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On the Design and Analysis of Consensus Protocols for Vehic-
ular Ad Hoc Networks
Negin Fathollahnejad Asl
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract Vehicle-to-vehicle communication technologies support diverse
cooperative applications for intelligent transportation systems to increase
safety and fuel efficiency of road vehicles. Vehicles participating in a co-
operative application are expected to make coordinated and mutually
consistent decisions. To ensure consistency, it is often essential that the
participating vehicles reach agreement on the data they use as a basis
for these decisions. This thesis deals with the fundamental problem of
reaching agreement on a value, or a set of values, in a distributed sys-
tem in the presence of unrestricted communication failures. It is known
from the literature that this problem is impossible to solve perfectly, i.e.,
no matter what algorithm we use there is always a non-zero probability
of disagreement. Hence, our aim is to design algorithms that minimize
the probability of disagreement. We propose and analyse several agree-
ment algorithms to solve three fundamental consensus problems. These
algorithms are distinguished by their decision criterion, which determine
whether a computer should decide on a value or decide to abort. Our
analyses show that the probability of disagreement depends strongly on
the number of computers in the system, the number of rounds of mes-
sage exchange, the choice of decision criterion, as well as the probability
of message loss. We identify two types of disagreement, safe and unsafe
disagreement, and show that unsafe disagreement can be avoided if all
computers know the number of computers in the system.

Keywords: Agreement Algorithms; Probabilistic Analysis; Consensus; Ve-
hicular Ad-Hoc Networks; Communication Failure; Intelligent Transportation
Systems
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1
Introduction

Recent advances in wireless technologies for vehicle-to-vehicle communi-
cation have made it possible to develop cooperative applications to im-
prove traffic safety and fuel efficiency of road vehicles. Examples of such
applications include real-time traffic management systems [43], vehicle
platooning [10] and virtual traffic lights (VTL) [25].

The applications for real-time traffic management systems rely on the
wireless technologies for data dissemination among road vehicles. The
communicated data dynamically provide the vehicles with the traffic in-
formation such as road conditions, traffic congestions and collision alerts.
These systems are currently used to support safe driving by providing
dynamic route scheduling, emergency message dissemination, traffic con-
dition monitoring, etc.

1



2 CHAPTER 1. INTRODUCTION

Vehicle platooning is a method to increase the capacity of the roads
by driving a group of vehicles in close distance to each other. The co-
operative vehicles in a platoon are travelling in a single lane following a
leading vehicle at the head of the lane [8]. The vehicles are fully auto-
mated relying on both local sensors, and inter-vehicle communication to
coordinate speed, braking and acceleration.

The concept of a virtual traffic light (VTL) was proposed in 2010 by
Ferreira et al. as a self-organizing traffic control system that allows road
vehicles passing an intersection to implement the function of a traffic light
without the presence of a roadside infrastructure [25]. In a VTL system,
the vehicles approaching an intersection interact via wireless communi-
cations to elect a vehicle among themselves as the VTL leader. The VTL
leader is responsible to take control of the traffic lights for the intersection
temporarily for a short period of time.

The development of applications for automotive cooperative systems
comprises many challenges, one of which is to provide reliable and effi-
cient means for the cooperating vehicles to make coordinated decisions.
Electing a leader in a VTL is an example of a coordinated decision, where
it is essential for the participating vehicles to reach consensus, i.e., they
must agree on the same leader. If they disagree and appoint more than
one VTL leader, then the different leaders may send conflicting traffic
light signals, which could lead to serious accidents.

Leader election is a distributed consensus problem. In such problems,
the aim is to reach agreement on a value (or set of values) among a
group of distributed computers, or nodes, that exchange messages over
a communication network. Designing distributed agreement algorithms
that ensures consensus in the presence of failures has proven to be a chal-
lenging task. Consensus problems has therefore attracted much attention
from the distributed systems research community over last forty years.

The consensus problem was first introduced in 1978 by Gray in order
to model the problem of distributed commit. In this problem, a group
of processes are to reach agreement on whether to commit or abort a
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distributed transaction [30].
Solving consensus problems is straightforward under ideal conditions

when there are no uncertainties in the system. However, uncertainties
must be considered in the design of distributed agreement algorithms,
since they cannot be avoided in real systems. Node failures and commu-
nication failures are examples of such uncertainties. Another example is
uncertainties related to the amount of knowledge the nodes have about
the system, e.g., concerning the system size (the number of nodes in the
system) and the network topology [38].

The possibilities to solve a consensus problem is also affected by the
timing model (the level of synchrony among the nodes), and the nature
of the failures. Two commonly used timing models are the (fully) syn-
chronous model and the asynchronous model [38]. In the synchronous
model, it is assumed that nodes execute distributed algorithms in syn-
chronous rounds1. This assumption removes any uncertainty about the
order in which different events occurs, such as the reception and trans-
mission of messages. In the asynchronous model, processes take steps at
arbitrary relative speeds and orders. There are no timing bounds on the
delivery of a message in an asynchronous system.2.

Distributed algorithms can be designed to cope with a variety of pro-
cess and communication failures. These failures can be divided into two
major classes: symmetric and asymmetric failures. A symmetric failure is
one which is perceived in the same way by all non-faulty nodes, while an
asymmetric failure is perceived differently by different non-faulty nodes
in the system.

Examples of commonly used models for process failures include value
failure (a process delivers an incorrect output that the user believe is
correct), stopping failure, or fail-stop failure (a process stops delivering

1At each round, each process sends messages to other processes, receives messages
and performs computations of the received messages. The messages sent in a round
must be received at the same round by the receiving processes; otherwise they are
considered to be lost. (See for example [9])

2The authors of [27] prove that for an asynchronous system, it is impossible to
design a deterministic consensus algorithm even with only one process failure.
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outputs instantaneously, without prior notification), and timing failure
(a process delivers an output too late, or too early). A stopping failure is
symmetric since all processes perceives the failure in the same way - the
absence of an output. A value failure, on the other hand, can be both
symmetric (all non-faulty nodes receive the same erroneous output) and
asymmetric (at least two nodes receive two different outputs, of which at
least one is incorrect).

Common models for communication failures include send omissions
(the transmission of a message fails), and receive omissions (the reception
of message fails at some, but not all, of the intended recipients). A
send omission is a symmetric failure since no node receives the message,
whereas a receive omission is an asymmetric failure since some, but not
all, nodes receive the message.

Previous research has shown that consensus problems often are im-
possible to solve for both synchronous and asynchronous systems. For
example, the authors of [27] prove that no deterministic algorithm can
solve the agreement problem in an asynchronous system, not even in the
case where only a single node exhibits a stopping failure. We also know
that no algorithm can guarantee consensus in a synchronous system if
there is no upper bound on the number of messages that can be lost dur-
ing the execution of the algorithm. In 1989, N. Santoro and P. Widmayer
showed that, in a synchronous system of n processes, any non-trivial form
of agreement is impossible to solve, if n−1 or more messages are lost per
communication round [52].

This thesis addresses the problem of designing distributed agreement
algorithms for systems that rely on wireless networks for data commu-
nication. The main motivation for our work is the increasing interest in
developing automotive cooperative systems to improve road safety and
reduce traffic congestion. However, since our work is of a fundamental
and theoretical nature, we believe it is relevant also for other applications
domains, such as self-organizing systems based on robots or unmanned
air vehicles.
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Although agreement problems have been proved to be solvable under
different system models and failure assumptions, such as in [7, 38, 48],
we still lack definite answers to how such problems are best solved in
distributed systems that rely on wireless networks. A main challenge in
designing agreement algorithms for systems that use vehicle-to-vehicle
(V2V) technology is that the communication channels in these systems
can be subject to disturbances of widely different durations and magni-
tudes. Consequently, we cannot make any assumptions about the number
of messages that can be lost during the execution of an agreement algo-
rithm in these systems.

We have chosen to use the synchronous system model in our stud-
ies of agreement algorithms. Automotive cooperative systems are hard
real-time systems, and the synchronous model provides a reasonable, but
not perfect, model of such systems. Another reason for using the syn-
chronous model is that we want to focus our studies on the impact of
communication failures, and we therefore want to exclude uncertainties
related to a lack of synchronization among processes in our studies.

We focus our analyses on the impact of send omissions (symmetrical
message losses) and receive omission (asymmetric message losses), since
they are likely to be the dominating type of communication failures in
V2V networks. Since we know it is impossible to design a distributed
agreement algorithm that can guarantee consensus in the presence of an
arbitrary number of message losses, our work focuses entirely on proba-
bilistic analysis of agreement algorithms.

The thesis addresses three fundamental consensus problems, which we
call 1-of-n selection, 1-of-* selection and group formation. We propose
and analyse several agreement algorithms to solve these problems. An
important feature of our algorithms is that they allow a process to abort,
i.e., a process may choose not to decide on a value. The decision whether
to abort or to decide on a value is made by a decision criteria executed
as the final step in all our algorithms. A key contribution of the thesis is
that we investigate how different decision criteria affects the probability
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of disagreement, in the presence of any number of message losses, for
both send and receive omissions.

The thesis specifically addresses the following research questions:

• How do we calculate the probability of disagreement among the
nodes of a cooperative system in the presence of an arbitrary num-
ber of message losses?

• How does the algorithm’s decision criterion influence the probability
of disagreement?

• How does the system model and the communication failure model
affect the outcome of a consensus algorithm?

• How does the number of rounds of execution and the number of
participating nodes in the algorithm affect the probability of dis-
agreement?

As already mentioned, we design and analyse three main families of
synchronous round-based consensus algorithms with the aim of solving
three consensus problems: 1-of-n selection, group formation and the 1-
of-* selection. In the following sections, we briefly explain each of these
problems.

1.1 The 1-of-n Selection Problem

In the 1-of-n selection problem, n nodes (or processes) are to reach agree-
ment on one value. Each node proposes one value, and the processes
must agree to select one of the proposed values, in the presence of an
unrestricted number of communication failures. We propose a family of
round-based consensus algorithms to solve the problem of 1-of-n selec-
tion. We refer to these algorithms as 1-of-n selection algorithms. These
algorithms can be used as the core logic of a protocol for leader election
in a cooperative application.
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We consider a system of n processes which execute the algorithm in
a fixed number of rounds, denoted by R. After R rounds of message
exchange, each process decides on an outcome. There are two main out-
comes for a process: it decides either to select a value, or to abort.

The decision of a process depends on the decision criterion specified
for the 1-of-n algorithm. A decision criterion contains a set of logical
expressions which decide whether a process should select a value or abort
due to the lack of information concerning the status of other processes.
We introduce three different decision criteria for the 1-of-n selection algo-
rithms, called the optimistic, pessimistic and the moderately pessimistic
decision criterion. These decision criteria are described in detail in Chap-
ter 4.

Considering the outcomes of all processes in the system, a 1-of-n
algorithm can have three main outcomes, namely (i) agreement on a
value, (ii) agreement on abort and (iii) disagreement. Agreement implies
that all nodes select the same value, or all nodes decide to abort, while
disagreement happens if some nodes decide to select a value and others
decide to abort.

In the design of the 1-of-n selection algorithm, we restrict ourselves to
algorithms where the nodes never decide on a value unless they have ac-
cess to the proposed values from all participating nodes. Thus, we assume
that each node knows the number and the identity of the participating
nodes, i.e. n is known. This simplifying assumption ensures that even
in the presence of an arbitrary number of lost messages, two processes
never select different values. Therefore, the only kind of disagreement
that can occur is when some processes decide to select the same value
and the remaining processes decide to abort.

1.2 The Group Formation Problem

In a self-organized cooperative applications, such as a virtual traffic light
(VTL), it is unrealistic to assume that all nodes initially know the ex-
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act set of nodes that are involved in the decision process. This is due
to several factors, such as the high mobility of the nodes in such envi-
ronments, or the existence of massive communication failures which can
result in partitioning the system into several networks. For example, in a
VTL system, a vehicle approaching an intersection may not be aware of
all other vehicles that approach the intersection [35]. Therefore, another
consensus problem that needs to be solved for cooperative applications is
the problem of reaching agreement on a set of nodes that are involved in
bootstrapping the application. We call this problem the group formation
problem, since it involves agreeing on the group of nodes that are the
initial participants, or members, of a cooperative application.

We propose a group formation algorithm that aims to solve the prob-
lem of reaching agreement on a group of nodes’ identities in a synchronous
system with unbounded number of message losses. We know that due to
the Santoro and Widmayer’s impossibility result, it is impossible to de-
sign a group formation algorithm that can guarantee agreement on a
group of nodes under the given communication failure model.

Our proposed group formation algorithm has two outcomes at the
process level. Each process that executes the algorithm will either decide
to select a group (i.e. a set of nodes), or decide to abort. At the system
level, i.e., when we consider the outcomes of all participating nodes, the
algorithm have three main outcomes: (i) agreement on a set of nodes,
(ii) agreement to abort, (iii) disagreement. We categorize disagreement
in two classes: unsafe disagreement and safe disagreement. In case of
safe disagreement, one subset of the nodes decides on the same set of
nodes while the remaining nodes decide to abort. In case of unsafe dis-
agreement, at least two different subsets of the nodes decide on different
sets.

In order to reduce the probability of unsafe disagreement, we suggest
different decision criteria for the group formation algorithms which rely
on the use of an extra component, called an oracle. The oracles are local
devices attached to each process, and they are responsible for providing
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each process with an estimation of the number of processes (nodes) in
the system 3. The decision of a process executing a group formation
algorithm depends on its view4 of the system after R rounds of message
exchange, as well as the system size estimated by the oracle.

1.3 The 1-of-* Selection Problem

Finally, we address the problem of consensus in the context of VTL leader
election for systems where the set of participating nodes initially is un-
known to all nodes. We denote the consensus problem under this as-
sumption as the 1-of-* selection problem, where the ∗ symbolizes the fact
that n is initially unknown to all participating nodes. This problem is
also called Consensus with Unknown Participants (CUP) [11]. The CUP
problem is fundamental to the problem of bootstrapping self-organized
networks where there is no central authority to initialize each node with
the necessary information of the system.

We propose a family of consensus algorithms to solve the problem of
1-of-* selection to be used as the core logic of a leader election protocol
in a self-organized cooperative system such as a VTL application. The
goal of these algorithms is that a group of processes agree on the identity
of one of the processes among themselves to be the leader of the system.

We assume that the processes are initially unaware of the number
and the identities of other processes in the system. However, similar to
the design of the group formation algorithm, we consider the existence
of a local oracle for each node to have an estimation of the number of
participants in the algorithm.

We propose a family of round-based consensus algorithms with three
different decision criteria to solve the 1-of-* selection problem, called

3We assume that the oracles are unreliable and may underestimate or overestimate
the actual number of the nodes in the system.

4We define the view of a process as the set of processes it sees in the system either
directly by receiving messages from them or indirectly through the views of other
processes.
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the optimistic*, pessimistic* and the moderately pessimistic* decision
criterion5. Depending on the choice of the decision criterion, each process
executing the algorithm either decides on electing a leader or abort.

At the system level, we can have three different outcomes of the con-
sensus algorithm: agreement on a value, agreement to abort and disagree-
ment. We have agreement among the processes if all processes decide on
the same leader or if all processes decide to abort. Disagreement occurs
if some processes decide on electing a leader and some decide to abort.
We define two classes of disagreement cases: safe disagreement and un-
safe disagreement. However, we introduce different definitions of the safe
and unsafe disagreement cases compare to the ones we introduced for the
group formation algorithms. The new classification of the disagreement
cases rely on the introduction of two different types of processes in the
system: a live process and an aborting process. A live process is a process
which, at the end of the algorithm, has decided to elect a leader while an
aborting process is a process which has decided to abort.

Unsafe disagreement occurs if at least two processes decide on two
different live processes as their leaders. We have safe disagreement if
the processes in a proper subset of the system6, decide on a live process
as their leader, while the remaining processes either decide to abort or
decide on an aborting process as their leader.

1.4 Thesis Structure

The remainder of the thesis is organized as follows. In Chapter 2, we
discuss related work. In Chapter 3, we provide an overview the main
design principles of a virtual traffic light. In Chapter 4, we present the
design and analysis of the 1-of-n selection algorithms. The design and
the analysis the group formation algorithms is presented in Chapter 5.
Chapter 6 presents the design and analysis of the 1-of-* selection algo-

5Details on the description of each of these decision criteria are given in Chapter 6
6A proper subset S∗ of a set S, is a set which excludes at least one member of S.
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rithms, and explains how they can be used as the core logic of a VTL
leader election algorithm. In Chapter 7, we provide discussions and elab-
orate on two problems that require further research. Finally, we present
our conclusions and suggestions for future work in Chapter 8.
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2
Related Work

The consensus problem has been investigated widely in the area of dis-
tributed computing and is proved to be solvable under different failure
assumptions such as in [7, 38, 46, 48]. However, most previous research
were based on different classes of node failures only with assuming reliable
communication links among the nodes. For simplifications, the commu-
nication failures have been mostly associated to the failure of the nodes
rather than being investigated explicitly as an independent phenomenon,
e.g. [27, 37].

Such simplifying assumptions are unrealistic and may lead to incorrect
characterizations of a system. For example, if in a system the loss of a
single message due to a transient communication failure is inscribed to
a faulty behaviour of the sending or receiving process, we may reach to

13
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incorrect conclusions such as considering the entire nodes in the system
to be faulty.

Some other researchers use perception-based hybrid failure models in
which the sender-caused link faults are considered as the failure of the
sending node while the link fault term is used to denote the receiver-
caused faults [55]. Such failure models might also lead to undesirable
conclusions for a system.

On the other hand, for the systems based on highly unpredictable
wireless environments, it is important to consider the communication
failures explicitly in order to assure a specific degree of dependability
and safety of critical distributed systems.

In this work, our goal is to address the consensus problem for syn-
chronous systems which are subjected to unrestricted communication fail-
ures. In such a model, the communications failures can occur on any link
at any time while there are no limitations on the number or pattern of
the lost messages. Our failure model is based on the model introduced by
Santoro and Widmayer in [52] denoted as the transmission fault model.

In [52], Santoro and Widmayer show that any non-trivial form of
agreement is impossible to solve if n−1 or more messages can be lost per
communication round in a system of n processes. The given impossibility
result is a generalization of the results presented by Akkoyulunu et al.
[2] and the results given in [31]. The authors of [31] show that there is no
deterministic solution to the consensus problem between two processes
with unreliable communication links.

There are a large number of methods suggested in literature to cir-
cumvent the impossibility result in synchronous consensus systems with
dynamic omission faults. In [53], Santoro and Widmayer provide an ex-
tensive map of possible and impossible computations for a synchronous
system of n processors in the presence of transmission faults. The ob-
jective of a computation is defined as either to compute a non-constant
function on all inputs, or to reach an agreement among the processes
on a value. The authors in [53] characterize the maximum number of
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transmission faults per clock cycle that can be tolerated for the com-
putation of arbitrary or specific functions, with several types of faults.
Later in [54], Santoro and Widmayer define bounds on the number of
dynamic faults and express the connectivity requirements to achieve any
non-trivial agreement.

The authors of [15] propose the use of collision detectors augmented to
the nodes in an unreliable wireless network where the messages can be lost
due to collisions, electromagnetic interferences or other anomalies. They
introduce a new classification of the collision detectors to circumvent
the Santoro and Widmayer’s impossibility result. The collision detectors
are classified based on their ability to detect actual collisions and their
ability to report only actual collisions (no false positives), so called the
completeness and accuracy. Then, for each class of collision-detector they
show how to solve consensus and provide matching lower bounds.

In [38], a lower bound of 1
r + 1 is introduced for the probability of

disagreement for any r-round algorithm to solve the randomized coordi-
nated attack problem in the presence of unbounded number of message
losses. The coordinated attack problem is the challenge of coordinating
an action by processes communicating over an unreliable link. In the ran-
domized version of the problem the processes flip coins to decide what to
do.

The authors of [4] solve the consensus problem for sparse MANETs1

with density values larger than DTN (Delay tolerant networking). These
MANETs are assumed to keep distinct subsets of nodes connected at
distinct intervals.

In [1], Afek et al. employed randomization techniques to solve the
k-consensus problem in the presence of communication failures. In a k-
consensus problem, at least k processes among n processes decide on the
same value such that k > n/2. They show that the safety properties of
consensus (i.e., validity and agreement) are ensured in the presence of

1The mobile ad hoc networks or MANETs are self-configuring, infrastructure-less
networks of mobile devices which are connected using wireless channels.
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even unrestricted communication failures. But, in order to satisfy the
liveness property of the consensus algorithm the number of faults in a
round should be restricted. The approach proposed in this thesis does
not restrict the number of faults in each round, while assuring liveness,
at the expense of having a certain probability of disagreement.

Most of the suggested methods in the literature take a preventive
approach toward the impossibility result for consensus in the presence of
unrestricted communication failures. The given techniques mostly rely
on restricting the communication failure patterns or limiting the number
of failures in a round.

Nevertheless, it is possible to design protocols that have a low prob-
ability of failing to reach consensus, so as to meet specific requirements
on reliability and availability. This intuition has been explored to build
protocols that maximize the probability of correctness by accumulating
more information over a larger duration of the execution [49].

The authors in [49], perform a probabilistic analysis of a group mem-
bership algorithm to show that it is possible to tune the algorithm pa-
rameters so as to reduce the probability of false group failure detections.
They consider an asynchronous system of a finite set of n processes using
a reliable FIFO channel. The processes are assumed to be faulty. Based
on the FLP impossibility result [27] for asynchronous systems, it is not
possible to design a deterministic consensus algorithm for such a system
even with only one process failure. Moreover, due to the FLP impossi-
bility result, it is not possible to ensure both the liveness and the safety
for such a protocol and therefore, they have considered a protocol that
trades liveness against safety.

The authors in [20], present a new approach in the probabilistic ver-
ification of synchronous consensus protocols. They make stochastic as-
sumptions about the system and failure models, and verify the probability
of transition into an incorrect state for a simple variant of the Byzantine
Generals (BG) protocol in the presence of failures. In their analysis,
they consider the settings of system parameter for which the probability
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of having valid valued consensus is at least 0.999999. According to their
results, varying the probability of omission failure (denoted by q), the
maximum permissible value of q that allows the consensus value to be
achieved is 0.00417.

Our goal is to design decision making algorithms to run on top of
a simple consensus protocol with the main purpose of minimizing the
probability of failing to reach consensus. We evaluate and compare the
effectiveness of different decision algorithms by means of using proba-
bilistic model checking tools as well as deriving closed-form expressions
to calculate the probability of disagreement among processes. Our results
may be applied also for on-line verification and adaptation to cope with
variable probabilities of communication failures.

Our work focuses on the probabilistic analysis of round-based con-
sensus protocols in which processes communicate in rounds of message
exchange in order to decide on a consistent output [48]. Our system
model is inspired by a general computational model named as the heard-
of model. This model is introduced by Schiper and Charron-Bost [13]
and is used to specify systems with any type of benign failures.



18 CHAPTER 2. RELATED WORK



3
Virtual Traffic Lights

A Virtual Traffic Light (VTL) is a self-organizing traffic control system
that allows the road vehicles passing an intersection to implement the
function of a traffic light without the need for a roadside infrastruc-
ture [25], [56]. Ferreira et al. in [25] propose a VTL scheme which relies
on two main procedures: leader election and leader handover.

Leader election is the process of electing a vehicle as the VTL leader
among a group of vehicles that are about to pass an intersection. The
VTL leader takes upon itself to serve as a traffic controller for the inter-
section for a limited amount of time, called the control period. During
the control period, the VTL leader assumes a red light for itself while it
broadcasts traffic light signals to other vehicles in the intersection. At
the end of the control period, the vehicle hands over the leadership to

19
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another vehicle, and then waits to receive a green light from the new
leader (leader handover). If no other vehicle is present in the intersection
at the end of the control period, the leader announces its resignation as
the controller and then gives a green light to itself. Vehicles approaching
an intersection where no leader is present must execute a leader election
protocol to appoint a new VTL leader.

Figure 3.1: An example of virtual traffic lights

Fig. 3.1 shows an example of how a VTL can be established among
the cars in a 4-leg intersection. Each leg of the intersection consists of a
cluster of cars travelling in the same direction. In each leg, there is one
car acting as the leader of the cluster1. It is assumed that only the cluster
leaders participate in the VTL leader election protocol. Leader election
involves the execution of an agreement algorithm whose purpose is to
ensure that the participating nodes (the cluster leaders) reach consensus
on which car they appoint as VTL leader.

1The problem of electing a cluster leader is similar but not identical to that of
electing a VTL leader.
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A vehicle approaching an intersection must first determine if a leader
is present. If so, it simply follows the orders sent by the leader. If the
leader orders a red light for the lane in which the vehicle is travelling,
it must stop and be prepared to participate in a leader handover opera-
tion and assume the role as leader. In case an approaching vehicle does
not detect a leader, it must announce its presence by broadcasting an
invitation to other vehicles to participate in a leader election procedure.

The VTL system described in [25] is based on the assumptions that
all road vehicles are equipped with a GPS system and use the same dig-
ital roadmap. To allow the identification of intersections where VTLs
can be created, the authors propose to use beaconing features provided
by VANET geographical routing protocols. They assume that each ve-
hicle maintains a real-time database of the location of all vehicles in its
vicinity. This database is constantly updated through the reception of
new beacons. The GPS devices are assumed to have an accuracy of 10-20
meters, which is sufficient to identify intersections where a VTL can be
created.

The introduction of virtual traffic lights is likely to bring several po-
tential benefits to society. As highlighted by the authors of [25], these
benefits include improved traffic safety, mitigation of traffic congestion,
and significant cost savings for construction and maintenance of roads.
The positive impact on traffic safety is obvious. The introduction of vir-
tual traffic lights can potentially bring traffic control to all road junctions
across the globe at a very low price.

To determine the current ratio of road junctions equipped with con-
ventional traffic lights in the United States, the authors of [25] conducted
a study of junctions in 3138 of the nation’s 3234 counties, which showed
that 0.5% of the junctions are equipped with traffic lights. For urban
areas, they report a corresponding ratio of 24% for the five boroughs of
New York City, and 25% for the down town area of Dublin, Ireland. The
corresponding ratio for Portugal’s second city Porto is reported to be
16%. These numbers serve as an indication of the potential for virtual
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traffic lights to improve traffic safety by bringing traffic control to all
intersections and junction.

While conventional traffic lights may have a negative impact on traffic
flow, virtual traffic lights promises to reduce and mitigate traffic conges-
tion. The authors of [25] present a simulation study of how the traffic
flow of all roads in the city of Porto would be affected by the introduction
of VTL technology. It shows that VTL:s would increase traffic flow with
around 20% for low traffic densities, and with more than 60% for high
traffic densities, compared to the current situation, where 328 out of 2000
of the city’s junctions are equipped with conventional traffic lights.

The authors of [25] also provide some examples of the potential for
cost reductions based on data taken from [45]. For example, the cost
of installing a traffic light in the United States ranges from $50.000 to
$200.000 depending on the complexity of the intersection, and the annual
average cost of operating a traffic light is in the order of $3000. Hence,
they estimate that the total deployment cost of all traffic lights in the U.S.
represent a value of $33 billion, while the annual total cost of maintaining
traffic lights is in order of $780 millions. (Note that the cost figures
mentioned in this paragraph dates back to 2007 when [45] was published.)

Thus, the authors of [25] provide compelling arguments for the bene-
fits of introducing virtual traffic lights. However, the development of VTL
technology comprises many technical and practical challenges. Clearly,
a general adoption of VTL technology is not feasible until a significant
number of vehicles are equipped with V2V communication capabilities.
In addition, the application-level protocols for VTL technology must be
developed and accepted by standardization organizations and national
authorities across the globe. To speed up the adoption of V2V technol-
ogy, authorities in the United States, Europe and Japan are currently
considering to introduce legislation that makes it mandatory to equip
road vehicles with V2V communication capabilities.

From a technical perspective, it is still an open question whether exist-
ing and emerging vehicle-to-vehicle (V2V) and vehicle-to-infrastructure



23

(V2I) communication standards provide adequate bandwidth, reliability
and security for implementing virtual traffic lights. Standards for Dedi-
cated Short-Range Communications (DSRC) for automotive systems are
currently being developed by the Institute of Electrical and Electronic
Engineers (IEEE) in the United States, by the European Telecommu-
nications Standards Institute (ETSI), and by the Association of Radio
Industries and Businesses (ARIB) in Japan. The IEEE standard, known
as IEEE 1609 [33], provides communication range of up to 1km with
transmission rates of 3Mbps to 27Mbps for vehicles travelling in veloci-
ties up to 260 km/h.

Although such transmission rates would be sufficient for implement-
ing VTLs, the DSRC technology may not provide sufficient connectivity
around intersections in urban areas where transmissions can be blocked
by environmental conditions such as high-rise buildings, trees, mountains,
et cetera; so called no-line-of-sight (NLOS) conditions. Although one
study [44] shows that NLOS conditions are not necessarily a show stop-
per for VTLs, we cannot exclude that NLOS conditions in conjunction
with extreme weather, malicious adversaries, or adverse physical distur-
bances (like solar flares), can cause conditions where the execution of
leader election protocol for a VTL is affected by massive communication
failures.

This thesis addresses a fundamental challenge in the design of leader
election and other distributed agreement algorithms for systems that rely
on wireless data communication, namely the design of agreement algo-
rithms that exhibit a low probability of disagreement in the presence of
massive communication failures. It has not been my ambition to provide
a complete solution for the leader election problem in virtual traffic lights
and other emerging wireless automotive application. We merely use the
virtual traffic light application as an example to illustrate the practical
relevance of our work.

In the following three chapters, we propose and analyse several dis-
tributed agreements algorithms that aim to solve three fundamental agree-
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ment problems. We elaborate on the system model, failure models and
the simplifying assumptions used in our analyses.



4
1-of-n Selection

We propose and investigate a family of synchronous round-based con-
sensus algorithms to solve the problem of selecting one value among n

proposed values, called the 1-of-n selection problem. In this problem,
each process in a system of n processes, initially proposes one value. Af-
ter one or several rounds of communication, where the processes exchange
information about the proposed values, each process either decides to se-
lect a value, which has to be one of the proposed values, or decides to
abort. We call our proposed consensus algorithms the 1-of-n selection
algorithms.

We analyse the behaviour of the 1-of-n selection algorithms in the
presence of an arbitrary number of message losses. We consider two dif-
ferent scenarios for a lost message: (i) when all the intended receivers of
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the message fail to receive the message (symmetric message loss), and (ii)
when only a subset of the intended receivers fail to receive the message
(asymmetric message loss). We know from previous research that under
the given communication failure assumptions, it is impossible to con-
struct an algorithm which guarantees consensus among the participating
processes in the algorithm. Therefore, our focus is to design simple de-
cision making algorithms which result in the probability of disagreement
as low as possible.

We show that the probability of disagreement in general depends on
three main parameters: i) the number of processes in the system, ii)
the number of rounds of message exchange and iii) the probability of
message loss. In addition, it also depends on the decision criterion that
determines whether a process should abort or select a value. We propose
three different decision criteria to be run on top of a 1-of-n selection
algorithm. Each decision criterion consists of logical expressions which
decide whether a process should select a value or abort due to a lack of
information concerning the status of other processes.

At the system level, there are three possible outcomes for a 1-of-n
selection algorithm:

Agreement on a value : If all processes decide to select a value.

Agreement to abort : If all processes decide to abort the decision
making due to the lack of information.

Disagreement : If some processes (at least one process) decide to select
a value while the remaining processes (at least one process) decide
to abort.

We restrict ourselves to the algorithms where the participating pro-
cesses never decide on a value unless they have access to the proposed
values from all other processes. This condition requires that each pro-
cess should know the exact set of participating nodes, i.e. each process
must know the number and the identity of other processes in the system.
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Such a simplifying assumption ensures that there are no two processes
which decide on selecting different values. As a result, the only kind of
disagreement that can occur in a 1-of-n selection algorithm is when some
processes decide to select the same value, while the remaining processes
decide to abort, i.e. all disagreement cases are safe.

In this Chapter we specifically address the following research questions
for synchronous algorithms that solve the 1-of-n selection problem:

• How do we calculate the probability of disagreement in the
presence of an arbitrary number of lost messages?

• How does the algorithm’s decision criterion influence the
probability of disagreement?

• How does the communication failure model (symmetric
vs. asymmetric failures) influence the the probability of
disagreement?

In Section 4.1, we describe our system model, failure assumptions and
the 1-of-n selection algorithms in detail. We present our three proposed
decision algorithms called the optimistic, the pessimistic and the mod-
erately pessimistic decision criterion in Section 4.1.2. To have a better
understanding of the influence of each decision criterion on the prob-
ability of disagreement, in Section 4.2, we show a comparison of the
outcomes of the 1-of-2 selection algorithm using each decision criterion
for two rounds of execution. In Section 4.3, we present a probabilistic
analysis of the 1-of-n selection algorithms using the three decision crite-
ria, for two different communication failure models, i.e. the symmetric
and asymmetric communication failure models. We present closed-form
expressions to calculate the probability of disagreement in the presence
of symmetric communication failures in Section 4.3.1. In Section 4.3.2,
we present our results of the probabilistic analysis of the algorithm under
the asymmetric communication failure model. For the asymmetric fail-
ure model, we use the PRISM model checker. The details on the PRISM
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models we used are given both in Section 4.3.2 and Appendix A.2 and A.3.
In Section 4.5, we discuss our main observations from the probabilistic
analysis of the 1-of-n selection algorithms. Finally, in Section 4.5, we
present the chapter conclusions.

4.1 Protocol Description

We assume a synchronous system of n processes executing a 1-of-n selec-
tion algorithm for R rounds. The processes are indexed respectively with
their identifiers as: Π = {p1, .., pn}. Each process pi initially knows the
exact set of Π, i.e. the number and the identity of others. We assume
that the processes are fully connected to one another via point-to-point
links with which they exchange messages.

Our system model is based on the classical round-based computational
model which was first introduced by Dwork et al. [21] and has been used in
the solutions for the agreement problem in synchronous message-passing
systems (See for example [13], [57], [18]). Based on the given round-
based model, all processes execute the algorithm for R rounds (R is fixed
at the design time). In each round, each process broadcasts a message
and waits to receive messages from other processes. Then at the end of
each round, each process computes and updates its new state according
to the received messages. We define three steps for a round: send, receive
and compute. We assume that a message received by a process in a round
has been sent at the same round. A message which is not received in a
round is considered to be discarded (or lost) [13].

Our failure model is inspired by the model introduced by Santoro and
Widmayer in [52] denoted as the transmission fault model. We consider
failures as message losses that can occur on any communication link at
any time during the execution of the algorithm. We assume no restric-
tions on the number, timing or pattern of the lost messages. We consider
two different scenarios for a lost message: (i) when all the intended re-
ceivers of the message fail to receive the message (symmetric message



4.1. PROTOCOL DESCRIPTION 29

loss), and (ii) when only a subset of the intended receivers fail to receive
the message (asymmetric message loss).

For simplicity, we assume that the processes are fault-free. Note,
however, that a send omission failure of a process is equivalent to a sym-
metric message loss, and that a receive omission failure is equivalent to
an asymmetric message loss where only one process fails to receive a
message.

4.1.1 The 1-of-n selection algorithms

Alg. 1 shows the pseudocode of the 1-of-n selection algorithms executed
by each process pi ∈ Π = {p1, . . . , pn}. Each of the processes as pi

initially constructs a message (denoted as msgi). A message of a process
contains a proposed value (proposedi) and a bit-vector (vi) of length n.
Each element of vi represents the view of process pi from the proposed
value of a process in the system. Initially, vi[i] = 1 and ∀j, vi[j] = 0, i.e.
at this point pi has not received any message from other processes in the
system.

We define vi as complete if all of its elements are set to 1. Similarly,
we define vi as incomplete if at least one of its elements is 0.

Algorithm 1 Generic algorithm for 1-of-n selection (pi)
1: msgi ← {proposedi, vi};
2: for r = 1 to R do
3: begin_round
4: send (msgi);
5: receive ( );
6: compute (msgi);
7: end_round
8: end for
9: decision_algorithm();

After initialization, each process iterates the send, receive and com-
pute phases for R rounds. These phases work as follows:
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• send (msgj): Process pi ∈ Π broadcasts msgi to all other pro-
cesses.

• receive( ): Process pi receives messages from the other n − 1
processes. If pi does not receive a message from process pj within
a bounded time, it assumes that message to be lost.

• compute (msgj): Each process pi at the end of each round per-
forms the computation phase algorithm and updates its local state
and its message accordingly.

After R rounds of execution, each process executes the decision algorithm.
At the end of the execution of the algorithm each process either decides
to select a value or decides to abort.

4.1.2 The Decision Criteria

We propose three different decision criteria for the consensus algorithm
given in Alg. 1; namely the optimistic decision criterion, pessimistic de-
cision criterion and the moderately pessimistic decision criterion.

Algorithm 2 compute (msgi): optimistic criterion (pi)
1: ∀pj ∈ Π− {pi}
2: if pi received msgj then
3: if proposedi < proposedj then
4: proposedi ← proposedj ;
5: end if
6: ∀pk ∈ Π− {pi, pj}
7: if (vj [k] = 1 and vi[k] = 0) then
8: vi[k]← 1;
9: end if
10: vi[j]← 1;
11: end if
12: msgi ← {proposedi, vi};

Alg. 2 shows the compute phase for a process pi executing the op-
timistic criterion. If the process pi receives a message from pj with a
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larger proposed value, i.e., proposedj > proposedi, process pi must up-
date proposedi to proposedj . Also, each process pi updates its vi vector
at the end of each round as follows: For all the elements of vj that are
set to 1, process pi sets the corresponding elements in its view (vi) to 1
(If it is not already 1).

Algorithm 3 decision_algorithm(), optimistic criterion (pi)
1: if vi is complete then
2: pi selects proposedi;
3: else
4: abort;
5: end if

Alg. 3 shows the description of the optimistic decision criterion. Ex-
ecuting the optimistic decision criterion, if at the end of the Rth round,
the view of a process pi is complete, pi must select its proposedi as the
highest value. Indeed a process with complete view optimistically as-
sumes that all the other processes have also complete views and select a
value. A process with an incomplete view at the end of the Rth round
decides to abort.

Alg. 4 shows the compute phase for the pessimistic decision criterion.
At the end of all rounds except for the last round, process pi updates its
proposed value and its view vector in the same way as in the compute
phase of the optimistic criterion. In addition at the end of all rounds pi

updates its Ci, its confirmation vector, by definition.
Alg. 5 shows the description of the pessimistic decision criterion. A

process pi with an incomplete vi at the end of the execution of the algo-
rithm decides to abort while a process pi with a complete view pessimisti-
cally assumes that other processes do not have complete views unless they
confirmed this at some point during R rounds of execution. If process pi

does not receive such confirmations from all processes it decides to abort.
We define a vector of size n for each process pi, called Ci, in order to keep
a record of the processes who have sent a confirmation to pi indicating
that their view is complete. Initially, ∀j Ci[j] = 0. When (Ci)j is set



32 CHAPTER 4. 1-OF-N SELECTION

Algorithm 4 compute (msgi): pessimistic criterion (pi)
1: ∀pj ∈ Π− {pi}
2: if pi received msgj then
3: if r 6= R then
4: if proposedi < proposedj then
5: proposedi ← proposedj ;
6: end if
7: ∀pk ∈ Π− {pi, pj}
8: if (vj [k] = 1 and vi[k] = 0) then
9: vi[k]← 1;
10: end if
11: vi[j]← 1;
12: end if
13: if vj is complete then
14: Ci[j]← 1;
15: end if
16: end if
17: ∀j ∈ {1..n}
18: if vi[j] = 1 then
19: Ci[i]← 1;
20: end if
21: msgi ← {proposedi, vi};

Algorithm 5 decision_algorithm(), pessimistic criterion (pi)
1: if vi is complete then
2: if Ci is complete then
3: pi selects proposedi;
4: else
5: abort;
6: end if
7: else
8: abort;
9: end if
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to 1, it means that pi has received a message from pj showing that vj is
complete. Ci is complete if all of its elements are set to 1.

