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Abstract
We theoretically investigate graphene plasmons in the presence of a low density of adatoms on the
graphene surface. The adatoms can significantlymodify the conductivity and plasmonic properties of
graphene andmay produce a level splitting with the plasmonmode, resulting in two plasmon
branches. The high energy branch exhibits large losses and the low energy branch exhibits low losses.
Ourmodelmay also be considered as a simplemodel formolecules on graphene andwe show that
graphene plasmons are sensitive to such changes in the environment. Ourmicroscopic treatment of
plasmons and adatoms shows the sensitivity of plasmons and highlights the potential of graphene
plasmons for sensing purposes.

1. Introduction

Graphene has recently emerged as an attractive plasmonicmaterial at terahertz andmid-infrared frequencies
[1–3]. Among the benefits of graphene as a plasmonicmaterial are its tunable optical properties [4], low losses
[5], and large confinement of electromagnetic fields under the right conditions. Field localization by a factor of
up to 200 has been predicted [6]which facilitates strong light–matter interactions [7]. Considering that large
field localization leads to large plasmon losses, amore conservative estimate of the field localization is 1 a,
where 1 137a » is the fine-structure constant [6, 8].

Recently, graphene plasmons have been studied using nanotips [9, 10], subwavelength gratings [11–13],
metal nanoantennas [14, 15] and nanoribbons [16]. Possible applications include label-freemolecular sensing
[17, 18], photonicmodulators [14, 19], as well as ultrafast photodetectors [20], showcasing the versatility of
graphene as a plasmonicmaterial.

However, the quality of graphene still limitsmany proposed applications [21], and high quality graphene
devices are labor-intensive to fabricate. Even the cleanest graphene samples exhibit somemomentum relaxation
[22], and thus a theoretical analysis of various lossmechanisms is ofmuch interest [23–28]. The high frequency
relaxation is of fundamental importance since the plasmons of interest are in this regime. Graphene conductivity
in a relaxation time approximation [29, 30]was investigated byRana [31] and by Jablan et al [5]who found
substantial plasmon losses for realistic relaxation times. This was also found in the experiments byChen et al [9]
and by Fei et al [10].

Graphene has previously been considered for sensing purposes, see for instance [32, 33], and the large
surface-to-volume ratio is one of themain advantages of graphene in this regard. Chemical sensing has been
explored in themid-infrared part of the spectrumwhere plasmons have been exploited to detect changes in
refractive indices [34, 35] and vibrational states in biomolecules [18, 36]. These applications showmuch promise
for plasmonic-based sensing in the future.However, also electronic transitions in atoms andmolecules can
couple to graphene plasmons but have so far not been analyzed in detail. Electronic properties ofmolecules and
atoms that adsorb on the graphene surface have been studied extensively using various computationalmethods
[37–42] and different substances have different coupling strengths and energy of the electronic levels. This
variability between substancesmakes it possible to consider graphene plasmonic-based sensors which have the
ability to selectively detect various compounds.We use these previous results to investigate adatom effects on the
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plasmonic properties of graphene.Our approach is complementary to previousworks on plasmonic-based
sensing in graphene aswe study the plasmon response tomicroscopic degrees of freedom, rather than to changes
in the dielectric environment [35] or to vibrationalmodes [18, 36, 43].

In this article we develop and analyze amodel for uncorrelated adatoms, coupled to the graphene surface by
tunneling (see figure 1). Since the adatoms are not the only imperfections in graphenewe also include an
electron relaxation timewhichwe include in a number conservingmanner following theMermin prescription
[5, 29]. This relaxation time describes, phenomenologically, all sources of damping except the adatomswe are
investigating.We explore the effects of adatoms on the single-particle properties of graphene as well as on the
conductivity.We focus on the graphene surface plasmonmode and investigate its dispersion and the related
losses.Wefind that plasmons close to resonancewith the transition from the adatom energy level to above the
Fermi energy become lossy. Furthermore, depending on the density of adatoms, their presence can split the
plasmonmode into two separate branches, one low energy branchwhich experiences low losses and one high
energy branch experiencing high degree of losses.We discuss how this can be used for ultra-sensitive sensing
under the right conditions.

The article is organized as follows: in section 2we treat the graphene plasmon dispersion and the graphene
loss function. In section 3we develop amanybody description of the system and derive an expression for the
nonlocal longitudinal conductivity q,s w( ). Finally, in section 4we analyze the effects of the adatoms on
plasmons, in particular on the plasmon dispersion relation and damping. In appendix Awe present a derivation
of two central equations in the article, equations (3) and (4). Appendix B gives details of themicroscopicmodel
and in appendix C a simplified expression for the susceptibility tensor is derived, fromwhich the conductivity is
obtained. Throughout the article we use c 1 = = .

2.Graphene plasmons

Longitudinal plasmons confined at a conducting interface between two dielectrics with relative dielectric
constants 1e and 2e satisfy the dispersion relation [5, 6]
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nonlocal conductivity of the graphene layer. The longitudinal conductivity describes the response to a
longitudinal electric fieldmeaning that q and E are parallel and qq =∣ ∣ . In the non-retarded limit,
q c1,2e w , equation (1) reduces to the simpler expression
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This is a good approximation as long as thewavelength of themode ismuch smaller than the free space
wavelength, which is the regimewe are investigating.

