 0.2x0−0.43x1, f2(~x) = 0.1x1+0.5 and membership
functions be given as in Figure 5 (right). The membership degrees are marked in the figure as µA0(x0) =
0.6, µB0(x1) = 0.5 for the first rule and µA1(x0) = 0.286, µB1(x0) = 0.1 for the second rule. Hence the
weight of the first rule (i.e., w1) is 0.6∧ 0.5 = 0.5 and the second rule (i.e., w2) is 0.286∧ 0.1 = 0.1.
The normalized weights are then w̄1 = 0.833 and w̄1 = 0.167. As the consequence functions output
f1(~x) = 0.034 and f2(~x) = 0.52 we produce the prediction 0.833 f1(~x)+0.167 f2(~x) = 0.115.

We return to the diffPCM function and again consider if we can invoke Transform(b) prior to
entering the loop. We saw in Section 4.1 that the fuzzy membership degree was 0.998. To improve
classification accuracy we let the TS-ANFIS also use the i variable and the first input value (i.e., in[0]).
These variables were not part of the analysis and so we conservatively assume the fuzzy membership
degree to be the same for any value of these variables (in our experiments: 1.0). As shown in Figure 2
(right), we inserted calls to compute the ANFIS decision of updating and keeping the variable b constant
in the diffPCM function. If the incorrect decision was made the error was noted and an error rate
computed after handling all input samples.

We consider invoking the diffPCM function on four different input sets. Each input set defined as
10 periods with 25 input values in each period. The input sets (i.e., in[...]) is given in Figure 6
(left). We use the LMS algorithm9 after each incorrect classification and the LS algorithm if the error
rate of a period was larger than or equal to 80%. Note that the values of a period is not always perfectly
representable by a linear classifier and sometimes varies between different periods, although periods are
“similar”. Hence we do not expect the classifier to be monotonically improving with increasing period.
As shown in the result in Figure 6 (right) the classification error decreases fast with both period and input
sample. In two cases a small residual error remains after the final period. This show that the TS-ANFIS
can improve the analysis result dynamically and hence increase the accuracy of when Transform can be
invoked prior to entering the loop.

9The constant µ for the four different runs was set to 0.001, 0.05, 0.15 and 0.1 respectively.
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Figure 6: 10×25 input values (left) and the corresponding classification error rate (right)
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5 Related work

Most systems include elements (e.g., input values, environment state) where information is limited but
probabilistic and/or non-deterministic uncertainty can be formulated. For these systems a most likely or
even quantitative analysis of properties is possible. Often this analysis relies on a probability theory for
logical soundness. Cousot and Monerau [3] introduced a unifying framework for probabilistic abstract
interpretation. Much work have since, although perhaps implicitly, relied on their formulation. Often
probabilistic descriptions are known with imprecision that manifests as non-deterministic uncertainty [2].
Adje et al. [1] introduced an abstraction based on the zonotope abstraction for Dempster-Shafer structures
and P-boxes10.

Di Pierro et al. [5] developed a probabilistic abstract interpretation framework and demonstrated an
alias analysis algorithm that could guide the compiler in this decision. They later formulated data-flow
problems (e.g., liveness analysis) in the same framework [4]. An important distinction between their (or
similar probabilistic frameworks) and classical frameworks is the definition of the confluence operator. In
contrast to a classical may- or must framework they use the weighted average. This is similar to the work
by Ramalingam [18] that showed that the meet-over-paths (MOP) solution exists for such confluence
operator with a transfer function defined in terms of min, max and negation (i.e., the Min-max fuzzy
logic). Our work extends this to allow other transfer functions and integrates the static data-flow analysis
with a dynamic refinement mechanism through fuzzy control theory.

6 Conclusion

A major problem for static program analysis is the limited input information and hence the conservative
results. To alleviate the situation dynamic program analysis is sometimes used. Here accurate informa-
tion is available, but in contrast to its static counter-part the results only cover a single or few runs. To
bridge the gap, and find a promising middle-ground, probabilistic/speculative program analysis frame-
works have been proposed. These frameworks can be considered to intersect both by being a static
program analysis that uses dynamic information. We have introduced an data-flow framework based on
fuzzy sets that supports such analyses. We solved data-flow problems of use for speculative compila-
tion and showed how our analysis unveils opportunities that previous approaches could not express and
reason about. We furthermore showed that our data-flow framework based on fuzzy sets admit mecha-
nisms from fuzzy control theory to enhance the analysis result dynamically allowing for a hybrid analysis
framework.
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Appendix A: Omitted proofs

of Theorem 1. Let x,y,C,wi ∈ [0,1], for some i ∈ N, fi(~x) : [0,1]nq 7→ [0,1]q be 1-Lipschitz and gi(~x) :
[0,1]nq 7→ [0,1]q be Ki-Lipschitz.