Algorithm 6 compute (msgi): moderately pessimistic criterion (pi)
1: ∀pj ∈ Π− {pi}
2: if pi received msgj then
3: if r 6= R then
4: if proposedi < proposedj then
5: proposedi ← proposedj ;
6: end if
7: ∀pk ∈ Π \ {pi, pj}
8: if (vj [k] = 1 and vi[k] = 0) then
9: vi[k]← 1;
10: end if
11: end if
12: end if
13: ∀j ∈ {1..n}
14: if vi[j] = 1 then
15: Ci[i]← 1;
16: end if
17: msgi ← {proposedi, vi};

Alg. 6 shows the description of the compute phase defined for the
moderately pessimistic decision criterion. When a process pi receives a
message from a process pj , if proposedj > proposedi it updates proposedi

to proposedj . Process pi also updates its vi vector as follows: for all the
elements of vj that are set to 1, pi sets the corresponding elements in vi

to 1 (if it is not already 1). Process pi updates its proposed value and its
view vector at the end of all rounds except for the last round (i.e., round
R).

Alg. 7 shows the description of the moderately pessimistic decision
criterion. A process pi executing the moderately pessimistic decision cri-
terion decides to abort if its view is incomplete. Otherwise it checks the
second if statement given at line 2 (See Alg. 7). If pi at round R, receives
a message from a process pj indicating that vj is incomplete, process pi

must abort, otherwise it selects its proposedi as the highest value. Pro-
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cess pi disregards the lost messages in the last round and optimistically
assumes a complete view for the senders of the lost messages.

Algorithm 7 decision_algorithm(), moderately pessimistic criterion (pi)
1: if vi is complete then
2: if receives some incomplete view in round R then
3: abort;
4: else
5: pi selects proposedi;
6: end if
7: else
8: abort;
9: end if

4.2 Analysis of a Simple System

In this section, we compare the outcomes of each of the three given deci-
sion criteria for a 1-of-2 selection algorithm using two rounds of message
exchange (n = 2 and R = 2). Our aim is to provide an intuitive under-
standing of how the choice of a decision criterion influences the probabil-
ity of the three possible outcomes of the 1-of-n selection algorithms, i.e.,
agreement on a value, agreement on abort and disagreement.

We assume that two processes which are called p1 and p2, respectively
propose 11 and 12 as their initial values. The objective of the algorithm
is to reach agreement on the highest value proposed by any of the two
processes, i.e., the value 12 in this example.

Each process sends its message using a point-to-point link to the other
process. Therefore, in a 1-of-2 selection algorithm in two rounds of exe-
cution each of the two processes sends two messages, one in each round,
and as a result there are 4 exchanged messages among processes in to-
tal. Since we assume unbounded number of communication failures, for
a 1-of-2 selection algorithm with R = 2 rounds, we have 24 = 16 per-
mutations of lost and successful messages. As a result, we have sixteen
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cases of execution of the algorithm.
Table 4.1 illustrates the sixteen cases of execution of a 1-of-2 selection

algorithm in two rounds. The columns denoted T12 refer to the transmis-
sions from p1 to p2, while columns denoted T21 refers to the transmissions
from p2 to p1. A successful message transmission is marked as ’OK’ while
a transmission failure is marked as ’Fail’. The columns denoted msg1 and
msg2 state the content of the messages received by each process in the
corresponding round. msg1 (resp. msg2) is the message received by p2

(resp. p1) from p1 (resp. p2). As explained in Section 4.1.1, msgi con-
sists of vi, the view vector of process pi and the value proposed by pi

(proposedi). The content of a message is given within square brackets.
The view vector is given with curly brackets. As an example, [{0}, 11]
indicates that the view vector1 is {0} (this shows that the process has not
yet received a message from the other process) while the proposed value
is 11. ‘[–]’ denotes the loss of a message due to a transmission failure.

Table 4.2 shows the outcomes of the three decision criteria for the 16
cases shown in Table 4.1. As we can see in Table 4.2 there are 9 cases
of agreement on a value, 6 cases of disagreement and one case of agree-
ment to abort for the optimistic decision criterion. For the moderately
pessimistic decision criterion there are 4 cases of agreement on a value,
4 cases of disagreement and 8 cases of agreement to abort. In the case
of the pessimistic decision criterion there is one case of agreement on a
value, 2 cases of disagreement, and 13 cases of agreement to abort.

Now we explain some of the cases shown in Table 4.2 in detail. For the
pessimistic decision criterion, Case 2 and 3 result in disagreement with
losing only one message. In Case 2, T21 fails. This means that p1 does
not receive the confirmation that p2 has a complete view which implies
that C1 in Alg.4is incomplete. Therefore, p1 decides to abort, while p2

selects the value 12. On the other hand, the other two decision criteria
result in an agreement on 12. For the optimistic criterion, the condition

1Note that the view vector actually consists of two bits. However, one of the bits
represents the process’s view of its own value and this bit is always set to 1. For
simplicity, we have omitted this bit in the example.



36 CHAPTER 4. 1-OF-N SELECTION

Table 4.1: Possible executions for a n = 2, R = 2 system
msgi = [vi, proposedi]

Case
round 1 round 2

T 12 T 21 msg1 msg2 T 12 T 21 msg1 msg2

1 OK OK [{0},11] [{0},12] OK OK [{1},12] [{1},12]
2 OK OK [{0},11] [{0},12] OK Fail [{1},12] [–]
3 OK OK [{0},11] [{0},12] Fail OK [–] [{1},12]
4 OK OK [{0},11] [{0},12] Fail Fail [–] [–]
5 OK Fail [{0},11] [–] OK OK [{0},11] [{1},12]
6 OK Fail [{0},11] [–] OK Fail [{0},11] [–]
7 OK Fail [{0},11] [–] Fail OK [–] [{1},12]
8 OK Fail [{0},11] [–] Fail Fail [–] [–]
9 Fail OK [–] [{0},12] OK OK [{1},12] [{0},12]
10 Fail OK [–] [{0},12] OK Fail [{1},12] [–]
11 Fail OK [–] [{0},12] Fail OK [–] [{0},12]
12 Fail OK [–] [{0},12] Fail Fail [–] [–]
13 Fail Fail [–] [–] OK OK [{0},11] [{0},12]
14 Fail Fail [–] [–] OK Fail [{0},11] [–]
15 Fail Fail [–] [–] Fail OK [–] [{0},12]
16 Fail Fail [–] [–] Fail Fail [–] [–]
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Table 4.2: Outcome of the 1-of-2 selection algorithm with R = 2
AG :agreement DG : disagreement

Case Optimistic
Moderately
Pessimistic

Pessimistic

1 AG (12) AG (12) AG (12)
2 AG (12) AG (12) DG

3 AG (12) AG (12) DG

4 AG (12) AG (12) AG (abort)
5 AG (12) AG (abort) AG (abort)
6 DG AG (abort) AG (abort)
7 AG (12) DG AG (abort)
8 DG DG AG (abort)
9 AG (12) AG (abort) AG (abort)
10 AG (12) DG AG (abort)
11 DG AG (abort) AG (abort)
12 DG DG AG (abort)
13 AG (12) AG (abort) AG (abort)
14 DG AG (abort) AG (abort)
15 DG AG (abort) AG (abort)
16 AG (abort) AG (abort) AG (abort)
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of having a complete view (if condition at line 1 in Alg. 2) is satisfied
for both processes and therefore they both select 12. In case of the
moderately pessimistic decision criterion, p1 does not receive a message
that indicates the incomplete view of the other process (if condition at
line 2 in Alg. 5), so it selects 12. Case 3 is similar to Case 2, but with p1

and p2 swapped.
Similar to Case 2 and 3, in Case 4 both the optimistic and moderately

pessimistic decision criteria result in an agreement on 12. However, in
case of the pessimistic criterion as both messages are lost in the second
round, process p1 and p2 both abort because they do not receive the
confirmation that the other process has a complete view (if condition at
line 2 in Alg. 3).

In Case 7, T21 in the first round and T12 in the second round fail.
For the optimistic decision criterion, both v1 and v2 are complete and
therefore both p1 and p2 select 12. For the pessimistic decision criterion
p1 aborts because it has not received msg2 in the first round. According
to the compute phase of the pessimistic criterion, p1 does not update v1

at the end of round R and as a result v1 remains incomplete (if condition
at line 1 in Alg. 3 is not satisfied). On the other hand process p2 receives
msg1 in round one and therefore completes v2. However in the second
round p2 does not receive msg1 from process p1, which means p2 does not
have a confirmation that p1 has a complete view. Based on the second if
condition in Alg. 3 p2 also decides to abort (i.e., outcome is agreement
to abort). The moderately pessimistic decision criterion in Case 7 results
in disagreement. p1 aborts (for the same reason as for the pessimistic
criterion), while p2 selects 12 (the first if condition in Alg. 5 holds for
p2). On the other hand, in round 2, T12 is failed which means that p2

receives no information from p1 indicating whether v1 is incomplete or
not (the second if condition at line 2 in Alg. 5 does not hold). Case 10
is similar to Case 7 with p1 and p2 swapped.

In Case 8, all messages sent to p1 are lost. So process p1, with an
incomplete view, decides to abort for all decision criteria. Process p2
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receives msg1 in round one and completes v2. Therefore in case of the
optimistic decision criterion p2 selects a value which implies disagree-
ment. On the other hand, for the pessimistic decision criterion, p2 aborts
although it has a complete view. This is because p2 never receives a mes-
sage from p1 indicating that v1 is complete. This leads to an agreement
on abort. For the moderately pessimistic decision criterion, according to
the if condition in Alg. 5 at line 2, p2 decides to select a value that results
in disagreement. Case 12 is the same as Case 8, with p1 and p2 swapped.

Case 5 and 9 are similar in the sense that for both cases one message
is lost in the first round (T21 in Case 5 and T12 fail), while there are no
message losses in the first round. For the case of the optimistic decision
criterion since both v1 and v2 are complete both p1 and p2 select the
value 12. However, for the other two decision criteria, as processes do
not update their views at the end of the second round (round R in Alg. 1),
both p1 and p2 have incomplete views and therefore decide to abort.

Looking at Table 4.2 it is easy to see that the optimistic decision cri-
terion has a large number of cases that results in agreement on a value
while there are only two cases of disagreement for the pessimistic crite-
rion, as in most cases it will result in an abort. Moreover, the pessimistic
criterion results in disagreement if only one message is lost, in contrast
to the optimistic decision criterion for which at least two messages must
be lost in order to have disagreement among the processes. We can also
see that the number of cases of agreement, abort and disagreement for
the moderately pessimistic criterion lies in between the corresponding
numbers for the optimistic and pessimistic decision criteria. This exam-
ple gives an intuitive explanation of the impact of the different decision
criteria on the outcome of the 1-of-n selection algorithms.

4.3 Probabilistic Analysis

In this chapter, we present an analysis of the behaviour of the 1-of-n
selection algorithms in the presence of symmetric and asymmetric com-
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munication failures. We analyse the algorithm executing each of the
three given decision criteria and under different settings of the system
parameters, i.e. n, R and the probability of message loss.

In Section 4.3.1, we begin with presenting several graphs showing how
the probability of each outcome of the algorithm varies for different con-
figurations of a system under symmetric communication failures. Then
we present the details on the derivation of the closed-form expressions
that we propose to calculate the probability of each outcome of the 1-
of-n selection algorithms. In Section 4.3.2, we present an analysis of the
behaviour of the 1-of-n selection algorithms under asymmetric commu-
nication failures using a probabilistic model checking tool called PRISM.

4.3.1 Analysis for Symmetric Failures

In this section, we present several graphs showing how the probabilities
(PAG , PAB and PDG ) of the outcomes of the algorithm varies for different
decision criteria. In order to analyse the behaviour of the algorithm,
we vary the main system parameters: the number of processes (n), the
number of rounds (R) and the probability of message loss (q).

We denote the outcomes as AG , AB and DG respectively for agreement
on a value, agreement to abort and disagreement. Also, we denote each
decision criterion with OP, MP and PS respectively for the optimistic,
the moderately pessimistic and the pessimistic decision criterion.

Observations

Fig. 4.1 shows the probabilities of the three outcomes of the three deci-
sion criteria for a 1-of-3 selection algorithm with 2 rounds of execution
as a function of q. As we see in Fig. 4.1(a) for any value of q, the opti-
mistic decision criterion has the highest probability of agreement while
the pessimistic one has the lowest. On the other hand, the pessimistic
decision criterion has the highest probability of abort compared to the
other two decision criteria (See Fig. 4.1(b)). For all decision criteria the
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(a) The probability of agreement on a value

(b) The probability of agreement to abort

(c) The probability of disagreement

Figure 4.1: Probability of an outcome for 1-of-3 selection algorithm for R = 2
with the symmetric failure model.
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Figure 4.2: Probability of disagreement for 1-of-3 selection algorithm (R =
4, 6, 10) for different decision criteria with the symmetric failures.

Figure 4.3: Probability of disagreement for 1-of-n selection algorithms (n =
3, 5, 4, 11 and R = 3) for different decision criteria with the symmetric failures.

probability of disagreement shows a distinct peak. The maximum prob-
ability of disagreement varies significantly for different decision criteria.
The optimistic decision criterion has the highest maximum probability of
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disagreement, which is around 44% and occurs at q ≈ 0.6. The peak of
the curve for the pessimistic decision criterion is 20% and occurs at the
value of q ≈ 0.16. The smallest maximum probability of disagreement
occurs for the moderately pessimistic decision criterion (See Fig. 4.1(c)).

Fig. 4.2 shows how the probability of disagreement varies for a 1-of-
3 selection algorithm when the number of rounds is 4, 6 and 10. As
we see, with increasing R, the maximum probability of disagreement
remains around the same value for the optimistic and the pessimistic
decision criteria, while it increases for the moderately pessimistic decision
criterion as R increases. It is interesting to note that the MP criterion
has a higher maximum probability of disagreement compared to the PS
criterion when the number rounds are 6 and 10. This shows that it is an
advantage to keep the number of rounds low when using the MP criterion.
For all decision criteria, we see that the peak of the curves moves to the
right along the x-axis as we increase R. This implies that the PAG value
increases as we increase the number rounds, for all decision criteria. This
also means that the value of PAB decreases as we increase R.

Fig. 4.3 shows how the probability of disagreement varies for a system
executing the 1-of-n selection algorithms with n = 3, 5, 7 and 11 and
R = 3. Here we see that the peaks of the curves become lower for the OP
and MP criteria as we increase the number of processes in the system.
In contrast, the peaks remain more or less constant for the PS criterion
when the number of processes increases. For all decision criteria, the
peaks move to the left along the x-axis when the number of processes
increases. This implies that the PAG value increases, and the value of PAB

decreases, for all decision criteria when the number of processes increases.
Fig. 4.3 also shows that the probability of disagreement becomes quite
low for the MP criterion for systems with 7 or more processes.

Closed-form Expressions

In this section, we present our approach in the derivation of closed-form
expressions to count the number of different possibilities that all processes
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agree or disagree. Assuming the occurrence of symmetric communication
failures only, the number of different possibilities for each outcome, should
be counted out of the total 2n·R possibilities2.

We compute the number of executions of the 1-of-n selection algo-
rithms with respect to the number and pattern of the lost messages, which
result in all processes select the same value (agreement on a value), all
processes decide to abort (agreement on abort) or the cases in which some
processes select the same value and some decide to abort (disagreement).
In particular, we compute AG, AB, and DG for a given n and R, where

• AG is the total number of executions that all processes select the same
value.

• AB is the total number of executions that all processes decide to abort.

• DG is the total number of executions that some processes select a value
while others decide to abort.

In addition, by considering the probability of a message loss, q, we also
compute

• PAG: the probability of agreement on a value;

• PAB: the probability of agreement to abort; and

• PDG: the probability of disagreement.

for a system of n processes where PAG + PAB + PDG = 1.
According to Algorithm 1, each process executes the send operation

in each round. Each send operation can either be successful (all processes
receive the broadcast message) or unsuccessful (no process receives the
message). As a result, executing a 1-of-n selection algorithm, at the end
of the Rth round, there are 2n·R possible combinations of the views of
the n processes. For large values of n and R the number of different
possible executions of the algorithm can be exponential. For such big
systems, it can be computationally prohibitive to calculate AG, AB and
DG , when n · R is very large (e.g., n = 20 cars execute the consensus
algorithm for R = 5 rounds in a road intersection). Therefore, finding an

2The messages sent from n number of processes can be lost or delivered in any
round among R rounds of execution.
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efficient way to compute AG, AB, and DG , is a non-trivial and challenging
problem. Our endeavour in the following sections (Section 4.3.1, 4.3.1
and 4.3.1) is to address this problem and efficiently compute AG, AB,
and DG for the optimistic, the pessimistic and the moderately pessimistic
decision criteria. We show that it is possible to compute AG, AB and DG in
linear time by conducting elegant analysis of each decision criterion for
the 1-of-n selection algorithms. The following propositions are useful to
show how we derive the closed-form expressions in the following sections.
For the ease of reading we leave the proofs to the Appendix. A.1.

Proposition 4.1. Two or more processes fail to send their messages in
all the 1 . . . K rounds, if and only if, all n processes have incomplete views
at the end of the Kth round.

Proposition 4.2. All processes have complete views at the end of the Kth

round, if and only if, each process successfully broadcasts its message in
at least one of the K rounds.

Proposition 4.3. One process has the complete view and the remaining
(n− 1) processes have incomplete views at the end of Kth round, if and
only if, exactly one process fails to broadcast its message in all of the K

rounds.

In the following sections, we use Proposition 4.1—4.3 in order to de-
rive expressions to calculate AG, AB and DG for each decision criterion.
In addition to the propositions, for the ease of presentation, we define
predicates C0, C1, C2 and C3 each representing an if condition given in
Algorithms 2, 4 and 7. Table 4.3 shows the conditions under which the
given predicates can be true or false for a given process pi executing a
1-of-n selection algorithm.

Optimistic Decision Criterion

In this section, first we derive closed-form expressions to calculate AG,
AB and DG . Then, we derive the expressions to calculate PAG, PAB and PDG
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Table 4.3: Useful predicates for describing the decision making algorithms

Predicate Condition
C0 true pi has a complete view at the end of round R.
C0 false pi has an incomplete view at the end of round R.
C1 true pi has a complete view at the end of round R− 1.
C1 false pi has an incomplete view at the end of round R− 1.

C2 true At round R, process pi received all messages from all processes,
which all indicate the complete views of their senders.

C2 false At round R, process pi has lost some messages or has received
some messages from processes with incomplete view.

C3 false
Either pi receives no message during the last round R or any
message received by the process during the last round is sent
from a process with complete view.

for the 1-of-n selection algorithm with the optimistic decision criterion.
We know from the the description of the optimistic decision criterion
given in Algorithm 2 that, if the view of a process is complete (i.e., C0 is
true) at the end of the Rth round, the process selects a value; otherwise,
it must decide to abort.

Finding closed-form expressions for PAG To derive the closed-form
expression to calculate PAG, first, we determine AG, the number of cases
that the views of all processes are complete at the end of the Rth round
(i.e., C0 is true for all processes).

According to Proposition 4.2, the views of all of the n processes are
complete, if and only if each process successfully sends its message at
least once during R rounds. Considering that each send operation in
a round, can either be successful or unsuccessful, there are

∑R
i=1
(

R
i

)
possible executions of the algorithm in which at least once in R rounds,
the message broadcast by a process is successfully delivered to the other
processes. Since there are n processes in a system, we can calculate the
total number of executions that result in an agreement on a value among
n processes in R rounds using the given formula in 4.1.

AG =
( R∑

i=1

(
R

i

))n

= (2R − 1)n (4.1)
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The formula given in 4.2 calculates the probability that all processes
reach to an agreement on a value when the probability of losing a message
broadcast is q. In the given expression, i send operations of each process
are successful with the probability of 1−q while R−i send operations are
unsuccessful for each i in Eq. (4.1) with the probability of q. Note that i

starts from one which means that we assume each process broadcasts its
message at least once with the probability of 1. So the probability that
all of the n processes decide to select a value (i.e., reach to an agreement
on a value) is given as follows:

PAG =
( R∑

i=1

(
R

i

)
· (1− q)i · qR−i

)n

= (1− qR)n (4.2)

Finding closed-form expressions for PAB To calculate AB , we need
to find the number of ways in which the view of each of the n processes is
incomplete at the end of the Rth round (i.e., C0 is false for all processes).
According to Proposition 4.1, C0 is false for all processes if and only if at
least two processes fail to broadcast their messages during all R rounds. If
there are i processes that fail to broadcast their message in all R rounds,
where 2 ≤ i ≤ n, then each of the remaining n− i processes successfully
broadcast their message in at least one of the R rounds. For a given

i provided that 2 ≤ i ≤ n, there are
(∑R

j=1
(

R
j

))n−i

= (2R − 1)n−i

possible cases in which all n − i processes successfully broadcast their
message in at least one of the R rounds. Moreover, i number of processes
can be selected out of n processes in

(
n
i

)
number of ways. Therefore, the

closed-form expression to calculate the number of cases that all processes
decide to abort is given in 4.3:

AB =
n∑

i=2

(
n

i

)
· (2R − 1)n−i (4.3)
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Given that the probability of a message loss is q, the probability that
exactly i processes fail to send in all R rounds is (qR)i. On the other
hand, the probability that all n− i processes successfully broadcast their
message in at least one of the R rounds is (

∑R
j=1

(
R
j

)
·(1−q)j ·qR−j)n−i =

(1−qR)n−i, where 2 ≤ i ≤ n. Consequently, the closed-form expression to
calculate the probability that all processes agree to abort is given in 4.4:

PAB =
n∑

i=2

(
n

i

)
· (qR)i · (1− qR)n−i (4.4)

Finding closed-form expressions for PDG We know that the to-
tal number of the cases of executions of a 1-of-n selection algorithm in
R rounds assuming symmetric communication failures is AG + AB +
DG = 2n·R. So we can calculate the value of DG using the formula
given in 4.5.

DG = 2n·R − AG − AB (4.5)

where AG and AB are computed in Eq. (4.1) and Eq. (4.3), respectively.
Similarly, the probability of disagreement can be calculated from the
formula 4.6:

PDG = 1− PAG − PAB (4.6)

where PAG and PAB are computed in Eq. (4.2) and Eq. (4.4), respectively.
This completes the analysis of the optimistic decision criteria. In the next
section, we present the analysis for the pessimistic decision criterion.

Pessimistic Decision Criterion

In this section, we present the closed-form expressions to compute PDG

and PAG for a system of n processes executing the 1-of-n selection algo-
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rithm with the pessimistic decision criterion when the probability of a
symmetric message loss is q. According to the description of the pes-
simistic decision criterion in Algorithm 4, and the specified predicates in
Table 4.3, if C1 and C2 are true for a process it can decide to select a
value.

Finding closed-form expressions for PDG To derive closed-form ex-
pressions to calculate the probability of disagreement for the case of
the pessimistic decision criterion, we define Lemma 4.4 proved in Ap-
pendix. A.1.4 as below:

Lemma 4.4. In order to have disagreement among processes, it is nec-
essary that all processes have complete views at the end of round R− 1.

There are two possible ways that the views of all the processes can be
complete at the end of round r, where 1 ≤ r ≤ R− 1:

Case I When all processes have incomplete views at the end of round
r − 1 but they all have complete views after round r.

Case II When exactly n−1 processes have incomplete views by the end
of round r− 1 and all processes have complete views after round r.

We can show that other than these two cases, there is no other case
that disagreement may occur after r rounds (1 ≤ r ≤ R − 1). Given
that the views of all the processes are complete at round r, to compute
the probability of disagreement, we have to consider that exactly one
process, say process px, receives complete views from all other processes
while others do not3. We derive the closed-form expression to compute
the probability of disagreement for the pessimistic decision criterion with
analysing Case I and Case II. More details on the analysis of these cases
are given in the Appendix. A.1.4.

3Note that more than one process receive confirmation from all other processes
if and only if each process receives confirmation from all other processes (i.e., all
processes decide to select a value).
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Combining the probabilities for Case I and Case II, we can calculate
the probability of disagreement for the pessimistic decision criterion as
follows:

PDG = PDG CaseI + PDG CaseII (4.7)

= (1− q)n · q(R−1) · (1− qR−1)n−1 · n

+
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · n · q(R−r) · (1− qR−r)n−1

+
R−1∑
r=2

n · qr−1 · (1− qr−1)n−1 · (1− q) · (n− 1) · q(R−r) · (1− qR−r)n−2

Finding closed-form expressions for PAG Agreement on a value oc-
curs if all processes decide to select a value. According to the description
of the pessimistic decision criterion given in Alg. 4, a process pi decides
to select a value if its view is complete by the end of round R− 1 and if
it receives confirmation messages from all other processes at some point
during R rounds of execution. The crucial observation is that having
complete view by each of the processes at the end of round R − 1 is
a necessary condition for agreement. There are two possible ways the
views of all the processes can be complete at the end of round r, where
1 ≤ r ≤ R− 1:

Case I’ All processes have incomplete views by the end of round r − 1
and all processes have complete views by the end of round r.

Case II’ Exactly n − 1 processes have incomplete views by the end of
round r− 1, then at the end of round r all processes have complete
views.

Notice that other than these two cases, there is no other execution that
agreement on a value may occur. Given that the views of all processes are
complete at round r, to compute the probability of agreement on a value,
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we have to consider that each process receives complete messages from
all other processes. We derive the closed-form expression to calculate
the probability of agreement on a value, PAG, for the pessimistic decision
criterion with analysing the two cases, Case I’ and Case II’.
Eq. 4.8 and 4.9 show the expressions for calculating the probability of
agreement on a value among processes when they meet the conditions for
Case I’ and Case II’, respectively. Details on the analyses of these cases
are given in Appendix. A.1.5.

PAGCaseI′ = (1− q)n · (1− qR−1)n + (4.8)
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · (1− q(R−r))n

PAGCaseII′ =
R−1∑
r=2

n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

(4.9)

Combining the expressions for Case I’ and Case II’, the probability of
agreement on a value among processes executing the pessimistic decision
criterion is computed as follows:

PAG = PAGCaseI′ + PAGCaseII′ = (4.10)

(1− q)n · (1− qR−1)n +
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · (1− q(R−r))n +

R−1∑
r=2

n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

It is not difficult to see that the above equation can be computed in
polynomial time. The probability of abort is PAB = 1−PDG −PAG where
PDG and PAG are computed in Eq. (4.7) and Eq. (4.10), respectively.
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Moderately Pessimistic Decision Criterion

Following, we present the closed-form expressions to compute PDG and
PAB for the 1-of-n selection algorithm executing the moderately pes-
simistic decision criterion given in Alg. 7, assuming symmetric message
losses with the probability of q.

Finding closed-form expressions for PDG We have disagreement
among processes, if some processes decide to select a value while the
others decide to abort. We assume a set of processes as Πx that all
decide to select a value, while all other processes as pk in Π−Πx decide
to abort. Based on Alg. 7, there are two conditions for a process px to
decide to select a value. The first condition for px is to have a complete
view by the end of round R− 1. The second condition is that px should
not receive any message from any process indicating that the sender’s
view is incomplete at round R.

Lemma 4.5. The set Πx consists of exactly one process px which has a
complete view at the end of round R − 1 while all other processes have
incomplete views at this point

We derive the closed-form expression for calculating PDG based on
Lemma. 4.5 which is proved using contradiction. For details on the proof
for Lemma. 4.5 see Appendix. A.1.6.

According to the definition of the moderately pessimistic decision cri-
terion, on condition for px to decide to select a value is that it must not
receive a message from a process with incomplete view of the system, in
round R. In this case, all other n − 1 processes have incomplete views.
Eq. (4.11) shows the closed-form expression to calculate the probability
of disagreement for the moderately pessimistic decision criterion.

PDG = n · qR−1 · (1− qR−1)n−1 · qn−1 (4.11)
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We explain Eq. (4.11) as follows. We proved that there is exactly one
process px in the set Πx which has a complete view at round R− 1. So,
none of the other n − 1 processes received the message broadcast from
px in any of the R − 1 rounds. This means that the message sent from
px has been lost in all R− 1 rounds with the probability of qR−1, and all
messages sent from all other n− 1 processes have been delivered at least
once in R− 1 rounds with the probability of (1− qR−1)n−1.

Based on Alg. 7, a process px with a complete view, decides to select a
value if it did not receive any message from a process with an incomplete
view. On the other hand, since the assumption is that the view of all
n − 1 processes are incomplete at the end of round R − 1, process px

decides to select a value if it receives no message from any of the n − 1
processes at round R. So, qn−1 refers to the probability that all messages
sent from the n − 1 processes in Π − Πx are lost in round R. Finally,
as the process px can be selected in n possible ways from n processes we
multiply the expression by n (See Eq. (4.11)).

Finding closed-form expressions for PAB Based on Alg. 7, we di-
vide the execution cases which result in agreement to abort among pro-
cesses in two cases as below:

Case (a) All processes have incomplete views at the end of round R−1.

Case (b) There is a set of processes called as Πx that all processes in
this set have the complete view of the system by the end of round
R − 1, but in round R they receive incomplete views from all or
some of the processes in Π−Πx.

We calculate the probability of agreement to abort, with calculating the
probabilities of each of the given cases, Case (a) and Case (b). More
details on our approach can be found in Appendix. A.1.7. We show that
the probability of having agreement to abort when all processes have
incomplete views at the end of round R− 1 is calculated using the given
expression in 4.12.
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PAB Case(a) =
n∑

i=2

(
n

i

)
· (qR−1)i · (1− qR−1)n−i (4.12)

Eq. A.21 shows the probability that all processes meet the given condition
in Case (b) and decide to abort.

PAB Case(b) = n · (1− qR−1)n−1 · qR−1 · (1− qn−1) (4.13)

Finally, in Eq. 4.14 the probability of reaching to an agreement to abort
among processes executing the 1-of-n selection algorithm with the moder-
ately pessimistic decision criterion is given as the sum of the probabilities
of two cases, Case (a) and Case (b).

PAB = PAB Case(a) + PAB Case(b) = (4.14)

n · (1− qR−1)n−1 · qR−1 · (1− qn−1) +
n∑

i=2

(
n

i

)
(1− qR−1)n−i · (qR−1)i

Eq. 4.15 shows how we can calculate the probability of agreement on a
value, considering that we have derived the closed-form expressions to
calculate the probability of disagreement and abort.

PAG = 1− PDG − PAB (4.15)

4.3.2 Analysis for Asymmetric Failures

In this chapter, we analyse the probabilistic behaviour of the 1-of-n se-
lection algorithms for asymmetric failures using a probabilistic model
checking tool called PRISM [36]. PRISM is a probabilistic model checker
which is widely used in formal modelling and verification of the protocols
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with probabilistic, non-deterministic and real-time characteristics, such
as the protocols for wireless systems.

We present a number of graphs showing the behaviour of the 1-of-n
selection algorithms for different system parameters. Then, we explain
in detail, the PRISM model for a system of three processes executing the
algorithm in R rounds. Our model comprises the three decision criteria,
described in Section 4.1.2.

Observations

In this section, we present our results of the behaviour of the 1-of-n se-
lection algorithms in the presence of asymmetric communication failures.
We show how the probability of each outcome of the algorithm (PAG,
PAB and PDG) varies for different configurations of the system. We vary
the main system parameters: the number of processes (n), the number
of rounds (R) and the probability of asymmetric message loss (Q). As
we defined in Section 4.1, Q is the probability of a communication failure
when only a subset of the intended receivers fail to receive the message.
As in Section 4.3.1, we denote the three outcomes of the algorithm as AG ,
AB and DG respectively for agreement on a value, agreement to abort and
disagreement. Also, OP, MP and PS are used to denote the optimistic,
the moderately pessimistic and the pessimistic decision criterion.

Fig. 4.4 shows the probabilities of the outcomes of the three decision
criteria for a 1-of-3 selection algorithm with R = 2 as a function of Q. As
we see in Fig. 4.4(a) for any value of Q, the optimistic decision criterion
has the highest values of PAG among the three decision criteria, while
the pessimistic decision criterion has the lowest. The curve for the MP
criterion lies between the two other curves rather close to the PS curve,
which motivates the name moderately pessimistic. When it comes to the
probability of agreement on abort, PAB , shown in Fig.4.4(b), the behavior
is as expected the reverse. Here PAB is always higher for the PS criterion
compared to other two criteria. Again, the curve for the MP criterion lies
between the other two curves. As we see in Fig. 4.4(c), for all decision
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(a) The probability of agreement on a value

(b) The probability of agreement to abort

(c) The probability of disagreement

Figure 4.4: Probability of an outcome for 1-of-3 selection algorithm for R = 2
with asymmetric failures.
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criteria the probability of disagreement shows a distinct peak. However,
the maximum probability of disagreement varies significantly for different
decision criteria. The peak value of PDG for the OP criterion is as high
as 0.68, while it is slightly less than 0.25 for the other two criteria. We
also see that the peak for the OP criterion occurs for a significantly
higher value of Q, around 0.62, compared to the other peaks. For the PS
criterion the peak lies on the left side of the x-axis at Q ≈ 0.1. Overall
we see the same trend in the behavior of the three decision criteria here
as for the symmetric failures in Fig. 4.1. The main difference between
the two failure models is that the peaks of PDG are significantly higher
for asymmetric failures.

Fig. 4.5 illustrates how the probability of disagreement is affected by
varying n, the number of processes, and R, the number of rounds. In this
figure the curve for PDG is shown for three different system configurations
(n = 3, 4, 6) each running the 1-of-n selection algorithms in two, three
and four rounds of execution. The three given sub graphs 4.5(a), 4.5(b)
and 4.5(c) show respectively the results for the three decision criteria.

Assuming a fixed number of processes, if we increase R, a process
has more chance to complete its view and as a result the probability of
agreement among processes increases. Consequently the peak of PDG

moves to the right on the x-axis and is thus achieved for larger values of
Q. For the OP criterion, the maximum value of disagreement decreases
slightly with increasing R, but for the PS and MP decision criteria, it
increases significantly. We observe that for all decision criteria, increasing
R does not guarantee lower values for PDG if the probability of message
loss (Q) cannot be limited.

Varying n affects the probability of disagreement in a different way.
As we see in Fig. 4.5(a) for the OP criterion, when we increase n, the
maximum PDG increases significantly (For n = 6 the probability of dis-
agreement becomes larger than 80%). However, with increasing n the
peak of disagreement does not significantly move to the left or right side
of the x-axis.
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(a) Optimistic decision criterion

(b) Pessimistic decision criterion

(c) Moderately pessimistic decision criterion

Figure 4.5: Probability of disagreement for 1-of-n selection algorithms for
(n = 3, 4, 6) with R = 2, 3, 4 with asymmetric failures.
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(a) R = 2

(b) R = 3

Figure 4.6: Probability of disagreement for the 1-of-n selection algorithms
for (n = 3, 4, 6, R = 2 and R = 3) using different decision criteria under
asymmetric failures.
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As it is shown in Fig. 4.5(b) and Fig. 4.5(c), for the PS and MP
decision criteria, we distinguish two different behaviours depending on
the choice of the R value. For R = 2, to have either the outcome AG or
DG , all the messages should be successfully transmitted in the first round.
Increasing n, the agreement region is reduced because it is less likely that
a process in a system of many processes completes its view in the first
round. As a consequence, with increasing n the curve of disagreement
moves to the left w.r.t. the x-axis for R = 2.

For the PS criterion, when we increase n, the maximum probability of
disagreement remains around the same value, that is 0.25. However, for
the MP criterion, it declines significantly (not larger than 10% for n = 6).
For R > 2, with increasing n the maximum probability of disagreement
increases significantly for both the pessimistic and the moderately pes-
simistic decision criteria.

Fig. 4.6(a) shows a comparison of the three decision criteria for sys-
tems of three, four and six processes executing the 1-of-n selection algo-
rithm in two rounds. For any number of processes, the OP criterion has
the highest peak of the probability of disagreement. For a given applica-
tion with fixed n, if Q is unknown, the probability of disagreement can
be minimized by adopting the moderately pessimistic decision criterion
with R = 2. If the range of Q can be estimated, for values of Q lower
than a specified threshold, the minimum disagreement is achieved by the
OP criterion, while for higher values of Q the PS criterion has the lowest
values of PDG. For example, if n = 3, this threshold is around Q = 0.24,
while for n = 6 it is around Q = 0.15.

Fig. 4.6(b) corresponds to the same settings of the system as Fig. 4.6(a)
except for the number of rounds which is R = 3. As we see from the re-
sults, for R = 3, the OP criterion does not show highest peaks for PDG,
unlike the case for R = 2. Indeed, with varying R from 2 to 3 for systems
of n = 4 and n = 6 processes, the PS criterion shows the highest PDG

compared to the other two decision criteria. Fig 4.6(b) shows that for a
given number of processes (n = 3, 4 and 6), the MP criterion shows the



4.3. PROBABILISTIC ANALYSIS 61

lowest maximum probability of disagreement.
From Fig. 4.6 we again see that increasing R does not necessarily

result in lower probabilities of disagreement. For example, increasing R

from 2 to 3, the pessimistic decision criterion shows much higher proba-
bilities of disagreement.

PRISM Model for 1-of-3 Selection Algorithm

Model checking is to automatically verify a system model against its
specified properties. System model refers to a mathematical computa-
tion model of a system. We model an abstract description of a system
as a finite-state machine which presents the state transition model of the
system using a formal modelling language. The properties of a system are
also specified formally using a mathematical modelling language, such as
temporal logic formulas. In case of probabilistic model checking, the state
transition model contains stochastic behaviour. The probabilistic model
checker performs the reachability analysis of the transition system. Addi-
tionally, it calculates the likelihood of reaching the states using numerical
methods.

PRISM supports four different classes of models: discrete time markov
chain (dtmc); markov decision process (mdp), continuous time markov
chain (ctmc), and probabilistic timed automata (pa). As the consensus
algorithm does not require the modelling of time intervals, among the
supported models, we do not use ctmc and pa. Both dmtc and mdp allow
the specification of the deterministic and the probabilistic transitions.
For the probabilistic transitions, the choice of the next state is deter-
mined by a discrete probability distribution. The difference between mdp

and dmtc is that mdp also allows the specification of non-deterministic
transitions which are not associated with any probability distribution,
while dmtc does not. Our algorithm does not require the use of non-
deterministic transition. Therefore, we define the models of the 1-of-n
selection algorithms as dmtc.

A PRISM model consists of a set of modules representing different
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components of a system model. In our model we define the processes
as modules. With assuming asymmetric communication failures among
the processes, a message sent from a process may be received or lost by
a process independently from the other processes. This means that the
number of states and transitions of a process’s module depends on the
number of processes in the network that is denoted as N in our PRISM
models. We can show that generally, the process’s module is composed
of N+3 transitions and N+3 states. Fig. 4.7 illustrates the module of a
process (pi) in a system of three processes ({pi, pj , pk}) executing the
1-of-n selection algorithms under asymmetric communication failures.
Table 4.4 describes the given states and transitions for process pi.