In general equation (2) is a complex equation and for any givenω it can be solved by allowing complexwave
vectors, q q qi1 2= + . Physically thismeans that the corresponding oscillation of themode is damped. Forweak
damping, we can expand equation (2) in small q q2 1, and separating the real and imaginary parts of the

Figure 1. Schematic view of the studied system. An infinite sheet of graphene is decorated by a dilute randomdistribution of adatoms,
coupled to graphene by tunneling. The adatoms, here represented by the red spheres, are described by three phenomenological
parameters: the energy level, 0 , measuredwith respect to theDirac point, an intrinsic lifetime 1d- , and amatrix element t̃ describing
the electron hopping between graphene and an individual adatom. The dielectricmaterial on the two sides of the graphene have the
relative permittivities 1e and 2e , respectively. The back gate Vbg makes it possible to tune the Fermi energy in the graphene. Inset: zoom
on the adatomwith the hopping element representedwith a red vertical bond.
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conductivity, q q q, , i ,1 2s w s w s w= +( ) ( ) ( ), we obtain to lowest order in q2
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under the assumption that no losses are present in the substrate, i.e. 1,2e are real. For amore detailed derivation of
equations (3) and (4), see appendix A. Equation (3) is identical to equation (2)with the assumption of no losses,
i.e. q , 01 1s w =( ) . The plasmon losses are given by equation (4) and in the second equality we have used
equation (2) to express q,2s w( ) on the plasmonmode. Equations (3) and (4) show explicitly that in the low-loss
limit the graphene plasmon dispersion is determined by q,2s w( )while the plasmon losses are given by the ratio

q,1s w( ) to the effective velocity v
q
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times 0 1 2e e e+( ). The effective velocity is given by the
plasmon phase velocity q1w and a nonlocal correction given by the q1 derivative of q ,2 1s w( ). The smaller the
effective velocity, the higher the dissipative loss.

An alternative way to describe plasmons is to analyze the imaginary part of the current–current correlation
function evaluated in the random-phase approximation. This is the spectral function of currentfluctuations and
describes where in q w- space it is possible to deposit energy. For this reason it is sometimes called the loss
function and it is defined as [30, 44]
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. The loss function has peaks where equation (2) is satisfied and these peaks are interpreted

as signatures of the plasmons [30].
The plasmon dispersion, i.e., solutions to equations (3) and (4) as well as the loss function are discussed in

section 4. First, the conductivity of graphenewith adatoms needs to be calculated.

3.Microscopicmodel for graphene conductivity

The system considered consists of a pristine infinite graphene sheet [45, 46]wheremomentum relaxation is
added tomodel losses in graphene [5, 29].We introduce the convention that clean graphenemeans graphene
with thefinitemomentum relaxation. To the clean graphene, we add a dilute distribution of identical adatoms
that aremodeled as non-magnetic Fano-Anderson localized states [30] coupled to graphene by tunneling as
sketched infigure 1.When the coverage is dilute, correlations between adatoms are unimportant, and each
adatom can be considered independently. Here, dilutemeans n 1imp  , where nimp is the fraction of adatoms
per lattice site. The total system can be described by a tight bindingHamiltonian that includes the tight binding
Hamiltonian of graphene, theHamiltonian of the adatoms, and the hopping between graphene and adatoms.
Effective hoppingHamiltonians for different adatoms on graphene are obtained in [39–42], by use ofDFT
modeling of the composed system. In the followingwe assume a spin degenerate system, where the spin degree
of freedom is included as a spin degeneracy factor gs= 2. An individual adatom is situated on the graphene atom
at site x connected to a single graphene lattice site by a hopping parameter t̃ . The adatomhas a single energy
level at 0 , measured relative to the charge neutrality point of clean graphene, and has an intrinsic lifetime 1d- .
These are phenomenological parameters that are inputs of themodel and in this sectionwe explore the general
features of themodel for various adatomparameters. In section 4we obtain parameters for hydrogen from [40]
to examine a simple adatom.

TheHamiltonian of the systemwith a single adatom is

H d d t t d h.c., 6x
i i

i i0
,

0 å y y y= + + +
á ¢ñ

¢ˆ ˆ ˆ ˆ ˆ ˜ ˆ ˆ ( )† † †

where d̂ is the annihilation operator for the electron on the adatom and iŷ is the annihilation operator of
graphene electrons on site i. The sum in equation (6) is over all nearest neighbor sites of the graphene lattice and
t0 is the corresponding hopping parameter. TheHamiltonian is quadratic in the operators and can be
diagonalized also for the case of a dilute density of adatoms, see appendix B for details.

In the regime of dilute density of adatoms and in theDirac approximation, theGreen’s function of the
Hamiltonian is given by [47]
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where t n t2
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2=∣ ∣ ∣˜∣ and nimp is the fraction of adatoms per lattice site. The effect of the adatoms is captured by
the self-energy R

imp S ( ). The poles of the single-particle Green’s function define the single-particle states and in
the presence of the adatoms the resulting single-particle bands are hybridized between the bare adatoms and
bare graphene single-particle energy bands Epl , where l =  is the graphene band index. The poles of the
retardedGreen’s function and the renormalization factors are found to be
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where the renormalization factors Z pl
( ) are the residues of the poles, i.e. Z Gp pRes ,R

p0  =l


l
( ) [ ( )]∣ ( ). The

energies p l
( ) are shown in the center panel offigure 2.Due to the hybridization between the graphene bands

and adatoms there is a level repulsion around 0 , close towhich the hybridization is strong and gives rise to a
finite lifetime of the order 1d- to the energy bands. Far from the level splitting, the energy states approach their
uncoupled behaviors. The right panel offigure 2 shows the total density of states of the coupled systemwhich
exhibits a significant deviation close to the level splitting compared to the pristine graphene case. Specifically,
there is a significant increase in the density of states close to 0 due to the coupling to the adatoms. The change of
the bands compared to pristine graphene opens up newpossible electronic transitions that alter the conductive
and plasmonic properties of graphene, as discussed in the following.