1. Functions x+ y, x− y, xy, min(x,y) and abs(x) are 1-Lipschitz. Constants are 0-Lipschitz Let
b ∈ [x,x+h] for some 0≤ x≤ x+h≤ 1:

(a) g(x) = abs(x):

|g(x+h)−g(x)|= |abs(x+h)−abs(x)| By definition

= |x+h− x| x,h ∈ [0,1]

≤ 1|h|

(b) g(x,y) = x+ y:

|g(x+h1,y+h2)−g(x,y)|= |((x+h1)+(y+h2))− (x+ y)| By definition

= |h1 +h2|
≤ |h1|+ |h2| Triangle inequality

= 1|h| Distributivity

(c) g(x,y) = x− y:

|g(x+h1,y+h2)−g(x,y)|= |((x+h1)− (y+h2))− (x− y)| By definition

= |h1 +(−1)h2|
≤ |h1|+ |−1||h2| Triangle inequality

= 1|h| Distributivity

(d) g(x,y) = xy:

|g(x+h1,y+h2)−g(x,y)|=
∣∣g(x+h1,y′)−g(x,y′−h2)

∣∣ Substitution y′ = y+h2

=
∣∣(x+h1)y′− x(y′−h2)

∣∣ By definition

= |h1y′+ xh2|
≤ |h1 +h2| 0≤ x,y′ ≤ 1

≤ |h1|+ |h2| Triangle inequality

= 1|h| Distributivity

(e) g(x,y) = min(x,y):

|g(x+h1,y+h2)−g(x,y)|= |min(x+h1,y+h2)−min(x,y)| By definition

=

∣∣∣∣( x+h1 + y+h2

2
− |x+h1− y−h2|

2

)
−(

x+ y
2
− |x− y|

2

)∣∣∣∣ min(x,y) =
x+ y

2
− |x− y|

2

≤

∣∣∣∣h1 +h2

2
− |x|+ |−1||y|+ |h1−h2|

2
+

|x|+ |−1||y|
2

∣∣∣∣
=

∣∣∣∣h1 +h2

2
− |h1−h2|

2

∣∣∣∣
= |min(h1,h2)|
≤ |h1 +h2|
= 1|h| Triangle inequality
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(f) g(x,y) =C

|g(x+h)−g(x)|= |C−C|= 0≤ 0|h|

2. If ∑
N−1
i=0 wi = 1 then ∑

N−1
i=0 wi fi(~x) is 1-Lipschitz

∣∣∣g(~x+~h)−g(~x)
∣∣∣= ∣∣∣∣∣N−1

∑
i=0

wi f ( ~x+h)−
N−1

∑
i=0

wi f (~x)

∣∣∣∣∣ By definition

=

∣∣∣∣∣N−1

∑
i=0

wi

(
f ( ~x+h)− f (~x)

)∣∣∣∣∣ Associativitiy and commutativity

≤

(
N−1

∑
i=0

wiKi

)
|h| Triangle inequality, distributivity and wi ≥ 0

= 1|h| Ki = 1 and ∑
i

wi = 1

3. The composition ga ◦gb is KaKb-Lipschitz g(~x) = fa(~x)◦ fa(~x):

|g(x+h)−g(x)|=
∣∣∣ fa( fb( ~x+h))− fa( fb(~x))

∣∣∣ By definition

≤ Ka

∣∣∣ fb( ~x+h)− fb(~x)
∣∣∣ Definition 5

≤ KaKb|h| Definition 5

4. Formulas defined in a Frank family Fuzzy logic are 1-Lipschitz. This follows from structural
induction on the height of parse tree of the predicate P(x). By De Morgan’s laws it is enough to
show the induction step for ∨ and ¬.

• Base case:
– v: g(x) = x: |g(x+h)−g(x)|= |x+h− x| ≤ 1|h|.
– > or ⊥: g(x) =C: 1-Lipschitz by 3.

• Induction step:
– ¬φ ≡ 1−φ : 1-Lipschitz from the base case for constants (> and ⊥) and cases 1c and 3

and assumption that φ is 1-Lipschitz.

– φ1∨φ2:


min(x,y) 1-Lipschitz from Theorem 1 case 1e
xy 1-Lipschitz from Theorem 1 case 1d
max(x+ y−1,0) Equal to 1−min(2− x− y,1) using De Morgans law.

This expression is 1-Lipschitz from Theorem 1
case 1c, 1e and 3

5. If F : In
q→ Iq satisfy ∀x ∈ In

q : y ∈ x⇒ f (y) ∈ F(x) then F is 1-Lipschitz
F : In

q→ Iq can be decomposed into two functions Fl : In
q→ [0,1]q and Fu : In

q→ [0,1]q such that
∀i : F(i) = [Fl(i),Fu(i)], i.e., Fl(i) gives the infimum of f (i) and Fu(i) gives the supremum of i. We
show that both Fl and Fu are 1-Lipschitz continuous:

• Fl(I) = inf
i∈I

f (i): Assume I = [l,u], since I is finite we can rewrite the operation as pair-

wise applications of min, i.e., min( f (l),min( f (l + 1
2q ),min( f (l + 2

22 ), ...))). As per above
case 1e min is 1-Lipschitz. Similarly the composition of two 1-Lipschitz functions is also
1-Lipschitz, or in extension, a finite number of compositions.
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• Fu(I) = sup
i∈I

f (i): max(x,y) is equivalent to 1−min(1− x,1− y) which is 1-Lipschitz by

above case 1c and 1e so proof follows in the same way as the Fl(I) case.


	1 Introduction
	2 Preliminaries
	2.1 Fuzzy set
	2.2 Fuzzy logic

	3 Fuzzy data-flow analysis
	4 Lazy code motion
	4.1 Type-1 static analysis
	4.2 Type-2 static analysis
	4.3 Hybrid analysis

	5 Related work
	6 Conclusion