Figure 4.7: The conceptual model of a process module pi executing the 1-of-n
selection algorithms for a system of three processes.

a process pi moves from its initial state (s̄) to state s1. Then it
moves to state s1 by broadcasting its message to the other processes with
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Table 4.4: Transition descriptions of the PRISM module of a process pi in a
system of three processes, {pi, pj , pk}, executing a 1-of-n selection algorithm

Transition From To Prob. Description

T0 s̄ s1 1
pi moves from its initial
state to state s1

T1: Ri ≤ R s1 s2 1 pi broadcasts its message

T2: Ri ≤ R s2 s3 1 − Q
pi receives the message
sent by pj

T2: Ri ≤ R s2 s̄3 Q
pi does NOT receive the
message sent by pj

T3: Ri ≤ R s3 s4 1 − Q
pi receives the messages
sent by pk and pj

T3: Ri ≤ R s3 s′4 Q

pi does NOT receive the
message sent by pk but re-
ceived from pj

T3: Ri ≤ R s̄3 s̄4 1 − Q

pi receives message sent by
pk but does not receive
from pj

T3: Ri ≤ R s̄3 s̄′4 Q

pi does NOT receive mes-
sages neither from pk nor
from pj

T4: Ri ≤ R
s4, s′4,
s̄4, s̄′4

s1 1
Not the last round: pi con-
tinues to send, receive and
compute messages

T5: Ri > R
s4, s′4,
s̄4, s̄′4

s5 1
After the last round pi

computes the messages it
received in round R

T6: decision
condition
satisfied

s5 s0 1 pi decides to elect pi

T6: decision
condition Not
satisfied

s6 s̄0 1 pi decides to abort
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transition T1. In the sequence, T2 and T3 are probabilistic transitions that
model the choice between receiving (with probability of 1−Q) or losing
(with probability of Q) the messages sent from other two processes (i.e.
pj and pk). At any round except for the last one, the compute phase is
performed by transition T4. In the last round, T5 fires instead of T4 and
performs the round computation. At state s5, with transition T6, process
pi executes the given decision criterion algorithm and makes a decision
(i.e., either to select a value or to abort) and moves to the final state,
state s0. We can show that for systems with larger number of processes,
the probabilistic transitions, which are T2 and T3 for a system with three
processes, are repeated N − 1 times.

We formally specify our probabilistic models based on the PRISM tex-
tual modelling language. Our PRISM model is composed of three parts:
declarations, modules and expressions. Declarations contain the list of
constant values and global variables. As mentioned before we model a
process as a module. The message exchange among processes is mod-
elled using global variables that are written/read by the modules. Also
the synchronization among processes is achieved using a global variable
(called token). We use expressions in order to avoid repetitions of the
code in the module definition. Expressions are also used in defining the
decision criteria. In AppendixA.2 we explain our PRISM model of the
1-of-n selection algorithms for a system of three processes in detail.

4.4 Discussions

In general, the optimistic decision criterion shows a lower probability of
disagreement compared to the pessimistic one when the probability of
message loss is less than 30% to 70%. On the other hand, the opti-
mistic decision criterion has a higher maximum probability of disagree-
ment compared to the pessimistic criterion. We show that the outcome
of the moderately pessimistic decision criterion generally lies in between
the two other decision criteria.
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The moderately pessimistic decision criterion shows the lowest peaks
of the probability of disagreement, higher probability of agreement com-
pared to the pessimistic decision criterion and lower probability of abort
compared to the optimistic one.

According to the definition of the decision criteria, the pessimistic de-
cision criterion could intuitively be chosen as the safest decision criterion
among the three decision criteria. This is because using the pessimistic
approach, a process with a complete view decides to select a value if and
only if it has received the confirmations from all other processes that they
also have the complete view of the system. However, we see from the re-
sults that after quite low values of the probability of message loss, if we
increase the probability of message loss, the pessimistic criterion often
results in abort. This means that even though the pessimistic approach
shows lower probabilities of disagreement compared to the moderately
pessimistic one, it actually results in more cases of abort which defer the
process of selection.

Our results show that for asymmetric communication failures, all de-
cision criteria show higher probabilities of disagreement compared to the
symmetric failures. As the asymmetric failure model is more realistic
for the applications with wireless communication, to have a better un-
derstanding of the behaviour of the 1-of-n selection algorithms, we need
an analytical analysis of the asymmetric failure model. To this end, our
future work will involve deriving closed-form expressions to calculate the
probabilities of each outcome of the algorithm under asymmetric failure
assumptions.

Our observations also indicate that for all decision criteria, we have
higher probabilities of disagreement under the asymmetric failure model
compared to the symmetric failure model. Since we know that the asym-
metric failure model is a more realistic model for systems with unbounded
communication failures than the symmetric failure model, in order to
have a better understanding of the behaviour of the 1-of-n selection al-
gorithms, we need to have an analytical analysis of the asymmetric failure
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model. This motivates our future work to derive closed-form expressions
to calculate the exact probabilities of each outcome of the 1-of-n se-
lection algorithms with asymmetric failure model. Deriving closed-form
expressions for the asymmetric failure model is also necessary to reach
our ultimate goal to design adaptive consensus protocols equipped with
an on-line mechanism to monitor the main system parameters and select
the best decision criterion on-line.

4.5 Chapter Conclusions

We present a probabilistic analysis of a family of 1-of-n selection algo-
rithms that aim to reach agreement among a set of n processes in the pres-
ence of unrestricted communication failures. We propose three different
decision criteria for the 1-of-n selection algorithms, called the optimistic,
the moderately pessimistic and the pessimistic decision criterion.

Our results show that the choice of decision criterion significantly
influences the probability of each outcome of the algorithms. However,
we cannot claim that one decision criterion is better than the others in
general. The choice depends on the size of the system, the quality of the
communication links, and the performance requirements.

We can conclude that for all decision criteria increasing the number
of rounds of execution results in higher probabilities of agreement and
lower probabilities of aborts. For all decision criteria assuming a fixed
value for R, if we increase the number of participating processes, n, we
have higher probabilities of abort and lower probabilities of agreement.

Our observation motivates a future work to investigate the possibility
of monitoring system parameters and selecting the best decision criterion
on-line, by using the closed-form expressions for calculating the proba-
bility of disagreement.

A key feature of the 1-of-n selection algorithms is that they ensure
safety, i.e., all processes that select a value will select the same value.
However, the above safety argument relies on the assumption that the
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processes have the same view of the set of processes participating in the
protocol, i.e., all processes know n. The problem of reaching agreement
on this set of processes suffers from the same fundamental limitations as
other types of consensus problems. Therefore, in the following chapters,
we extend the reliability analysis of the 1-of-n selection algorithm to
include situations where the processes do not have the same view of the
set of processes that participate in the protocol.



68 CHAPTER 4. 1-OF-N SELECTION



5
Group Formation

In this chapter, we address a specific agreement problem related to the
design of self-organizing wireless systems, namely that of reaching agree-
ment on the set of nodes (or processes) that are involved in bootstrap-
ping a cooperative application. We call this problem the group formation
problem, since it involves forming the group of nodes that are the initial
participants, or members, of a cooperative application. For example, in a
VTL application, bootstrapping the application occurs when one or more
vehicles are approaching an intersection where no vehicles are present, or
one where the vehicles in the vicinity of the intersection not yet have es-
tablished a VTL. In order to bootstrap the application, the prospective
VTL members must execute a group formation algorithm. Note that the
group formation problem is different from the problem of group member-

69
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ship. Group membership is the problem of forming and maintenance of
a set of processes in a system and is first introduced in [17]. In a group
membership problem, the processes who may dynamically leave and join
the system must agree on the current set of the processes in the sys-
tem, i.e. the departure and joining of the processes must be consistently
detected by the members in the presence of communication delays and
process failures.

However, in a group formation problem, the maintenance stage of a
group membership is excluded. We assume a synchronous system of an
unknown number of participating processes which are communicating in
a fixed number of rounds in order to reach agreement on a common set
of participants. We assume that the processes are fault-free, i.e. there is
no process crash while the underlying communication links are unreliable
and may result in any number of message losses.

A major challenge in designing a group formation algorithm is that
the participating nodes initially have no knowledge of the number of the
nodes that participate in the formation of the group, or the identity of
these nodes. This is in contrast to many systems using wired communi-
cation, where the number of nodes in the system and their identities are
known at the design time.

The problem of reaching agreement in a distributed system with an
unknown number of participants has been studied before, e.g., in [11,12].
Most previous research consider asynchronous systems with reliable com-
munication channels, and focus on deriving necessary and sufficient con-
ditions under which consensus is achievable. In contrast, we consider
synchronous systems with unreliable communication and no process fail-
ures. We know from previous research [52, 55] that it is impossible to
construct a synchronous algorithm that can guarantee consensus if there
is no upper bound on the number of messages that can be lost during
the execution of the algorithm. We argue that it is unrealistic to assume
such an upper bound on the number of message losses in an automotive
cooperative application, and thus our work is based on the assumption
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that disagreement is an unavoidable outcome of a group formation algo-
rithm in such systems. Therefore, we are interested in investigating the
ways to minimize the probability of disagreement, and to mitigate the
effects of disagreement.

We propose a group formation algorithm with two outcomes at the
process level. Each process that executes the algorithm will either decide
on a group (i.e. a set of nodes), or decide to abort. At the system
level, i.e., when we consider the outcomes of all participating nodes, the
algorithm have three main outcomes: (i) agreement on a set of nodes,
(ii) agreement to abort, (iii) disagreement.

We categorize disagreement in two classes: unsafe disagreement and
safe disagreement. In case of safe disagreement, one subset of the nodes
decides on the same set of nodes while other nodes abort. In case of
unsafe disagreement, at least two different subsets of the nodes decide
on different sets. In order to reduce the probability of having unsafe
disagreement, we propose a decision algorithm for the group formation
algorithm. Our proposed decision algorithm relies on the use of an extra
component, called an oracle. The oracles are local devices attached to
each process and are used for detecting processes in the system. At the
end of round R, a process that satisfies the decision criterion decides on
a set and otherwise it aborts.

We perform a probabilistic analysis of the group formation algorithm
using PRISM model checking tool [36]. We calculate the probability of
each outcome of the algorithm for different configurations of a system
and various qualities of the underlying network (i.e., the probability of
message loss). Moreover, we derive generic closed-form expressions to
compute the numbers of each outcome of the group formation algorithm
as a function of the size of the system, n). Our results show that the
probability of unsafe disagreements can be reduced using our proposed
decision algorithm for different system settings.

The remainder of this Chapter is organized as follows. In Section 5.2,
we formally present our system model, failure assumptions, and the group
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formation algorithm. Section 5.3.1 presents an analytical analysis of the
group formation algorithm. In Section 5.3.2, we present a probabilistic
analysis of the group formation algorithm. We discuss the related work
in Section 5.1. Finally in Section 5.4 we conclude and outline some direc-
tions for future research. An important challenge in solving the problem
of group formation in a wireless system with unreliable links is the prob-
lem of network partitioning. Such a problem occurs when a system is
virtually partitioned in two or more isolated (disjoint) networks due to
communication failures. This is a common problem in mobile ad-hoc
networks with high mobility of the nodes and unreliable communication
environments [35]. In a partitioned network, the processes in each par-
tition can only decide on a group of the processes that are present in
that particular partition. As a result, in a partitioned network, the out-
come of the group formation algorithm consists of more than one group
of processes which can lead to unsafe situations. For example, in a VTL
scenario, forming different groups isolated from one another can result
in electing more than one VTL leader, i.e. we have unsafe disagreement
among the vehicles.

There are methods suggested in the literature to predict the occur-
rence of a network partitioning such as in [59]. Authors in [59] propose
a new characterization of group mobility based on the existing group-
based movements of the mobile nodes. Such characterizations are used
to provide parameters that are sufficient for network partition predic-
tion. There is a large number of mobility models available for vehicular
networks. Authors in [35] suggest an overview and a taxonomy of sev-
eral mobility models available for vehicular networks with simulation.
However, our goal is to investigate the reliability of a group formation
algorithm under the assumption that there is no restriction on the level
or pattern of the mobility of the nodes.

In order to reduce the probability of the occurrence of unsafe dis-
agreement due to a partitioned network, we propose a group formation
algorithm for a system of processes each augmented with a local device
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called an oracle. The notion of an oracle is similar to the notion of the
participant detector proposed in [11]. The participant detectors are de-
fined as distributed oracles attached to each process to provide an initial
contact list of processes to each process, whereas in our work, we assume
that the local oracle of each process proposes a value to the process. This
value is an estimation of the number of processes in the system1. So, we
assume that the oracles only provide a number and not a set of processes.
However for simplicity we assume that the set of processes seen by each
process is always a subset of the group of processes detected by its oracle.
We assume that the oracles are unreliable, i.e. they might underestimate
or overestimate the actual number of processes in the system. So, in order
to account for the unreliability of the oracles, we associate our proposed
decision algorithm with a correction parameter for the oracles (For more
details see Section 5.2). Later, in this Chapter, we show that the use
of the distributed oracles augmented with the correction parameter can
reduce the number of possible cases where unsafe disagreement can occur
due to a partitioned network.

5.1 Related Work

In this chapter, we are interested in solving the problem of agreement
on a set of values among the processes in a system with unrestricted
communication failures. We assume that the identity and the number of
participating processes is initially unknown to all processes.

The consensus problem in which the participants do not know a priori
who the other participants are is first noted in [6] and is called consensus
with uncertain participants (or CUP). In this problem, a process initiates
the CUP protocol by proposing a finite set of nodes in its view as well
as a value. Similarly each process participating in the CUP proposes
a set and a value to others which are not necessarily identical to the

1In a VTL scenario, an oracle can be implemented as a physical equipment installed
on top of each car such as a sensor or a camera.
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proposed sets and values by other nodes. The authors of [6] suggest an
early-deciding algorithm in a fail-stop model to solve the CUP problem.
They assume that an unbounded number of participants may join, leave,
or fail in the system. The underlying network is considered to be reliable
and the failure detectors are perfect.

In [11], a consensus problem called Fault-Tolerant Consensus with
Unknown Participants (or FT-CUP) is investigated. The FT-CUP prob-
lem is fundamental to the problem of bootstrapping self-organized net-
works where there is no central authority to initialize each node with
the necessary information about the participants in the system. The
authors of [11] consider an asynchronous system with reliable commu-
nication channels. Moreover, the processes are assumed to be fault-free
and being equipped with participant detectors. They provide the neces-
sary and sufficient conditions under which the consensus problem can be
solved. The participant detectors are defined as distributed oracles that
provide the processes with a set of initial contacts. The authors of [11]
define various classes of participant detectors and finally solve the FT-
CUP problem using what they call the one sink reducibility participant
detector.

Greve and Tixeuil in [32] show that there is a trade-off between the
synchrony requirement and knowledge connectivity among the processes
in order to solve the CUP problem. They define the minimal synchrony
requirements to solve the FT-CUP problem.

In [3], the FT-CUP is extended to a new problem called Byzan-
tine Fault-Tolerant Consensus with Unknown Participants or BFT-CUP
where the participants in the system can behave maliciously. The authors
of [3] propose an algorithm to solve the BFT-CUP problem with defin-
ing the necessary and sufficient conditions for synchrony and knowledge
requirements.

Some other examples of the previous works on the CUP problem
include [5, 12, 60]. In most of the previous works, the CUP problem is
solved with restricting the failure assumptions or with defining minimum
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connectivity requirements.
In this work, we assume a wireless environment which is highly mobile

and unpredictable and therefore the communication links cannot assumed
to be reliable. Moreover, we consider no restrictions on the pattern or
number of lost messages in a network. Our failure model is based on
the model introduced by Santoro and Widmayer in [52] denoted as the
transmission fault model. We know from the results given in [52] and [53]
that any non-trivial form of agreement is impossible to solve if in a system
of n processes, (n− 1) or more messages can be lost per communication
round.

Our goal is to solve the problem of forming a group of processes which
are going to participate in bootstrapping a cooperative application called
the group formation problem. The problem of group formation is similar
to the first step of a group membership problem where the processes in
the system must form and maintain a set of processes among themselves,
called a group [17]. Examples of previous works on the problem of group
membership include [34,51]. However, unlike the the group membership
problem, we assume no process crashes in the system while we consider
unrestricted communication failures among the processes. However, a
constant failure of a process to communicate with others (which is due to
message losses) can be implied as a process failure. Such a process will
not be considered in the final group of processes.

5.2 Protocol Description

We consider a synchronous system consisting of a group of processes
where neither the identity nor the number of the processes is initially
known to any process. We formally consider a set of n processes denoted
by S = {p1, p2, . . . pn} that executes a group formation algorithm with
the aim of reaching agreement on a common group of processes which is
a subset of S. We propose a group formation algorithm that is based on
the classical round-based computational model used by many researcher
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such as in [14], [57] and [18].
Initially each process pi ∈ S is only aware of its own identity in the

system. Then the processes execute a deterministic group formation algo-
rithm in R rounds of message exchange. We assume that any number of
messages can be lost during the execution of the algorithm. For example,
a message sent by a process pi may be received by all, a subset or none
of other (n− 1) processes in the system. For simplicity, we assume that
the processes are fault-free. Note, however, that a send omission failure
of a process is equivalent to the loss of all messages sent by a process,
and that a receive omission failure is equivalent to the cases where only
one process fails to receive a message.

We assume that all process are equipped with local oracles that are
means for detecting other processes in a specific geographical area. Ora-
cles provide their corresponding processes with an approximation of the
set of processes in the system. We assume that oracles are unreliable in
the sense that they may underestimate or overestimate the actual number
of processes in the system.

5.2.1 The Group Formation Algorithm

Alg. 8 shows the pseudocode of the group formation algorithm that is run
by each process in the system. Each process pi ∈ S constructs a message
(msgi = {pi, Πi}) where pi is the identity of the sender and Πi is the set
of processes that pi currently sees in the system. The set Πi is called the
view of process pi which is initially Πi = {pi}.
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Algorithm 8 Generic group formation algorithm for pi

msgi ← {pi, Πi};
for r = 1 to R do

begin_round
send (msgi);
receive ();
compute (msgi);
end_round;

end for
execute_decision_algorithm();

Each process executes the group formation algorithm for R rounds of
message exchange (R ≥ 1). Each round consists of three phases: send,
receive and compute. During the send phase, each process pi sends its
message (msgi) to all processes in its geographical vicinity by broadcast-
ing. Note that some of the receivers may not receive this message under
our assumed failure model. Then, in the receive phase, each process lis-
tens to the network to receive messages from other processes. Note that
due to the existence of communication failures, a process may not receive
some messages from other processes. Then, at the end of each round, each
process runs the compute phase in order to update its message based on
the information it received so far (See Alg. 9).

Alg. 9 shows the psuedocode of the compute phase algorithm denoted
by Π⋃. Based on Alg. 9, a process pi that received a message from a
process pj (msgj = {pj , Πj}), computes the union of its current view
set (Πi) and the view set received from process pj (Πj) and updates Πi

accordingly.

Algorithm 9 Compute (msgi): Π⋃
1: for all pj such that pi has received msgj = {pj , Πj} do
2: Πi ← Πi

⋃
Πj ;

3: end for
4: msgi ← {pi, Πi};

According to Alg. 8, at the end of round R, each process executes a
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decision algorithm in order to decide on a set of processes (See Alg. 10).
A trivial way to design the decision algorithm is that each process decides
on its final view of the system at the end of round R. However, we show
later that with such a design of the group formation algorithm, we can
have high number of cases of disagreements among processes which lead
to unsafe situations.

Alg. 10 shows our proposed decision algorithm that is run by each
process at the end of R rounds of send, receive and compute phase. Ac-
cording to Alg. 10, each process pi, at the end of round R, first queries
its local oracle. The oracle of process pi provides an estimation of the
number of processes in the system which is denoted by oi. In a system
with n participants, we define an oracle as correct if it reports the actual
number of processes in the system (oi = n) while an incorrect oracle
reports a different number from the actual number of processes in the
system (oi 6= n). As oracles are assumed to be unreliable, in order to
account for possible inaccuracy of the oracles we consider a correction
parameter denoted as c. We assume that the correction parameter is set
at the design time and is the same for all processes2. If c = 1, it means
that each process counts the value provided by its oracle as the actual
number of processes in the system, i.e. the oracles are always correct. If
c < 1, then we assume that the oracles overestimate the number of pro-
cesses in the system. Finally, if c > 1, then we consider that the oracles
may underestimate the number of processes.

Based on Alg. 10 there are two possible outcomes for a process: decide
to select its set or abort. a process pi at the end of round R selects its
view set (Πi) if the number of processes in its view set (mi) is greater
than or equal to the number proposed by its oracle multiplied by the
correction parameter c, i.e. mi ≥ c ∗ oi, otherwise it aborts. If mi is less
than c ∗ oi, then the number of nodes in pi’s view is smaller than the
oracle’s suggestion which is scaled by the correction parameter. Since pi

2Considering different values of the correction parameter for different processes
does not fundamentally change the analysis present in this thesis.
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Algorithm 10 Decision Algorithm for pi

oi ← pi query its oracle
mi ← size of Πi

c← correction parameter
if mi < c ∗ oi then

abort;
else

pi selects Πi;
end if

is not aware of as many processes as suggested by its oracle, pi decides
to abort; otherwise, pi decides to select Πi.

We assume three possible outcomes for our proposed group forma-
tion algorithm: (i) agreement on a set (Π), (ii) agreement to abort, (iii)
disagreement. We classify disagreement to safe disagreement and un-
safe disagreement. We have agreement on a set if at the end of the
group formation algorithm, all processes decide on the same set includ-
ing themselves (Π). We have agreement on abort if all processes decide
to abort. We have safe disagreement if the processes in a subset of the
system decide on that subset while the rest of the processes decide to
abort. An unsafe disagreement occurs when the outcome of the group
formation algorithm includes different non-empty sets of processes. It is
evident that without considering abort also as a possible outcome of the
decision algorithm, in cases of having disagreement the group formation
algorithm always results in unsafe disagreement.

5.3 Probabilistic Analysis

In this Chapter, we present an analytical analysis of the group formation
algorithm under the assumption that the system is partitioned into two
or more isolated (disjoint) subsystems due to communication failures (See
Section 5.3.1).

Following, in Section 5.3.2, we present a probabilistic analysis of the
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algorithm in the presence of asymmetric communication failures using
a probabilistic model checking tool. We analyse the algorithm under
different configurations of the system with respect to the number of pro-
cesses (n), the number of rounds (R) the correction parameter (c) and
the probability of message loss (Q).

5.3.1 Analysis of network partitioning

An important challenge in solving the problem of group formation in a
wireless system with unreliable links is the problem of network partition-
ing. We have a partitioned network when due to communication failures
the network is virtually split in two or more isolated (disjoint) networks.
This is a common problem in mobile ad-hoc networks with high mobility
of the nodes and unreliable communication environments. In a group for-
mation algorithm in case of having a partitioned network, the processes
in each partition can only decide on a set of processes that are present in
that particular partition. Therefore, the outcome of the group formation
algorithm can consist of more than one group of processes which is un-
safe. For example, in a VTL scenario, forming different groups isolated
from one another can result in electing more than one VTL leader, i.e.
we have unsafe disagreement.

There are methods suggested in the literature to predict the occur-
rence of network partitioning such as in [59]. Authors in [59] propose a
new characterization of the group mobility based on the existing group-
based movements of the mobile nodes models. Such characterizations are
used to provide parameters that are sufficient to predict network parti-
tioning.

However, our goal is to investigate the reliability of the proposed
group formation algorithm under the assumption that there is no restric-
tion on the level or the pattern of the mobility of the nodes. Therefore,
we consider all possible cases a network can be partitioned due to the
communication failures. We present the effectiveness of our proposed
algorithm in reducing the probability of unsafe disagreement in a net-
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work which is split into disjoint networks due to communication failures.
First, we determine all possible ways a given set of n processes can be
partitioned in k disjoint subsets where 1 ≤ k ≤ n. Second, we count
the percentage of the cases out of all these possible ways where we have
safe and unsafe disagreement using our proposed algorithm. We count
the number of ways a set of n processes can be partitioned into exactly
k non-empty subsets using the Stirling number of second kind [50], de-
noted by S(n, k). The total number of possible ways a set of n nodes
can be partitioned in disjoint subsets is given using the well-known Bell
number [28], denoted by Bn, as follows:

Bn =
n∑

k=1

S(n, k)

where the Stirling number S(n, k) is recursively computed as follows:

S(n, 1) = S(n, n) = 1

S(n, k) = S(n− 1, k − 1) + S(n− 1, k)

For example the Bell number for a set S = {p1, p2, p3} with three
elements (n = 3) is B3 = 5. The five possible partitions are given in
Table 5.1.

We coded a simple program in Matlab in order to determine all differ-
ent cases at which a network of n processes is partitioned. For these cases,
executing the group formation algorithm given in Alg. 8, we computed
the number of cases of each outcome of the algorithm, i.e. agreement on
abort, unsafe disagreement and safe disagreement.
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Partition 1, one subset {p1, p2, p3}
Partition 2, two subsets {p1}{p2, p3}
Partition 3, two subsets {p2}{p1, p3}
Partition 4, two subsets {p3}{p1, p2}
Partition 5, three subsets {p1}{p2}{p3}

Table 5.1: B3 = 5 possible ways to have a partitioned network of n = 3
processes.

Fig. 5.1 shows the percentage of each of these outcomes for the pro-
posed group formation algorithm considering three different values of the
correction parameter (c = 0.5, 0.75, 1) and 10 values of the size of the
system, i.e. n = 1, 2, . . . 10. The values of the local oracle are considered
to be correct for all the processes, i.e. ∀pi∈S , we set oi = n.
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(a) Abort

(b) Unsafe Disagreement

(c) Safe Disagreement

Figure 5.1: A comparison of three outcomes of the group formation algorithm
varying c, the percentage of each outcome out of the total number of outcomes
for a partitioned system of n processes with correct oracles (oi = n).
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The percentage of different outcomes presented in Fig. 5.1 is generated
by executing the decision algorithm given in Alg. 10 for all possible cases
of partitioning of a system of n nodes. For example, consider that a
network of three nodes S = {p1, p2, p3} is partitioned to two subsets
{p1, p2} and {p3}. In this case, the views of p1 and p2 are the same
Π1 = Π2 = {p1, p2} while process p3 will only have itself in its view,
i.e. Π3 = {p3}. We evaluate the decision criterion for each of the three
processes using c and oi = n. According to Alg. 10 if c > 1 and the
oracles are correct then all processes will abort. On the other hand, if
c = 1 and the oracle values are correct (i.e. oi = n), a process pi will
decide on its view (i.e. Πi) if it has all other processes in the network
in its view (mi = |Πi| = n). This is because if mi = n and c = 1 the
decision criterion given in Alg. 10 does not hold (i.e. mi < c ∗ oi).

It is evident from Fig. 5.1 that as the correction parameter (c) in-
creases from 0.5 to 1, the percentage of agreement to abort increases for
most values of n. This is because as c approaches to 1, considering that
oracle values are correct (oi = n), the value of c∗oi becomes closer to the
accurate value (i.e. c ∗ n) and as a result more processes make correct
decisions. A process pi with a correct oracle value will decide on Πi if
|Πi| ≥ c∗n. For large values of c, the value of c∗n becomes larger. As in
a partitioned network it is less likely that the size of Πi is larger than or
equal to c ∗n, it is more probable to have all processes deciding to abort.

Similarly, Fig. 5.1(b) shows that with increasing the correction pa-
rameter from c = 0.5 to c = 1, the percentage of unsafe disagreement
cases decreases. As we see from Fig. 5.1(b) for n = 4 and correct oracles,
we have 20% and 0% cases of unsafe disagreement respectively for c = 0.5
and c = 1.

We have unsafe disagreement if at least two processes decide on two
different view sets. In a partitioned network of n processes, two processes
decide on two different sets if they belong to two different partitions.
Moreover, according to Alg. 10, each partition must consist of a number
of processes which is greater than or equal to c ∗ oi where oi = n in this
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case. Therefore, the total number of processes in the given two partitions
must be at least (2∗c∗n). Based on the definition of network partitioning,
the sum of nodes in all subsets of a partitioned network is equal to n. So,
in order to have unsafe disagreement we must have 2 ∗ c ∗ n ≤ n, which
implies that c ≤ 0.5 is a necessary condition to have unsafe disagreement
for a partitioned network of n processes with correct oracle values (i.e.
oi = n). Note that the plot for c = 1 and c = 0.75 in Fig. 5.1(b) coincides
with the x-axis.

Another trend from Fig. 5.1 is that for larger systems, i.e. systems
with larger number of nodes (n), the percentage of agreement on abort is
higher while the percentage of unsafe disagreement cases becomes lower.
This is because for larger values of n there are more possibilities of having
network partitioning and there are relatively higher numbers of subsets
for many of these partitions (See [28]). A relatively higher number of
disjoint subsets of a partition implies relatively fewer processes in each
subset. A subset with relatively smaller number of processes is more likely
to have less than (c ∗ oi) number of processes where oi = n. Therefore,
a process with smaller number of nodes in its view will abort. Since
processes in many of the cases of network partitions abort rather than
decide on the view, with increasing n the percentage of agreement on abort
cases increases in Fig. 5.1(a) and the percentage of unsafe disagreement
decreases (See Fig. 5.1(b)).

Fig. 5.1(c) shows the percentage of safe disagreement for different
values of n. According to the decision criterion given in Alg. 10, a process
pi using correct oracle with c = 1 decides on its view only if |Πi| = n, i.e.
pi sees all other processes in its view. On the other hand, by definition
we have no network partitioning if a process has all the n processes in
its view (See Section 5.3.1). We have safe disagreement, if at least one
process decides to select and the remaining processes abort, which is an
impossible case in a partitioned network of n processes if the oracle values
are correct and c = 1. So for c = 1 and correct oracles we have no safe
disagreement case (note that the plot for c = 1 in Fig. 5.1(c) coincides
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with the x-axis). As the correction parameter increases from c = 0.5
to c = 0.75 in Fig. 5.1(c), the percentage of safe disagreement decreases.
This is because as c becomes larger, the percentage of abort increases (See
Fig. 5.1(a)). Therefore, the percentage of safe disagreement is relatively
smaller for larger values of c. In summary, a trivial decision making
algorithm without using an oracle will have 100% unsafe disagreement
in case of having network partitioning. As it is shown in Fig. 5.1, a
significant percentage of network partitioning cases can be safe: either
all nodes abort or we have safe disagreement.

Other Pathological Cases

The analysis of network partitioning leads us to investigate whether there
are other such pathological cases: Can we have unsafe disagreement when
there is no network partitioning? We found an affirmative answer. In
addition to network partitioning, unsafe disagreement can also occur due
to asymmetric communication failures among the processes. In case of
having an asymmetric communication failure, a subset of the intended
receiving processes fail to receive a message while other processes succeed
to receive.

We consider the cases where some processes have different view sets
which are not disjoint. For example consider a system of four processes
{p1, p2, p3, p4} where at the end of round R, Π1 = {p1, p2, p3} and Π2 =
{p2, p3, p4}. So, the two sets of Π1 and Π2 are unequal but not disjoint
as they both include p2 and p3, i.e. Π1∩Π2 6= ∅. Note that m1 = m2 = 3
and if o1 = o2 = 4 and c = 0.5, then the condition mi > c ∗ oi holds
for both p1 and p2 and as a result they both decide on their views, i.e.
p1 decides on Π1 and p2 decides on Π2. Since Π1 6= Π2, we have unsafe
disagreement.

In order to have a better understanding of the behaviour of the pro-
posed group formation algorithm, in [23] we present an analytical analysis
to compute the fraction of each possible outcome of the algorithm for a
system of n processes. Such fraction is computed by considering all dif-
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ferent possible combinations of the views of n processes at the end of
R rounds. To make our results as general as possible, e.g. independent
of the number of rounds or the quality of the network, we conduct our
analysis based on three following factors F1–F3:

F1: Any value of the probability of message loss is equally likely, i.e.
0 ≤ Q ≤ 1.

F2: Each process pi can have any possible view set at the end of round
R, i.e. |Πi| ∈ [1, n].

F3: The value of oi provided by the oracle of process pi can have nupper

different possible values. The value of nupper is set by the designer
of the oracle.

Factor F1 is important so that our results is applicable for any quality
of the network. We also know that the quality of the network may vary
from one intersection to another. For example in a VTL scenario, in
an intersection with no communication obstacles such as large buildings
or mountains, the probability of message loss can be relatively small
compared to that of a congested network in a crowded city center with
lots of cars, buildings, etc.

We define Factor F2 based on Factor F1. If the quality of a network
is bad (i.e., Q is large), process pi might not be able to communicate
with any process in the system due to large number of message losses.
As a result, the view of process pi may include only itself, i.e. Πi =
{pi}, |Πi| = 1 at the end of round R. On the other extreme, in a system
with low probability of message loss, Πi may consist of all processes in
the system, i.e. Πi = {p1, .., pn}, |Πi| = n at the end of round R.

In a VTL implementation the value of nupper introduced in Factor
F3 can represent the largest possible number of legs for an intersection.
The performance of an oracle can vary from one intersection to another
depending on the external environment. As a result, an oracle may per-
form differently in different situations, i.e. it may be correct or it may
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overestimate or underestimate the number of vehicles in an intersection.
Moreover, the oracle value of one vehicle in a particular intersection may
be different from that of another vehicle, i.e. they might report different
values to their corresponding vehicles. Factor F3 captures the applica-
bility of our results for any possible values of the oracle.

For more details on the proposed formulas for analytical analysis of
the group formation algorithm based on the above assumption we refer
the interested reader to one of our previous works in [23].

5.3.2 Probabilistic analysis of disagreement

In this section, we present several graphs showing how the probability
of unsafe disagreement varies for different configurations of the system
with respect to the number of processes (n), the number of rounds (R)
the correction parameter (c) and the probability of message loss (Q). We
compute the probabilities of all four possible outcomes: agreement on the
set Π (’AG’), agreement on abort (’AB’), safe disagreement (’SD’) and
unsafe disagreement (’UD’). The sum of probabilities of safe and unsafe
disagreements is the probability of disagreement and is denoted by the
’DG’ label.

In order to calculate the probabilities of each outcome of the group
formation algorithm, we modelled the algorithm using Discrete Time
Markov Chains (DMTCs) probabilistic models with PRISM [36]. We
use probabilistic transitions in order to model the probability of loss of
a message. In a probabilistic transition, the choice of the next state is
determined by a discrete probability distribution. A limitation of using
PRISM is that due to the problem of state space explosion, we are only
able to calculate probabilities for a system of 3 processes. This is because
with increasing the number of processes (n > 3), the number of reachable
states of the model increases considerably which makes the verification
process infeasible. For systems with larger number of processes, PRISM
can estimate the outcome using simulation, with a defined tolerance and
interval of confidence. Here, in order to keep the uniformity of the results
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for different sizes of the system, we obtain all the results using probabilis-
tic simulation of PRISM.

Fig. 5.2 shows the outcomes of the group formation algorithm with
and without using an oracle for a system of 4 processes running the
algorithm in two rounds, i.e. R = 2. In a system executing the group
formation algorithm without using oracles, as there is no decision cri-
terion defined for the processes, all processes after executing R rounds
of message exchange decide on their final view set. This means that no
process will abort and as a result, there is no case of safe disagreement,
i.e. all disagreement cases are unsafe.

Figure 5.2: Probability of each outcome of the group formation algorithm as
a function of Q with and without using oracles, (n = 4, R = 2)

As we see in Fig. 5.2, for the system with correct oracles (oi = 4)
and c = 1, the probability of unsafe disagreement (’UD’) is zero for
all values of Q. This means that the curve for the probability of ’DG’
for this system indicates only the safe disagreement cases (’SD’) while
the curve showing the probability of ’DG’ for the system without using
oracles indicates unsafe disagreements only. Comparing the outcomes of
the group formation algorithm with and without using oracles, we see
that for Q ≤ 0.48 the probability of ’DG’ of the two systems are about
the same while for Q > 0.48 the system with using oracle shows lower
probabilities of ’DG’ and positive probabilities of abort (’AB’).
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In the following two figures, we present our results to investigate the
behaviour of the group formation algorithm for the cases where the oracle
values are incorrect. In order to have a better understanding of the
behaviour of the algorithm using incorrect oracles, we set the correction
parameter to 1.

(a) n = 4, R = 2

(b) n = 5, R = 2

Figure 5.3: Probability of unsafe disagreement for the group formation algo-
rithm as a function of Q with incorrect oracles, c = 1.

Fig. 5.3 shows the probability of unsafe disagreement for two systems
of respectively n = 4 and n = 5 executing the group formation algorithm
for R = 2 rounds using incorrect oracles. Fig. 5.3(a) shows 6 cases out
of total 256 possible combinations of the oracle values for a system of 4
processes. The first three settings of the oracles (a, b and c), indicate the
cases where one of the oracles is incorrect and three others are correct.
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As expected, we have the lowest peak of unsafe disagreement for the
case where only one of the oracles underestimate the actual number of
processes by one. (See curve (c) in Fig. 5.3(a) where o1 = 3 and the rest
of the oracles are correct (o2,3,4 = 4).) As we see from the curves shown
in a and b with decreasing the oracle value of process p1 to o1 = 1 the
peak of ’UD’ rises upto around 0.95. We see the same trend in Fig. 5.3(a)
given in the curves (a′, b′, c′, d′) for a system of n = 5.

Case (d) in Fig. 5.3(a) shows the probability of ’UD’ for a system of
n = 4 with a combination of the oracle values where two of the oracles
have the minimum possible values (o1,2 = 1). As we see from curve (d)
the probability of unsafe disagreement can go upto 1 for large value of
Q. We can show that for any combinations of the oracles where there
are two or more than two oracles with the value of 1, the probability of
unsafe disagreement can rise upto 1. This is because for Q = 1 where all
messages are lost for all processes we have ∀i, mi = 1, i.e. all processes
have only themselves in their views. Therefore, if the oracle value is 1
for more than one process, we have more than one process which decides
on a set including only itself. Therefore, we have unsafe disagreement
among the processes. We can see the same behaviour for a system of
five nodes given in curve (e′) in Fig. 5.3(b). From the results given
in Fig. 5.3, we can conclude that with changing the decision algorithm
slightly for cases where a process pi sees only itself (mi = c ∗ oi) to
abort, we can have lower probabilities of unsafe disagreement. Such
a change in the decision criterion affects the results mainly for large
values of Q where many processes fail to establish communication with
the rest of the network. As expected, we have higher probabilities of
unsafe disagreement for combinations of the oracle values where more
oracles are incorrect (See the curves e, f, f ′, g′).

Fig. 5.4(a) shows the effect of increasing R, the number of rounds of
execution, for a system of four nodes with incorrect oracles. We choose
the set of oracles as oi = i where only process p4 has the correct value
(o4 = 4). As we see, increasing R results in lower probabilities of ’UD’ for
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(a) Varying R, (n = 4, R = 2, 3, 4, 5, 10, oi = i)

(b) Varying n, (R = 2, n = 3, 4, 5)

Figure 5.4: Probability of unsafe disagreement for the group formation al-
gorithm as a function of Q with varying n and R using incorrect oracles,
c = 1.

larger values of Q. This is because with more rounds, the probability of
receiving the information about yet unknown participants in the network
increases. However, safety-critical applications with real-time constraints
may not always permit to use very large values of R.

Fig. 5.4(b) shows how the probability of ’UD’ varies for different sizes
of the system and different settings of the oracle values executing the
algorithm in 2 rounds. The given curves in a”, b” and c” are respectively
for systems with 3, 4 and 5 processes and a set of oracle values where
only one of them is underestimating the actual number of processes by
1. As we see from the results the peak of ’UD’ is around the same for
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all three systems (≈ 0.25). An interesting observation from the results
in Fig. 5.4(b) is that for larger systems with only one incorrect oracle
(o1 = n−1), we have lower probabilities of unsafe disagreement for most
values of Q. The given results in d”, e” and f” are for the same systems
but for different combinations of the oracle values (oi = i). As expected,
with larger n, we have higher probabilities of unsafe disagreement.

(a) n = 4

(b) n = 5

Figure 5.5: Probability of (unsafe) disagreement for the group formation al-
gorithm as a function of Q with varying c using correct oracles (oi = n), for
n = 4 and n = 5 and R = 2.