The conductivity of the system can be computed using theGreen’s function in equation (7a). This is
achieved by calculating the current response to an electric field E Etx, e t

q
q xi= w-( ) ( · ) (t is time in this

paragraph, not to be confusedwith the coupling above).We restrict our analysis to the response to a longitudinal
electric fieldwhich in the temporal gauge, tx, 0f =( ) , is given by E At tx x, i ,w= -( ) ( ).We set the electric
field, E , and themomentum, q, to be parallel to the x-axis. According tominimal substitution [30], the

perturbation given by the field E is H ev A j q ex F q x
qx tid = w-ˆ ˆ ( ) ( ) where j evqx F xp p q py s y= å -

ˆ ( ) ˆ ˆ†
is the

longitudinal current operator [45, 46, 48]. The diamagnetic current is zero in theDirac approximation [48]. The
conductivity of the system can be obtained from the current–current response function (longitudinal
susceptibility)which relates the average value of the current to the vector potential to linear order
j Aq q, ,x j j q

x x
w c wá ñ =ˆ ( ) ( ) [30, 49]. From this expression and the relationship between the vector potential and

the electricfield, the conductivity can be seen to be q q, ,j j
i

x x
s w c w=

w
( ) ( ). The current–current response can

be expressed in terms of theGreen’s function as

Figure 2. Left: linear energy bands of pristine graphene (solidmagenta) and themomentum independent adatom energy level (dashed
magenta). Center: the real part of theGreen’s function poles p l

( ) as function ofmomentum, inset the imaginary part. The adatoms
introduce a splitting of the positive energy graphene band. The splitting introduces a hybridization of the bare graphene and bare
adatom energy levels, resulting in the level repulsion between the states. Right: density of states for clean graphene in dashedmagenta
and black solid line in the presence of the adatomswith EF0r r= ( ). The peak in the density of states reflects the presence of theflat
adatom energy level. The parameters in all panels are E0.8 F0 = , E0.001 Fd = and t E0.1 F= .
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where g gs v is the total spin-valley degeneracy factors, see appendix C for details. In pristine graphene,
i0R

imp S = - +( ) , the energy integral in equation (8) can be performed analytically to arrive at the expression
considered in [50–53]. In the temporal gauge the zero frequency component of the response is unphysical and
has to be removed to avoid having a response to a static vector potential [53]. In the followingwe present results
for electron doped graphene andwhen adatoms are present we take 0 to be positive (with respect to theDirac
point). However, ourmodel can also be applied for hole doped graphene and/or negative 0 .

Before analyzing the conductivity in the presence of the adatoms it is useful to examine the conductivity for
pristine graphene. In the pristine case there exists a Pauli blocked triangle, insidewhich plasmon losses vanish at
zero temperature due to the real part of the conductivity being identically zero [3, 6, 50, 51]. This triangle in
q, w( )-space is shown in the inset offigures 3 and 4. For non-zero temperatures orwhenmomentum relaxation
is included, e.g. through afinite relaxation time, the triangle is no longer completely lossless but formoderate
temperatures and relaxation times it is still the regionwhere plasmonswith low losses are expected to exist [5]. In
this article we take themomentum relaxation time ( 1G- ) to be 1 ps, as reported in [54]. This relaxation time
accounts for all intrinsic relaxation channels of the graphene andwe include this in a number conservingway
following theMermin prescription [5, 29]. As already introduced, we refer to graphenewith the finite relaxation
time as clean graphene to distinguish from graphene together with the adatoms (and also a relaxation time).

The calculated conductivity in the presence of adatoms is shown in figure 3 for various values of the hopping
parameter t and an impurity energyfixed at E0.8 F0 = , i.e., the energy level of the adatoms is close the Fermi
energy. The presence of adatomswith energies close to the Fermi energy has an effect on the conductivity for
frequencies close to the transition frequency EF 0-∣ ∣between the adatom energy level and the Fermi energy. In
particular there are peaks that appear inside the originally lossless triangle, whichwill give rise to larger plasmons
losses, see equation (4). The imaginary part of the conductivity is also changedwhichwill lead to changes in the
plasmon dispersion as can be seen from equation (3).

Figure 4 shows the conductivity for an increasing adatom energy level detuning from the Fermi energy and a
fixed density of adatoms. As the energy levelmoves further from the Fermi energy the conductivity becomes
more andmore like the conductivity of clean graphene and the effect of the adatoms becomes negligible. From
this we conclude that for the adatoms to have a large effect, the energy level of the adatoms needs to be close to
the Fermi energy.

The new features that are present in the conductivity, as shown infigures 3 and 4, arise from themodification
of the graphene bands caused by the presence of adatomswhich is visible infigure 2. Thismodification of the
conduction band around 0 changes the possible electronic transitions and in particular the allowed intraband
transitionswithin the conduction band. These new transitions start playing a role around energies

Figure 3.The nonlocal conductivity q,s w( ) as a function of frequencyωwith q E vF F0= -∣ ∣ for different values of the hopping
parameter t. The plots are for a constant wave vector q k0.2 F= , shown by the dashed line in the inset, where the white triangle shows
the Pauli blocked region for zero temperature. Real part of the conductivity is shown in the left panel and the imaginary part is shown
in the right panel. Note that the scale on the t axes is not linear. The deviation of the conductivity from the clean case is hardly visible
for t k TB< , but for larger values of t there are structures appearing that significantlymodify the conductivity. The conductivity is
shown in units of e 40

2 s = ( ).
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EF 0w » -∣ ∣, which is where there is enough energy for electrons to transition from themodified part of the
band to unoccupied parts of the band aboveEF. This is the frequency aroundwhich the changes in conductivity
start occurring.

4.Graphene plasmons in the presence of a dilute density of adatoms

For concreteness, in this sectionwe set the adatomparameters to be t 7.5 eV=˜ , 0.16 eV0 = , and E10 F
3d = - ,

see appendix B formore details. These parameters are extracted from [40] for hydrogen adsorbed on graphene.
The individual hopping parameter, t̃ , is large compared to the other energies but in the dilute adatom case the
relevant parameter t n t2

imp
2= ˜ is small for the densities we consider. Hydrogen is chosen since it is a simple

atomand can serve as a typical atom adsorbed on the graphene.We emphasize that ourmodel can be applied for
other types of atoms and even simplemolecules as well.

As stated previously, the loss function exhibits peakswhere the dispersion equation has solutions. Figure 5
shows the loss function for an adatomdensity on the graphene of n 10imp

5= - per graphene lattice site
(approximately 300 adatoms per m2m ). Themagenta line shown infigure 5 is the plasmon dispersion obtained
by solving equation (3) for clean graphene. The peak of the loss function and the solution to the dispersion
equation are in good agreement. The exception is close to the gray dashed linewhere the deviation is significant
and a level splitting occurs. The level splitting between the bare plasmon and the bare adatom is caused by the
coupling of adatoms to the graphene surface. The energy aroundwhich the level splitting occurs is represented
in the figure as the horizontal dashed gray line. This energy represents the energy needed to excite an electron
from the adatom energy to above the Fermi energy.

To examine the effect of adatoms on the plasmons inmore detail, the left panel offigure 6 shows a zoomof
the loss function fromfigure 5which is centered on the splitting. The red dashed line in the figure is the solution
to the dispersion equation, equation (3), for the same density of adatoms as the loss function and the solid red
line is the obtained loss, q2, from equation (4). The level splitting is accompanied by large plasmons losses and an
emergence of two separate plasmon branches. The low energy plasmon branch exhibits low losses and the high
energy branch has a large amount of accompanying loss. The larger loss in the upper branch can be understood
by considering the Fermi golden rule, a new loss channel is opened for the plasmons in this branch. The loss
channel is the excitation of a single electron around the adatom energy (ofwhich there aremany, see theDoS in
figure 2) to above the Fermi energywhere there are unoccupied electron states. The plasmons in the low energy
branch do not have enough energy to lose energy through this channel. On resonancewith this transition there is
a very pronounced plasmons loss which separates the plasmon branches.

The right panel offigure 6 shows the evolution of a loss function cut at q k 0.013F = as the density of
adatoms is varied. This particular cut is chosen to show the loss function evolution for this particular adatom
species (hydrogen) as clearly as possible. For small values of adatomdensity, there is only one plasmon peak
visible, but as the density increases, the splitting into two branches is visible in the two emergent peaks. The
separation between the two peaks grows as the adatomdensity is increased even further.

Figure 4.The effects of the detuning EF 0-∣ ∣on the conductivity. The figure at the left shows q,1s w( ) versusωwhile thefigure at the
right shows q,2s w( ) versusω . Different lines correspond to different values of the adatomenergy level ( 0 ) and q E vF F0= -∣ ∣ .
The corresponding cuts in the q w- plane are shown in the inset, and the upward arrows indicate the point whereω enters the Pauli
blocked triangle. The effect of the adatoms is reducedwith increased distance betweenEF and 0 . The thinmagenta lines correspond
to q,1s w( ) for clean graphene. The conductivity is shown in units of e 40

2 s = ( ).

6

New J. Phys. 19 (2017) 073027 GViola et al



To explore the adatom effect on plasmons in a large frequency range,figure 7 shows the plasmon
propagation length along the dispersion until it crosses into the single-particle continuum. The plasmon
propagation length (defined as the distance covered until the intensity of the plasmon falls by e 1- [6]) in units of
the plasmonwavelength, Lp pl , can be obtained from the ratio q q1 2 in equation (4) as L q q4p p 1 2l p= ( ).
Note that the plasmonwavelength is q2p 1l p= .