Fig. 5.5 shows the probabilities of total disagreement and unsafe dis-
agreement for two systems of n = 4 and n = 5 and R = 2. We set the
values of the oracles to the correct values and vary the correction param-
eter (c). From the results given in Fig. 5.5(a) and Fig. 5.5(b), we see that
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for values of c larger than 0.75 and 0.8 respectively for n = 4 and n = 5,
the peak of the probability of unsafe disagreement shows a distinct de-
scent. This is expected as with increasing the value of c, after some point
the decision criterion (mi >= c ∗ oi) will not hold for many processes
in the system and as a result many processes abort. Consequently, after
certain values of c, we will have 100% of the probability of abort.

From the results shown in Fig. 5.5, we can also conclude that for
n = 4 and R = 2 if the multiplication of the value of the oracle and the
correction parameter is 3, i.e. c ∗ oi = 0.75 ∗ 4, we have the lowest peak
of the probability of unsafe disagreement while for c ∗ oi > 0.75 ∗ 4 the
probability of ’UD’ is always zero. Similarly for a system of n = 5 and
R = 2 we have the lowest peaks of ’UD’ for c ∗ oi = 0.8 ∗ 5 while for
c ∗ oi > 0.8, we have 100% of aborts.

5.4 Chapter Conclusions

We have presented a group formation algorithm for bootstrapping the
self-organizing cooperative automotive applications. Since these applica-
tions can experience massive communication failures, we investigated the
algorithm’s behaviour in the presence of an arbitrary number of messages
losses. We know from previous research that it is impossible to construct
a group formation algorithm that can guarantee consensus in the presence
of massive communication failures. Therefore, we focused our analysis on
the probability that the algorithm results in disagreement. To facilitate
this analysis, we present a new classification of the disagreement cases:
unsafe and safe disagreement.

The algorithm has two outcomes at the process level: a process either
decides on a group or it aborts. To make this decision, the algorithm
uses a local oracle that provides an unreliable estimate of the number of
nodes that are present in the system. In its baseline version (c = 1), a
node executing the algorithm will decide to abort if the value provided
by its local oracle is greater than the number of participants the node



5.4. CHAPTER CONCLUSIONS 95

has heard from.
The main conclusions of our analysis are as follows: i) Safe disagree-

ment is the only form of disagreement that occurs if the local oracles of
all participants provide a correct estimate of the number of nodes in the
system,

ii) Unsafe disagreement (i.e. when two or more nodes make incon-
sistent decisions about the group membership) occurs only in the cases
where the local oracles provide an estimation which is less than the real
number of participants,

iii) The probability of unsafe disagreement is high (in case it is not
equal to 0) when the probability of receive omissions is large (> 40%);
the maximum value vary from around 25% to 98%, and occurs when the
probability of a receive omission is between 50% and 95%.

In general, the probabilities of both unsafe and safe disagreement de-
pend on three parameters: the number nodes in the systems, the number
of rounds of message exchange used by the algorithm, and the accuracy
of the local oracles.
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6
1-of-* Selection

In this chapter, we address the problem of reaching consensus on a value
among the proposed values by the nodes of a self-organizing system with
unreliable links. In a self-organizing system, the set of participating nodes
is initially unknown to all nodes. In Chapter 4, we proposed a family of
consensus algorithms called the 1-of-n selection algorithms to solve the
problem of selecting one value among n proposed values. The design
of the 1-of-n selection algorithms was based on the simplifying assump-
tion that the participating nodes in the algorithm know n. For a self-
organizing system, we introduce the problem of 1-of-* selection which is
a variation of the problem of 1-of-n where the ∗ symbolizes the fact that
n is initially unknown to all participating nodes.

The 1-of-* selection problem is a consensus problem of type Consen-

97
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sus with Unknown Participants (CUP) [11]. The CUP problem is fun-
damental to the problem of bootstrapping self-organized networks where
there is no central authority to initialize each node with the necessary
information of the system. In order to solve the 1-of-* selection problem,
we propose a family of consensus algorithms called the 1-of-* selection
algorithms. The design of the 1-of-* selection algorithms is motivated
by the fact that, in cooperative applications based on wireless ad-hoc
networks, it is unrealistic to assume that the exact set of participants is
initially known to all participants. This is due to several factors such as
the high mobility of the nodes in such networks or the existence of lossy
links among the nodes which can result in partitioning the system into
several networks where some nodes are not aware of the existence of some
others for a period of time [35].

We propose the 1-of-* selection algorithms to be run as the core logic
of a VTL leader election protocol where the participating nodes should
reach consensus on a leader among themselves. We know that it is impos-
sible to gaurantee agreement in systems with lossy links [52]. Each node
(or process) that participates in a 1-of-* selection algorithm executes the
algorithm for R rounds of message exchange using an unreliable network.
At the end of round R, depending on the specified decision criterion1 for
the algorithm, each process either decides to select a leader or it decides
to abort due to lack of information. Disagreement occurs if some pro-
cesses decide to select a value, while the remaining processes decide to
abort.

We consider two types of processes; aborting processes and non-aborting
processes. We call a process an aborting process if after the execution of
a 1-of-* selection algorithm, it decides to abort. Likewise, we define a
process live or non-aborting if it decides to select a leader.

Considering the outcomes of all participating nodes, the 1-of-* selec-
tion algorithms have three main outcomes: (i) agreement on a leader, (ii)

1A decision criterion refers to the logical expressions based on which a process
makes a decision that depends on the amount of information a process has obtained
from the system.
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agreement to abort, (iii) disagreement. We have agreement if the partici-
pating processes in the algorithm either all decide on the same leader or
they all decide to abort. We have disagreement if the processes decide
on different leaders or if some processes decide on a leader while others
decide to abort.

For the 1-of-n selection algorithms introduced in Chapter 4 the safety
is ensured i.e., all processes that select a value will select the same value.
However, the above safety argument relies on the assumption that the
processes have the same view of the set of processes participating in the
protocol, i.e., all processes know n. On the other hand, in the design of
the 1-of-* selection algorithms, under the assumption of not knowing n

and the existence of lossy links, we cannot guarantee safety. Nevertheless,
it is useful to further classify disagreement cases as safe and unsafe as
follows2

Unsafe Disagreement We have unsafe disagreement if there are at least
two processes deciding on different non-aborting processes as the
VTL leader, i.e. we have at least two live processes acting as lead-
ers in the system.

Safe Disagreement We have safe disagreement if all processes in a
proper subset3 of the system decide on a unique live process as the
VTL leader, while the remaining processes either decide to abort
or decide on an aborting process as the leader.

In order to reduce the probability of unsafe disagreement, we propose
the use of an extra component for each node in the system, called an
oracle. The oracle is a local device attached to each process used for
detecting other nodes in the system. The oracle can be a combination of
a set of on-board cameras and sensors attached to a process (or car). The
oracle is assumed to be unreliable and may report incorrect information,

2In Chapter 5, we also categorized the disagreement cases to safe and unsafe dis-
agreements yet with different definitions.

3A proper subset S∗ of a set S, is a set which excludes at least one member of S.
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i.e. it might underestimate or overestimate the number of processes (cars)
in the system. In order to account for the inaccuracy of the local oracles
we use a correction parameter. We propose three decision criteria to solve
the problem of 1-of-* selection called the optimistic*, the pessimistic*
and the moderately pessimistic* algorithm.

One important problem in the design of a leader election protocol for
a VTL system is when an aborting process (or vehicle) is elected as the
VTL leader by some other vehicles. In such a situation, the vehicles will
be waiting to receive traffic light orders from a vehicle which has decided
to abort. Therefore, we need to propose a VTL leader election protocol
that can prevent the problem of vehicles waiting to receive traffic signals
from an aborting process for an infinite amount of time, i.e. the problem
of starvation.

The design of the 1-of-* selection algorithm as the core logic of a VTL
leader election protocol raises new research questions some of which are
explained briefly in the following:

• What are the probabilities of each outcome of the proposed 1-of-*
selection algorithms as a function of the probability of message loss
among the processes?

• How does the setting of different system parameters, e.g. the num-
ber of communication rounds, the values reported by the local or-
acles and the correction parameters affect the probability of each
outcome of the algorithm?

• How does the behaviour of an algorithm differs with different num-
ber of participants?

• How can the design of a VTL leader election protocol minimize the
effect of having unsafe disagreement, when there are more than one
non-aborting process acting as the VTL leader?

The rest of this chapter is organized as follows: Section 6.1 presents
the related works on the design of leader election algorithms for systems
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with unknown participants and lossy links. In Section 6.2, we explain our
proposed VTL leader election protocol in more details. We formally spec-
ify our system model and failure assumptions in Section 6.3. We explain
our proposed 1-of-* selection algorithms in Section 6.3.1. In Section 6.4,
we present a probabilistic analysis of the 1-of-* selection algorithms for
different settings of the system parameters and under different probabil-
ities of message loss. In Section 6.5, we present some discussions and
finally our conclusions in Section 6.6.

6.1 Related Work

There are several papers in literature on the problem of leader election
in dynamic networks with lossy links such as in [19, 26, 39, 41, 47, 58].
In such networks, the nodes can dynamically join and leave the network,
e.g. mobile ad-hoc networks. Most of the proposed solutions to the leader
election problem for such networks are based on defining restrictions on
the communication failure model among the nodes of the system. For
example the authors of [26] propose a protocol to solve the problem of
highly available local leader election for a distributed system where the
set of processes can split in disjoint subsets due to network failures. In
this problem, ideally there must be one leader elected for each subset (or
partition). However, due to the Santoro and Widmayer’s impossibility
results for systems with unrestricted communication failures [52], the
election of a unique leader can not be guaranteed. For this, the authors
of [26] introduce the notion of a stable partition of a group of nodes
connected to each other which are required to elect a leader within a
bounded time.

The authors of [5] solve the problem of eventual leader election in
dynamic and unknown mobile network under a communication model
called Time-Varying Communication Graph. In this model, it is assumed
that the network remains connected over time.

In [26] a protocol is proposed to solve the problem of highly available



102 CHAPTER 6. 1-OF-* SELECTION

local leader election for a distributed system where the set of processes
can split in disjoint subsets due to network failures. In this problem,
ideally there must be one leader elected for each subset (or partition).
However, due to the communication failure assumptions, this can not be
guaranteed. For this, the authors introduce the notion of a stable parti-
tion in which all processes are connected to each other and are required
to elect a leader within a bounded time.

In [19], a self-stabilizing leader election algorithm for an ad-hoc
network is proposed that can tolerate multiple concurrent topological
changes of the network. The suggested algorithm uses an approach based
on directed acyclic graph4 with the advantage of detecting partitions au-
tomatically using the TORA mechanism5.

In [40], the TORA mechanism is used to elect a unique leader in each
connected component of an ad-hoc network. Every component creates a
leader oriented directed acyclic graph (DAG).

In [12], the problem of leader election is investigated for a system of
nodes which have partial knowledge about the other nodes in the system.
The authors of [12] define the necessary and sufficient conditions on the
global knowledge that nodes should be provided with in order to solve
the leader election problem. It is assumed that nodes are using asyn-
chronous and reliable communication links to expand their knowledge of
the network over rounds of communicating with each other. They prove
that with knowing the size of the network it is possible to solve the leader
election problem on every network whereas knowing only an upper bound
on the size is not enough.

Most of the previous work on the problem of leader election in mo-
bile ad-hoc networks are based on defining restrictive assumption on the
connectivity or the topology of the network. In this thesis, however, we
assume no limitations on the number or the pattern of the link failures

4A directed acyclic graph is a finite directed graph with no directed cycles.
5The Temporally Ordered Routing Algorithm is an algorithm for routing data

across Wireless Mesh Networks or Mobile ad hoc networks developed by Vincent Park
and Scott Corson.
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among the nodes of the system. Moreover, in the design of the leader
election algorithm, we assume that the participating nodes have no initial
knowledge regarding the set of participants in the system. As mentioned
in 5.1, the consensus problem in which the participants do not know a
priori who the other participants are is first noted in [6] and is called
consensus with uncertain participants(CUP).

6.2 The VTL Leader Election Protocol

As mentioned before, in Chapter 3, Ferreira et al. in [25] propose a VTL
scheme which relies on two main procedures: leader election and leader
handover. The leader is a road vehicle that is elected by the vehicles
approaching an intersection using a leader election protocol. The elected
VTL leader assumes the role of traffic controller for a period of time,
called the control period. During the control period, the VTL leader
assumes a red light for itself while it broadcasts the state of the virtual
traffic light to other vehicles in the intersection. At the end of the control
period, the leader hands over the leadership to another vehicle provided
that there exists one in the intersection (leader handover). Otherwise,
no leadership handover is performed and the new coming vehicles to the
intersection must elect a new leader. Finally the leader gives the green
light to itself and passes the intersection.

In Chapter 3 we showed an example of how a VTL for a 4-leg inter-
section is established among the cars (See Fig. 3.1). Based on the VTL
scheme explained in Chapter 3, each leg of the intersection consists of a
cluster of cars for each of which, there exists a cluster leader. It is as-
sumed that only the cluster leaders participate in a VTL leader election
protocol.

Fig. 6.1 depicts the principle of the operation of our proposed VTL
leader election protocol to be run by each cluster leader in an intersection.
We consider that all vehicles have access to the GPS in order to detect
the approaching intersections where a VTL system can be created.
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Figure 6.1: Leader Election Protocol

All vehicles are assumed to be equipped with the necessary technolo-
gies for data dissemination in a vehicular network in order to participate
in a VTL system, e.g. the features for VANET geographical routing
protocols such as beaconing and location table. (See Chapter 3)

As we see from Fig. 6.1, each vehicle (or process6) executing the VTL
leader election protocol goes through a number of steps. Each computing
process of a vehicle starts executing the protocol with listening to the
network (listening phase). Depending on the outcome of the listening
phase, a process either : (i) starts executing a selection algorithm to

6The process refers to the computing process in each vehicle that is responsible to
participate in the function of a VTL.



6.2. THE VTL LEADER ELECTION PROTOCOL 105

solve the problem of 1-of-* selection or (ii) it follows the traffic light
orders that it receives from an existing VTL leader. After the execution
of the 1-of-* selection algorithm, each process starts a phase called the
control period. During a control period, the elected VTL leader sends out
traffic light orders to the cars present in the intersection while the other
cars follow the traffic orders. In the following, we explain each step in
detail.
�Listening Phase� Each vehicle approaching an intersection, first

enters a listening phase in which it listens to the network for a period of
time to receive messages. The duration of the listening phase is set to
a factor of R, the number of rounds of execution of the 1-of-* selection
algorithm. A vehicle in its listening phase might receive two different
types of messages: (i) the traffic control messages denoted by ctrl_msg

or (ii) the VTL protocol messages. The traffic control messages are the
traffic light signals sent from a VTL leader to the vehicles, i.e. a green,
yellow or red light. The VTL protocol messages are the messages com-
municated among the vehicles during the execution of a 1-of-* selection
algorithm to solve the 1-of-* selection problem. If a vehicle receives a
traffic control message from a vehicle, it sets the sender of the messages
as the VTL leader and follows its traffic orders until it passes the inter-
section with a green light. If a vehicle receives a protocol message from
another vehicle indicating that a 1-of-* selection algorithm is currently
running, it adjusts its starting round number according to the sender’s
round number and joins the protocol.

A vehicle during its listening phase may receive a protocol message
called the initiating message (or init_msg) from another vehicle which
is sent to call for starting the execution of a 1-of-* selection algorithm.
A process which receives an initiating message during its listening phase
will start executing the 1-of-* selection algorithm from round 1.

[Broadcast Initiating Message]: If a vehicle does not receive any
message during its listening phase, it broadcasts a protocol initiating mes-
sage (init_msg) to start the execution of a 1-of-* selection algorithm.
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This process is called an initiator. We assume that an initiator process
will continue executing the protocol regardless of receiving acknowledge-
ment messages indicating that they also participate in the algorithm from
other processes or not. The processes which are in the middle of running
a VTL protocol do not accept proposals for a new protocol initiation
until their next possible listening phase.

[1-of-* Selection]: The processes which participate in executing a
1-of-* selection algorithm must reach an agreement on a leader among
themselves. Each process in each round executes the three steps of send,
receive and compute. We explain the details of each step in Section 6.3.
All vehicles are assumed to run the algorithm in exactly R rounds of
message exchange which is fixed at the design time. For a vehicle which
joins the VTL protocol at a later round, we assume that it has failed to
send/receive messages during the missed rounds due to communication
failures. Similarly, we assume that the messages sent and received from
a process which leaves the protocol before the end of round R are lost.

[Decision Criterion]: After R rounds, each process executes the
function of a decision criterion based on which it either decides to select
a leader or it decides to abort. A process which decides to abort should
start the protocol from the beginning by running the listening phase. A
process which decides on selecting a leader will start the control period
phase.
�Control Period� During the control period, a process which has

selected another process as the leader should wait to receive traffic control
messages from the selected leader. The process that has selected itself as
the leader must send traffic control messages (denoted by ctrl_msg) to
the the other processes. A non-aborting process, which is not a leader
listens to the traffic control messages until it receives the green light
to pass the intersection7. A non-aborting process which has not selected

7In the current specification of the protocol, we assume that once a vehicle receives
traffic control messages during its control period it will eventually receive the green
light signal and passes the intersection. However, if we consider that a process can
receive traffic signals at some point but never receives green light after a considerable
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itself as the leader and has not received any ctrl_msg until the end of the
control period, concludes that the corresponding elected leader is either
not alive or all messages it sent are lost. Therefore, it broadcasts a request
for creating a new VTL by sending initiating messages. If the process
which has selected itself as the leader receives ctrl_msg from another
process(or other processes) during the control period (which indicates
that there are multiple leaders in the system), for safety reasons, it must
abort and start the leader election protocol from the beginning.

In the following, we describe our system model and failure assump-
tions. We then explain the details on the 1-of-* selection algorithm as
the core logic of the leader election protocol.

6.3 Protocol Description

We consider a system of a set of finite number of processes where the
number and the identities of the processes are initially unknown to all
processes. We assume that there can be any number of processes in this
set, i.e. there is no bound on the size of the set. Processes are assumed
to have unique identifiers, i.e. there are no two processes with the same
identifier. In other words, the set of all existing processes and their
identities is known (e.g. in a VTL we know all the existing license plates
for vehicles), however the processes initially do not know which subset of
the existing processes is participating in the protocol.

We formally consider a set of processes denoted by S = {p1, p2, . . .}
that execute a round-based algorithm to reach agreement on one pro-
cess among themselves as the leader. The processes execute R rounds
of message exchange where in each round they send, receive and com-
pute messages. It is assumed that the participating processes in the
system have synchronized clocks either through a global positioning sys-
tem (GPS) [22] or relying on the existing clock synchronization methods

amount of time, it must abort and start the protocol from the beginning, i.e. listening
phase.
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for autonomous distributed applications such as in [29].
We assume that any number of messages can be lost during the ex-

ecution of the algorithm. For example, a message sent by a process pi

may be received by all, a subset or none of other processes in the system.
For simplicity, we assume that the processes are fault-free. Note, how-
ever, that a send omission failure of a process is equivalent to the loss of
all messages sent by that process, and that a receive omission failure is
equivalent to the cases where only one process fails to receive a message.

Each process is equipped with a local oracle to detect the other par-
ticipating processes in the system. The oracles are responsible to provide
their corresponding processes with an approximation of the number of
processes in the system. We assume that the oracles are unreliable in the
sense that they may underestimate or overestimate the actual number of
processes in the system.

In order to account for the unreliability of the oracles, we consider a
correction parameter (denoted by c). In this work, we assume that the
correction parameter is set at the design time and is the same for all
processes. If c = 1, it means that each process counts the value provided
by its oracle as the actual number of processes in the system, i.e. it is
assumed that the oracles are always correct. If c < 1, it is assumed that
the oracles overestimate the number of processes in the system. Finally,
if c > 1, it is assumed that the oracles underestimate the number of
processes.

In the following section, we describe three different 1-of-* selection
algorithms called the optimistic*, the pessimistic* and the moderately
pessimistic* selection algorithm.

6.3.1 The 1-of-* Selection Algorithms

Alg. 11 shows the pseudocode of a generic algorithm for the proposed
1-of-* selection algorithms, i.e. the optimistic*, the pessimistic* and the
moderately pessimistic* selection algorithms. Each participating process
executes the 1-of-* selection algorithm for R rounds of message exchange
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(R ≥ 1). In each round, each process sends, receives and computes mes-
sages. The message of a process contains its proposed value (or ranking
value8) and its view of the system (Πi), i.e. msgi = {proposedi, Πi}. The
view of a process is the set of processes’ identities which are known to
that process. Initially, a process is only aware of its own identity in the
system. So, at the first round the view of process pi is Πi = {pi} and its
proposed value is its own identity, i.e. proposedi = pi. Over the rounds,
the processes extend their views and update their proposed values ac-
cording to the information they receive from other processes. A process
always updates its proposed value to the highest proposed ranking value
it received from the system. Finally, the process with the highest ranking
value must be elected as the VTL leader.

Algorithm 11 Generic algorithm for 1-of-* Selection, pi

1: msgi ← {proposedi, Πi};
2: for r = 1 to R do
3: begin_round
4: Send (msgi);
5: Receive ();
6: Compute (msgi);
7: end_round;
8: end for
9: Decision_Algorithm();

During the Send phase, a process pi broadcasts its message (i.e. msgi)
to the network. Note that some of the receivers may not receive this mes-
sage due to communication failures. Then, in the Receive phase, each
process listens to the network to receive messages from other processes.
At the end of each round, each process runs the Compute phase in order
to update its message based on the information it received so far. Fi-

8The ranking value depends on a number of parameters, such as the cluster leader’s
physical proximity to the intersection, its speed and the size of its cluster, or its driving
direction. The procedure for selecting the ranking value is an important and elaborate
part of an LEP, but its design is beyond the scope of this thesis. In this work, for
simplicity, we assign the identity of a process its ranking value.
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nally at the end of round R, a process executes a decision algorithm in
order to either decide on selecting a leader or to abort due to the lack of
information.

In the design of the 1-of-n selection algorithm in [24], we proposed
decision algorithms based on a primary decision condition for a process
as follows: a process decides on selecting a value if it has a complete view
of the system. In [24], we defined the view of process pi as complete if it
contained the information of all n processes in the system. Such a defi-
nition was based on the simplifying assumption that the set of processes
is previously known to all processes, i.e. n is known. However, in the
design of the 1-of-* selection algorithms it is assumed that n is initially
unknown. Therefore, we define a new concept called relatively complete,
denoted by completer: The view of process pi is relatively complete if
the number of processes in its view set (denoted by mi) is greater than
or equal to the factor of its oracle value (oi) and the correction param-
eter (c), i.e. mi ≥ c ∗ oi. Similarly, we define the view of pi relatively
incomplete if mi < c ∗ oi, denoted by incompleter.

Algorithm 12 Compute (msgi) for pi: Optimistic*
1: for all pj such that pi has received msgj do
2: if proposedi < proposedj then
3: proposedi ← proposedj ;
4: end if
5: Πi ← Πi

⋃
Πj ;

6: msgi ← {proposedi, Πi};
7: end for

Alg. 12 shows the psuedocode of the compute phase for the optimistic*
selection algorithm. Based on Alg. 12, process pi which received a mes-
sage from process pj (msgj = {pj , Πj}), updates its view to the union of
its current view set (i.e. Πi) and the view vector it received from process
pj (i.e. Πj). Process pi also updates proposedi to proposedj if proposedj

is larger than proposedi.
Alg. 13 shows the decision algorithm for the optimistic* algorithm
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Algorithm 13 Decision_Algorithm() for pi: Optimistic*
1: oi ← pi query its oracle
2: mi ← size of Πi

3: c← correction parameter
4: if mi < c ∗ oi then // Πi is incompleter

5: abort;
6: else // Πi is completer

7: pi selects proposedi;
8: end if

which is run by each process at the end of round R. According to Alg. 13,
each process pi, at the end of round R, first queries its local oracle in
order to receive the estimated number of processes in the system (i.e.
oi). Based on Alg. 13 there are two possible outcomes for a process:
decide to select its proposed value or to abort. Process pi decides to select
proposedi if its view is relatively complete, otherwise it decides to abort.

Algorithm 14 Compute (msgi) for pi: Pessimistic*
1: for all pj such that pi has received msgj do
2: if r 6= R then
3: if proposedi < proposedj then
4: proposedi ← proposedj ;
5: end if
6: Πi ← Πi

⋃
Πj ;

7: end if
8: if mj ≥ c ∗ oi then // Πj is completer

9: Ci[j]← 1;
10: end if
11: end for
12: msgi ← {proposedi, Πi};

Alg. 14 shows the compute phase for the pessimistic* algorithm. At
the end of each round except for the last round, all processes update
their proposed value and their view vector. Additionally, each process at
the end of all rounds, updates a local bit-vector called the confirmation
vector which is denoted by Ci for process pi. The confirmation vector,
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Algorithm 15 Decision_Algorithm() for pi: Pessimistic*
1: if Πi is completer then
2: if Ci is completer then
3: pi selects proposedi;
4: else
5: abort;
6: end if
7: else
8: abort;
9: end if

Ci, is a local vector for process pi which is used to indicate whether pi

has received a relatively complete view from a process pj or not. For
example, process pi sets Ci[j] to 1, if it has received a message from pj

indicating that vj is relatively complete according to the oracle value of
pi, i.e. mj ≥ c ∗ oi.

Alg. 15 shows the description of the pessimistic* algorithm. Process
pi with a relatively incomplete view vector, at the end of round R must
decide to abort. On the other hand, process pi with a relatively complete
view pessimistically assumes that other processes do not have relatively
complete views unless they confirm this at some point during the R rounds
of execution. If process pi does not receive such confirmations from all
processes that it knows, it must decide to abort.

Algorithm 16 Compute(msgi) for pi: Moderately Pessimistic*
1: for all pj such that pi has received msgj do
2: if r 6= R then
3: Πi ← Πi

⋃
Πj ;

4: if proposedi < proposedj then
5: proposedi ← proposedj ;
6: end if
7: end if
8: end for
9: msgi ← {proposedi, Πi};

Alg. 16 shows the description of the compute phase for the moderately
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Algorithm 17 Decision_Algorithm() for pi: Moderately Pessimistic*
1: if Πi is completer then
2: if receives some incompleter view in round R then
3: abort;
4: else
5: pi selects proposedi;
6: end if
7: else
8: abort;
9: end if

pessimistic* algorithm. When a process pi receives a message from a
process pj , if proposedj > proposedi it updates proposedi to proposedj .
Process pi updates its proposed value and its view vector at the end of
all rounds except for the last round (i.e., round R).

Alg. 17 shows the description of the moderately pessimistic* algo-
rithm. Process pi running the moderately pessimistic* algorithm decides
to abort if its view is relatively incomplete. Otherwise it checks the sec-
ond if statement given at line 2 (See Alg. 17). If pi at round R, receives
a message from a process pj indicating that vj is relatively incomplete,
process pi must abort, otherwise it selects its proposedi. Process pi dis-
regards the lost messages in the last round and optimistically assumes a
relatively complete view for the senders of the lost messages.

As mentioned before, we have three main possible outcomes for the
1-of-* selection algorithms: (i) agreement on a value, (ii) agreement to
abort, (iii) disagreement. We have agreement on a value if at the end of
the algorithm, all processes decide on the same value (i.e. same process
identity). We have agreement on abort if all processes decide to abort.
We have disagreement if some processes decide to abort and some pro-
cesses decide to select a value. Also, as we described before, we classify
disagreement into two main categories: safe and unsafe disagreement.
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6.4 Probabilistic Analysis

In this section, we present several graphs showing the outcome probabil-
ities of the 1-of-* selection algorithms described in the previous section.
We consider four types of outcomes: agreement on the identity of a pro-
cess (AG ), agreement on abort (AB ), safe disagreement (SD ) and unsafe
disagreement (UD ).

We show how the outcome probabilities varies for three system pa-
rameters: i) the values reported by the local oracles, ii) the value of the
correction parameter (c), iii) the number of participating processes (n),
and vi) the number rounds of message exchange.

We consider the same system model and failure model as in the pre-
vious chapters of this thesis. That is, we assume a synchronous system
where the number of rounds, R, is fixed at design time, and unreliable
links where messages are lost at the receiver side (receive omissions) with
a probability of Q. We assume that Q is constant under the execution of
one instance of the algorithm.

As in the previous chapters, we calculate the probability of each out-
come of the algorithms using PRISM [36]. Due to the problem of state
space explosion for large systems modelled in PRISM [16], we are only
able to perform exact verification for a system of at most three partici-
pating processes. For systems with larger number of processes, PRISM
can estimate the outcome using simulation, with a defined tolerance and
interval of confidence. In order to keep the uniformity of the results for
different systems and system settings, in the following, we compute all
results using simulations. In the next subsection, we briefly describe the
PRISM model used for the analysis of the 1-of-* selection algorithms.
Subsection 6.4.2 describes the formal specifications of the properties that
PRISM uses to calculate the results. Subsection 6.4.3 presents results
that illustrate the impact of variations in the correctness of the oracle
values, while Subsection 6.4.3 presents results that show the impact of
the correctness of the correction parameter. Subsection 6.4.3 and 6.4.3
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present results illustrating the impact of the number of rounds, R, and
the system size, n, respectively.

6.4.1 PRISM model

In this section, we present a PRISM model of a system with three pro-
cesses executing a 1-of-* selection algorithm. The model is generic since
it can be used for algorithms with different decision criteria. A PRISM
model consists of a set of modules where each module represents a pro-
cess. The communication failures are assumed to result in asymmetric
message losses among the processes. So, a message sent from a process
may be received or lost by a receiving process independently from other
processes. This means that the number of states and transitions of a pro-
cess’s module depends on the number of participating processes in the
system.

Fig. 6.2 presents a conceptual model of a process executing the algo-
rithm in a system of three processes. Each node in the model represents a
state of the process that is explained in Table. 6.1. The arrows in Fig. 6.2
show te transitions between the states. Finally in Table. 6.2 the states
and transitions from Fig. 6.2 are described in more details. We assume
there are three processes in the system called: pi, pj and pk. Fig. 6.2
shows the states and transitions for process pi; the same diagram can be
used for other processes.

Starting from the initial state (s̄), process pi moves to the first state
(s1) to start executing the 1-of-* selection algorithm. Then, pi moves
from state s1 to s2 by transition T1 and broadcasts its message to the
network. This transition represents the send phase of the algorithm (See
Alg. 11).

In the sequence, T2 and T3 are the probabilistic transitions which
model the choice between receiving (with the probability of 1 − Q) or
losing (with the probability of Q) the messages sent from other two pro-
cesses, i.e. pj and pk. T2 and T3 correspond to the receive phase of the
1-of-* selection algorithm.
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Figure 6.2: The conceptual model of a process module pi executing the 1-of-*
selection algorithms for a system of three processes.

Table 6.1: The states of the PRISM module of process pi in a system of three
processes.

State Description
s1 pi sends message broadcast
s2 pi receives or loses the message sent by pj

s3 pi receives the message sent by pj

s̄3 pi fails to receive the message sent by pj

s4 pi receives the message sent by pj and pk

s′4 pi fails to receive the message sent by pk but receives from pj

s̄4 pi receives the message sent by pk but not from pj

s̄′4 pi does not receive messages neither from pj nor from pk

s5 pi computes the messages it received in round R
s6 pi computes the size of its view and confirmation set
s0 pi decides to select pi

s̄0 pi decides to abort
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Table 6.2: Transition descriptions of the PRISM module of a process pi in a
system of three processes executing the 1-of-* selection algorithm.

Transition From To Prob. Description

T0 s̄ s1 1
pi moves from its initial
state to state s1

T1: Ri < R s1 s2 1 pi broadcasts its message

T2: Ri ≤ R s2 s3 1 − Q
pi receives the message
sent by pj

T2: Ri ≤ R s2 s̄3 Q
pi does NOT receive the
message sent by pj

T3: Ri ≤ R s3 s4 1 − Q
pi receives the messages
sent by pk and pj

T3: Ri ≤ R s3 s′4 Q

pi does NOT receive the
message sent by pk but re-
ceived from pj

T3: Ri ≤ R s̄3 s̄4 1 − Q

pi receives message sent by
pk but does not receive
from pj

T3: Ri ≤ R s̄3 s̄′4 Q

pi does NOT receive mes-
sages neither from pk nor
from pj

T4: Ri ≤ R
s4, s′4,
s̄4, s̄′4

s1 1

Not the last round: pi com-
putes the round and in-
crease Ri by 1. It moves
to s1 to continues to send
receive and compute mes-
sages.

T5: Ri > R
s4, s′4,
s̄4, s̄′4

s5 1
After the last round pi

computes the messages it
received in round R

T6 s5 s6 1
After the last round: pi

computes the size of its
view and confirmation set.

T7: decision
condition
satisfied

s6 s0 1 pi decides to elect pi

T7: decision
condition Not
satisfied

s6 s̄0 1 pi decides to abort
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At the end of all rounds except for the last one, the compute phase
is performed by transition T4. Moreover, by transition T4, the round
number is increased by one, i.e. Ri = Ri + 1.

At the end of the last round, T5 fires instead of T4 and performs the
compute phase. With transition T6, process pi computes the size of its
view vector and performs other necessary computations depending on the
specified decision criterion. By transition T7, process pi makes a decision
and moves to the final state, s0 or s̄0 depending on the outcome of the
decision process. State s0 represents the state in which pi decides to
select a leader while state s̄0 corresponds to the state of pi at which it
decides to abort.

6.4.2 Specification of properties

In order to analyse the probabilistic PRISM model of the 1-of-* selection
algorithm, it is necessary to identify the properties of the system model
which can be evaluated by the tool. We specify each outcome of the
1-of-* selection algorithm as properties. We calculate the probability of
each property by simulation using PRISM. We use PCTL temporal logics
used by PRISM property specification language.

In the following, we present a formal description of each property.
The set of participating processes in the algorithm is shown by S. We
denote a proper subset of the system by S∗. S∗ is a proper subset of S

if it excludes at least one member of S, i.e. S∗ ⊂ S, S∗ 6= ∅.

Agreement on a leader: We have agreement on a leader if all pro-
cesses in the system decide on the same leader.

∀pi (pi ∈ S : pi selects pl , pl ∈ S) (6.1)

Agreement on abort: We have agreement on abort if all processes de-
cide to abort.
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∀pi (pi ∈ S : pi decides to abort) (6.2)

Disagreement: We have disagreement if the processes in a proper sub-
set of the system (i.e. S∗) decide on selecting a leader and others
decide to abort.

∃pi (pi ∈ S∗ : pi selects px , px ∈ S) ∧

∃pj (pj ∈ S − S∗ : pj decides to abort) (6.3)

Safe disagreement: We have safe disagreement if the processes in a
proper subset (S∗) of the system (S) , decide on a live process as
their leader, while the remaining processes either decide to abort
or decide on an aborting process as their leader.

∃pi (pi ∈ S∗ : pi selects pl , pl ∈ S , pl is live) ∧

∀pj ( (pj ∈ S − S∗ : pj decides to abort) ∨

(pj selects px , px ∈ S , px decides to abort) ) (6.4)

Unsafe disagreement: We have unsafe disagreement if there are at
least two processes deciding on two different live processes as their
leaders, i.e. we have at least two live leader in the system.

∃pi,∃pj ,∃px,∃py (pi, pj , px, py ∈ S ∧ pi 6= pj ∧ px 6= py :

(pi selects px , px is live) ∧ (pj selects py , py is live)
(6.5)

In the following section, we present our results from the analysis of
the 1-of-* selection algorithms based on the specified properties. We
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calculate the probability of the occurrence of each property using the
PRISM model checker.

6.4.3 Results

In the following, we present some of our interesting results from the
probabilistic analysis of the 1-of-* selection algorithm.

Varying the oracle values We present the results for systems where
the local oracles of the participating processes are incorrect. We show
how the probabilities of each outcome varies for different combinations
of oracle values, for fixed values of R and c.

In the following, we only consider the cases where the incorrect or-
acles underestimate the the number of processes in the system and not
overestimate it. If we consider the oracle values larger than the actual
number of participants (i.e. ∀i, oi ≥ n), assuming c = 1 and knowing that
mi ≤ n, the decision condition mi ≥ c ∗ oi never holds for any process.
Therefore, the processes always decide to abort. Moreover, in a VTL
system, it is unrealistic to assume that the oracles (which are cameras
and sensors in practice) are reporting the existence of some cars which
are not actually present in the intersection.

Optimistic* Fig. 6.3 shows the probability of unsafe disagreement for
a system of three processes running the optimistic* algorithm. The given
results are for the cases where the oracle values of two of the processes
are correct. We vary the oracle value of the third process.

As mentioned before, the decision function of the algorithm is set to
the maximum function, i.e., the process with the highest ranking value
is to be elected as the leader. The ranking values of each vehicle is set
to its identity. Therefore, in a system of three processes, i.e. {p1, p2, p3},
process p3 has the highest ranking value and is to be elected as the leader
by all processes.

Fig. 6.3(a) shows the results for three combinations of the oracle values
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(a) o2 = 3, o3 = 3

(b) o1 = 3, o3 = 3

(c) o1 = 3, o2 = 3

Figure 6.3: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm using optimistic* decision criterion for a system of
three processes as a function of Q varying the oracle values. R = 2 and c = 1).
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where process p2 and p3 always show correct local oracles and the oracle
value of process p1 assumes the values of 1, 2 and 3. As we see, the
closer the value of o1 becomes to the correct value (i.e. 3), we have lower
probabilities of unsafe disagreement. For o1 = 3 since all oracles for all
processes show correct values, we have zero probabilities of UD . We see
similar trend in Fig. 6.3(b), for the cases where we vary the oracle value
of process p2. Although, we have higher probabilities of UD for the cases
where the oracle value of process p2 is incorrect compared to the cases
where the oracle value of process p1 is incorrect. This is because of the
maximum decision function and the ranking values of process p1 and p2.
Process p2 has a higher ranking value than p1. Therefore, in cases where
the view of p2 is {p1, p2} or {p2}, p2 selects itself as the leader while
p1 and p3 with correct oracles select p3 and as a result we have unsafe
disagreement. On the other hand, for the same case in Fig. 6.3(a) where
o1 is incorrect and o2 is correct, p2 with the views of {p1, p2} or {p2}
decides to abort.

As we see in Fig. 6.3(c), for all values of o3 and any probability of
message loss (Q), the probability of unsafe disagreement is always zero.
This is because p1 and p2 with correct oracles and using the optimistic*
decision criterion will decide on selecting a leader only if they have the
complete view of the system. This means that p1 and p2 will only decide
on a value if they satisfy the decision condition, i.e. m1 ≥ 3 for p1 and
m2 ≥ 3 for p2. This requires that they both have p3 in their view set
and since process p3 has the highest ranking value, p1 and p2 will select
process p3 as their leader if they satisfy the decision condition.

On the other hand, since process p3 always includes its own identity
in its view set which is the highest ranking value in the system, regardless
of what information p3 obtains from the system or which value its oracle
provides, if it satisfies the decision condition (i.e. m3 ≥ c ∗ o3), it will
always select itself (p3) as the leader. Therefore, there is no such a case
that two or more processes decide of different leaders, i.e. there is no case
of unsafe disagreement.
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(a) o2 = 3, o3 = 3

(b) o1 = 3, o3 = 3

(c) o1 = 3, o2 = 3

Figure 6.4: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm using moderately pessimistic* decision criterion
as a function of Q for different settings of the oracle values and n = 3, R = 2
and c = 1.
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Moderately Pessimistic* Fig. 6.4 shows the results for the same set-
ting as given in Fig. 6.3 but using themoderately pessimistic* decision cri-
terion. We see similar trend, but lower UD probabilities in general, as the
one for the optimistic* approach. However, the moderately pessimistic*
approach shows lower probabilities of unsafe disagreement compared to
the optimistic* approach for the same setting of the system.