Both panels offigure 7 show the plasmon propagation length as a function of frequency for different adatom
densities on the graphene. The left panel is calculated for E 0.2 eVF = (kF  1/(3.3 nm)) and the right panel is
calculated for E 0.4 eVF = (kF  1/(1.65 nm)). The propagation lengths for clean graphene in both cases are
shown infigure 7 as themagenta lines. The reason for the different propagation lengths in the two panels is that
the relevant parameter for damping in the clean case is EFG . The plasmons are significantly affected by the
presence of adatoms, in particular the damping is increased for energies above the transition frequency to excite
electrons from the adatom energy level to above the Fermi energy. In the left panel offigure 7, this energy is
roughly E0.2 F , which corresponds to 0.16 eV0 = (hydrogen), and E 0.2 eVF = . By changing the Fermi energy,
the energy needed tomake a transition to an unoccupied state changes. Therefore the energy at which the
propagation length shows a step is different in the left and right panels offigure 7. For large enough densities, this
step is where the plasmon is split into two branches.

Figure 6. Left: small q w- corner zoomoffigure 5 that highlights the level splitting of the plasmonmode. The red dashed line shows
the plasmon dispersion obtained by solving equation (3) and the red solid line shows the losses obtained from equation (4). The color
scale shows the value of the loss function for the same parameters as the dispersion in order to enhance the splitting effect. Right:
vertical cuts of the loss function for different adatomdensities to show the evolution of the splitting. The cut is taken for q k 0.013F =
formaximal visibility of the splitting in the different curves. The blue dotted line is a cut from the loss function in the left figure. The
other curves showhow the splitting vanishes for small adatomdensities and the emergence of the two branches for large densities.

Figure 5.The loss function S q,jx w( )with a density of adatoms together with the dispersion relation for clean graphene, shown by the
magenta line. The peak of the loss functon is in good agreement with the clean dispersion except in the low energy, low q corner. The
results in thisfigure are calculated for E 0.2 eVF = ,T= 30K, adatomdensity 300 m 2m - , and 11 2e e= = . The solid gray line shows
the edge of the Pauli blocked triangle and the dashed gray line shows the value of E t 2F 0w - + ∣ ∣ aroundwhich there is a level
splitting.
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The left and right panel offigure 7 are obtained for identical parameters except for the Fermi energy. The left
panel clearly shows a larger effect for the same density of adatoms compared to the right panel. The conclusion is
that for sensing purposes the Fermi energy should be tuned close to the adatom energy level for the sensitivity to
be large.

5.Discussion

In this article we have focused on the graphene plasmon properties and how they are influenced by small
densities of adatoms on the graphene surface. The induced plasmon losses and the level splitting that wefind can
be probed by for example light scattering in a grating environment [11], or on patterned graphenemicroribbons
[1]. For a properly dimensioned grating ormicroribbon array, it would be possible to perform a laser frequency
sweep andmeasure optical signatures of the presence of the adatoms as seen infigure 6. For the doping levels
considered in this article, the typical dimension of the grating periodicity or themicroribbon arrays needed are
on the order of a few hundred nanometers. An alternative route to investigate the plasmons is by nanotip
experiments such as in [9, 10], where the number of plasmon oscillations aremeasured. Obtaining such data for
different frequencies could reveal the presence of small amounts of adatoms and their energy levels.

Our analysis is restricted to the presence of a single kind of adatom, i.e., all the adatoms on the surface are
characterized by the same 0 , t̃ , and δ. In ourmodel, the values of 0 , t̃ , and the adatomdensity determine the
characteristic level splitting that separates the two plasmon branches, seefigures 6 and 7. Also, the sensitivity of
the plasmons to the adatoms is found to be largewhen the adatom energy is close to the Fermi energy. Hence, by
measuring the plasmonic properties and taking advantage of the tunability ofEF offered by graphene, it is
possible to determine 0 and thus discriminate between different adatoms.We stress that different adatoms
exhibit different values of 0 as indicated byDFT calculations, see [37–42, 55], and that ourmodel is general
enough to handle various adatoms and simplemolecules. Ourmodel thus enables selective sensing of various
adatoms andmolecules by probing the plasmonic properties of graphene. It should be noted that the adatom
densities involved, 30 300 m 2m -– , is enough to increase plasmon losses and create a level splitting,making
sensing ofminute amounts of substances possible using graphene plasmons coupled to electron energy levels of
adatoms. This is an increase of 2–3 orders ofmagnitude in sensitivity compared to experimental results for
biomolecules obtained in [36], where plasmon coupling to vibrationalmodes ofmolecules was utilized for
sensing. In ourmodel, the adatomdensities needed to produce ameasurable plasmon response depends on the
adatom coupling strength, t̃ , which is considered as an input in ourmodel. Thus, the sensitivity of the proposed
sensing scheme is different for different adatoms. Adatoms that couple strongly to graphenewill give rise to
larger plasmon response for a given density thanweakly coupled adatoms.

In this article we have taken a view towards sensing of the adatoms on the graphene surface. However, the
adatomsmay also be considered as imperfections on the graphene that impedes electron propagation by
allowing the electrons to tunnel onto the adatom. For the purpose of plasmonics, long propagation lengths are
often sought after and such damping is unwanted.Wefind that even small amounts of adatomsmay have a
significant effect on the plasmon damping. This is potentially one of severalmechanisms that induces the large
plasmon damping found in experiments [9, 10].

Figure 7.Plasmon propagation length, Lp pl , computed using equations (3) and (4), versus w for different adatomdensities. The
left panel is calculated for E 0.2 eVF = and the right panel for E 0.4 eVF = . Themagenta lines represent clean graphene, green line
n 10imp

7= - , orange line n 10imp
6= - , and blue line n 10imp

5= - . This corresponds to approximately 3 m 2m - , 30 m 2m - , and
300 m 2m - respectively. The sharp drop around E1.3 F is due to the plasmon dispersion crossing into the particle-hole continuum
where the plasmon becomes heavily damped.
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6. Conclusions

Wehave investigated how graphene plasmons are affected by adatoms by comparing plasmons in realistic
quality graphenewith andwithout adatoms.We found that adatomswith energy levels close to the Fermi energy
induces a strong level splitting between the bare plasmonmode and the adatom energy level. This level splitting
is accompanied by large plasmon losses and depending on the adatomdensitymay separate the plasmonmode
into two separate branches, one low energy branch and one high energy branch. The low energy branch is
virtually unaffected by the presence of the adatoms, whereas the high energy branch experiences larger losses.
This is due to a newplasmon decay channel opening up, namely the excitation of an adatom electron to an
unoccupied state above the Fermi energy.

Furthermore, we studied the sensitivity of the plasmon losses to the presence of adatoms. As a typical atom,
we considered hydrogen andwe found that a density of 300 adatoms per m2m is enough to give rise to a
significant level splitting, and already 30 adatoms per m2m is enough to damp the upper branch. These effects
could bemeasured in various light scattering experiments using dielectric gratings aswell as using nanotips,
making it possible to envision ultra-sensitive devices thatmeasure the plasmon dispersion and losses to infer the
presence of adatoms andmolecules on the graphene surface.

Our results highlight the sensitivity of graphene plasmons tomicroscopic degrees of freedomand the
possibility to use this effect in applications.Microscopicmodels for coupling various degrees of freedom to the
plasmons is a very richfield and has the potential to further increase the already large sensing potential of
graphene plasmons.
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AppendixA.Derivation of equations (3) and (4) in themain article

This appendix details the derivation of equations (3) and (4) starting from equation (2). Equation (2)defines the
plasmon dispersion relation in the non-retarded limit. In the presence of losses, the dispersion relation is
obtained by allowing complexwave vectors, q q qi1 2= + , hence equation (2) becomes

q q q qi i i ,
0. A.11 2

1 2 1 2

0

e e
s w
e w

+ +
+ +

=( )
( ) ( )

( )

Under the assumption of low loss, q q2 1 is small, and equation (A.1) can be expanded tofirst order in q q2 1 and
gives rise to:

q q

q q q q q

i
i

, i , i , i , 0. A.2q

1 2
0

1 2

1 1 2 1 2 1 1 2 11

e e
e w

s w s w s w s w

+ + +

´ + + ¶ + =

( ) ( )

[ ( ) ( ) ( ( ) ( ))] ( )

The real part and zeroth order in q q2 1 of equation (A.2) is exactly equation (3), while the imaginary part and
first order in q q2 1 of equation (A.2) gives equation (4).

Appendix B. Fano-Andersonmodel in graphene

This appendix gives details on themicroscopicmodel used in themain text. In particular the full Green’s
function in equation (7a) is derived.

Wefirst consider pristine graphene, described in [45, 46, 48], coupled to adatoms by tunneling. The adatoms
aremodeled here as Fano-Anderson localized states [30] as described in themain text. To solve the system in the
case ofmany adatoms, the following approximations are used: (i) all the impurities are identical, i.e., all of them
are characterized by the same parameters ,0 d and t̃ , (ii) the adatoms are uncorrelated and far apart so an
average on position can describe the system. These assumptions are also used in theT-matrix formalism for
weakly interacting electron systems in the presence of lowdensities of impurities [30].

In themain text theHamiltonian of graphene and a single adatom is presented in equation (6). The
Hamiltonian formany adatoms is [45, 48]
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H d d E c c t d c h.c. , B.1
l

l l
l

l l
p

p p p p p0
,

, , ,å å ål= + + +
l

l l l l

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ ˆ ˆ ˆ ( )
† † †

where p is themomentum, t t el
x

p
p

, ,
i ll=l ˜ · , l =  is the graphene band index and xl is the position of the lth

impurity. Hence, formany impurities with vanishing hopping between them, the totalHamiltonian is obtained
by adding single impurity contributions which is performed by the sumon l.

We introduce the notation P p, l= ( ) and E EP pl= . Ĥ is quadratic so it can be diagonalized by a unitary

transformation c AP J P J J, a= åˆ ˆ and d Bl J l J J, a= åˆ ˆ withA andBmatrices such that H EJ J J Ja a= å ˜ ˆ ˆ† and

,J J J J,a a d=¢ ¢{ ˆ ˆ }† . Tofind thematricesA andB one can compute commutators using the expression in
equation (B.1) obtaining

d H d t c B t A, , B.2l l
P

l P P
J

l J J
P

l P
J

P J J0 , 0 , , , å å å åa a= + = +[ ˆ ˆ ] ˆ ˆ ˆ ˆ ( )

c H E c t d E A t B, , B.3P P P
P

l P l P
J

P J J
l

l P
J

l J J, , , ,* *å å å åa a= + = +[ ˆ ] ˆ ˆ ˆ ˆ ( )

where the second equality in both equations is obtained by substituting the expressions for cP̂ and dl̂ above. The
same commutators computed using the diagonal expression of theHamiltonian gives

d H E B

c H E A

, ,

,

l
I

I I l I

P
I

I I P I

,

,

å

å

a

a

=

=

[ ˆ ˆ ] ˜ ˆ

[ˆ ˆ ] ˜ ˆ

and bymatchingwith the previous expressions we obtain equations for AP J, and Bl J, . However, these equations
still contain the operator Jâ . This can be removed by performing additional commutations with Ja ¢ˆ † giving

d H B t A E B

c H E A t B E A

, ,

,

J l l J
P

l P P J J l J

J P P P J
l
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†

fromwhich

E B t A , B.4J l J
P

l P P J0 , , , å- =( ˜ ) ( )