Pessimistic* Fig. 6.5 shows the results for the same setting as given
in Fig. 6.3 and 6.4 using the pessimistic* decision criterion where there is
only one process with an incorrect oracle value. As we see from the results
for the pessimistic* approach, the probability of UD is zero for all values
of Q which means that all disagreement cases are safe. According to our
analysis, for such a setting, the closer the value of an oracle becomes to
the correct value, we have lower probabilities of safe disagreement.

Our analysis show that in a system with the pessimistic* decision
criterion with any number of rounds, if there is only one process with
an incorrect oracle value, the probability of unsafe disagreement is zero
for all values of Q, i.e. all disagreement cases are safe. This is because
of the decision condition specified for the pessimistic* approach, where
a process pi satisfying the condition mi ≥ c ∗ oi must also satisfy the
following condition:

”All processes in pi’s view set such as process pj must have at least
c ∗ oi number of processes in their view (i.e. mj ≥ c ∗ oi).”

For example, consider the following setting of the system: In a system
of three participating processes where the oracle values of process p1, p2

and p3 are respectively o1 = 1, o2 = 3 and o3 = 3.
Fig. 6.6 shows the message exchange among the processes at round 1

and round 2. As we see, at the first round, all messages are successfully
delivered to their corresponding receivers except for the message sent by
process p3 to process p1, illustrated in red dotted color. At the second
round, two messages sent from p2 and p3 to process p1 are lost.

Table. 6.3 shows the three steps of the 1-of-* selection algorithm in
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(a) o2 = 3, o3 = 3

(b) o1 = 3, o3 = 3

(c) o1 = 3, o2 = 3

Figure 6.5: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm using pessimistic* decision criterion as a function
of Q for different settings of the oracle values and n = 3, R = 2 and c = 1.
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Figure 6.6: The message exchange among three processes executing the 1-of-
* selection algorithm for two rounds. The red dotted arrows indicate the lost
messages.

the first round according to the message exchanges given in Fig. 6.6.
The message of a process pi includes its proposed value and its view set,
[proposedi, Πi] (See Alg. 11). Table. 6.4 shows similar information for the
second round. The last column shows the result of the compute phase
for each process at the end of the last round.

After the execution of the 1-of-* selection algorithm, the view set
of each process are as follows: Π1 = {p1, p2} , Π2 = {p1, p2, p3} and
Π3 = {p1, p2, p3}.

Process p1 decides to select p2 since it satisfies both decision con-
ditions: m1 = 2 and 2 ≥ c ∗ o1(= 1) and process p2 has at least one
process in its view as it is seen by process p1, i.e. m2 seen by p1 is 1 and
m2 ≥ c ∗ o1(= 1).
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pi Send (msgi) Receive () Compute(msgi, Ci)
p1 [p1, {p1}] [p2, {p2}] [p2, {p1, p2}], C2 = {p2}
p2 [p2, {p2}] [p1, {p1}],

[p3, {p3}]
[p3, {p1, p2, p3}], C1 =
{p1}, C3 = {p3}

p3 [p3, {p3}] [p1, {p1}],
[p2, {p2}]

[p3, {p1, p2, p3}], C1 =
{p1}, C2 = {p2}

Table 6.3: Three steps of the 1-of-* selection algorithm using pessimistic*
decision criterion (R = 2, c = 1, o1 = 1, o2 = 3, o3 = 3), Round 1

pi Send(msgi) Receive ( ) Compute(msgi,Ci)
p1 [p2, {p1, p2}] NULL [p2, {p1, p2}], C2 = {p2}

p2 [p3, {p1, p2, p3}]
[p2, {p1, p2}] ,
[p3, {p1, p2, p3}]

[p3, {p1, p2, p3}], C1 =
{p1, p2}, C3 = {p1, p2, p3}

p3 [p3, {p1, p2, p3}]
[p2, {p1, p2}],
[p3, {p1, p2, p3}]

[p3, {p1, p2, p3}], C1 =
{p1, p2}, C2 = {p1, p2, p3}

Table 6.4: Three steps of the 1-of-* selection algorithm using pessimistic*
decision criterion (R = 2, c = 1, o1 = 1, o2 = 3, o3 = 3), Round 2

.

On the other hand, process p2 and p3 decide to abort because process
p1 in their view does not satisfy the second decision condition for the
pessimistic* approach: m1(1) � c ∗ o2(= 3) and m1(1) � c ∗ o3(= 3).
In other words, process p2 and process p3 pessimistically assume that
process p1 will not satisfy the first condition (i.e. it has a correct oracle)
and will abort. So, only process p1 will select a leader (i.e. p2) and others
will abort and therefore, we have safe disagreement among the processes.

Fig. 6.7 shows how the probability of unsafe disagreement varies for
a system of four processes running the pessimistic* algorithm where two
and three processes have incorrect oracle values respectively shown in
Fig. 6.7(a) and Fig. 6.7(b).

As we see from both graphs given in Fig. 6.7, we have the highest
probabilities of UD when all oracles show the value of 1. We can show that
for all decision criteria we have up to 100% of probabilities of UD when
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(a) o1 = 4, o4 = 4, Varying o2 and o3

(b) o4 = 4, Varying o1, o2 and o3

Figure 6.7: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm using pessimistic* decision criterion as a function
of Q for different settings of incorrect oracle values and n = 4, R = 2 and
c = 1.
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the oracle values of all processes show the value of 1, i.e. oi = 1. This
is because of the fact that a process with the oracle value of 1 always
satisfies the decision conditions given in Alg. 15 and therefore decides to
select a leader. Based on the assumption, the number of processes in the
view of all processes in the system is at least one, i.e. a process always
sees itself in its own view set, i.e. mi ≥ 1. So, considering c = 1 and
oi = 1, process pi always satisfies the decision conditions mi ≥ c ∗ oi and
mj ≥ c ∗ oi.

As we see in Fig. 6.7(b), we have the highest probabilities of UD when
the oracle values of o1, o2 and o3 are the minimum possible value, i.e. 1
(assuming that o4 = 4). The next highest UD probabilities correspond to
the settings of the oracles in which two of the oracles show the value of 1.
We can show that for all other combinations of the oracle values where
o4 = 4, the probability of UD is always zero or very close to zero.
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(a) o2 = 4, o3 = 4, o4 = 4

(b) o1 = 4, o3 = 4, o4 = 4

(c) o1 = 4, o2 = 4, o4 = 4

(d) o1 = 4, o2 = 4, o3 = 4

Figure 6.8: The probability of unsafe disagreement for the 1-of-* selection
algorithm using optimistic* decision criterion as a function of Q for different
combinations of the oracle values for a system of four participants (R = 2 and
c = 1).
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Fig. 6.8 shows the probability of unsafe disagreement for a system of
four processes running the 1-of-* selection algorithm using optimistic*
decision criterion in two rounds of execution. In each of the graphs given
in Fig. 6.8, three of the processes have correct oracle values.

Fig. 6.8(a) shows the results for four different combinations of the
oracles values where o1 can be 1, 2, 3 or 4 and the remaining processes
have correct values (i.e. o2 = o3 = o4 = 4). As we see from the results,
in all graphs, the closer the value of the o1 becomes to the correct value
we have lower probabilities of UD . Fig. 6.8(b) and 6.8(c) show similar
results for different combinations of the oracle values of process p2 and p3

respectively. However, the results for different values of o3 (Fig. 6.8(c))
shows higher probabilities of UD compared to the ones for o2 and even
higher compared to the results for various o1. Comparing the results
given in Fig. 6.8 and Fig. 6.3, we see similar trend. In all cases when the
oracles values of all processes are correct, we have zero probabilities of UD .
Similar to the results for a system of three processes, when we vary the
oracle values of the process with the highest ranking value (which is p4),
while the remaining oracle values are correct, we have zero probabilities
of UD for any Q (See Fig. 6.8(d)).

Varying the correction parameter (c) In this section, we show how
different values of the correction parameter (i.e. c) affects the behaviour
of the 1-of-* selection algorithms. For this, we assume that the local
oracles of all processes show the correct number of the participants while
we vary the value of c. We assume the same value of c for all participating
processes.

As mentioned before, using the correction parameter a process intends
to compensate for the unreliability of its local oracle. A process assumes
the value of one for its correction parameter if it believes that its oracle is
correct, i.e. it counts the value provided by its oracle as the actual number
of processes in the system. Assuming c < 1, a process assumes that its
oracle overestimates the number of processes in the system. Finally,
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a process assumes c > 1 if it believes that its oracle underestimates
the number of processes. As the decision conditions for the processes
executing the 1-of-* selection algorithm relies on the factor of c ∗ oi, in
order to see the effect of varying the value of c, we set the values of the
oracles to the correct value, i.e. oi = n.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.9: The probability of unsafe disagreement for the 1-of-* selection
algorithm using three decision criteria as a function of Q for different values
of c for a system of four participants (R = 2 and oi = 4)
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Fig. 6.9 shows the probabilities of unsafe disagreement for a system of
four processes running the 1-of-* selection algorithm for two rounds using
different decision criteria. As we see from the results given in Fig. 6.9, for
all decision criteria, for larger values of c the probability of UD decreases
in general. In all graphs, for c = 1 the probability of UD is zero for all
values of Q, which is expected as all oracle values are assumed to be
correct.

The optimistic* approach shows the highest probability of UD com-
pared to other decision criteria for c = 0.25, 0.5 and = 0.75. For c = 0.5
the probability of UD can go up to around 0.47 for Q = 0.72 using the opti-
mistic* approach. However, the moderately pessimistic* and pessimistic*
approach show the highest probabilities of UD for smaller values of Q, re-
spectively 0.26 and 0.072 for Q = 0.68 and Q = 0.52. For c = 0.75, the
probability of UD for the optimistic* approach can peak to around 0.20
while it is zero or close to zero for other decision criteria.

According to the results in Fig. 6.9, for all decision criteria, consider-
ing c = 0.25, the probability of UD can increase up to 1. This is because
of the decision conditions specified for each decision algorithm. In all
cases, if all messages among the processes are lost due to communication
failures (i.e. Q = 1), the view of all processes consists of only itself, i.e.
Πi = {pi} and therefore mi = 1. Using the optimistic* decision crite-
rion, assuming oi = 4 and c = 0.25 the decision condition mi ≥ c ∗ oi

always satisfies for all processes. So, all processes always decide to select
a leader. In the extreme case, when all messages are lost, each process
will decide to select itself as the leader and as a result we have 100%
probability of UD .

In case of using the moderately pessimistic* approach, according to
the decision condition specified in Alg. 17, a process pi will decide to
select a leader if it satisfies two conditions: (1) at the end of round R we
have mi ≥ c ∗ oi and (2) all messages pi receives during the last round
from other processes as pj indicate that their sender’s view is relatively
complete, i.e. mj ≥ c ∗ oi. This means that all lost messages during the
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last round are optimistically assumed to be relatively complete. In the
extreme case of Q = 1 (i.e. when all messages are lost), condition (1)
holds for all processes for the same reason as for the optimistic* approach.
For condition (2), obviously as all messages are lost, process pi will not
receive a message from any process indicating the incompleteness of the
view of its sender.

The results in Fig. 6.9(c) for the pessimistic* approach show similar
trend as the results for other decision criteria. According to Alg. 15, a
process pi will decide to select a leader if it satisfies two conditions at
the end of round R: (1) we have mi ≥ c ∗ oi and (2) all processes in Πi

have a relatively complete view of the system, i.e. their view is complete
according to the oracle value of pi.

As we see from the results in Fig. 6.9, using the pessimistic* approach
we have the lowest probabilities of UD in general compared to other de-
cision criteria except for the case where c = 0.25. This is because of
the stricter decision criterion for a process specified for the pessimistic*
approach compared to other approaches which results in higher number
of abort cases compared to the other decision criteria (See Fig. 6.11).

In the given results we have not considered the values of c which are
larger than one. This is because with assuming correct oracles, if c > 1
all processes will always abort as they can never satisfy the condition
mi ≥ c ∗ oi even if their view is complete (i.e. even if mi = n).

In the following figures, we show the results for the probability of
other outcomes of the 1-of-* selection algorithm for the same settings
of the system as given in Fig. 6.9. We present the probabilities of SD ,
AB and AG respectively in Fig. 6.10, 6.11 and 6.12.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.10: The probability of safe disagreement for the 1-of-* selection al-
gorithm using three decision criteria varying c as a function of Q for a system
of four participants (R = 2 and oi = 4)
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Fig. 6.10 shows the probability of safe disagreement (i.e. SD ) for a
system of four processes with correct oracles executing the 1-of-* selection
algorithm for two rounds of execution varying the value of c for different
decision criteria.

As we see from Fig. 6.10(a), for the optimistic* approach, with in-
creasing the value of c we have higher probabilities of safe disagreement.
Moreover, with increasing c, the probability of SD curve moves to the left
side of the x-axis, which means that the maximum value of the probability
of SD occurs at lower probabilities message loss (Q) for larger c.

For c = 1, the optimistic* approach shows the highest probabilities
of SD compared to other decision criteria. The moderately pessimistic*
approach shows the lowest peak of the probability of SD for c = 1. For
c = 0.75, the optimistic* approach shows the highest peak of the prob-
ability of SD which occurs at the largest value of Q compared to other
decision criteria. For c = 0.5, all decision criteria show almost the same
maximum probability of SD which is ≈ 70% which occurs at Q = 0.9
for the optimistic* approach, and at Q = 0.8 and Q = 0.6 respectively
for moderately pessimistic* and pessimistic* approach. For c = 0.25 we
have zero probabilities of SD for all decision criteria. This is because with
c = 0.25 and correct oracle values, no process will decide to abort and
therefore all disagreement cases are unsafe.

Assuming correct oracles, setting the value of c to a value smaller
than one means that the processes consider their oracles as being overes-
timating the actual number of processes in the system. So, considering
the optimistic* decision condition for process pi (i.e. mi ≥ c ∗ oi), with
small values of c and correct values of oracles (i.e. oi = n in a system of n

participants), it is more probable that pi satisfies the decision condition
and decide on its view. So, for the optimistic* approach, the higher the
value of c is it is more probable that a process makes correct (or safe)
decisions since its view must include more processes in order to be able
to decide.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.11: The probability of agreement on abort for the 1-of-* selection
algorithm using three decision criteria varying c as a function of Q for a system
of four participants (R = 2 and oi = 4)
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Fig. 6.11 shows how the probability of agreement on abort changes
for the 1-of-* selection algorithm using three decision criteria varying c.
The results are given as a function of Q for a system of four participating
processes with correct oracles (i.e. oi = 4 ), executing the algorithm in
two rounds.

As we see from the results, for all decision criteria, for larger values of
c we have higher probabilities of agreement on abort. This is because for
a larger value of c, a process pi must have higher number of processes in
its view set to satisfy the first decision condition, i.e. mi ≥ c ∗ oi. Thus,
with higher probabilities of message loss (i.e. Q) and larger values of c,
it is more probable that a process decides to abort.

From the results given in Fig. 6.11, we see that the optimistic* ap-
proach has the lowest probabilities of AB for smaller values of Q and the
pessimistic* one has the highest AB probabilities for the same system
settings.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.12: The probability of agreement on abort for the 1-of-* selection
algorithm using three decision criteria varying c as a function of Q for a system
of four participants (R = 2 and oi = 4)
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Fig. 6.12 shows how the probability of agreement on a leader changes
for the 1-of-* selection algorithm using three decision criteria varying c.
The results are given as a function of Q for a system of four processes
with correct oracles and R = 2. As we see from the results for all decision
criteria for larger values of c, we have lower probabilities of agreement on
a leader (AG ). This is because with larger values of c it is less probable for
a process to satisfy the decision condition (the processes are more likely
decide to abort due to lack of information).

From the given results in Fig. 6.12, we can also see that the pes-
simistic* approach shows the lowest probabilities of AG for the same
settings of the system compared to other decision criteria, except for
c = 0.25. All decision criteria show almost the same probabilities of
AG for c = 0.25 which are also the highest probabilities of AG . Moreover
the optimistic* approach shows similar results for c = 0.5 as for c = 0.25.
The optimistic* and the pessimistic* decision criteria show similar results
when c = 0.5 for the pessimistic* criterion and c = 1 for the optimistic
decision criterion.

Fig. 6.13 and Fig. 6.14 show the probability of UD respectively, for a
system of three and four processes executing the algorithm using three
decision criteria for two rounds. In the given graphs, the x-axis shows
the variant of the value of the correction parameter. As we see from the
results, the UD probabilities as a function of c for different values of Q is
a step function.

As we see from Fig. 6.13, for all decision criteria, the probability of
UD declines considerably first at c = 0.33 and then at c = 0.66. For
a system of four processes, according to the given results in Fig. 6.14,
for all decision criteria, the probability of UD shows sudden decreases at
c = 0.25, c = 0.50 and c = 0.75. We can show that for a system of n

participants with correct oracles, the curve for the probability of UD as a
function of c and varying values of Q is a decreasing step function9.

9Step function (or staircase function) is a function on the real numbers which can
be written as a finite linear combination of indicator functions of intervals.
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In other words, we have the same probability of UD for certain intervals
of c and value of Q. We can show that for a system of n participants,
the interval with the highest probability of UD is 0 ≤ c ≤ (1/n). The
next interval with the second highest UD probability is (1/n) < c ≤ (2/n)
and the third, the forth, .. nth are respectively: (2/n) < c ≤ (3/n),
(3/n) < c ≤ (4/n), .. (n − 1/n) < c ≤ (n/n). This is because of
the decision condition mi ≥ c ∗ oi. Since we assume correct oracles,
we always have oi = n. Therefore, the initial condition for a process
to decide is to have at least c ∗ n number of processes in the system.
If c ∗ n = 1 (i.e. c = 1/n), all processes will always satisfy the first
decision condition since all processes have at least their own identity in
their view set. So, for c ≤ (1/n), we have the highest probabilities of UD .
Similarly, for c = 2/n, the primary condition for a process to decide will
be mi ≥ (2/n)∗n, i.e. the process must have at least two processes in its
view. With higher number of processes in the view of a process, it is less
probable to make wrong decisions and therefore the probability of UD is
lower for the intervals with the values of c closer to 1.

From the given results in 6.13, we also see that the probabilities of
UD for different values of Q does not keep the same trend in different
ranges of the value of c. For example, in Fig 6.13(a), for 0 ≤ c ≤ 0.25 the
probabilities of UD increase for larger values of Q while for the interval
0.26 ≤ c ≤ 0.51 the probability of UD is the highest for Q = 0.7 while it
is zero for Q = 1. This is because, with higher values of the probability
of messages loss it is more probable for the processes to decide to abort
due to lack of information and therefore lower probabilities of unsafe
disagreement are expected. However, from the results in the interval
0.26 ≤ c ≤ 0.51, the probability of UD does not decrease continuously
with increasing the value of Q, i.e. the probability of UD as a function of
Q shows a peak for the second and third intervals of the value of c.

For a system of three processes, the UD probabilities show the same
behaviour for the moderately pessimistic* and pessimistic* decision crite-
ria when 0 ≤ c ≤ 0.25, while for larger values of c ≥ 0.25, the pessimistic*
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approach shows a lower probabilities of UD compared to the moderately
pessimistic* approach.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.13: The probability of unsafe disagreement for the 1-of-* selection
algorithm using three decision criteria varying c as a function of Q for a system
of three participants (R = 2 and oi = 3)
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.14: The probability of unsafe disagreement for the 1-of-* selection
algorithm using three decision criteria varying c as a function of Q for a system
of four participants (R = 2 and oi = 4).
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.15: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm for three decision criteria as a function of Q for a
system of four participants (Varying R, c = 0.25 and oi = 4).
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.16: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm for three decision criteria as a function of Q for a
system of four participants (Varying R, c = 0.5 and oi = 4).
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Varying the number of rounds (R) Fig. 6.15 shows how the prob-
ability of UD varies for the 1-of-* selection algorithm using different
decision criteria in a system of four processes with correct oracles and
c = 0.25. We consider different number of rounds of message exchange
for the algorithm as follows: R = 2, 4, 6, 8, 10.

As we see from the results in Fig. 6.15, for all decision criteria when we
increase the value of R, the probability of UD decreases in the general. On
the other hand, for all decision criteria if we assume correct oracle values
but c = 0.25, we have the same probabilities of UD for a system setting
of n = 4, R = 2, 4, 6, 8, 10. This is because with assuming c = 0.25,
the initial decision condition which is mi ≥ c ∗ oi always holds for all
processes with correct oracles. Therefore, using the optimistic* approach,
all processes always decide to select a leader regardless of their view of
the system.

For the same reason, in case of using the pessimistic* and moderately
pessimistic* decision criteria, all decision conditions hold and as a result
all processes always decide to select a leader regardless of the number of
processes they see in their view.

Fig. 6.16 shows a comparison of the probability of UD for a system
of four participants with correct oracles and the correction parameter
of c = 0.5 executing the 1-of-* selection algorithm for different number
of rounds using different decision criteria. As we see from the results,
increasing the number of rounds, does not show the same influence on
the probability of UD for all decision criteria. For the optimistic* decision
criterion, increasing R results in lower UD probabilities in general.

Moreover, with increasing the value of R, the highest probabilities
of UD occur at larger values of Q. For the pessimistic* and moderately
pessimistic* decision criteria, increasing the number of rounds we have
higher peaks of UD probabilities but occurring in larger values of Q.

Varying the number of participants Fig. 6.17 shows a comparison
of the probability of unsafe disagreement for two systems of three and
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four participating processes executing the 1-of-* selection algorithm for
two rounds. It is assumed that the oracle values are correct and the
correction parameter is set to c = 0.5. As we see from the results, for the
optimistic* approach, the probability of UD is higher for n = 4 compared
to n = 3, while this is not the same for the pessimistic* and moderately
pessimistic* decision criteria.

Fig. 6.18 shows the results for the probability of safe disagreement
for the same settings as given in Fig. 6.17. As we see from the results,
Similar to UD probabilities, the curves for the SD probabilities move to the
right side of the x-axis for the system with four participants compared
to the system with three participants. However, for the pessimistic* and
moderately pessimistic* decision criterion, with increasing the number of
participants, we have higher probabilities of SD for larger values of Q

which is not the same for the optimistic* approach.
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(a) Optimistic*

(b) Moderately pessimistic*

(c) Pessimistic*

Figure 6.17: A comparison of the probability of unsafe disagreement for the
1-of-* selection algorithm for three decision criteria as a function of Q (R = 2,
Varying n, c = 0.5 and oi = n).
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(a) optimistic*

(b) Moderately pessimistic*

(c) pessimistic*

Figure 6.18: A comparison of the probability of safe disagreement for the 1-
of-* selection algorithm for three decision criteria as a function of Q (R = 2,
Varying n, c = 0.5 and oi = n).
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6.5 Discussions

Our main observations from the probabilistic analysis of the 1-of-* selec-
tion algorithms are as follows:

• Our results show that if there is only one process with an incor-
rect oracle value and that process has the highest ranking value,
we have zero probability of unsafe disagreement (See for example
Fig. 6.8). This observation is helpful in introducing the policies
for defining ranking values for different processes. For example, in
a VTL scenario, the vehicle with the most unreliable local oracle
(due to the exposure to the NOLS conditions, e.g. high rise build-
ings, big truck.), or the vehicle with the highest speed or distance
from an intersection should define a relatively large ranking value
for itself. Based on our observations, this vehicle will most proba-
bly select itself as the VTL leader and therefore will order the red
light to its own lane first. Such a policy is in contrary to the one
proposed in [25] where the closest vehicle to the intersection must
be elected as the leader.

• We have the highest probabilities of UD when the local oracles of
the majority of the processes show the minimum value of 1, i.e. the
oracle of a process detects no other processes in the system. In such
a system a process pi satisfies the decision conditions mi ≥ c ∗ oi

and mj ≥ c ∗ oi regardless of the number of processes in its view
(since c ∗ oi ≤ 1 and m ≥ 1). As a result, we have the highest
possibility of having unsafe disagreement among the processes.

Therefore, there is a need to define an alternative decision condition
for such cases. For example, if the oracle value of a process pi shows
the minimum value (oi = 1) while process pi could communicate
with at least one other process in the system, it must abort and
start over the leader election protocol.

On the other hand, if process pi is unable to communicate with any
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other processes in the system (i.e. Πi = {pi}) and its local oracle
reports the value of one (i.e. oi = 1), it decides on its identity as the
leader as it is under the current design of the algorithm. In other
words, a process pi with an oracle value of oi = 1, only decides
to select a leader if its view contains only its own identity, i.e. pi

selects itself as the leader. Such an approach prevents the problem
of starvation of a single vehicle in an intersection waiting for a green
light.

• The pessimistic* decision algorithm shows the lowest probabilities
of UD compared to other decision criteria. This is interesting as in
our previous works where we assumed that n is known, the moder-
ately pessimistic* approach showed the best results, i.e. the lowest
probabilities of disagreement.

• For all decision criteria if we assume correct oracle values but c =
0.25, we have the same probabilities of UD for a system setting of
n = 4, R = 2, 4, 6, 8, 10. For larger values of the correction param-
eter (c ≥ 0.25), with increasing the number of rounds, we do not
see the same effect on the probability of UD for all decision criteria.
For the optimistic* decision criterion, with increasing R, we have
lower probabilities of UD in general, while for the pessimistic* and
the moderately pessimistic* decision criteria we have higher max-
imum values of the UD probabilities but occurring in larger values
of Q. This means that for systems with massive communication
failure, increasing the number of rounds of execution of the 1-of-*
algorithms can result in larger probabilities of unsafe disagreement.

6.6 Chapter Conclusions

In this chapter, we designed and analysed a family of distributed algo-
rithms called 1-of-* selection algorithms to solve the problem of leader
election among the processes in a self-organizing system with unrestricted
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omission failures. In the proposed algorithms, processes are augmented
with a local oracle that estimates, with a given confidence, the number
of participants in the leader election protocol. We introduced the 1-of-*
selection algorithms to be used as the core logic of a VTL leader election
protocol.

Our analyses results confirmed that under our system model and fail-
ure assumptions, it is impossible to guarantee agreement [52]. Moreover,
results show that when the number of nodes are unknown and the com-
munication failures are unrestricted, safety cannot be guaranteed if we
wish to guarantee that some leaders are elected. Nevertheless, the prob-
ability of unsafe outcomes may be reduced through an adequate choice
of the system parameters (i.e., R and c) as well as the right choice of the
decision algorithm.

We introduced three different decision algorithms for the 1-of-* se-
lection algorithms called the optimistic*, pessimistic* and moderately
pessimistic* decision algorithms. Our results show that the choice of a
decision algorithm significantly influences the probability of each outcome
of the algorithm. However, we cannot claim that one decision algorithm is
better than another one since the outcome of the algorithm also depends
on other system parameters. The probability of each outcome of the al-
gorithm also depends on the quality of the network, i.e. the probability
of a message being lost in the system.

We introduced three main outcomes for the 1-of-* selection algo-
rithms: (i) agreement on a leader, (ii) agreement on abort and (iii) dis-
agreement.

We defined two types of processes; aborting processes and non-aborting
processes. We call a process an aborting process if after the execution of
a 1-of-* selection algorithm, it decides to abort. Likewise, we define a
process live or non-aborting if it decides to select a leader. Based on the
given definitions, we introduced a new classification of disagreement to
safe and unsafe compared to the classification we introduced in Chapter 5
as follows:
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Unsafe Disagreement We have unsafe disagreement if there are at least
two processes deciding on different non-aborting processes as the
VTL leader, i.e. we have at least two live processes acting as lead-
ers in the system.

Safe Disagreement We have safe disagreement if all processes in a
proper subset10 of the system decide on a unique live process as the
VTL leader, while the remaining processes either decide to abort
or decide on an aborting process as the leader.

Our analysis show that we can reduce the probability of unsafe dis-
agreement with choosing the right decision algorithm and proper con-
figurations of the system parameters such as the number of rounds of
execution or the correction parameters.

We analysed the behaviour of the 1-of-* selection algorithms for sys-
tems of three and four participating processes. The participating pro-
cesses are assumed to be the cluster leaders of each lane of an intersection
in a VTL scenario. Such an assumption drastically reduces the number
of participants in a VTL leader election protocol to the number of the
lanes in an intersection. Nevertheless, a probabilistic analysis of the 1-
of-* selection algorithm for systems with larger number of participants
is beneficial in understanding the behaviour of the algorithm.

10A proper subset S∗ of a set S, is a set which excludes at least one member of S.
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7
Discussion

In this thesis, we addressed the problem of designing synchronous con-
sensus algorithms that minimizes the probability of disagreement in the
presence of an unbounded number of messages losses. Understanding
this problem is vital for assessing the risk of failures in distributed sys-
tems where consensus algorithms are used to ensure that the nodes in
the system make coordinated and consistent decisions. We described an
example of such systems in Chapter 3. The design of reliable protocols
for such applications comprises a lot of challenges of which we only in-
vestigated a few. In the following, we discuss some solutions we propose
to the problem of having multiple leaders and the problem of integrating
the new comers into a safety-critical system.

157



158 CHAPTER 7. DISCUSSION

7.1 The problem of multiple leaders

We know from previous research [25] that it is impossible to avoid dis-
agreement among the participating processes in a consensus protocol in
the presence of unrestricted communication failures. Although, we can
reduce the probability of the occurrence of unsafe situations due to dis-
agreement with proposing decision algorithms and with proper setting
of the system parameters, we cannot guarantee that the probability of
disagreement is always zero. This means that, in a VTL leader election
protocol based on wireless ad-hoc networks, the probability of election of
multiple leaders by the nodes cannot be zero in general, what we call the
problem of multiple leaders.

One solution to the problem of multiple leaders in a VTL system is
to enforce the elected leaders to use the same traffic light policy for an
intersection. For example, a policy can be that the VTL leader must
give the green light in an order at which the lanes with the larger traffic
congestions (i.e. larger number of waiting cars) receive the green light
first. This, of course relies on the assumption that the elected leaders
have the same information about the level of traffic congestion in each
lane.

An alternative traffic light policy is to use an off-line database of the
information collected statistically of a certain intersection. For example,
if the leaders in an intersection have access to an information that implies
that certain lanes are more prone to be congested with cars than others,
the VTL leaders should automatically give the green light priority to that
lane.

7.2 The problem of new comers

An important challenge in the design of distributed algorithms based
on vehicular ad-hoc networks is that the participating vehicles in an al-
gorithm may dynamically join and leave the network. As a result, the
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number of participants in the algorithm may vary over the time.
In the design of the 1-of-n selection algorithm presented in Chapter 4,

for simplicity, we assumed a fixed number of participating processes which
are initially known to all processes in the system (i.e. n was known by
all nodes). In Chapter 6, in the design of the 1-of-* selection algorithm,
we relaxed the simplifying assumption of knowing n. We assumed a
system with a fixed but unknown number of processes. In the design of
the 1-of-* selection algorithm, we assumed that all processes start the
algorithm at the same time and no process leaves the system until the
end of the algorithm. Moreover, we assumed that no process can join an
already running algorithm by some other processes. We know that such
a simplifying assumption is unrealistic for applications based on ad-hoc
networks.

Thus, another challenge in the design of cooperative applications is
to address the agreement problem under a new assumption where it is
possible to include new participating processes to an already running
algorithm. Under the new assumption, a process can join a running
algorithm at a later round provided that it satisfies certain conditions.
We define these conditions with the aim of minimizing the possibility of
having unsafe situations. In a VTL scenario, an incoming process implies
a vehicle that is just arrived to an intersection where the 1-of-* selection
algorithm is running to construct a VTL.

We assume that an incoming process px, starts with a listening phase
in which it listens to the network to see whether a 1-of-* selection algo-
rithm is already running or not. If px during its listening phase receives
messages indicating that an algorithm is running, it must satisfy certain
conditions to be able to join the running algorithm. We assume that the
messages sent by the participating processes in the algorithm (called the
protocol message) contain the current round number of the algorithm and
are timestamped.

To this end, we propose two main approaches for an incoming process
to join a running algorithm called the greedy approach and the exhaus-
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tive approach. We specify a decision algorithm for an incoming process
whether to decide to join the algorithm or to decide to abort and wait
for another listening phase.

Our ultimate goal is to investigate the performance of our previously
proposed consensus algorithms with respect to the probability of disagree-
ment under the new assumptions and using the proposed approaches. In
the following we explain each approach in more details using simple ex-
amples.

Greedy Approach

Using the greedy approach, as soon as an incoming process receives a
protocol message, it stops its listening phase and moves to an idle state
until the starting of the next round to join the algorithm.

Fig. 7.1 shows an example of the execution of the greedy approach.
Assume that process p1 has initiated an algorithm. During the first
round of the algorithm, process p2 tries to join the system starting with
the listening phase. Process p2 successfully receives a message from p1

indicating that it is running an algorithm and its current round is 1
(Rc = 1).

Figure 7.1: Process inclusion using greedy approach

We assume that each protocol message contains a timestamp value
which shows the starting time of the round at which the message is sent.
Moreover, we assume that all processes have access to a global clock. So,
by receiving a message from p1, process p2 can calculate the starting point
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of the next round (in this case round R = 2). Note that, in the greedy
approach, we assume a maximum period of listening phase. Such an
assumption prevents a single process in a system to stay in the listening
phase forever.

As mentioned before, the design of the greedy approach implies that
the participating processes have access to a global clock and are able
synchronize their rounds according to that clock. There are a number of
methods proposed in literature for clock synchronization in autonomous
distributed applications such as in [42]. In a vehicular network, as each
vehicle has access to the global positioning system and clocks, we can
assume that the vehicles are synchronized using the globally known time
information acquired from the Global Positioning System (GPS) [22].

Exhaustive Approach

The main difference between the greedy and the exhaustive approach is
that using the exhaustive approach a process should remain in its listen-
ing phase until the end of the specified period. As a result, using the
exhaustive approach, a process in its listening phase may receive several
protocol messages containing different round numbers from different pro-
cesses. This can specifically happen if due to network partitioning there
are several instances of the algorithm running at the same time.

Fig. 7.2 shows an example of the execution of the exhaustive approach
which is used by an incoming process p2 in order to join the algorithm
running by process p1. Assume that process p1 has initiated a VTL
algorithm. During the first round of the algorithm, process p2 tries to
join the system and starts with the listening phase. Process p2 receives
two messages from process p1 during its listening phase, one with Rc = 1
and one with Rc = 2. Process p2 moves to the idle state when it is
finished with its listening phase and remains waiting until the start of
the closet round (Round 2).

Based on our failure assumptions any number of messages can be
lost during the execution of the algorithm. So, in the example given in
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Figure 7.2: Process inclusion using exhaustive approach, Rc: current round,
ts:timestamp

Fig. 7.2, the second message sent from process p1 might be lost. Nonethe-
less, since the processes are assumed to have the same clock, process p2

can calculate the exact time at which it should start executing the algo-
rithm (i.e. round 3) using the information it obtained from p1 ’s message
(i.e. Rc = 1 and ts = 0). So, similar to the greedy approach, the processes
using the exhaustive approach must have access to the same global clock.

As we see from the given example in Fig. 7.2, using the exhaustive
approach, depending on the length of the listening phase and the time
at which the incoming process receives protocol messages, its idle time1

can vary. For example if process p2 has started the listening phase a bit
earlier (or if the listening phase was shorter), it could have started to join
the algorithm at round 2 instead of round 3.

Fig. 7.3 shows an example of the inclusion of a process px where it
receives two protocol messages from two processes who are running two
different instances of the consensus algorithm. Process py and pz are
isolated from each other due to communication failures, i.e. they cannot
communicate with each other. In such a case, px must decide to abort
and possibly send acknowledgement messages to py and pz to inform
them that there are at least two instances of the algorithm running at

1The idle time refers to the time at which the process is actually waiting to join
the algorithm.It can be shorter or longer than a listening phase period.
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the same time. When py and pz receive the information message from px

they must decide to abort as well.
If process px uses the greedy approach it will not be able to detect the

two instances of the algorithm since it stops its listening phase as soon
as it receives the first protocol message.

Figure 7.3: Process inclusion using exhaustive approach. Process Px receives
two messages from two different executions of the algorithm.

With the new system model assumptions the following research ques-
tions are raised:

• We assume that the number and the duration of the rounds of ex-
ecution of the algorithm is fixed and set at the design time for all
processes (i.e. R). Under this assumption when an incoming pro-
cess receives a message containing the round number of a running
algorithm it can calculate the number of remaining rounds and de-
cide whether to join or not. Therefore, an open question is that
what is the latest round at which an incoming process may join an
algorithm in order to have the least probability of disagreement.

• Which of the given approaches, greedy or exhaustive approach, per-
forms better in the process of including a new participant in a leader
election algorithm?

• One of the main challenges in the design of leader election algo-
rithms in an ad hoc network is to bootstrap the algorithm. In our
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current design we assume that a process which has not detected
a running algorithm in its listening phase can start up an algo-
rithm by broadcasting initiating messages to the network. On the
other hand, based on our communication failure assumptions, all
messages sent to a process during its listening phase might be lost.
Such a process initiates a new algorithm without being aware of the
existence of one running algorithm in the system. Consequently we
have several instances of the algorithm running asynchronously.

In the presence of several running algorithms in the system, an in-
coming process who wants to join the system may receive several
protocol messages with different timestamps and round numbers.
In the current suggested design of the leader election protocol, we
assumed that such a process must decide to abort for safety reason.
However, it is necessary to investigate the behaviour of the algo-
rithm for two scenarios of the incoming process that is aborting
or joining one of the running algorithms and inform the others to
abort?



8
Conclusion

This thesis addresses the problem of reaching consensus in distributed
systems that rely on wireless networks for data communication. Our work
is mainly motivated by the increasing interest in developing cooperative
automotive application to improve traffic safety and fuel efficiency, but
it is also relevant for other types of cooperative applications.

We define and address three types of consensus problems that are
relevant for cooperative systems. We call these problems 1-of-n selection,
1-of-* selection and group formation. The two first problems have the
same goal - to reach consensus on a single value. In the 1-of-n selection
problem we assume that all nodes know the size of the systems at all
times, while we assume that system size is initially unknown to all nodes
in the 1-of-* selection problem. The aim of the group formation problem
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is to boot-strap a self-organizing system, i.e., to reach agreement on the
identity of the nodes that form the system.

We propose and analyse several distributed agreement algorithms to
provide probabilistic solutions to these problems. We address specifically
the problem of reaching agreement in the presence of an arbitrary number
of communication failures. Hence, since it is known that no algorithm
can guarantee consensus in the presence of massive communication fail-
ures, our analyses focused on comparing and assessing the probability of
disagreement for different algorithms.

For the 1-of-n and the 1-of-* problems, we propose and investigate
three variants of agreement algorithms. These variants are distinguished
by the decision criterion the nodes use in order to determine whether
they should decide on a value or decide to abort.

The fact that our algorithms allow processes to abort has two impor-
tant implications. First, it introduces two major forms of agreement: i)
agreement on a value (or a group) and ii) agreement on abort. Second, it
also introduces two major forms of disagreement, which we call safe and
unsafe disagreement. Safe disagreement corresponds to cases where all
non-aborting processes decide to select the same value (or group), while
at least one process decides to abort. Unsafe disagreement corresponds
to cases where at least two non-aborting processes decide on different
values (or groups).

To conclude, we choose to highlight the following important observa-
tions from our work:

• Our analyses show that the probability of disagreement depends
strongly on the number of nodes in the system, the number of
rounds of message exchange, the choice of decision criterion, as
well as the probability of message loss.

• In general, it is not possible to rank different decision criteria, since
their performance (probability of agreement) depends strongly on
the probability of message loss. For example, in Chapter 4, we
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show that the pessimistic decision criteria tends to have a high
probability of disagreement at fairly low probabilities of message
loss, while the optimistic one has a high probability of disagreement
at fairly high probabilities of message loss. This suggests that the
development of adaptive agreement algorithms, which alters their
decision criterion based on an estimation of the current quality of
the communication channel, would be an interesting topic for future
research.