E E A t B . B.5J P P J
l

l P l J, , ,*å- =( ˜ ) ( )

A formal solution to these equations is

B
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E
Z t

A
t B

E E
Z t

,

,

l J
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where ZA B are unknown coefficients and 1a b a b, ,d d= -¯ . Now, substitute these solutions into equations (B.4)
and (B.5)we obtain

E B t
t B

E E
Z t , B.6J l J

P
l P

l

l P l J E E

J P
JP
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l P E E0 , ,
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¯
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Toproceed further we take advantage of the assumption of identical impurities andwemay thus perform the
sums on l.We assume that the positions of the impurities are independent and randomly distributed, so the
average on the impurity position is t t tl P l P N P P l l, ,

1 2
, ,

site

* d d=¢ ¢ ¢ ¢∣˜∣ , so

t t t n t tl l P l P
N

N P P P P P P, ,
2

, imp
2

,
2

,
imp

site

* d d då = = º¢ ¢ ¢ ¢∣˜∣ ∣˜∣ . Nimp is the number of impurities while nimp is the number of

impurities per lattice site. This is standard procedure inT-matrix formalism for low density impurities [30].
Applying this average to perform the sums on l in equations (B.6) and (B.7) gives

E B
n t B

E E
Z t , B.8J l J

P

l J E E

J P
Jl
B

E E0 ,
imp

2
, , 2

,
J P

J P å
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˜
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From equation (B.9)we get E E Z tJ P
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and hence the self energy for the graphene states

is obtained: E Z tR
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. Due to level repulsion the new eigenenergies are different from

the bare adatom energy so 0E ,J 0d =˜ andZAPl drops out of the equation.

ThematricesA andB, can be found by imposing the conditions d d B B,l l l l J l J l J, , ,d= = å¢ ¢ ¢[ ˆ ˆ ]
† † and

c c A A,P P P P J P J P J, , ,d= = å¢ ¢ ¢[ˆ ˆ ]† † and c d B A, 0P l J l J P J, ,= = å¢ ¢[ˆ ˆ ]
† † For our purposes, it is not necessary tofind the

values of A B, andZ. The existence of the unitarymatricesA andB is enough towrite down theGreen’s
function. Indeed, we know that theGreen’s function in the frequency domain is G EiR

J J J,w d w h= + -a ¢
+( ) ( ˜ )

since theHamiltonian is diagonal in ,a aˆ ˆ† . Hence
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and fromhere equations (7a) follow.
Belowwe give further details on ourmodel. The density of states G pTr Im ,R

p
1

0 r º - á ñ
p

( ) ( ) , Tr is the

trace on the sublattice indexes and pá ñ· is themomentum averagedGreens function defined as

G A G
z

E

z

E z
p p p, d , 1

2
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c
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C c
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2 2
 òá ñ = =
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⎡
⎣⎢
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where1 is the unitmatrix, z R
imp = - S ( ),Ac is the area of the unit cell in the lattice, pd

p pd d

2

x y

2=
p( )

andEc is the

cut-off energy corresponding to the graphene bandwidth.
Even though the presentmodel treats the electron hopping non-perturbatively, the Coulomb interaction

between the adatom and graphene charge is up to nowomitted. A full treatment of this interaction is beyond the
aimof this work.Nevertheless, we consider theCoulomb interaction in the presence of chargefluctuations
induced by the tunneling. This effect introduces a further relaxation channel, i.e., a finite lifetime to both the
adatom states, 1d- , and the electron states in the graphene e

1G- . Following amethod similar to [56], we evaluate
them to be E10 Fe

4G - , E10 F
3d - atT= 0. Furthermore, we include afinite relaxation time for the graphene

electronswhich is caused by imperfections and phonons in the graphene lattice. Fromgood quality graphene
this number can be inferred to be approximately 1 ps, see [54]. For realistic doping levels of graphene, this
relaxation time completely dominates e

1G- which is neglected. These values are used throughout the paper and
the total relaxation time is included following theMermin prescription [5, 29].

AppendixC.Derivation of equation (8) and simplified expression for the conductivity

In this appendixwe give some details on the derivation of equation (8) andwe report a simplified expression for
the one-spin, one-valley susceptibility. Before proceeding, an observation needs to be pointed out. In the context
of plasmons, it is common to describe the purely longitudinal electric field, along the x axes, with a potential

tx, e t
q

q xi if f= w-( ) · qxq = ˆ and A 0= with E qiq qf= [30, 49–51]. The linear response of the system is then
encoded in the density–density response function (polarisability crr) that expresses the density fluctuation
induced by the potential as q q, , qx

r w c w fá ñ = rrˆ ( ) ( ) . In the standard situation, the continuity equation relates

crr to the conductivity. However, in the presence of the adatoms, the total charge density includes both the

charge density in the graphene and on the impurity states q qtot impr r r= +ˆ ( ) ˆ ( ) ˆ , with ed dimpr =ˆ ˆ ˆ†
. Also the

last term, impr , needs to be included to fulfill the continuity equation q q j qi it totr¶ = -ˆ ( ) · ˆ ( )whichmakes this
approachmore involved. Therefore, it ismore convenient to evaluate the longitudinal current–current response
function, q,j jx x

c w( ), in the temporal gauge since the adatoms carry no in-plane current so it is possible to avoid

including terms related to the adatoms.