• We show that unsafe disagreement can be avoided if all nodes know
the number of the participating nodes in a system. In the analysis
of group formation algorithm in Chapter 5, we observe that unsafe
disagreement only occurs when the local oracles underestimate the
number of nodes in the system.

• An important parameter in the configuration of a system is the
number of rounds of execution of a consensus protocol , i.e. R.
Our observations implies that increasing the execution duration of
our proposed consensus protocols does not necessarily show better
results.

• We compared the behaviour of the proposed algorithms for differ-
ent sizes of the systems. Based on our results we cannot claim that
in general with larger number of participants we have higher prob-
abilities of disagreement. We show that the effect of having larger
values of n on the outcome of the algorithms also depends on the
other system parameters.

Finally, we would like to comment on the limitation of our work. In
analyzing complex systems, like the ones considered in this thesis, re-
searchers and engineers are often forced to make simplifying assumptions
to make the analysis tractable. This is also the case for the work pre-
sented in this thesis. One important limitation of our work is that we
assume a synchronous model of execution. Assessing the validity of using
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this model for reasoning about cooperative systems is a complex question,
which we leave for future research.

Another obvious limitation is that we only consider send and receive
omissions in our analyses. Since cooperative systems are safety-critical
system, it is also necessary to investigate the behaviour of agreement
algorithms in the presence of various types of node and communication
failures, including malicious attacks. Yet another limitation is our as-
sumption about the occurrence of message losses. In all of our analyses,
we assume that the probability of message loss is constant during the ex-
ecution of an algorithm. We also assume that the probability of message
loss is the same for all messages. Clearly, both of these assumptions may
not be valid for real systems.

In this thesis, we analysed the protocols for small systems of at most
six nodes. Based on our main application example, i.e. the VTL system,
only the cluster leaders of an intersection participate in the consensus
protocol. The number of the cluster leaders is limited to the number
of the lanes of the corresponding intersection which is usually less than
six. However, as our proposed consensus protocols can be applied on any
distributed application, it is important to analyse the behaviour of these
algorithms for larger systems as part of our future work.
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A.1 Proofs

A.1.1 Proposition.4.1

Two or more processes fail to send their messages in all the 1 . . . K rounds,
if and only if, all n processes have incomplete views at the end of Kth

round.

Proof. The given proposition is a theorem of the form "A IF AND ONLY
IF B". The A part is true, when two or more processes fail to send
their messages in all the 1 . . . K rounds and the B part is true when
all n processes have incomplete views at the end of Kth round. So, in
order to prove the given proposition, we break the "IF AND ONLY IF"
proposition into two lemmas and prove them separately. First, we prove
IF A THEN B, then we prove IF B THEN A. This proof approach is
called the ’forwards’ and ’backwards’ proof [ref].

Lemma A.1. If two or more processes fail to broadcast their message
in all the 1 . . . K rounds then all processes will have incomplete views at
the end of Kth round.

We prove Lemma A.1 by contradiction, which means that we prove the
validity of the given lemma by showing that assuming the lemma being
false results in a contradiction. For this, we define Assumption. A.2:

Assumption A.2. If there are less than two processes (i.e., zero or one
process) that fails to broadcast its message for all K rounds, then all
processes will have incomplete views at the end of Kth round.

We show that the above assumption implies a contradiction. First, it is
clear that if no process (i.e., zero process) fails to broadcast its message in
all K rounds, then all processes receive messages from all other processes
in the system and as a result, the views of all processes are complete at
the end of Kth round. On the other hand, if exactly one process px fails
to broadcast its message for K rounds, while each of the remaining n− 1
processes successfully broadcast their message in at least one of the K
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rounds, then only process px will have the complete view, and all other
processes have incomplete views of the system. So we can conclude that
there is no execution of the algorithm for which less than two processes
fail to broadcast their message for K rounds and all processes have com-
plete views at the end of Kth round (i.e., at least one process must have
complete view). This contradicts our initial assumption and consequently
shows the validity of Lemma A.1.

Lemma A.3. If all processes have incomplete views at the end of Kth

round, then two or more processes have failed to broadcast their messages
in all the 1 . . . K rounds.

Similar to Lemma A.1 we use proof by contradiction and make the fol-
lowing assumption:

Assumption A.4. There is at least one process, say process px, that has
complete view at the end of Kth round, and two or more processes have
failed to broadcast their messages in all the 1 . . . K rounds.

a process px with a complete view at the end of Kth round must have
received messages from each of the n − 1 processes at least once. This
means that each of the processes in set {p1, . . . , px−1, px+1, . . . pn} must
have successfully broadcast their message at least once during K rounds
of executions. This contradicts the initial assumption that two or more
processes fail to send in all K rounds since |{p1, . . . , px−1, px+1, . . . pn}| =
n− 1. So, Lemma A.3 is valid.
We proved the validity of Lemma A.1 and Lemma A.3, which results in
the validity of Proposition 4.1 being proved.

A.1.2 Proposition.4.2

All processes have complete views at the end of Kth round, if and only
if, each process successfully broadcasts its message in at least one of the
K rounds.
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Proof. To prove Proposition 4.2, we use the same given proving approach
for Proposition 4.1. We divide the proposition into two lemmas.

Lemma A.5. If all processes have complete views at the end of the Kth

round, then each process must have successfully broadcast its message in
at least one of the K rounds.

We use proof by contradiction to prove Lemma A.5. First we define the
Assumption. A.6:

Assumption A.6. All processes have complete views at the end of the
Kth round, however some processes failed to broadcast their message in
all of the K rounds.

We show that the above statement implies a contradiction. If all processes
have complete views at the end of the kth round, it means that each of
the processes has received a message from the other processes at least in
one of the K rounds of execution. This contradicts the assumption that
some processes failed to broadcast their message in all of the K rounds.

Lemma A.7. If all processes successfully broadcast their message in at
least one of the K rounds, then all processes must have complete views
at the end of Kth round.

To prove the validity of Lemma A.7 we define the contradictory Assump-
tion. A.8:

Assumption A.8. All processes successfully broadcast their message in
at least one of the K rounds, and there are some processes that have
incomplete views at the end of Kth round.

If all processes have successfully broadcast their message at least once
in K rounds of execution, then all processes should have received the
message from all other processes and therefore have a complete view of
the system at the end of the Kth round. This contradicts the assumption
that there are some processes that have incomplete views at the end of
Kth round.
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Given that Lemma A.5 and Lemma A.7 are proved using contradic-
tion, we conclude that Proposition 4.2 is proved to be valid.

A.1.3 Proposition.4.3

One process has complete view and the remaining (n − 1) nodes have
incomplete views at the end of Kth round, if and only if, exactly one
process fails to broadcast its message in all of the K rounds.

Proof. It is evident from the proof of Proposition 4.1 that at most one
process can fail to send in all the K rounds if and only if at least one
process has complete view at the end of Kth round. And, according to
Proposition 4.2, no process fails to send in all the K rounds if and only
if all processes have complete view. Combining these two observations,
it is not difficult to see that exactly one process fails in all K rounds if
and only if the view of this process is complete while the views of the
remaining (n− 1) nodes are incomplete.

A.1.4 Finding PDG for Pessimistic Decision Criterion

Lemma. 4.4 In order to have disagreement among processes, it is nec-
essary that all processes have complete views at the end of round R− 1.

Proof. We prove the validity of Lemma 4.4 by contradiction. We know
that disagreement occurs if some processes decide to abort while other
processes decide to select a value. Based on Algorithm 4, a process px

decides to abort if its view is not complete at the end of round R−1 (i.e.,
C1 is false for px). On the other hand, if px does not have a complete view
at the end of round R− 1, none of the other processes receive a complete
view from process px in any round including round R (i.e., C2 is false for
all other processes). So, all other processes also decide to abort and as a
result, there is no disagreement but agreement to abort.
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Analysis of Case I We divide this case into two different subcases as
follows:

Case I.I All processors have complete views at the end of round r = 1,

Case I.II All processors have incomplete views at the end of round r−1
and have complete views at round r, where 2 ≤ r ≤ R− 1.

Analysis of Case I.I The probability that all processes have complete
views at the end of the first round is (1 − q)n. Disagreement occurs if
during rounds 2 . . . R, there is exactly one process, say px, that does
not broadcast a complete view in any round while the other (n − 1)
processes broadcast complete views in at least one of the rounds 2 . . . R.
The probability that a process px does not broadcast its complete view
in any round 2 . . . R is q(R−1) and the probability that all other processes
in Π − {px} broadcast their complete view in at least one of the rounds
2 . . . R is (1−qR−1)n−1. Since the process px can be selected in n possible
ways, the probability of disagreement when all processes have complete
views at the end of 1st round is given in A.1.

PDG CaseI.I = (1− q)n · q(R−1) · (1− qR−1)n−1 · n (A.1)

Analysis of Case I.II According to Proposition 4.1, if the views of all
processes are incomplete at the end of round r− 1, where 2 ≤ r ≤ R− 1,
then at least two or more processes have failed to send in all 1 . . . r − 1
rounds. For a given round r, the probability that all processes have
incomplete views at the end of round r − 1 is calculated from the given
formula in A.2 as below:

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i (A.2)
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where the messages sent from i processes are lost in all r − 1 rounds,
but the other n − i processes successfully broadcast their message in at
least one of the r − 1 rounds, where 2 ≤ i ≤ n. According to Case I.II,
the view of all processes are complete at the end of round r. So, during
round r, all of the i processes in A.2 successfully broadcast their message
which happens with the probability (1−q)i. Therefore, for a given r, the
probability that all processes have incomplete views at the end of round
r−1 and have complete views at the end of round r is calculated fromA.3

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i (A.3)

Assuming that all processes have complete views at the end of round
r, disagreement occurs if exactly one process, say px, does not successfully
broadcast its complete view in any of the remaining R − r rounds with
the probability of q(R−r), while all remaining n− 1 processes successfully
broadcast their complete views in at least one of the remaining R − r

rounds, with the probability of (1−qR−r)n−1. Process px can be selected
in n possible ways. For a given r, the probability of disagreement for
Case I.II is:

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)in · q(R−r) · (1− qR−r)n−1 (A.4)

Since r ranges from 2 to R− 1, the probability that disagreement occurs
when all processes have complete views at the end of any round 2 . . . R−1
is given as follows:

PDG CaseI.II = (A.5)
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i

· (1− q)in · q(R−r) · (1− qR−r)n−1
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Combining the probabilities for Case I.I Case I.II, we have the probability
of disagreement for Case I given in A.6.

PDG CaseI = (1− q)n · q(R−1) · (1− qR−1)n−1 · n + (A.6)
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i

· n · q(R−r) · (1− qR−r)n−1

Analysis of Case II In this case, exactly n− 1 processes have incom-
plete views during rounds r−1 and all the processes have complete views
in round r, where 2 ≤ r ≤ R−1. This can happen if exactly one process,
say px, fails to send in all the r − 1 rounds and other n − 1 processes
send at least in one of the r − 1 rounds. Given a particular round r,
2 ≤ r ≤ R − 1, the probability that any of the n processes fails to send
in all r− 1 rounds is n · q(r−1) and the probability that each of the other
n− 1 processes successfully broadcasts its message in at least one of the
r − 1 rounds is (1− qr−1)n−1.

Process px at round r with the probability of 1 − q, successfully
broadcasts its message and as a result, the views of all the processes
are complete at the end of round r. We know that the probability
that the views of all processes are complete at the end of round r is
n · q(r−1) · (1− qr−1)n−1 · (1− q). Since the view of process px is complete
at the end of round r − 1, the send operation by process px in round r

also confirms the completeness of the view of px to all other processes.
Assuming that all processes have a complete view of the system at

the round r, disagreement occurs if exactly one process, say py, where
px 6= py, does not send its complete view in any of the remaining R − r

rounds with the probability of q(R−r), while each of the other n − 2
processes in Π−{px, py} broadcast their complete view in at least one of
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the remaining R−r rounds with the probability of (1−qR−r)n−2. Process
py can be selected in n − 1 possible ways from set Π − {px}. So, for a
given r, the probability of disagreement assuming Case II, given than all
processes have complete views at the end of round r, can be calculated
using the following expression:

n · qr−1 · (1− qr−1)n−1 · (1− q) · (n− 1) · q(R−r) · (1− qR−r)n−2 (A.7)

Since r ranges from 2 to R−1, the probability of disagreement, given
that all the processes have complete views in any of the 2 . . . R−1 rounds,
is given in A.8:

PDG CaseII =
R−1∑
r=2

n · qr−1 · (1− qr−1)n−1

· (1− q) · (n− 1) · q(R−r) · (1− qR−r)n−2 (A.8)

A.1.5 Finding PAG for Pessimistic Decision Criterion

Analysis of Case I’ We divide this case into two subcases as follows:

Case I’.I All processes have complete views at the end of round r = 1.

Case I’.II All processes have incomplete views at the end of round r−1
and have complete views at the end of round r, where 2 ≤ r ≤ R−1.

Analysis of Case I’.I The probability that all processes have complete
views at the end of round 1 is (1 − q)n. Agreement can occur if during
rounds 2 . . . R, each of the n processes successfully sends its complete
view in at least one of the 2 . . . R rounds. The probability of a successful
message broadcast by a process in any round 2 . . . R is (1 − q(R−1)),
and the probability of successful complete message broadcast by all of
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the n processes is (1 − q(R−1))n. The probability of agreement when all
processes have complete views at the end of 1st round is given as follows:

PAGCaseI′.I = (1− q)n · (1− qR−1)n (A.9)

Analysis of Case I’.II If the views of all processes are incomplete at
the end of round r−1, where 2 ≤ r ≤ R−1, then the messages sent from
at least two or more processes have been lost in all 1 . . . r−1 rounds. For
a given round r, the probability that all processes have incomplete views
at the end of round r − 1 is as below:

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i (A.10)

where message broadcasts from i out of n processes are failed in all r− 1
rounds and n−i processes successfully broadcast their message in at least
one of the r− 1 rounds, where 2 ≤ i ≤ n. Since the views of all processes
are complete at the end of round r for this case, all i processes must
successfully broadcast their message during round r which happens with
the probability of (1 − q)i. Therefore, for some given r, the probability
that all processes have incomplete views at the end of round r − 1 and
have complete views at the end of round r can be calculated from A.11.

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i (A.11)

If the views of all processes are complete at the end of round r, agree-
ment on a value occurs, if each of the n processes successfully broadcast
their complete message in at least one of the rounds (r + 1) . . . R. The
probability of a successful message broadcast by one process in any round
(r+1) . . . R is 1−q(R−r) and the probability of successful message broad-
cast by all n processes in (1 − q(R−r))n. The probability of agreement
when all processes have complete views at the end of rth round is given
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in A.12:

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · (1− q(R−r))n (A.12)

Since r ranges from 2 to R − 1, the probability that disagreement
occurs when all the processes have complete view at the end of any round
2 . . . R− 1 is given as follows:

PAGCaseI′.II = (A.13)
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · (1− q(R−r))n

(A.14)

Combining the given expressions in A.9 and A.13 to calculate the prob-
abilities of disagreement for Case I’.I and Case I’.II, we have

PAGCaseI′ = (1− q)n · (1− qR−1)n + (A.15)
R−1∑
r=2

n∑
i=2

(
n

i

)
(1− qr−1)n−i · q(r−1)·i · (1− q)i · (1− q(R−r))n

Analysis of Case II’ This case occurs if exactly one process, say px,
fails to broadcast its message in all of the r− 1 rounds while other n− 1
processes successfully broadcast their message in at least one of the r− 1
rounds. Given a r, 2 ≤ r ≤ R − 1, the probability that the message
broadcast from any of the n processes fails in all the r−1 rounds is n·qr−1

and the probability that each of the other n − 1 processes successfully
broadcasts their message in at least one of the r−1 rounds is (1−qr−1)n−1.
The process px successfully broadcasts its message with the probability
of 1 − q at round r and as a result, the views of all other processes are
complete at the end of round r. The probability that the view of each of
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the processes is complete at the end of round r is

n · q(r−1) · (1− qr−1)n−1 · (1− q) (A.16)

Since the view of process px is complete at the end of round r − 1,
the send operation by process px at round r also confirms that px has a
complete view of the system.

If the views of all processes are complete at the end of round r, agree-
ment on a value occurs if each of the n − 1 processes in Π − {px} suc-
cessfully broadcast their message in at least one of the remaining R − r

rounds. This occurs with the probability of (1−qR−r)n−1. The probabil-
ity of agreement, given that all processes have complete views at round
r, is equal to

n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1 (A.17)

As r ranges from 2 to R− 1, the probability of disagreement, given that
all processes have complete views in any of the 2 . . . R−1 rounds, is given
as follows:

PAGCaseII′ =
R−1∑
r=2

n · qr−1 · (1− qr−1)n−1 · (1− q) · (1− qR−r)n−1

(A.18)

A.1.6 Finding PDG for Moderately Pessimistic Deci-
sion Criterion

Lemma. 4.5 The set Πx consists of exactly one process px which has a
complete view at the end of round R − 1 while all other processes have
incomplete views at the end of round R− 1.

Proof. We show that the set Πx consists of exactly one process px. We
prove this using contradiction. We consider the following assumptions:
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Assumption A.9. There are two processes, px and px′ , in Πx which
decide to select a value.

Assumption A.10. All processes in Π−Πx decide to abort.

Based on Assumption. A.9, process px must have complete view at the
end of round R− 1 (See Alg. 7). This means that all messages sent from
the n − 2 processes in Π − Πx and px′ are successfully delivered in at
least one of the R− 1 rounds. Also from Assumption. A.9, we know that
process px′ must have complete view at the end of round R− 1 and this
shows that all messages sent from the n − 2 processes in Π − Πx and
px are successfully delivered in at least one of the R − 1 rounds. So, we
can conclude that according to Assumption. A.9, messages sent from all
processes in (Π−Πx)∪ {px} ∪ {px′} are successfully delivered in at least
one of the R − 1 rounds. Obviously (Π − Πx) ∪ {px} ∪ {px′} indicates
the set of all processes (i.e., Π). In other words from Assumption. A.9
and Proposition 4.2 we can conclude that all processes have successfully
delivered their messages in at least one of the R−1 rounds, which results
in complete views for all n processes by the end of round R − 1, which
contradicts Assumption. A.10. So, we can conclude that there is only one
process in the set of Πx.

A.1.7 Finding PAB for Moderately Pessimistic Deci-
sion Criterion

Given the two cases of execution which result in agreement on abort
among processes in 4.3.1, in the following, first we explain how we calcu-
late the probability of Case (a) and then we analyse Case (b).

Case (a) refers to the executions in which all processes have incomplete
views at the end of round R− 1. According to Proposition 4.1, the views
of all n processes are incomplete, if and only if, at least two processes fail
to send during all R− 1 rounds. If there are i processes that fail to send
in all R − 1 rounds, where 2 ≤ i ≤ n, then all remaining n− i processes
successfully broadcast their message in at least one of the R− 1 rounds.
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For a given i, 2 ≤ i ≤ n, there are
∑R−1

j=1
(

R−1
j

)
)n−i = (2R−1 − 1)n−i

possibilities that each of the (n − i) processes successfully broadcasts
their message during at least one of the R − 1 rounds for some given
i. Moreover, the i processes out of n are selected in

(
n
i

)
ways, where

2 ≤ i ≤ n. Consequently, the number of possibilities that all processes
have incomplete views by round R− 1 is given in A.19.

Case(a)numberof =
n∑

i=2

(
n

i

)
· (2R−1)n−i (A.19)

Given that the probability of a message loss is q, the probability that
exactly i processes fail to send in all R − 1 rounds is (qR−1)i while the
probability that each of the n−i processes successfully send their message
during at least one of the R− 1 rounds is:(∑R−1

j=1
(

R−1
j

)
· (1− q)j · qR−1−j

)n−i

= (1− qR−1)n−i

where 2 ≤ i ≤ n. Consequently, the probability that all the processes
satisfying the condition in Case (a), agree to abort can be calculated
from A.20.

PAB Case(a) =
n∑

i=2

(
n

i

)
· (qR−1)i · (1− qR−1)n−i (A.20)

In the following, we explain how we calculate the probability of Case
(b). According to Case (b), we assume a set of processes as Πx which
have complete views by the end of round R − 1, but in round R they
receive incomplete views from all or some of the processes in Π − Πx.
Following, we show that there is exactly one process in Πx.

Proof. We prove by using contradiction that Πx consists of exactly one
process px. We make contradictory assumptions as follows:

Assumption A.11. There are two processes as px and px′ in Πx which
both have complete views at the end of round R− 1, but in round R they
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receive incomplete views from some or all processes in Π−Πx.

Assumption A.12. All processes in Π − Πx have incomplete views at
the end of round R− 1.

Based on Assumption. A.11, process px has a complete view at the
end of round R − 1 which means that all messages sent from the n − 2
processes in Π − Πx and px′ are successfully delivered in at least one
of the R − 1 rounds. From Assumption. A.11, we know that process
px′ has also a complete view at the end of round R − 1 which shows
that all messages sent from the n − 2 processes in Π − Πx′ and px are
successfully delivered in at least one of the R − 1 rounds. Therefore we
can conclude that according to Assumption. A.11, messages sent from all
processes in (Π−Πx)∪ {px} ∪ {px′} are successfully delivered in at least
one of the R − 1 rounds. Obviously (Π − Πx) ∪ {px} ∪ {px′} indicates
the set of all processes (i.e., Π). In other words from Assumption. A.11
and Proposition 4.2 we can conclude that all processes have successfully
delivered their messages in at least one of the R−1 rounds, which results
in complete views for all n processes by the end of round R − 1. This
contradicts Assumption. A.12.

On the other hand, according to Assumption. A.12, considering a
process in Π − Πx as pi which has incomplete view by the end of round
R − 1, it means that pi has not received some or all messages sent from
other processes including px and px′ during R − 1 rounds. As we only
assume symmetric message losses, if pi has not received from a process
px, then px′ should have not received from px as well. The same applies
to pi receiving a message from px′ , which obviously contradicts Assump-
tion. A.11 that px and px′ have complete views by the end of round R−1.

So, we proved using contradiction that Πx consists of exactly one
process that fails to broadcast its message in all R − 1 rounds. As the
probability of losing a message broadcast is assumed to be q, we can say
that the message broadcasts from the single process in Πx as px, fail in
all R − 1 rounds with the probability of qR−1. Consequently, the other
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n− 1 processes have incomplete views by the end of round R − 1, while
they all successfully broadcast their message in at least one of the R− 1
rounds of execution, so that the view of px is complete by round R−1. In
round R, px receives incomplete views from at least one of n−1 processes
with the probability of 1− qn−1. As a result px decides to abort.

Eq. A.21 shows the probability that processes executing the 1-of-n
selection algorithm, meet the given condition in Case (b) and decide to
abort.

PAB Case(b) = n · (1− qR−1)n−1 · qR−1 · (1− qn−1) (A.21)

As it mentioned in Section 4.3.1, we can calculate the probability of
agreement to abort combining the probabilities of two cases, Case (a)
and Case (b).
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A.2 PRISM Model for 1-of-3 Selection Al-
gorithm

We present a PRISM model of a system of three processes executing
the 1-of-3 selection algorithm under the asymmetric failure model. We
also model each of the decision criteria for the 1-of-3 selection algorithm.
We explain how we can use the same approach in modelling the 1-of-
n selection algorithm with different number of processes and a different
communication failure model.

Global Declarations: Constants

The first line of a PRISM model declares its class which in our case is
(dtmc). Then we insert the list of constant values. The given constant
values in Listing A.1 define the system settings under which the 1-of-n
selection algorithm is run: the number of processes (N), the number of
rounds of execution of the algorithm (RN), the probability of losing a mes-
sage (Q) and the decision criterion (DC). This model supports three differ-
ent decision criteria: optimistic (DC=1), moderately pessimistic (DC=2)

and pessimistic (DC=3).

1 dtmc
2 const N=3; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const DC =3; // Decision criterion : OP =1; MP =2; PS =3;

Listing A.1: Declaring the class of the PRISM model and the constant
variables

Constants N1, N2 and N3 are the processes’ identifiers and are used
to define which process has the token and shall fire the next transition.
Constant v_max defines the highest value among the processes’ initial
values and is used to limit the range of the variables that stores processes’
values.

Constants v1_ini, v2_ini and v3_ini store the initial value for each
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6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const v_max =3; // Maximum value of a process

Listing A.2: Declaring the processes’ identities

process. These values can be chosen randomly between 1 and v_max. We
know that the choice of the initial values does not affect the results of the
algorithm. Regardless of the number of failures, if a process decides to
select a value it selects the correct value. Therefore we leave the choice
of defining the initial values to the user instead of implementing them
as a probabilistic choice in the model, which unnecessarily increases the
number of states and transitions.

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3

Listing A.3: Declaring the processes’ initial values

Finally, constants not_last and last are used to define which pro-
cess receives the token after the current process (see expression next in
Section A.2).

13 const not_last =1; // Auxiliary constant to define the next process
14 const last =0; // Auxiliary constant to define the next process

Listing A.4: Declaring auxiliary constants

Global Declarations: Global Variables

In order to model the message exchange among processes we use global
variables. At each round, each process writes its current value and view in
the global variables and reads the values and views of the other processes
from the global variables.
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Variable vi_ext contains the value of Process i and must be defined
within the range of [0..v_max]. As the range of acceptable values is
between 1 and v_max, value 0 is used to indicate the loss of a message
sent by a process Process i (See Listing A.5).

16 global v1_ext : [0.. v_max ] init 0; // Message value of Process 1
17 global v2_ext : [0.. v_max ] init 0; // Message value of Process 2
18 global v3_ext : [0.. v_max ] init 0; // Message value of Process 3

Listing A.5: Declaring auxiliary constants

Variable wi_vj_ext contains the Process i ’s view of Process j. This
variable is Boolean and indicates whether or not Process i has received
the value of Process j during the previous rounds (See Listing A.6).

20 global w1_v2_ext : bool init false ; // Process 1 view of Process 2
21 global w1_v3_ext : bool init false ; // Process 1 view of Process 3
22
23 global w2_v1_ext : bool init false ; // Process 2 view of Process 1
24 global w2_v3_ext : bool init false ; // Process 2 view of Process 3
25
26 global w3_v1_ext : bool init false ; // Process 3 view of Process 1
27 global w3_v2_ext : bool init false ; // Process 3 view of Process 2
28
29 global token : [1..N] init 1; // Token used to coordinate the processes
30 global m_lost : [0..( RN*N*(N -1))] init 0; // Number of lost messages

Listing A.6: Declaring auxiliary constants

Linsting A.6 also includes the global variable token which is used to
coordinate the processes and is within the range of [1..N]. The token’s
value indicates the identifier of a process that must perform the next
transition. When token=2, only a transition of Process 2 can be en-
abled. When Process 2 performs the enabled transition it passes the
token to the next process (Process 3) by assigning a new value to it
token=3, then only a transition of Process 3 can be enabled. The vari-
able m_lost stores the number of lost messages during an execution of
the algorithm. This variable is used for verification purposes (e.g. to
determine the minimum number of lost messages which results in having
disagreement among processes).
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Table A.1: Values of the variables for the next expression.

Process N1 not_last next

1 1 1 2

2 N2=2 1 3

3 N2=3 last=0 1

Global Declarations: Expressions

The expressions in this section are defined from the perspective of Process

1, i.e., with the appropriate variables for Process 1. Then, when we de-
fine the modules for other processes, we must indicate how the global and
local variables are replaced, so that the same expression can be used by
other processes. The first expression, next, is defined to determine the

32 formula next = N1* not_last +1; // Define the next Process in the network

Listing A.7: Definition of next expression

next value of the token. Table A.1 shows how the variables defined for
the next expression vary for each process. In the case of Process 1, the
variables are not replaced, as the expression is defined from the perspec-
tive of this process. For Process 2, N1 is replaced by N2 and not_last

is not replaced, resulting in next=3. Finally, for Process 3, N1 is re-
placed by N3 and not_last is replaced by the constant last (defined as
0), which results in next=1.

34 formula v1_new = max(v1 ,( n1_nf2 ? v2_ext :0) ,( n1_nf3 ? v3_ext :0)); // Process 1 compute new value
35 formula w1_v2_new = w1_v2 | n1_nf2 | ( n1_nf3 & w3_v2_ext ); // Process 1 update its view of Process

2
36 formula w1_v3_new = w1_v3 | n1_nf3 | ( n1_nf2 & w2_v3_ext ); // Process 1 update its view of Process

3
37 // Process 1 knows that Process 2 view is complete
38 formula w1_c2_new = w1_c2 | ( n1_nf2 & ( w2_v1_ext & w2_v3_ext ));
39 // Process 1 knows that Process 3 view is complete
40 formula w1_c3_new = w1_c3 | ( n1_nf3 & ( w3_v1_ext & w3_v2_ext ));

Listing A.8: Process 1 computes new value

We assume that in the case of having asymmetric failures, all messages
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Table A.2: Replacement of variables of v1_new expression.

Process1 v1 v2_ext v3_ext

Process2 v2 v3_ext v1_ext

Process3 v3 v1_ext v2_ext

are always sent, which means that their values and views are always
copied to the global variables. To model a communication failure, each
process Process i has a set of internal variables, such as ni_nfj, which
indicates whether Process i has received the message sent from Process

j during the previous round (ni_nfj = true) or not (ni_nfj= false).
The expressions are redefined in order to consider the other processes’
values and views only when their messages are received by Process 1.
Each process computes its new value at the end of each round depending
on the messages it received in that round. The expression v1_new is used
to compute the new value of a process after a round by comparing the
current value (v1, which is an internal variable of the module Process

1) with the values received from other processes (v2_ext and v3_ext).
Table A.2 presents how the variables of this expression are replaced

when it is used by Process 2 and Process 3.
The expression v1_new for computing the new value of Process 1

uses the condition operator ? to replace the value of v2_ext and v3_ext

with 0 when the corresponding message has not been received by Process

1.
The Boolean expressions w1_v2_new and w1_v3_new, given in List-

ing A.8, compute the view of Process 1 of the values of Process 2

and Process 3, respectively. For example for the case of w1_v2_new the
result is true if at least one of the following conditions is satisfied:

1. It was already true in the previous round (w1_v2 is true, w1_v2 is
an internal variable of the module Process 1); or

2. Process 1 received the message of Process 2 in the current round
(n1_nf2!=0); or
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3. Process 1 obtained the information regarding the view of Process

2 through Process 3 (w3_v2_ext), if it received the message from
Process 3 (i.e., n1_nf3 is true).

Process 1 updates the Boolean expressions, w1_c2_new and w1_c3_new,
to true if it received the information indicating that the view of Process

2 and Process 3 are complete, respectively. Process 1 checks n1_nf2

and n1_nf3 to see whether the messages sent from the other processes
have been received or not.

43 // Optimistic Decision Criterion
44 formula decision_OP = w1_v2 & w1_v3 ; // Process 1 has complete view at the last round (RN)
45 // Moderately Pessimistic Decision
46 formula received_message_complete = (! n1_nf2 | ( n1_nf2 & ( w2_v1_ext & w2_v3_ext ))) & (! n1_nf3 |

( n1_nf3 & ( w3_v1_ext & w3_v2_ext ))); // All messages received by the Process 1 are complete
47 formula decision_MP = ( w1_v2 & w1_v3 ) & received_message_complete ; // Process 1 has complete view

at (RN -1) and all messages received at RN are complete
48 // Pessimistic Decision Criterion
49 formula decision_PS = w1_v2 & w1_v3 & w1_c2 & w1_c3 ; // Process 1 has complete view at (RN -1) and

has received complete view from all processes at the last round (RN)
50 // General Decision Formula
51 formula decision = (( DC =1) & decision_OP ) |(( DC =2) & decision_MP )|(( DC =3) & decision_PS ); //

Combine all decision criterea in a single formula

Listing A.9: Process 1 decision criteria

Listing A.9 shows the expressions that are defined for each decision
criterion to be executed by a process in order to provide a Boolean out-
come: true means to decide on a value and false means to decide to abort.
For these expressions, the replacement of variables when the expression
is called by Process 2 and Process 3 is the same as indicated in the
previous tables (see also Section A.2). The expression decision_OP ver-
ifies whether or not Process 1 has a complete view, i.e., has the value
of Process 2 (i.e., w1_v2 is true) and Process 3 (i.e., w1_v3 is true).

For the moderately pessimistic decision criterion, a new Boolean ex-
pression is defined named as received_message_complete. It deter-
mines whether or not all the messages received by a process Process 1

from other processes are complete (i.e., the sending processes, Process

2 and Process 3, have a complete view of the system). For example,
if Process 1 has not received any message from Process 2 in the last
round (i.e., v2_ext=0), it won’t verify the view of Process 2 to be com-
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plete. On the other hand, if the message sent from Process 2 has been
received by Process 1 (i.e., v2_ext!=0), then the condition for Process

1 to select a value is that the view of Process 2 is complete (i.e., both
w2_v1_ext and w2_v3_ext must be true). The decision_MP expression
returns true if the view of Process 1 is complete and the senders of
its received messages also have a complete view in the last round. It is
important to observe that the requirement that the view of Process 1

must be complete at RN-1 is not explicitly embedded in the expression.
This requirement is satisfied by not updating the view of Process 1 in
the last round (See Alg. 7).

The decision_PS expression verifies whether or not the view of Process

1 is complete, i.e., w1_v2 and w1_v3 are true. Also, it checks whether
Process 1 has received a confirmation that all other processes, here
Process 2 and Process 3 have the complete view of the system or not
(i.e., w1_c2 and w1_c3 are true).

Finally, the expression decision combines the three decision criteria
in a single expression using the value of the constant DC.

Global Description: Internal Variables

Listing A.10 shows the module defined for Process 1. In PRISM, the
definition of a module starts with the word module, followed by its name,
here Process 1. Then the internal variables of Process 1 are given: S1

refers to Process 1’s current state in the execution of the algorithm.
The variable S1 varies according to the current state of Process 1 as
described in Table 4.4 and Fig. 4.7. For example S1=0 is equivalent to S01.
The current round of execution of Process 1 is defined using variable
RN1. The variable d1 refers to Process 1’s decision and v1 refers to its
current value which is initiated as v1_ini. The current views of Process

1 of the values of other processes are given as w1_v2 and w1_v3. Finally
1It is important to observe that S1 is defined in order to help the organization

and understanding of the module. The actual state of the module results from the
combination of the value of all its variables, not only S1.
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53 module Process_1
54 s1 : [0..N+2] init 1; // Process 1 current state
55 RN1 : [0.. RN] init 0; // Current round
56 v1 : [0.. v_max ] init v1_ini ; // Process 1 value
57 d1 : bool init false ; // Process 1 decision
58
59 // Status of the message from the other processs
60 n1_nf2 : bool init true ; // Process 1 has not received the message of Process 2
61 n1_nf3 : bool init true ; // Process 1 has not received the message of Process 3
62 // Process 1 view of other processes
63 w1_v2 : bool init false ; // Process 1 has the view of Process 2
64 w1_v3 : bool init false ; // Process 1 has the view of Process 3
65 // Process 1 has confirmation that other processes have complete view
66 w1_c2 : bool init false ; // Process 1 has confirmation from Process 2
67 w1_c3 : bool init false ; // Process 1 has confirmation from Process 3
68 // Process 1 sends its message ;
69 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (RN1 ’= RN1 +1);
70 // Process 1 receives or loses the message of Process 2
71 [] s1 =2 & token =N1 & RN1 <= RN & (m_lost <( RN*N*(N -1))) -> (1-Q): (s1 ’=3) & (n1_nf2 ’= true ) + Q:

(s1 ’=3) & (n1_nf2 ’= false ) & (m_lost ’= m_lost +1);
72 // Process 1 receives or loses the message of Process 3
73 [] s1 =3 & token =N1 & RN1 <= RN & (m_lost <( RN*N*(N -1))) -> (1-Q): (s1 ’=4) & (n1_nf3 ’= true ) + Q:

(s1 ’=4) & (n1_nf3 ’= false ) & (m_lost ’= m_lost +1);
74 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
75 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new )&( token ’= next); //&
(w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new )

76 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,
only for OP , updates value and views ;

77 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) &
(v1 ’=( DC =1)? v1_new :v1) & (w1_v2 ’=( DC =1)? w1_v2_new : w1_v2 ) & (w1_v3 ’=( DC =1)? w1_v3_new : w1_v3 );

78 // Process 1 decides -> agree or abort
79 [] s1=N+2 & token =N1 -> 1: (s1 ’=0) & (token ’= next) & (d1 ’= decision );
80 endmodule

Listing A.10: Module of Process 1

the Boolean expressions w1_c2 and w1_c3 used by Process 1 are set to
true when Process 1 received a message from Process 2 and Process

3 respectively, when they each have a complete view of the system.

Global Description: Transitions

The transitions in a process module to different states are specified using
a set of guarded commands. The guard is a Boolean expression that
specifies the conditions under which the transition can be executed. A
transition is defined with a guard and an action which are separated by
an arrow: ([ ] guard → action). The action specifies how the internal
and global variables are updated when the transition is performed. The
given square brackets in the beginning of the definition of a transition are
used for synchronizations among modules. However, as in our models we
do not consider synchronizations, we leave the brackets empty as [ ]. The
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update of each variable must be included in parentheses. The parentheses
are combined with an & operator. Example: [ ] guard → (update1) &
(update2) & (update3).

In the case of probabilistic transitions, the action is composed of a
set of possible actions with their corresponding probabilities which are
separated by the plus signals. Example: [ ] guard→ p1: action 1+ p2:
action 2+ p3: action 3. As for the case of the deterministic transi-
tions, each action may be composed of one or more updates. The first
transition of the module performs the message sending. The guard of
this transition specifies that the module must be in the initial state
(S1=1), has the token (N1=1), and must not have completed the last
round (RN1<RN)2. We assume that Process 1 always sends its message,
i.e., copies its value and views to the global variables, without any failure.
The global variables associated with Process 1’s value (i.e., v1_ext) and
view (i.e., w1_v2_ext and w1_v3_ext) are updated with the current val-
ues of the internal variables. Additionally, the current round of Process

1 is incremented (RN1’=RN1+1), the token is passed to the next process
(token’=next) and Process 1 moves to state S1=2.

81 module Process_2 = Process_1 [N1=N2 , s1=s2 , v1=v2 , d1=d2 , RN1=RN2 , n1_nf2 =n2_nf3 , n1_nf3 =n2_nf1 ,
w1_v2 =w2_v3 , w1_v3 =w2_v1 , w1_c2 =w2_c3 , w1_c3 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext ,
v3_ext =v1_ext , w1_v2_ext =w2_v3_ext , w1_v3_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext ,
w2_v3_ext =w3_v1_ext , w3_v1_ext =w1_v2_ext , w3_v2_ext =w1_v3_ext , v1_ini = v2_ini ] endmodule

82 module Process_3 = Process_1 [N1=N3 , s1=s3 , v1=v3 , d1=d3 , RN1=RN3 , n1_nf2 =n3_nf1 , n1_nf3 =n3_nf2 ,
w1_v2 =w3_v1 , w1_v3 =w3_v2 , w1_c2 =w3_c1 , w1_c3 =w3_c2 , v1_ext =v3_ext , v2_ext =v1_ext ,
v3_ext =v2_ext , w1_v2_ext =w3_v1_ext , w1_v3_ext =w3_v2_ext , w2_v1_ext =w1_v3_ext ,
w2_v3_ext =w1_v2_ext , w3_v1_ext =w2_v3_ext , w3_v2_ext =w2_v1_ext , v1_ini =v3_ini ,
not_last =last] endmodule

Listing A.11: The module for Process 2 and Process 3

As we see in Listing A.10, a set of N-1 probabilistic transitions are
added in order to define, at each round, whether the messages sent from
other processes have been received by Process 1 or not. When the mes-
sage is lost, n1_nfi is set to false and m_lost is incremented. The follow-
ing transition describes the computation of the last round (RN1=RN). The

2We observe that here we show the text of a transition broken in many lines due
to the lack of space, however, in PRISM a transition must be specified in a single line.
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main difference between this and the previous transition is that the value
and views of Process 1 are updated if and only if the decision criterion
is the optimistic one (DC=1). The expression x′ = (c)?a : b means that
if c is true xâĂŹ = a, otherwise xâĂŹ = b. Also, differently from the
previous transition, in this case Process 1 goes to S1=3 and does not
pass the token.