Here we compute the average value of the longitudinal current j evq,x F xp p q pw y s y= å -
ˆ ( ) ˆ ˆ†

, where xs is the

first Paulimatrix, in presence of the perturbation H ev A j q ex F q x
qx ti id = w-ˆ ( ) . For E 0= and in equilibrium, the

values of currents and density deviation are vanishing. InKeldysh formalism, the current to linear order in the

perturbation is written j r Gq q, T ,x x
Ki

2
w s d wá ñ = -ˆ ( ) [ ( )]. As shown in [57]
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 is the unperturbedGreen’s in Keldysh space and ◦stands for the sumon all
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which is identical to equation (8). TheKeldysh component of theGreen’s function at equilibrium is G p,K  =( )
f G Gp p, ,R A  -( )( ( ) ( ))with f 1 1 e = + b m-( ) ( )( ) , g gp p, ,R A
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G q,R ( ). Substituting these relations and performing the trace in equation (C.2), the integrand becomes

f G G G

f G G G

f g g g

f g g g F

p p q p q

p p p q

p p q p q

p p p q q p

Tr , , ,

, , ,

, , ,

, , , , , C.4

x
R

x
R A

x
R A

x
A

R R A

R A A
xx

0 0 0

0 0 0

0 0 0

0 0 0
,

   

   

   

   

w s s w w

s s w

w w w

w

- - - - - -

+ - - -

= - - - - - -

+ - - - l l¢

[ ( ) ( ) ( ( ) ( ))
( ) ( ( ) ( )) ( )]

[ ( ) ( )( ( ) ( ))

( )( ( ) ( )) ( )] ( ) ( )

where

F
p q

q p
p q

, 1
cos 2 cos

C.5xx
, ll q q

= +
¢ -

-
l l¢( ) ( )

∣ ∣
( )

is the square of thematrix element of the longitudinal current operator.
To simplify q,j jx x

c w( ) onemay proceed tofirst perform the integral on  . Note that in the clean case this
integral can be performed following [30] to arrive at the corresponding expression used in [50, 51, 53]. The
present case ismore involved due to thefinite self-energy but the integrand in equation (C.2) has knownpoles.
The polesmay come from theGreen’s function, i.e., from g p,R A

0
( ), or from the Fermi distribution f ( ), they

are denoted pR A, l
 ( ) and k T mi 2 1m B p m= + +( ) (m integer), respectively. The  integral on the real axes

in (C.2) can be closed in the complex plane in such away that as fewGreen’s function poles as possible are
included inside the path. Splitting the integral in two parts, the path of the termproportional to f  w-( ) (first
term in equation (C.4)) is closed in the upper half plane, to avoid the poles of g0

Rs. Vice versa the integral of the
termproportional to f ( ) in equation (C.4), is closed in the lower half plane, to avoid the poles of g0As. Of course,
all the poles of the Fermi distributions can not be avoided since they lie on both sides of the real axis. The energy
integration therefore has two contributions q q q, , ,j j j j j j
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x x x x x x
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e v
f Z g

f Z g F

q p p q p q p q p

p p p p q q p

,
2

d ,

, , , C.6

j j
l

F l A l R l A

l R l A l R
xx

P

,

2 2
,

0
,

,
0

, ,

x x

* 

 

òåc w w

w

= - - - +

+ - -

ll
l l l l

l l l l
l l

¢
¢ ¢ ¢

¢
¢

( ) [ ( ( )) ( ) ( ( ) )

( ( )) ( ) ( ( ) )] ( ) ( )

k Te v g g g

g g g F

q p p p q

p q p q q p

, d , ,

, , , . C.7

j j B F
n

R
n

R A
n

R A
n

A
n xx

T 2 2

1
0 2 1 0 0 2 1

0 0 2 1 0 2 1
,

x x
 

 

òå åc w w

w

= + - -

- - - - -
ll

l l l

l l l
l l

¢ =

¥

+ +

- - - -
¢

( ) [ ( )( )( )

( )( ) ( )] ( ) ( )

Here Pc and Tc are given by the poles of theGreen’s function and Fermi function respectively.We underline
that to separate q,j jx x

c w( ) in these two terms, the only assumption is that the self-energy is a smooth function of
ò. Hence, it can be extended to include also other contributions to the electronic self-energy such as the phonon
and electron–electron interaction.We underline that the susceptibility contributions in equations (C.6) and
(C.7) are for one valley and one spin and thus needs to bemultiplied by g gs v, as is done in themain text, to obtain
the total result for graphene.

Themomentum integrals in j j
P

x x
c and j j

T

x x
c are performed numerically using standard integration routines.

It turns out that j j
T

x x
c∣ ∣ is less than 1%of j j

P

x x
c∣ ∣ for the parameter range of interest. In particular, for Fw < ,

10j j j j
T 3 P

x x x x
c c< -∣ ∣ ∣ ∣and is therefore omitted in the analysis in themain text.
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