After computing the last round, Process 1 is at S1=3 and makes
a decision using the corresponding expression. It then goes to the final
state S1=0 and passes the token to the next process. The module is closed
with end_module.

Modules of other processes

Listing A.11 shows the definition of Process 2 and Process 3 as a copy
of Process 1. In this case, PRISM imposes that all the internal variables
must be renamed. The external variables may be replaced or not by
other external variables that have already been defined in the appropriate
section.

The general rule adopted in the definition of a new Process i (1 <

i <= N) as a copy of Process 1 is as follows:
For each internal, global or constant variable used by Process 1 and

named as Xj or Xj_Y or Xj _Yw, where X and Y are the names of the
variables and j and w are the references to other processes in the interval
[1..N]:

• If (j + i − 1 <= n) and/or (w + i − 1 <= n) then replace it with
(j + i− 1) and/or (w + i− 1).

• If (j + i − 1 > n) and/or (w + i − 1 > n) then replace it with
(j + i− 1− n) and/or (w + i− 1− n).

For the definition of Process i, we need to add the replacement not_last=last.
The application of the general rule results in the following definition of
Process 2 and 3: Also, the variables n1_nfi must be renamed in the
definition of Process 2 and Process 3.
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Specifying Verification Properties

We specify the verification properties using an extension of probabilistic
temporal logic, which combines temporal relationships between events
with probabilistic quantifiers. The specification language used by PRISM
is named the Probabilistic Computation Tree Logic (PCTL), derived
from the well-known Computation Tree Logic (CTL). We use PCTL to
calculate the probability that all processes reach the final state in a given
condition (agreement, abort or disagreement). We specify the verification
properties as they are shown in Listings A.12, A.13, A.14 and A.15.

1 P=? [ F (s1 =0) &( s2 =0) &( s3 =0) &(( d1 != d2)|( d2 != d3))]

Listing A.12: Property (1), Probability of disagreement

1 P= ? [ F(s1 =0) &( s2 =0) &( s3 =0) &( d1= false )&( d2= false )&( d3= false )]

Listing A.13: Property (2), Probability of agreement to abort

1 P= ? [ F(s1 =0) &( s2 =0) &( s3 =0) &( d1= true )&( d2= true )&( d3= true )]

Listing A.14: Property (3), Probability of agreement on a value

1 P= ? [ F(s1 =0) &( s2 =0) &( s3 =0) &(( d1 != d2)|( d2 != d3))&(m-lost =1)]

Listing A.15: Property (4), Probability of disagreement with a specific number
of lost messages

Property (1) given in Listing A.12 refers to the probability (P=?) that
eventually (F) the system reaches a state where all processes are in the
final state((s1=0)&(s2=0)&(s3=0)&(s4=0)) but have made different de-
cisions as ((d1!=d2)|(d2!=d3)) that is the probability of disagreement
among processes. Similarly, the next two given properties are to calculate
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the probabilities of agreement to abort and agreement on a value. The
last property given in Listing A.15 is to calculate the probability of dis-
agreement when there are certain number of lost messages. We define this
property in order to be able to compare different decision criteria with
respect to the minimum number of lost messages to have disagreement
among processes.

Model checking is one of the most effective formal techniques for veri-
fying distributed systems and algorithms, which is based on exhaustively
and automatically checking a system model against its specified proper-
ties to be hold for all reachable states. However, an important challenge
with the application of model checking to real systems is the state-space
explosion problem. This problem arises whenever it becomes compu-
tationally too expensive to examine the entire state-space. Due to the
problem of state explosion, we are only able to calculate probabilities for
a system with 3 processes. For larger number of processes, we use PRISM
to estimate the value of a given property using simulation.

In Appendix A.3 we present our approach in expanding the PRISM
model of the 1-of-3 selection algorithm to a 1-of-4 selection algorithm.
We also show that to model the algorithm with more than four processes,
we need to repeat the same procedure.
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A.3 PRISM Model for 1-of-4 Selection Al-
gorithm

We describe how to expand the PRISM model of a 1-of-3 selection algo-
rithm, given in Section A.2, for a system of four processes. We also show
that to model the algorithm with more than four processes, we need to
repeat the same procedure (N > 3).

Global Declarations: Constants

Listing A.16 illustrates the constants which are modified or added to the
PRISM model of the 1-of-3 selection algorithm. The number of processes
is modified to 4. The identity number of Process 4 with its initial value
are added to the constant variables.

2 const N=4; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const DC =3; // Decision criterion : OP =1; MP =2; PS =3;
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 4

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3
13 const v4_ini =4; // Initial value of Process 4
14 const not_last =1; // Auxiliary constant to define the next process
15 const last =0; // Auxiliary constant to define the next process
16 global v1_ext : [0..N] init 0; // Message value of Process 1

Listing A.16: Global declarations: Constants

Global Declarations: Global Variables

Listing A.17 shows the constant variables that must be added to the list
of global variables: the current value of Process 4, the view of each of
the other processes of Process 4, and the Process 4’s view of other
processes.
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17 global v2_ext : [0..N] init 0; // Message value of Process 2
18 global v3_ext : [0..N] init 0; // Message value of Process 3
19 global v4_ext : [0..N] init 0; // Message value of Process 4
20 global w1_v2_ext : bool init false ; // Process 1 view of Process 2
21 global w1_v3_ext : bool init false ; // Process 1 view of Process 3
22 global w1_v4_ext : bool init false ; // Process 1 view of Process 4
23 global w2_v1_ext : bool init false ; // Process 2 view of Process 1
24 global w2_v3_ext : bool init false ; // Process 2 view of Process 3
25 global w2_v4_ext : bool init false ; // Process 2 view of Process 4
26 global w3_v1_ext : bool init false ; // Process 3 view of Process 1
27 global w3_v2_ext : bool init false ; // Process 3 view of Process 2
28 global w3_v4_ext : bool init false ; // Process 3 view of Process 4
29 global w4_v1_ext : bool init false ; // Process 4 view of Process 1
30 global w4_v2_ext : bool init false ; // Process 4 view of Process 2
31 global w4_v3_ext : bool init false ; // Process 4 view of Process 3
32 global token : [1..N] init 1; // Token used to coordinate the Processs
33 global m_lost : [0.. RN*N*(N -1)] init 0; // Number of lost messages

Listing A.17: Global declarations: Global variables

Global Declarations:Expressions

Listing A.18 shows the expression for computing the value, views and
confirmations of Process 1 are updated to consider the value and views
of Process 4. Two new expressions are created for computing Process

1 view and confirmation of Process 4. The decision criteria expressions

36 formula v1_new = max(v1 ,( n1_nf2 ? v2_ext :0) ,( n1_nf3 ? v3_ext :0) ,( n1_nf4 ? v4_ext :0)); // Process 1
compute new value

37 formula w1_v2_new = w1_v2 | n1_nf2 | ( n1_nf3 & w3_v2_ext ) | ( n1_nf4 & w4_v2_ext ) ; // Process 1
update its view of Process 2

38 formula w1_v3_new = w1_v3 | n1_nf3 | ( n1_nf2 & w2_v3_ext ) | ( n1_nf4 & w4_v3_ext ) ; // Process 1
update its view of Process 3

39 formula w1_v4_new = w1_v4 | n1_nf4 | ( n1_nf2 & w2_v4_ext ) | ( n1_nf3 & w3_v4_ext ) ; // Process 1
update its view of Process 4

40 formula w1_c2_new = w1_c2 | ( n1_nf2 & ( w2_v1_ext & w2_v3_ext & w2_v4_ext )); // Process 1 knows
that Process 2 view is complete

41 formula w1_c3_new = w1_c3 | ( n1_nf3 & ( w3_v1_ext & w3_v2_ext & w3_v4_ext )); // Process 1 knows
that Process 3 view is complete

42 formula w1_c4_new = w1_c4 | ( n1_nf4 & ( w4_v1_ext & w4_v2_ext & w4_v3_ext )); // Process 1 knows
that Process 4 view is complete

43
44 // Optimistic Decision
45 formula decision_OP = w1_v2 & w1_v3 & w1_v4 ; // Process 1 has complete view at RN
46 // Pessimistic Decision
47 formula decision_PS = w1_v2 & w1_v3 & w1_v4 & w1_c2 & w1_c3 & w1_c4 ; // Process 1 has complete

view at (RN -1) and received complete view from all processes at RN
48 // General Decision Formula
49 formula decision = (( DC =1) & decision_OP ) | (( DC =3) & decision_PS ); // Combine all decision

criterea in a single formula
50 // Label definitions for propery specifications

Listing A.18: Updating expressions

are also updated to include the view and confirmation of Process 4.
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Module Description: Internal Variables

Listing A.19 shows the view of Process 1 and the variable are added to
the list of internal variables. in order to keep the information regarding
the completeness of Process 4.

52 label " p1_AB " = (d1= false ); // Process p1 aborts
53 label " p2_AB " = (d2= false ); // Process p2 aborts
54 label " p3_AB " = (d3= false ); // Process p3 aborts
55 label " p4_AB " = (d4= false ); // Process p3 aborts
56 // Decide
57 label " p1_DC " = (d1 != false ); // Process p1 decides
58 label " p2_DC " = (d2 != false ); // Process p2 decides
59 label " p3_DC " = (d3 != false ); // Process p3 decides
60 label " p4_DC " = (d4 != false ); // Process p3 decides
61
62 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
63 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
64 label " p1_NEQ_p4 " = (d1 != d4); // p1 ’s decision is not equal to p4 ’s decision
65 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
66 label " p2_NEQ_p4 " = (d2 != d4); // p2 ’s decision is not equal to p4 ’s decision
67 label " p3_NEQ_p4 " = (d3 != d4); // p3 ’s decision is not equal to p4 ’s decision

Listing A.19: Process 1 ’s internal variables

Module Description: Transitions

Compared to the 1-of-3 selection algorithm, the first transition is modi-
fied so that Process 1 also sends or fails to send its view of Process 4.
Furthermore, at the compute phase, Process 1 view and confirmation
of Process 4 must be updated. Additionally, a transition is added to
Process 1 in order to include the reception of the message from Process

4.

69 label " p1_EQ_p2 " = (d1=d2); // p1 ’s decision is equal to p2 ’s decision
70 label " p1_EQ_p3 " = (d1=d3); // p1 ’s decision is equal to p3 ’s decision
71 label " p1_EQ_p4 " = (d1=d4); // p1 ’s decision is equal to p4 ’s decision
72 label " p2_EQ_p3 " = (d2=d3); // p2 ’s decision is equal to p3 ’s decision
73 label " p2_EQ_p4 " = (d2=d4); // p2 ’s decision is equal to p4 ’s decision
74 label " p3_EQ_p4 " = (d3=d4); // p3 ’s decision is equal to p4 ’s decision
75
76
77 module Process_1
78 s1 : [0..N+2] init 1; // Process 1 current state
79 RN1: [0.. RN] init 0; // Current round
80 v1 : [0..N] init v1_ini ; // Process 1 value
81 d1: bool init false ; // Process 1 decision

Listing A.20: Process 1 transitions
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Modules of other processes

In the definition of Process 2 and 3, the new internal and global vari-
ables related to Process 4 are introduced in the list of variables that are
renamed or replaced. Moreover, all the renaming and replacing previ-
ously defined for the case of N=3 must be revised in other to follow the
general rule defined in Section A.2. One example is the variable w1_v3 in
the definition of Process 3: in the case of N=3 it is renamed as w2_v1,
while for N=4 it is renamed as w2_v4. Finally, the definition of Process

4 as a copy of Process 1 is added to the model (See Listing A.21).

82 // Status of the message of the other Processs
83 n1_nf2 : bool init true ; // Process 1 has not received the message of Process 2
84 n1_nf3 : bool init true ; // Process 1 has not received the message of Process 3

Listing A.21: Processes’ modules

Specifying Verification Properties

We update the properties to include the final state and the decision of
Process 4 as they are given in Listings A.22, A.23, A.24 and A.25.

1 P = ? [F(s1 =0) &( s2 =0) &( s3 =0) &( s4 =0) &(( d1 != d2)|( d1 != d3)|( d3 != d4)|( d2 != d3)|( d2 != d4)|( d3 != d4))]

Listing A.22: Property (1), Probability of disagreement

1 P = ?[F(s1 =0) &( s2 =0) &( s3 =0) &( s4 =0) &( d1= false )&( d2= false )&( d3= false )&( d4= false )]

Listing A.23: Property (2), Probability of abort

1 P = ? [F(s1 =0) &( s2 =0) &( s3 =0) &( s4 =0) &( d1= true )&( d2= true )&( d3= true )&( d4= true )]

Listing A.24: Property (3), Probability of agreement
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1 $ P = ? [F(s1 =0) &( s2 =0) &( s3 =0) &( s4 =0) &(( d1 != d2)|( d2 != d3)|( d3 != d4))&(m-lost =1)]$

Listing A.25: Property (4), Probability of disagreement with a specific number
of lost messages
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A.4 PRISM Models for the Group Forma-
tion Algorithms

In the following, we present the PRISM models for the group formation
algorithm for systems of three, four and five participating processes, n =
3,n = 4 and n = 5.

A.4.1 n=3



A.4. PRISM MODELS FOR THE GROUP FORMATION ALGORITHMS213

1 dtmc
2 const N=3; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c; // Controlability of the oracles
6
7 const N1 =1; // Identity number of Process 1
8 const N2 =2; // Identity number of Process 2
9 const N3 =3; // Identity number of Process 3

10
11 const o1 =3; // Oracle value is given randomely
12 const o2 =3; // Oracle value is given randomely
13 const o3; // Oracle value is given randomely
14
15 const p1_1_ini = 1; // Initial value of Process 1 of Process 1
16 const p1_2_ini = 0; // Initial value of Process 1 of Process 2
17 const p1_3_ini = 0; // Initial value of Process 1 of Process 3
18 const p2_1_ini = 0; // Initial value of Process 2 of Process 1
19 const p2_2_ini = 1; // Initial value of Process 2 of Process 2
20 const p2_3_ini = 0; // Initial value of Process 2 of Process 3
21 const p3_1_ini = 0; // Initial value of Process 3 of Process 1
22 const p3_2_ini = 0; // Initial value of Process 3 of Process 2
23 const p3_3_ini = 1; // Initial value of Process 3 of Process 3
24 const not_last =1; // Auxiliary constant to define the next process
25 const last =0; // Auxiliary constant to define the next process
26
27 global p1_1_ext : [0..1] init 1; // Message value of Process 1 of Process 1
28 global p1_2_ext : [0..1] init 0; // Message value of Process 1 of Process 2
29 global p1_3_ext : [0..1] init 0; // Message value of Process 1 of Process 3
30
31 global p2_1_ext : [0..1] init 0; // Message value of Process 2 of Process 1
32 global p2_2_ext : [0..1] init 1; // Message value of Process 2 of Process 2
33 global p2_3_ext : [0..1] init 0; // Message value of Process 2 of Process 3
34
35 global p3_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
36 global p3_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
37 global p3_3_ext : [0..1] init 1; // Message value of Process 3 of Process 3
38
39 global token : [1..N] init 1; // Token used to coordinate the processes
40 formula next = N1* not_last +1; // Define the next process to receive the token
41
42 formula p1_1_new = max (p1_1 ,( p2_1_ext * n1_nf2 ) ,( p3_1_ext * n1_nf3 )); // Process 1 compute new

value of Process 1
43 formula p1_2_new = max (p1_2 ,( p2_2_ext * n1_nf2 ) ,( p3_2_ext * n1_nf3 )); // Process 1 compute new

value of Process 2
44 formula p1_3_new = max (p1_3 ,( p2_3_ext * n1_nf2 ) ,( p3_3_ext * n1_nf3 )); // Process 1 compute new

value of Process 3
45
46 formula m1_new = p1_1 + p1_2 + p1_3; // length of view vector of process 1
47 formula m2_new = p2_1 + p2_2 + p2_3; // length of view vector of process 2
48 formula m3_new = p3_1 + p3_2 + p3_3; // length of view vector of process 2
49
50 // Label definitions for propery specifications
51 label " p1_AB " = ( p1_d1 =0) &( p1_d2 =0) &( p1_d3 =0); // Process p1 aborts
52 label " p2_AB " = ( p2_d1 =0) &( p2_d2 =0) &( p2_d3 =0); // Process p2 aborts
53 label " p3_AB " = ( p3_d1 =0) &( p3_d2 =0) &( p3_d3 =0); // Process p3 aborts
54 label " p1_DC " = ( p1_d1 !=0) |( p1_d2 !=0) |( p1_d3 !=0); // Process p1 decides
55 label " p2_DC " = ( p2_d1 !=0) |( p2_d2 !=0) |( p2_d3 !=0); // Process p2 decides
56 label " p3_DC " = ( p3_d1 !=0) |( p3_d2 !=0) |( p3_d3 !=0); // Process p3 decides
57
58 label " p1_NEQ_p2 " =( p1_d1 != p2_d1 ) |( p1_d2 != p2_d2 ) |( p1_d3 != p2_d3 ) ; // Process p1 is not equal to p2
59 label " p1_NEQ_p3 " =( p1_d1 != p3_d1 ) |( p1_d2 != p3_d2 ) |( p1_d3 != p3_d3 ) ; // Process p1 is not equal to p3
60 label " p2_NEQ_p3 " =( p2_d1 != p3_d1 ) |( p2_d2 != p3_d2 ) |( p2_d3 != p3_d3 ) ; // Process p1 is not equal to p3
61
62 label " p1_EQ_p2 " =( p1_d1 = p2_d1 ) &( p1_d2 = p2_d2 ) &( p1_d3 = p2_d3 ) ; // Process p1 is equal to p2
63 label " p1_EQ_p3 " =( p1_d1 = p3_d1 ) &( p1_d2 = p3_d2 ) &( p1_d3 = p3_d3 ) ; // Process p1 is equal to p3
64 label " p2_EQ_p3 " =( p2_d1 = p3_d1 ) &( p2_d2 = p3_d2 ) &( p2_d3 = p3_d3 ) ; // Process p1 is equal to p3

Listing A.26: Prism Model for a system of three processes executing the group
formation algorithm, part (1)
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65
66 module Process_1
67 s1 : [0..N+3] init 1; // Process 1 current state
68 RN1 : [0.. RN] init 0; // Current round
69 m1 : [0..N] init 1;
70
71 p1_d1 : [0..1] init 0; // Process 1 decision of process 1
72 p1_d2 : [0..1] init 0; // Process 1 decision of process 2
73 p1_d3 : [0..1] init 0; // Process 1 decision of process 3
74
75 p1_1 : [0..1] init p1_1_ini ; // Process 1 value of process 1
76 p1_2 : [0..1] init p1_2_ini ; // Process 1 value of process 2
77 p1_3 : [0..1] init p1_3_ini ; // Process 1 value of process 3
78
79 // Status of the message from the other processs
80 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
81 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
82
83 // Process 1 sends or loses its message ;
84 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (p1_1_ext ’= p1_1) & (p1_2_ext ’= p1_2) &

(p1_3_ext ’= p1_3) & (RN1 ’= RN1 +1);
85 // Process 1 receives or loses the message of Process 2
86 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
87 // Process 1 receives or loses the message of Process 3
88 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
89 // Not last round , Process 1 computes the messages of other processes : updates its values ;
90 [] s1=N+1 & token =N1 & (RN1 <RN) -> 1: (s1 ’=1) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (token ’= next);
91 // Last round , Process 1 computes the messages of other processes : updates its values ;
92 // [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (m1 ’= m1_new )& (orc1 ’= orc1_new ) & (token ’= next);
93 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (token ’= next);
94 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (token ’= next);
95 // Process 1 decides -> agree or abort
96 [] s1=N+3 & token =N1 & (m1 >= (c* o1)) ->1: (s1 ’=0) & (token ’= next) & (p1_d1 ’= p1_1) & (p1_d2 ’=

p1_2)& (p1_d3 ’= p1_3);
97 [] s1=N+3 & token =N1 & (m1 < (c*o1))-> 1: (s1 ’=0) & (token ’= next) & (p1_d1 ’=0) & (p1_d2 ’= 0) &

(p1_d3 ’= 0);
98 endmodule
99 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , o1=o2 , p1_d1 =p2_d2 , p1_d2 =p2_d3 , p1_d3 =p2_d1 ,

n1_nf2 =n2_nf3 , n1_nf3 =n2_nf1 , p1_1=p2_2 , p1_2=p2_3 , p1_3=p2_1 , p1_1_ini =p2_2_ini ,
p1_3_ini =p2_1_ini , p1_2_ini =p2_3_ini , p1_1_ext =p2_2_ext , p1_2_ext =p2_3_ext ,
p1_3_ext =p2_1_ext , p2_1_ext =p3_2_ext , p2_2_ext =p3_3_ext , p2_3_ext =p3_1_ext ,
p3_1_ext =p1_2_ext , p3_2_ext =p1_3_ext , p3_3_ext =p1_1_ext , RN1=RN2] endmodule

100 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , o1=o3 , p1_d1 =p3_d3 , p1_d2 =p3_d1 , p1_d3 =p3_d2 ,
n1_nf2 =n3_nf1 , n1_nf3 =n3_nf2 , p1_1=p3_3 , p1_2=p3_1 , p1_3=p3_2 , p1_1_ini =p3_3_ini ,
p1_3_ini =p3_2_ini , p1_2_ini =p3_1_ini , p1_1_ext =p3_3_ext , p1_2_ext =p3_1_ext ,
p1_3_ext =p3_2_ext , p2_1_ext =p1_3_ext , p2_2_ext =p1_1_ext , p2_3_ext =p1_2_ext ,
p3_1_ext =p2_3_ext , p3_2_ext =p2_1_ext , p3_3_ext =p2_2_ext , RN1=RN3 , not_last =last] endmodule

Listing A.27: Prism Model for a system of three processes executing the group
formation algorithm, part (2)

A.4.2 n=4
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1 dtmc
2 const N=4; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c; // controlability of the oracle value
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 3

10 const o1; // Oracle value for process 1
11 const o2; // Oracle value for process 2
12 const o3; // Oracle value for process 3
13 const o4; // Oracle value for process 4
14
15 const p1_1_ini = 1; // Initial value of Process 1 of Process 1
16 const p1_2_ini = 0; // Initial value of Process 1 of Process 2
17 const p1_3_ini = 0; // Initial value of Process 1 of Process 3
18 const p1_4_ini = 0; // Initial value of Process 1 of Process 4
19 const p2_1_ini = 0; // Initial value of Process 2 of Process 1
20 const p2_2_ini = 1; // Initial value of Process 2 of Process 2
21 const p2_3_ini = 0; // Initial value of Process 2 of Process 3
22 const p2_4_ini = 0; // Initial value of Process 2 of Process 4
23 const p3_1_ini = 0; // Initial value of Process 3 of Process 1
24 const p3_2_ini = 0; // Initial value of Process 3 of Process 2
25 const p3_3_ini = 1; // Initial value of Process 3 of Process 3
26 const p3_4_ini = 0; // Initial value of Process 3 of Process 4
27 const p4_1_ini = 0; // Initial value of Process 4 of Process 1
28 const p4_2_ini = 0; // Initial value of Process 4 of Process 2
29 const p4_3_ini = 0; // Initial value of Process 4 of Process 3
30 const p4_4_ini = 1; // Initial value of Process 4 of Process 4
31
32 const not_last =1; // Auxiliary constant to define the next process
33 const last =0; // Auxiliary constant to define the next process
34
35 global p1_1_ext : [0..1] init 1; // Message value of Process 1 of Process 1
36 global p1_2_ext : [0..1] init 0; // Message value of Process 1 of Process 2
37 global p1_3_ext : [0..1] init 0; // Message value of Process 1 of Process 3
38 global p1_4_ext : [0..1] init 0; // Message value of Process 1 of Process 3
39
40 global p2_1_ext : [0..1] init 0; // Message value of Process 2 of Process 1
41 global p2_2_ext : [0..1] init 1; // Message value of Process 2 of Process 2
42 global p2_3_ext : [0..1] init 0; // Message value of Process 2 of Process 3
43 global p2_4_ext : [0..1] init 0; // Message value of Process 2 of Process 4
44
45 global p3_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
46 global p3_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
47 global p3_3_ext : [0..1] init 1; // Message value of Process 3 of Process 3
48 global p3_4_ext : [0..1] init 0; // Message value of Process 3 of Process 4
49
50 global p4_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
51 global p4_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
52 global p4_3_ext : [0..1] init 0; // Message value of Process 3 of Process 3
53 global p4_4_ext : [0..1] init 1; // Message value of Process 3 of Process 4
54 global token : [1..N] init 1; // Token used to coordinate the processes

Listing A.28: Prism Model for a system of four processes executing the group
formation algorithm, part (1)

A.4.3 n=5
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55
56 formula next = N1* not_last +1; // Define the next process to receive the token
57 formula p1_1_new = max (p1_1 ,( p2_1_ext * n1_nf2 ) ,( p3_1_ext * n1_nf3 ) ,( p4_1_ext * n1_nf4 )); //

Process 1 compute new value of Process 1
58 formula p1_2_new = max (p1_2 ,( p2_2_ext * n1_nf2 ) ,( p3_2_ext * n1_nf3 ) ,( p4_2_ext * n1_nf4 )); //

Process 1 compute new value of Process 2
59 formula p1_3_new = max (p1_3 ,( p2_3_ext * n1_nf2 ) ,( p3_3_ext * n1_nf3 ) ,( p4_3_ext * n1_nf4 )); //

Process 1 compute new value of Process 3
60 formula p1_4_new = max (p1_4 ,( p2_4_ext * n1_nf2 ) ,( p3_4_ext * n1_nf3 ) ,( p4_4_ext * n1_nf4 )); //

Process 1 compute new value of Process 4
61
62 formula m1_new = p1_1 + p1_2 + p1_3 + p1_4; // length of view vector of process 1
63 formula m2_new = p2_1 + p2_2 + p2_3 + p2_4; // length of view vector of process 2
64 formula m3_new = p3_1 + p3_2 + p3_3 + p3_4; // length of view vector of process 2
65 formula m4_new = p4_1 + p4_2 + p4_3 + p4_4; // length of view vector of process 2
66
67 // Label definitions for propery specifications
68 label " p1_AB " = ( p1_d1 =0) &( p1_d2 =0) &( p1_d3 =0) &( p1_d4 =0) ; // Process p1 aborts
69 label " p2_AB " = ( p2_d1 =0) &( p2_d2 =0) &( p2_d3 =0) &( p2_d4 =0) ; // Process p2 aborts
70 label " p3_AB " = ( p3_d1 =0) &( p3_d2 =0) &( p3_d3 =0) &( p3_d4 =0) ; // Process p3 aborts
71 label " p4_AB " = ( p4_d1 =0) &( p4_d2 =0) &( p4_d3 =0) &( p4_d4 =0) ; // Process p4 aborts
72 label " p1_DC " = ( p1_d1 =1) |( p1_d2 =1) |( p1_d3 =1) |( p1_d4 =1) ; // Process p1 decides
73 label " p2_DC " = ( p2_d1 =1) |( p2_d2 =1) |( p2_d3 =1) |( p2_d4 =1) ; // Process p2 decides
74 label " p3_DC " = ( p3_d1 =1) |( p3_d2 =1) |( p3_d3 =1) |( p3_d4 =1) ; // Process p3 decides
75 label " p4_DC " = ( p4_d1 =1) |( p4_d2 =1) |( p4_d3 =1) |( p4_d4 =1) ; // Process p4 decides
76 label " p1_NEQ_p2 " =( p1_d1 != p2_d1 ) |( p1_d2 != p2_d2 ) |( p1_d3 != p2_d3 ) |( p1_d4 != p2_d4 ) ; // Process p1

is not equal to p2
77 label " p1_NEQ_p3 " =( p1_d1 != p3_d1 ) |( p1_d2 != p3_d2 ) |( p1_d3 != p3_d3 ) |( p1_d4 != p3_d4 ) ; // Process p1

is not equal to p3
78 label " p1_NEQ_p4 " =( p1_d1 != p4_d1 ) |( p1_d2 != p4_d2 ) |( p1_d3 != p4_d3 ) |( p1_d4 != p4_d4 ) ; // Process p1

is not equal to p4
79 label " p2_NEQ_p3 " =( p2_d1 != p3_d1 ) |( p2_d2 != p3_d2 ) |( p2_d3 != p3_d3 ) |( p2_d4 != p3_d4 ) ; // Process p2

is not equal to p3
80 label " p2_NEQ_p4 " =( p2_d1 != p4_d1 ) |( p2_d2 != p4_d2 ) |( p2_d3 != p4_d3 ) |( p2_d4 != p4_d4 ) ; // Process p2

is not equal to p4
81 label " p3_NEQ_p4 " =( p3_d1 != p4_d1 ) |( p3_d2 != p4_d2 ) |( p3_d3 != p4_d3 ) |( p3_d4 != p4_d4 ) ; // Process p3

is not equal to p4
82 label " p1_EQ_p2 " =( p1_d1 = p2_d1 ) & ( p1_d2 = p2_d2 ) & ( p1_d3 = p2_d3 ) & ( p1_d4 = p2_d4 ) ; // Process p1 is

equal to p2
83 label " p1_EQ_p3 " =( p1_d1 = p3_d1 ) &( p1_d2 = p3_d2 ) &( p1_d3 = p3_d3 ) & ( p1_d4 = p3_d4 ) ; // Process p1 is

equal to p3
84 label " p1_EQ_p4 " =( p1_d1 = p4_d1 ) &( p1_d2 = p4_d2 ) &( p1_d3 = p4_d3 ) & ( p1_d4 = p4_d4 ) ; // Process p1 is

equal to p4
85 label " p2_EQ_p3 " =( p2_d1 = p3_d1 ) &( p2_d2 = p3_d2 ) &( p2_d3 = p3_d3 ) & ( p2_d4 = p3_d4 ) ; // Process p2 is

equal to p3
86 label " p2_EQ_p4 " =( p2_d1 = p4_d1 ) &( p2_d2 = p4_d2 ) &( p2_d3 = p4_d3 ) & ( p2_d4 = p4_d4 ) ; // Process p2 is

equal to p4
87 label " p3_EQ_p4 " =( p3_d1 = p4_d1 ) &( p3_d2 = p4_d2 ) &( p3_d3 = p4_d3 ) & ( p3_d4 = p4_d4 ) ; // Process p3 is

equal to p4

Listing A.29: Prism Model for a system of four processes executing the group
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89 module Process_1
90 s1 : [0..N+3] init 1; // Process 1 current state
91 RN1 : [0.. RN] init 0; // Current round
92 m1 : [0..N] init 1;
93
94 p1_d1 : [0..1] init 0; // Process 1 decision of process 1
95 p1_d2 : [0..1] init 0; // Process 1 decision of process 2
96 p1_d3 : [0..1] init 0; // Process 1 decision of process 3
97 p1_d4 : [0..1] init 0; // Process 1 decision of process 4
98
99 p1_1 : [0..1] init p1_1_ini ; // Process 1 value of process 1

100 p1_2 : [0..1] init p1_2_ini ; // Process 1 value of process 2
101 p1_3 : [0..1] init p1_3_ini ; // Process 1 value of process 3
102 p1_4 : [0..1] init p1_4_ini ; // Process 1 value of process 4
103
104 // Status of the message from the other processs
105 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
106 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
107 n1_nf4 :[0..1] init 0; // Process 1 has not received the message of Process 4
108
109 // Process 1 sends or loses its message ;
110 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (p1_1_ext ’= p1_1) & (p1_2_ext ’= p1_2) &

(p1_3_ext ’= p1_3) & (p1_4_ext ’= p1_4) & (RN1 ’= RN1 +1);
111 // Process 1 receives or loses the message of Process 2,3,4
112 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
113 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
114 [] s1 =4 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=5) & (n1_nf4 ’=1) + Q: (s1 ’=5) & (n1_nf4 ’=0);
115 // Not last round , Process 1 computes thye messages of other processes : updates its values ;
116 [] s1=N+1 & token =N1 & (RN1 <RN) -> 1: (s1 ’=1) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (p1_4 ’= p1_4_new ) & (token ’= next);
117 // Last round , Process 1 computes the messages of other processes : updates its values ;
118 // [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (m1 ’= m1_new )& (orc1 ’= orc1_new ) & (token ’= next);
119 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (p1_4 ’= p1_4_new ) & (token ’= next);
120 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (token ’= next);
121 // Process 1 decides -> agree or abort
122 [] s1=N+3 & token =N1 & (m1 >= (c*o1))-> (s1 ’=0) & (token ’= next) & (p1_d1 ’= p1_1) & (p1_d2 ’= p1_2)&

(p1_d3 ’= p1_3)& (p1_d4 ’= p1_4);
123 [] s1=N+3 & token =N1 & (m1 < (c*o1))-> (s1 ’=0) & (token ’= next) & (p1_d1 ’=0) & (p1_d2 ’= 0) &

(p1_d3 ’= 0)& (p1_d4 ’= 0);
124 endmodule
125 module Process_2 = Process_1 [N1=N2 , s1=s2 , o1=o2 , m1=m2 , p1_d1 =p2_d2 , p1_d2 =p2_d3 , p1_d3 =p2_d4 ,

p1_d4 =p2_d1 , n1_nf2 =n2_nf3 , n1_nf3 =n2_nf4 , n1_nf4 =n2_nf1 , p1_1=p2_2 , p1_2=p2_3 , p1_3=p2_4 ,
p1_4=p2_1 , p1_1_ini =p2_2_ini , p1_2_ini =p2_3_ini , p1_3_ini =p2_4_ini , p1_4_ini =p2_1_ini ,
p1_1_ext =p2_2_ext , p1_2_ext =p2_3_ext , p1_3_ext =p2_4_ext , p1_4_ext =p2_1_ext ,
p2_1_ext =p3_2_ext , p2_2_ext =p3_3_ext , p2_3_ext =p3_4_ext , p2_4_ext =p3_1_ext ,
p3_1_ext =p4_2_ext , p3_2_ext =p4_3_ext , p3_3_ext =p4_4_ext , p3_4_ext =p4_1_ext ,
p4_1_ext =p1_2_ext , p4_2_ext =p1_3_ext , p4_3_ext =p1_4_ext , p4_4_ext =p1_1_ext , RN1=RN2]
endmodule

126 module Process_3 = Process_1 [N1=N3 , s1=s3 , o1=o3 , m1=m3 , p1_d1 =p3_d3 , p1_d2 =p3_d4 , p1_d3 =p3_d1 ,
p1_d4 =p3_d2 , n1_nf2 =n3_nf4 , n1_nf3 =n3_nf1 , n1_nf4 =n3_nf2 , p1_1=p3_3 , p1_2=p3_4 , p1_3=p3_1 ,
p1_4=p3_2 , p1_1_ini =p3_3_ini , p1_2_ini =p3_4_ini , p1_3_ini =p3_1_ini , p1_4_ini =p3_2_ini ,
p1_1_ext =p3_3_ext , p1_2_ext =p3_4_ext , p1_3_ext =p3_1_ext , p1_4_ext =p3_2_ext ,
p2_1_ext =p4_3_ext , p2_2_ext =p4_4_ext , p2_3_ext =p4_1_ext , p2_4_ext =p4_2_ext ,
p3_1_ext =p1_3_ext , p3_2_ext =p1_4_ext , p3_3_ext =p1_1_ext , p3_4_ext =p1_2_ext ,
p4_1_ext =p2_3_ext , p4_2_ext =p2_4_ext , p4_3_ext =p2_1_ext , p4_4_ext =p2_2_ext , RN1=RN3]
endmodule

127 module Process_4 = Process_1 [N1=N4 , s1=s4 , o1=o4 , m1=m4 , p1_d1 =p4_d4 , p1_d2 =p4_d1 , p1_d3 =p4_d2 ,
p1_d4 =p4_d3 , n1_nf2 =n4_nf1 , n1_nf3 =n4_nf2 , n1_nf4 =n4_nf3 , p1_1=p4_4 , p1_2=p4_1 , p1_3=p4_2 ,
p1_4=p4_3 , p1_1_ini =p4_4_ini , p1_2_ini =p4_1_ini , p1_3_ini =p4_2_ini , p1_4_ini =p4_3_ini ,
p1_1_ext =p4_4_ext , p1_2_ext =p4_1_ext , p1_3_ext =p4_2_ext , p1_4_ext =p4_3_ext ,
p2_1_ext =p1_4_ext , p2_2_ext =p1_1_ext , p2_3_ext =p1_2_ext , p2_4_ext =p1_3_ext ,
p3_1_ext =p2_4_ext , p3_2_ext =p2_1_ext , p3_3_ext =p2_2_ext , p3_4_ext =p2_3_ext ,
p4_1_ext =p3_4_ext , p4_2_ext =p3_1_ext , p4_3_ext =p3_2_ext , p4_4_ext =p3_3_ext ,
RN1=RN4 , not_last =last] endmodule

Listing A.30: Prism Model for a system of four processes executing the group
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1 dtmc
2 const N=5; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c;
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 4

10 const N5 =5; // Identity number of Process 5
11 const o1; // Oracle value of process 1
12 const o2; // Oracle value of process 2
13 const o3; // Oracle value of process 3
14 const o4; // Oracle value of process 4
15 const o5; // Oracle value of process 5
16
17 const p1_1_ini = 1; // Initial value of Process 1 of Process 1
18 const p1_2_ini = 0; // Initial value of Process 1 of Process 2
19 const p1_3_ini = 0; // Initial value of Process 1 of Process 3
20 const p1_4_ini = 0; // Initial value of Process 1 of Process 4
21 const p1_5_ini = 0; // Initial value of Process 1 of Process 5
22 const p2_1_ini = 0; // Initial value of Process 2 of Process 1
23 const p2_2_ini = 1; // Initial value of Process 2 of Process 2
24 const p2_3_ini = 0; // Initial value of Process 2 of Process 3
25 const p2_4_ini = 0; // Initial value of Process 2 of Process 4
26 const p2_5_ini = 0; // Initial value of Process 2 of Process 5
27 const p3_1_ini = 0; // Initial value of Process 3 of Process 1
28 const p3_2_ini = 0; // Initial value of Process 3 of Process 2
29 const p3_3_ini = 1; // Initial value of Process 3 of Process 3
30 const p3_4_ini = 0; // Initial value of Process 3 of Process 4
31 const p3_5_ini = 0; // Initial value of Process 3 of Process 5
32 const p4_1_ini = 0; // Initial value of Process 4 of Process 1
33 const p4_2_ini = 0; // Initial value of Process 4 of Process 2
34 const p4_3_ini = 0; // Initial value of Process 4 of Process 3
35 const p4_4_ini = 1; // Initial value of Process 4 of Process 4
36 const p4_5_ini = 0; // Initial value of Process 4 of Process 5
37 const p5_1_ini = 0; // Initial value of Process 4 of Process 1
38 const p5_2_ini = 0; // Initial value of Process 4 of Process 2
39 const p5_3_ini = 0; // Initial value of Process 4 of Process 3
40 const p5_4_ini = 0; // Initial value of Process 4 of Process 4
41 const p5_5_ini = 1; // Initial value of Process 4 of Process 5
42 const not_last =1; // Auxiliary constant to define the next process
43 const last =0; // Auxiliary constant to define the next process
44
45 global p1_1_ext : [0..1] init 1; // Message value of Process 1 of Process 1
46 global p1_2_ext : [0..1] init 0; // Message value of Process 1 of Process 2
47 global p1_3_ext : [0..1] init 0; // Message value of Process 1 of Process 3
48 global p1_4_ext : [0..1] init 0; // Message value of Process 1 of Process 4
49 global p1_5_ext : [0..1] init 0; // Message value of Process 1 of Process 5
50
51 global p2_1_ext : [0..1] init 0; // Message value of Process 2 of Process 1
52 global p2_2_ext : [0..1] init 1; // Message value of Process 2 of Process 2
53 global p2_3_ext : [0..1] init 0; // Message value of Process 2 of Process 3
54 global p2_4_ext : [0..1] init 0; // Message value of Process 2 of Process 4
55 global p2_5_ext : [0..1] init 0; // Message value of Process 2 of Process 5
56
57 global p3_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
58 global p3_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
59 global p3_3_ext : [0..1] init 1; // Message value of Process 3 of Process 3
60 global p3_4_ext : [0..1] init 0; // Message value of Process 3 of Process 4
61 global p3_5_ext : [0..1] init 0; // Message value of Process 3 of Process 5
62
63 global p4_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
64 global p4_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
65 global p4_3_ext : [0..1] init 0; // Message value of Process 3 of Process 3
66 global p4_4_ext : [0..1] init 1; // Message value of Process 3 of Process 4
67 global p4_5_ext : [0..1] init 0; // Message value of Process 3 of Process 5
68
69 global p5_1_ext : [0..1] init 0; // Message value of Process 3 of Process 1
70 global p5_2_ext : [0..1] init 0; // Message value of Process 3 of Process 2
71 global p5_3_ext : [0..1] init 0; // Message value of Process 3 of Process 3
72 global p5_4_ext : [0..1] init 0; // Message value of Process 3 of Process 4
73 global p5_5_ext : [0..1] init 1; // Message value of Process 3 of Process 5
74 global token : [1..N] init 1; // Token used to coordinate the processes

Listing A.31: Prism Model for a system of five processes executing the group
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75
76 formula next = N1* not_last +1; // Define the next process to receive the token
77 formula p1_1_new = max (p1_1 ,( p2_1_ext * n1_nf2 ) ,( p3_1_ext * n1_nf3 ) ,( p4_1_ext * n1_nf4 ) ,( p5_1_ext

* n1_nf5 )); // Process 1 compute new value of Process 1
78 formula p1_2_new = max (p1_2 ,( p2_2_ext * n1_nf2 ) ,( p3_2_ext * n1_nf3 ) ,( p4_2_ext * n1_nf4 ) ,( p5_2_ext

* n1_nf5 )); // Process 1 compute new value of Process 2
79 formula p1_3_new = max (p1_3 ,( p2_3_ext * n1_nf2 ) ,( p3_3_ext * n1_nf3 ) ,( p4_3_ext * n1_nf4 ) ,( p5_3_ext

* n1_nf5 )); // Process 1 compute new value of Process 3
80 formula p1_4_new = max (p1_4 ,( p2_4_ext * n1_nf2 ) ,( p3_4_ext * n1_nf3 ) ,( p4_4_ext * n1_nf4 ) ,( p5_4_ext

* n1_nf5 )); // Process 1 compute new value of Process 4
81 formula p1_5_new = max (p1_5 ,( p2_5_ext * n1_nf2 ) ,( p3_5_ext * n1_nf3 ) ,( p4_5_ext * n1_nf4 ) ,( p5_5_ext

* n1_nf5 )); // Process 1 compute new value of Process 5
82
83 formula m1_new = p1_1 + p1_2 + p1_3 + p1_4 + p1_5; // length of view vector of process 1
84 formula m2_new = p2_1 + p2_2 + p2_3 + p2_4 + p2_5; // length of view vector of process 2
85 formula m3_new = p3_1 + p3_2 + p3_3 + p3_4 + p3_5; // length of view vector of process 3
86 formula m4_new = p4_1 + p4_2 + p4_3 + p4_4 + p4_5; // length of view vector of process 4
87 formula m5_new = p5_1 + p5_2 + p5_3 + p5_4 + p5_5; // length of view vector of process 5
88
89 // Label definitions for propery specifications
90 label " p1_AB " = ( p1_d1 =0) &( p1_d2 =0) &( p1_d3 =0) &( p1_d4 =0) &( p1_d5 =0) ; // Process p1 aborts
91 label " p2_AB " = ( p2_d1 =0) &( p2_d2 =0) &( p2_d3 =0) &( p2_d4 =0) &( p2_d5 =0) ; // Process p2 aborts
92 label " p3_AB " = ( p3_d1 =0) &( p3_d2 =0) &( p3_d3 =0) &( p3_d4 =0) &( p3_d5 =0) ; // Process p3 aborts
93 label " p4_AB " = ( p4_d1 =0) &( p4_d2 =0) &( p4_d3 =0) &( p4_d4 =0) &( p4_d5 =0) ; // Process p4 aborts
94 label " p5_AB " = ( p5_d1 =0) &( p5_d2 =0) &( p5_d3 =0) &( p5_d4 =0) &( p5_d5 =0) ; // Process p5 aborts
95 label " p1_DC " = ( p1_d1 =1) |( p1_d2 =1) |( p1_d3 =1) |( p1_d4 =1) |( p1_d5 =1) ; // Process p1 decides
96 label " p2_DC " = ( p2_d1 =1) |( p2_d2 =1) |( p2_d3 =1) |( p2_d4 =1) |( p2_d5 =1) ; // Process p2 decides
97 label " p3_DC " = ( p3_d1 =1) |( p3_d2 =1) |( p3_d3 =1) |( p3_d4 =1) |( p3_d5 =1) ; // Process p3 decides
98 label " p4_DC " = ( p4_d1 =1) |( p4_d2 =1) |( p4_d3 =1) |( p4_d4 =1) |( p4_d5 =1) ; // Process p4 decides
99 label " p5_DC " = ( p5_d1 =1) |( p5_d2 =1) |( p5_d3 =1) |( p5_d4 =1) |( p5_d5 =1) ; // Process p5 decides

100
101 label " p1_NEQ_p2 " =( p1_d1 != p2_d1 ) |( p1_d2 != p2_d2 ) |( p1_d3 != p2_d3 ) |( p1_d4 != p2_d4 )|( p1_d5 != p2_d5 ) ;

// Process p1 is not equal to p2
102 label " p1_NEQ_p3 " =( p1_d1 != p3_d1 ) |( p1_d2 != p3_d2 ) |( p1_d3 != p3_d3 ) |( p1_d4 != p3_d4 )|( p1_d5 != p3_d5 ) ;

// Process p1 is not equal to p3
103 label " p1_NEQ_p4 " =( p1_d1 != p4_d1 ) |( p1_d2 != p4_d2 ) |( p1_d3 != p4_d3 ) |( p1_d4 != p4_d4 )|( p1_d5 != p4_d5 ) ;

// Process p1 is not equal to p4
104 label " p1_NEQ_p5 " =( p1_d1 != p5_d1 ) |( p1_d2 != p5_d2 ) |( p1_d3 != p5_d3 ) |( p1_d4 != p5_d4 )|( p1_d5 != p5_d5 ) ;

// Process p1 is not equal to p5
105 label " p2_NEQ_p3 " =( p2_d1 != p3_d1 ) |( p2_d2 != p3_d2 ) |( p2_d3 != p3_d3 ) |( p2_d4 != p3_d4 )|( p2_d5 != p3_d5 ) ;

// Process p2 is not equal to p3
106 label " p2_NEQ_p4 " =( p2_d1 != p4_d1 ) |( p2_d2 != p4_d2 ) |( p2_d3 != p4_d3 ) |( p2_d4 != p4_d4 )|( p2_d5 != p4_d5 );

// Process p2 is not equal to p4
107 label " p2_NEQ_p5 " =( p2_d1 != p5_d1 ) |( p2_d2 != p5_d2 ) |( p2_d3 != p5_d3 ) |( p2_d4 != p5_d4 )|( p2_d5 != p5_d5 );

// Process p2 is not equal to p5
108 label " p3_NEQ_p4 " =( p3_d1 != p4_d1 ) |( p3_d2 != p4_d2 ) |( p3_d3 != p4_d3 ) |( p3_d4 != p4_d4 )|( p3_d5 != p4_d5 ) ;

// Process p3 is not equal to p4
109 label " p3_NEQ_p5 " =( p3_d1 != p5_d1 ) |( p3_d2 != p5_d2 ) |( p3_d3 != p5_d3 ) |( p3_d4 != p5_d4 )|( p3_d5 != p5_d5 ) ;

// Process p3 is not equal to p5
110 label " p4_NEQ_p5 " =( p4_d1 != p5_d1 ) |( p4_d2 != p5_d2 ) |( p4_d3 != p5_d3 ) |( p4_d4 != p5_d4 )|( p4_d5 != p5_d5 ) ;

// Process p4 is not equal to p5
111
112 label " p1_EQ_p2 " =( p1_d1 = p2_d1 ) &( p1_d2 = p2_d2 ) &( p1_d3 = p2_d3 ) &( p1_d4 = p2_d4 )&( p1_d5 = p2_d5 ) ;

// Process p1 is equal to p2
113 label " p1_EQ_p3 " =( p1_d1 = p3_d1 ) &( p1_d2 = p3_d2 ) &( p1_d3 = p3_d3 ) &( p1_d4 = p3_d4 )&( p1_d5 = p3_d5 ) ;

// Process p1 is equal to p3
114 label " p1_EQ_p4 " =( p1_d1 = p4_d1 ) &( p1_d2 = p4_d2 ) &( p1_d3 = p4_d3 ) &( p1_d4 = p4_d4 )&( p1_d5 = p4_d5 ) ;

// Process p1 is equal to p4
115 label " p1_EQ_p5 " =( p1_d1 = p5_d1 ) &( p1_d2 = p5_d2 ) &( p1_d3 = p5_d3 ) &( p1_d4 = p5_d4 )&( p1_d5 = p5_d5 ) ;

// Process p1 is equal to p5
116 label " p2_EQ_p3 " =( p2_d1 = p3_d1 ) &( p2_d2 = p3_d2 ) &( p2_d3 = p3_d3 ) &( p2_d4 = p3_d4 )&( p2_d5 = p3_d5 ) ;

// Process p2 is equal to p3
117 label " p2_EQ_p4 " =( p2_d1 = p4_d1 ) &( p2_d2 = p4_d2 ) &( p2_d3 = p4_d3 ) &( p2_d4 = p4_d4 )&( p2_d5 = p4_d5 );

// Process p2 is equal to p4
118 label " p2_EQ_p5 " =( p2_d1 = p5_d1 ) &( p2_d2 = p5_d2 ) &( p2_d3 = p5_d3 ) &( p2_d4 = p5_d4 )&( p2_d5 = p5_d5 );

// Process p2 is equal to p5
119 label " p3_EQ_p4 " =( p3_d1 = p4_d1 ) &( p3_d2 = p4_d2 ) &( p3_d3 = p4_d3 ) &( p3_d4 = p4_d4 )&( p3_d5 = p4_d5 ) ;

// Process p3 is equal to p4
120 label " p3_EQ_p5 " =( p3_d1 = p5_d1 ) &( p3_d2 = p5_d2 ) &( p3_d3 = p5_d3 ) &( p3_d4 = p5_d4 )&( p3_d5 = p5_d5 ) ;

// Process p3 is equal to p5
121 label " p4_EQ_p5 " =( p4_d1 = p5_d1 ) &( p4_d2 = p5_d2 ) &( p4_d3 = p5_d3 ) &( p4_d4 = p5_d4 )&( p4_d5 = p5_d5 ) ;

// Process p4 is equal to p5

Listing A.32: Prism Model for a system of five processes executing the group
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123 module Process_1
124 s1 : [0..N+3] init 1; // Process 1 current state
125 RN1: [0.. RN] init 0; // Current round
126 m1 : [0..N] init 1;
127
128 p1_d1 : [0..1] init 0; // Process 1 decision of process 1
129 p1_d2 : [0..1] init 0; // Process 1 decision of process 2
130 p1_d3 : [0..1] init 0; // Process 1 decision of process 3
131 p1_d4 : [0..1] init 0; // Process 1 decision of process 4
132 p1_d5 : [0..1] init 0; // Process 1 decision of process 5
133
134 p1_1 : [0..1] init p1_1_ini ; // Process 1 value of process 1
135 p1_2 : [0..1] init p1_2_ini ; // Process 1 value of process 2
136 p1_3 : [0..1] init p1_3_ini ; // Process 1 value of process 3
137 p1_4 : [0..1] init p1_4_ini ; // Process 1 value of process 4
138 p1_5 : [0..1] init p1_5_ini ; // Process 1 value of process 5
139
140 // Status of the message from the other processs
141 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
142 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
143 n1_nf4 :[0..1] init 0; // Process 1 has not received the message of Process 4
144 n1_nf5 :[0..1] init 0; // Process 1 has not received the message of Process 5
145
146 // Process 1 sends or loses its message ;
147 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (p1_1_ext ’= p1_1) & (p1_2_ext ’= p1_2) &

(p1_3_ext ’= p1_3) & (p1_4_ext ’= p1_4) & (p1_5_ext ’= p1_5)& (RN1 ’= RN1 +1);
148 // Process 1 receives or loses the message of Process 2,3,4
149 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
150 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
151 [] s1 =4 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=5) & (n1_nf4 ’=1) + Q: (s1 ’=5) & (n1_nf4 ’=0);
152 [] s1 =5 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=6) & (n1_nf5 ’=1) + Q: (s1 ’=6) & (n1_nf5 ’=0);
153 // Not last round , Process 1 computes the messages of other processes : updates its values ;
154 [] s1=N+1 & token =N1 & (RN1 <RN) -> 1: (s1 ’=1) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (p1_4 ’= p1_4_new ) & (p1_5 ’= p1_5_new ) & (token ’= next);
155 // Last round , Process 1 computes the messages of other processes : updates its values ;
156 // [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (m1 ’= m1_new )& (orc1 ’= orc1_new ) & (token ’= next);
157 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (p1_1 ’= p1_1_new ) & (p1_2 ’= p1_2_new ) &

(p1_3 ’= p1_3_new ) & (p1_4 ’= p1_4_new ) & (p1_5 ’= p1_5_new ) & (m1 ’= m1_new ) & (token ’= next);
158 // [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (o1 ’= floor ( m1_new /2) +2) &

(token ’= next); ,
159 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (token ’= next);
160 // Process 1 decides -> agree or abort
161 // Local Oracle
162 // [] s1=N+3 & token =N1 & (m1 =(c*o1)) & m1=1-> (s1 ’=0) & (token ’= next) & (p1_d1 ’=0) & (p1_d2 ’= 0)

& (p1_d3 ’= 0)& (p1_d4 ’= 0)& (p1_d5 ’= 0);
163 // [] s1=N+3 & token =N1 & (m1 >= (c*o1)) & m1 >1-> (s1 ’=0) & (token ’= next) & (p1_d1 ’= p1_1) &

(p1_d2 ’= p1_2)& (p1_d3 ’= p1_3)& (p1_d4 ’= p1_4)& (p1_d5 ’= p1_5);
164 [] s1=N+3 & token =N1 & (m1 >= (c*o1))-> (s1 ’=0) & (token ’= next) & (p1_d1 ’= p1_1) & (p1_d2 ’= p1_2)&

(p1_d3 ’= p1_3)& (p1_d4 ’= p1_4)& (p1_d5 ’= p1_5);
165 [] s1=N+3 & token =N1 & (m1 < (c*o1))-> (s1 ’=0) & (token ’= next) & (p1_d1 ’=0) & (p1_d2 ’= 0) &

(p1_d3 ’= 0)& (p1_d4 ’= 0)& (p1_d5 ’= 0);
166 endmodule

Listing A.33: Prism Model for a system of five processes executing the group
formation algorithm, part (3)
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167
168 module Process_2 = Process_1 [N1=N2 , s1=s2 , o1=o2 , m1=m2 , p1_d1 =p2_d2 , p1_d2 =p2_d3 , p1_d3 =p2_d4 ,

p1_d4 =p2_d5 , p1_d5 =p2_d1 , n1_nf2 =n2_nf3 , n1_nf3 =n2_nf4 , n1_nf4 =n2_nf5 , n1_nf5 =n2_nf1 ,
p1_1=p2_2 , p1_2=p2_3 , p1_3=p2_4 , p1_4=p2_5 , p1_5=p2_1 , p1_1_ini =p2_2_ini ,
p1_2_ini =p2_3_ini , p1_3_ini =p2_4_ini , p1_4_ini =p2_5_ini , p1_5_ini =p2_1_ini ,
p1_1_ext =p2_2_ext , p1_2_ext =p2_3_ext , p1_3_ext =p2_4_ext , p1_4_ext =p2_5_ext ,
p1_5_ext =p2_1_ext , p2_1_ext =p3_2_ext , p2_2_ext =p3_3_ext , p2_3_ext =p3_4_ext ,
p2_4_ext =p3_5_ext , p2_5_ext =p3_1_ext , p3_1_ext =p4_2_ext , p3_2_ext =p4_3_ext ,
p3_3_ext =p4_4_ext , p3_4_ext =p4_5_ext , p3_5_ext =p4_1_ext , p4_1_ext =p5_2_ext ,
p4_2_ext =p5_3_ext , p4_3_ext =p5_4_ext , p4_4_ext =p5_5_ext , p4_5_ext =p5_1_ext ,
p5_1_ext =p1_2_ext , p5_2_ext =p1_3_ext , p5_3_ext =p1_4_ext , p5_4_ext =p1_5_ext ,
p5_5_ext =p1_1_ext , RN1=RN2] endmodule

169 module Process_3 = Process_1 [N1=N3 , s1=s3 , o1=o3 , m1=m3 , p1_d1 =p3_d3 , p1_d2 =p3_d4 , p1_d3 =p3_d5 ,
p1_d4 =p3_d1 , p1_d5 =p3_d2 , n1_nf2 =n3_nf4 , n1_nf3 =n3_nf5 , n1_nf4 =n3_nf1 , n1_nf5 =n3_nf2 ,
p1_1=p3_3 , p1_2=p3_4 , p1_3=p3_5 , p1_4=p3_1 , p1_5=p3_2 , p1_1_ini =p3_3_ini ,
p1_2_ini =p3_4_ini , p1_3_ini =p3_5_ini , p1_4_ini =p3_1_ini , p1_5_ini =p3_2_ini ,
p1_1_ext =p3_3_ext , p1_2_ext =p3_4_ext , p1_3_ext =p3_5_ext , p1_4_ext =p3_1_ext ,
p1_5_ext =p3_2_ext , p2_1_ext =p4_3_ext , p2_2_ext =p4_4_ext , p2_3_ext =p4_5_ext ,
p2_4_ext =p4_1_ext , p2_5_ext =p4_2_ext , p3_1_ext =p5_3_ext , p3_2_ext =p5_4_ext ,
p3_3_ext =p5_5_ext , p3_4_ext =p5_1_ext , p3_5_ext =p5_2_ext , p4_1_ext =p1_3_ext ,
p4_2_ext =p1_4_ext , p4_3_ext =p1_5_ext , p4_4_ext =p1_1_ext , p4_5_ext =p1_2_ext ,
p5_1_ext =p2_3_ext , p5_2_ext =p2_4_ext , p5_3_ext =p2_5_ext , p5_4_ext =p2_1_ext ,
p5_5_ext =p2_2_ext , RN1=RN3] endmodule

170 module Process_4 = Process_1 [N1=N4 , s1=s4 , o1=o4 , m1=m4 , p1_d1 =p4_d4 , p1_d2 =p4_d5 , p1_d3 =p4_d1 ,
p1_d4 =p4_d2 , p1_d5 =p4_d3 , n1_nf2 =n4_nf5 , n1_nf3 =n4_nf1 , n1_nf4 =n4_nf2 , n1_nf5 =n4_nf3 ,
p1_1=p4_4 , p1_2=p4_5 , p1_3=p4_1 , p1_4=p4_2 , p1_5=p4_3 , p1_1_ini =p4_4_ini ,
p1_2_ini =p4_5_ini , p1_3_ini =p4_1_ini , p1_4_ini =p4_2_ini , p1_5_ini =p4_3_ini ,
p1_1_ext =p4_4_ext , p1_2_ext =p4_5_ext , p1_3_ext =p4_1_ext , p1_4_ext =p4_2_ext ,
p1_5_ext =p4_3_ext , p2_1_ext =p5_4_ext , p2_2_ext =p5_5_ext , p2_3_ext =p5_1_ext ,
p2_4_ext =p5_2_ext , p2_5_ext =p5_3_ext , p3_1_ext =p1_4_ext , p3_2_ext =p1_5_ext ,
p3_3_ext =p1_1_ext , p3_4_ext =p1_2_ext , p3_5_ext =p1_3_ext , p4_1_ext =p2_4_ext ,
p4_2_ext =p2_5_ext , p4_3_ext =p2_1_ext , p4_4_ext =p2_2_ext , p4_5_ext =p2_3_ext ,
p5_1_ext =p3_4_ext , p5_2_ext =p3_5_ext , p5_3_ext =p3_1_ext , p5_4_ext =p3_2_ext ,
p5_5_ext =p3_3_ext , RN1=RN4] endmodule

171 module Process_5 = Process_1 [N1=N5 , s1=s5 , o1=o5 , m1=m5 , p1_d1 =p5_d5 , p1_d2 =p5_d1 , p1_d3 =p5_d2 ,
p1_d4 =p5_d3 , p1_d5 =p5_d4 , n1_nf2 =n5_nf1 , n1_nf3 =n5_nf2 , n1_nf4 =n5_nf3 , n1_nf5 =n5_nf4 ,
p1_1=p5_5 , p1_2=p5_1 , p1_3=p5_2 , p1_4=p5_3 , p1_5=p5_4 , p1_1_ini =p5_5_ini ,
p1_2_ini =p5_1_ini , p1_3_ini =p5_2_ini , p1_4_ini =p5_3_ini , p1_5_ini =p5_4_ini ,
p1_1_ext =p5_5_ext , p1_2_ext =p5_1_ext , p1_3_ext =p5_2_ext , p1_4_ext =p5_3_ext ,
p1_5_ext =p5_4_ext , p2_1_ext =p1_5_ext , p2_2_ext =p1_1_ext , p2_3_ext =p1_2_ext ,
p2_4_ext =p1_3_ext , p2_5_ext =p1_4_ext , p3_1_ext =p2_5_ext , p3_2_ext =p2_1_ext ,
p3_3_ext =p2_2_ext , p3_4_ext =p2_3_ext , p3_5_ext =p2_4_ext , p4_1_ext =p3_5_ext ,
p4_2_ext =p3_1_ext , p4_3_ext =p3_2_ext , p4_4_ext =p3_3_ext , p4_5_ext =p3_4_ext ,
p5_1_ext =p4_5_ext , p5_2_ext =p4_1_ext , p5_3_ext =p4_2_ext , p5_4_ext =p4_3_ext ,
p5_5_ext =p4_4_ext , RN1=RN5 , not_last =last] endmodule

Listing A.34: Prism Model for a system of five processes executing the group
formation algorithm, part (3)
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A.5 PRISMModels for the 1-of-* Selection
Algorithms

In the following, we present the PRISM models for the 1-of-* selection
algorithms for systems of three and four participating processes, n = 3
and n = 4.

A.5.1 n=3, Optimistic

1 dtmc
2 const N=3; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const v1_ini =1; // Initial value of Process 1

10 const v2_ini =2; // Initial value of Process 2
11 const v3_ini =3; // Initial value of Process 3
12 const not_last =1; // Auxiliary constant to define the next process
13 const last =0; // Auxiliary constant to define the next process
14
15 const o1 =3; // Oracle value
16 const o2 =3; // Oracle value is given randomely
17 const o3 =3; // Oracle value is given randomely
18
19 global v1_ext : [0..N] init 0; // Message value of Process 1
20 global v2_ext : [0..N] init 0; // Message value of Process 2
21 global v3_ext : [0..N] init 0; // Message value of Process 3
22
23 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
24 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
25
26 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
27 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
28
29 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
30 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
31
32 global token : [1..N] init 1; // Token used to coordinate the processes
33 formula next = N1* not_last +1; // Define the next Process in the network
34
35 formula m1_new = 1 + w1_v2 + w1_v3 ; // length of view vector of process 1
36 formula m2_new = 1 + w2_v1 + w2_v3 ; // length of view vector of process 2
37 formula m3_new = 1 + w3_v1 + w3_v2 ; // length of view vector of process 2
38
39 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) , ( n1_nf3 * v3_ext )); // Process 1 compute new value
40
41 formula w1_v2_new = max ( w1_v2 , n1_nf2 , n1_nf3 * w3_v2_ext ); // Process 1 update its view of

Process 2
42 formula w1_v3_new = max ( w1_v3 , n1_nf3 , n1_nf2 * w2_v3_ext ); // Process 1 update its view of

Process 3
43
44 // Label definitions for property specifications

Listing A.35: Prism Model for a system of three processes executing the 1-of-*
selection algorithm with the optimistic* decision criterion, part (1)
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45 // Abort
46 label " p1_AB " = (d1 =0); // Process p1 aborts
47 label " p2_AB " = (d2 =0); // Process p2 aborts
48 label " p3_AB " = (d3 =0); // Process p3 aborts
49 // Decide
50 label " p1_DC " = (d1 !=0); // Process p1 decides
51 label " p2_DC " = (d2 !=0); // Process p2 decides
52 label " p3_DC " = (d3 !=0); // Process p3 decides
53
54 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
55 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
56 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
57
58 module Process_1
59 s1 : [0..N+3] init 1; // Process 1 current state
60 RN1: [0.. RN] init 0; // Current round
61 v1 : [0..N] init v1_ini ; // Process 1 value
62 d1 : [0..N] init 0; // Process 1 decision
63 m1 : [1..N] init 1;
64
65 // Status of the message from the other processs
66 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
67 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
68 // Process 1 view of other processes
69 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
70 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
71
72 // Process 1 sends its message ;
73 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (RN1 ’= RN1 +1);
74 // Process 1 receives or loses the message of Process 2
75 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
76 // Process 1 receives or loses the message of Process 3
77 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
78 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
79 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (token ’= next);
80 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,

only for OP , updates value and views ;
81 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (w1_v2 ’= w1_v2_new ) & (w1_v3 ’= w1_v3_new ) &

(v1 ’= v1_new ) & (token ’= next);
82 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (token ’= next);
83 // Process 1 decides -> agree or abort
84 [] s1=N+3 & token =N1 & (m1 >= (c* o1))-> 1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
85 [] s1=N+3 & token =N1 & (m1 < (c*o1))-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
86 endmodule
87 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 , n1_nf2 =n2_nf3 ,

n1_nf3 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v1 , v1_ext =v2_ext , v2_ext =v3_ext , v3_ext =v1_ext ,
w1_v2_ext =w2_v3_ext , w1_v3_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext , w2_v3_ext =w3_v1_ext ,
w3_v1_ext =w1_v2_ext , w3_v2_ext =w1_v3_ext , v1_ini = v2_ini ] endmodule

88 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 , n1_nf2 =n3_nf1 ,
n1_nf3 =n3_nf2 , w1_v2 =w3_v1 , w1_v3 =w3_v2 , v1_ext =v3_ext , v2_ext =v1_ext , v3_ext =v2_ext ,
w1_v2_ext =w3_v1_ext , w1_v3_ext =w3_v2_ext , w2_v1_ext =w1_v3_ext , w2_v3_ext =w1_v2_ext ,
w3_v1_ext =w2_v3_ext , w3_v2_ext =w2_v1_ext , v1_ini =v3_ini , not_last =last] endmodule

Listing A.36: Prism Model for a system of three processes executing the 1-of-*
selection algorithm with the optimistic* decision criterion, part (2)

A.5.2 n=3, Moderately pessimistic

A.5.3 n=3, Pessimistic

A.5.4 n=4, Optimistic
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1 dtmc
2 const N=3; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const v_max =3; // Maximum value of a process

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3
13 const not_last =1; // Auxiliary constant to define the next process
14 const last =0; // Auxiliary constant to define the next process
15
16 const o1 =3; // Oracle value is given randomely
17 const o2 =3; // Oracle value is given randomely
18 const o3 =3; // Oracle value is given randomely
19
20 global v1_ext : [0..N] init 0; // Message value of Process 1
21 global v2_ext : [0..N] init 0; // Message value of Process 2
22 global v3_ext : [0..N] init 0; // Message value of Process 3
23
24 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
25 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
26
27 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
28 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
29
30 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
31 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
32
33 global token : [1..N] init 1; // Token used to coordinate the processes
34
35 formula next = N1* not_last +1; // Define the next Process in the network
36
37 formula m1_new = 1 + w1_v2 + w1_v3 ; // length of view vector of process 1
38 formula m2_new = 1 + w2_v1 + w2_v3 ; // length of view vector of process 2
39 formula m3_new = 1 + w3_v1 + w3_v2 ; // length of view vector of process 3
40
41 // formula c1_new = 1 + w1_c2 + w1_c3 ; // length of complete view vector of process 1
42 // formula c2_new = 1 + w2_c1 + w2_c3 ; // length of complete view vector of process 2
43 // formula c3_new = 1 + w3_c1 + w3_c2 ; // length of complete view vector of process 2
44
45 formula c1_new = 1 + w1_c2 + w1_c3 ; // length of complete view vector of process 1
46 formula c2_new = 1 + w2_c1 + w2_c3 ; // length of complete view vector of process 2
47 formula c3_new = 1 + w3_c1 + w3_c2 ; // length of complete view vector of process 2
48
49 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) ,( n1_nf3 * v3_ext )); // Process 1 compute new value
50 formula w1_v2_new = max ( w1_v2 , n1_nf2 , n1_nf3 * w3_v2_ext ); // Process 1 update its view of

Process 2
51 formula w1_v3_new = max ( w1_v3 , n1_nf3 , n1_nf2 * w2_v3_ext ); // Process 1 update its view of

Process 3
52
53 // Process 1 knows that Process 2 view is complete
54 // formula w1_c2_new = (( n1_nf2 * ( w2_v1_ext + w2_v3_ext ) + 1) >=(c*o1)|( n1_nf2 =0)) ?1:0;
55 // Process 1 knows that Process 3 view is complete
56 // formula w1_c3_new = (( n1_nf3 * ( w3_v1_ext + w3_v2_ext ) + 1) >=(c*o1)|( n1_nf3 =0)) ?1:0;
57
58 // Process 1 knows that Process 2 view is complete
59 formula w1_c2_new = ( ( n1_nf2 * ( w2_v1_ext + w2_v3_ext + 1)) >= (c*o1)|( n1_nf2 =0) ) ?1:0;
60 // Process 1 knows that Process 3 view is complete

Listing A.37: Prism Model for a system of three processes executing the 1-of-
* selection algorithm with the moderately pessimistic* decision criterion, part
(1)

A.5.5 n=4, Moderately pessimistic
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A.5.6 n=4, Pessimistic
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61 formula w1_c3_new = ( ( n1_nf3 * ( w3_v1_ext + w3_v2_ext + 1)) >= (c*o1)|( n1_nf3 =0) ) ?1:0;
62
63
64 // Moderately Pessimistic Decision
65 // formula rec_msg_comp1_new =( ( n1_nf2 + ( n1_nf2 * ( w2_v1_ext * w2_v3_ext ))) , ( n1_nf3 + ( n1_nf3 *

( w3_v1_ext * w3_v2_ext )))); // All messages received by the Process 1 are complete
66 // formula rec_msg_comp2_new = min ( n2_nf3 + ( n1_nf2 * ( w2_v1_ext * w2_v3_ext ))) + (! n2_nf1 +

( n1_nf3 * ( w3_v1_ext * w3_v2_ext ))); // All messages received by the Process 1 are complete
67 // formula rec_msg_comp3_new = min ( n3_nf1 + ( n1_nf2 * ( w2_v1_ext * w2_v3_ext ))) + (! n3_nf2 +

( n1_nf3 * ( w3_v1_ext * w3_v2_ext ))); // All messages received by the Process 1 are complete
68
69
70 // Label definitions for property specifications
71 // Abort
72 label " p1_AB " = (d1 =0); // Process p1 aborts
73 label " p2_AB " = (d2 =0); // Process p2 aborts
74 label " p3_AB " = (d3 =0); // Process p3 aborts
75 // Decide
76 label " p1_DC " = (d1 !=0); // Process p1 decides
77 label " p2_DC " = (d2 !=0); // Process p2 decides
78 label " p3_DC " = (d3 !=0); // Process p3 decides
79
80 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
81 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
82 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
83
84 module Process_1
85 s1 : [0..N+3] init 1; // Process 1 current state
86 RN1: [0.. RN] init 0; // Current round
87 v1 : [0..N] init v1_ini ; // Process 1 value
88 d1 : [0..N] init 0; // Process 1 decision
89 m1 : [1..N] init 1;
90 c1 : [0..N] init 0;
91
92 // Status of the message from the other processs
93 n1_nf2 :[0..1] init 1; // Process 1 has not received the message of Process 2
94 n1_nf3 :[0..1] init 1; // Process 1 has not received the message of Process 3
95 // Process 1 view of other processes
96 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
97 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
98 // Process 1 has confirmation that other processes have complete view
99 w1_c1 :[0..1] init 0; // Process 1 has confirmation from Process 1

100 w1_c2 :[0..1] init 0; // Process 1 has confirmation from Process 2
101 w1_c3 :[0..1] init 0; // Process 1 has confirmation from Process 3
102
103 // Process 1 sends its message ;
104 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (RN1 ’= RN1 +1);
105 // Process 1 receives or loses the message of Process 2
106 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
107 // Process 1 receives or loses the message of Process 3
108 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
109 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
110 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new )& (token ’= next);
111 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,

only for OP , updates value and views ;
112 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) &

(token ’= next);
113 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (c1 ’= c1_new ) & (m1 ’= m1_new ) & (token ’= next);
114 // Process 1 decides -> agree or abort
115 // [] s1=N+2 & token =N1 -> 1: (s1 ’=0) & (token ’= next) & (d1 ’= decision_Orc );
116 // Process 1 decides -> agree or abort &
117 [] s1=N+3 & token =N1 & (m1 >= (c*o1)) & (c1 >= (c*( o1))) ->1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
118 [] s1=N+3 & token =N1 & ( (m1 < (c*o1)) | (c1 < (c*( o1))) )-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
119 endmodule
120 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , c1=c2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 ,

n1_nf2 =n2_nf3 , n1_nf3 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v1 , w1_c1 =w2_c2 , w1_c2 =w2_c3 ,
w1_c3 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext , v3_ext =v1_ext , w1_v2_ext =w2_v3_ext ,
w1_v3_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext , w2_v3_ext =w3_v1_ext , w3_v1_ext =w1_v2_ext ,
w3_v2_ext =w1_v3_ext , v1_ini = v2_ini ] endmodule

121 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , c1=c3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 ,
n1_nf2 =n3_nf1 , n1_nf3 =n3_nf2 , w1_v2 =w3_v1 , w1_v3 =w3_v2 , w1_c1 =w3_c3 , w1_c2 =w3_c1 ,
w1_c3 =w3_c2 , v1_ext =v3_ext , v2_ext =v1_ext , v3_ext =v2_ext , w1_v2_ext =w3_v1_ext ,
w1_v3_ext =w3_v2_ext , w2_v1_ext =w1_v3_ext , w2_v3_ext =w1_v2_ext , w3_v1_ext =w2_v3_ext ,
w3_v2_ext =w2_v1_ext , v1_ini =v3_ini , not_last =last] endmodule

Listing A.38: Prism Model for a system of three processes executing the 1-of-
* selection algorithm with the moderately pessimistic* decision criterion, part
(2)
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1 dtmc
2 const N=3; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const v1_ini =1; // Initial value of Process 1

10 const v2_ini =2; // Initial value of Process 2
11 const v3_ini =3; // Initial value of Process 3
12 const not_last =1; // Auxiliary constant to define the next process
13 const last =0; // Auxiliary constant to define the next process
14
15 const o1 =3; // Oracle value is given randomely
16 const o2 =3; // Oracle value is given randomely
17 const o3 =3; // Oracle value is given randomely
18
19 global v1_ext : [0..N] init 0; // Message value of Process 1
20 global v2_ext : [0..N] init 0; // Message value of Process 2
21 global v3_ext : [0..N] init 0; // Message value of Process 3
22
23 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
24 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
25
26 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
27 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
28
29 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
30 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
31
32 global token : [1..N] init 1; // Token used to coordinate the processes
33 formula next = N1* not_last +1; // Define the next Process in the network
34
35 formula m1_new = 1 + w1_v2 + w1_v3 ; // length of view vector of process 1
36 formula m2_new = 1 + w2_v1 + w2_v3 ; // length of view vector of process 2
37 formula m3_new = 1 + w3_v1 + w3_v2 ; // length of view vector of process 3
38
39 formula c1_new = 1 + w1_c2 + w1_c3 ; // length of view vector of process 1
40 formula c2_new = 1 + w2_c1 + w2_c3 ; // length of view vector of process 2
41 formula c3_new = 1 + w3_c1 + w3_c2 ; // length of view vector of process 3
42
43 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) ,( n1_nf3 * v3_ext )); // Process 1 compute new value
44 formula w1_v2_new = max ( w1_v2 , n1_nf2 , ( n1_nf3 * w3_v2_ext )); // Process 1 update its view of

Process 2
45 formula w1_v3_new = max ( w1_v3 , n1_nf3 , ( n1_nf2 * w2_v3_ext )); // Process 1 update its view of

Process 3
46
47 // Process 1 knows that Process 2 view is complete
48 formula w1_c2_new = (( w1_c2 =1) |(( n1_nf2 * ( w2_v1_ext + w2_v3_ext + 1)) >=(c*o1))) ?1:0;
49 // Process 1 knows that Process 3 view is complete
50 formula w1_c3_new = (( w1_c3 =1) |(( n1_nf3 * ( w3_v1_ext + w3_v2_ext + 1)) >=(c*o1))) ?1:0;

Listing A.39: Prism Model for a system of three processes executing the 1-of-*
selection algorithm with the pessimistic* decision criterion, part (1)
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51
52 // Label definitions for property specifications
53 // Abort
54 label " p1_AB " = (d1 =0); // Process p1 aborts
55 label " p2_AB " = (d2 =0); // Process p2 aborts
56 label " p3_AB " = (d3 =0); // Process p3 aborts
57 // Decide
58 label " p1_DC " = (d1 !=0); // Process p1 decides
59 label " p2_DC " = (d2 !=0); // Process p2 decides
60 label " p3_DC " = (d3 !=0); // Process p3 decides
61
62 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
63 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
64 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
65
66 module Process_1
67 s1 : [0..N+3] init 1; // Process 1 current state
68 RN1: [0.. RN] init 0; // Current round
69 v1 : [0..N] init v1_ini ; // Process 1 value
70 d1 : [0..N] init 0; // Process 1 decision
71 m1 : [1..N] init 1;
72 c1 : [0..N] init 0;
73
74 // Status of the message from the other processs
75 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
76 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
77 // Process 1 view of other processes
78 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
79 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
80 // Process 1 has confirmation that other processes have complete view
81 w1_c1 :[0..1] init 0; // Process 1 has confirmation from Process 1
82 w1_c2 :[0..1] init 0; // Process 1 has confirmation from Process 2
83 w1_c3 :[0..1] init 0; // Process 1 has confirmation from Process 3
84
85 // Process 1 sends its message ;
86 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (RN1 ’= RN1 +1);
87 // Process 1 receives or loses the message of Process 2
88 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
89 // Process 1 receives or loses the message of Process 3
90 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
91 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
92 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) & (token ’= next);
93 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,

only for OP , updates value and views ;
94 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) &

(token ’= next);
95 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (c1 ’= c1_new ) & (m1 ’= m1_new ) & (token ’= next);
96 // Process 1 decides -> agree or abort &
97 [] s1=N+3 & token =N1 & (m1 >= (c*o1)) & (c1 >= (c* o1) ) ->1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
98 [] s1=N+3 & token =N1 & (( m1 < (c*o1)) | (c1 < (c*o1)) )-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
99 endmodule

100 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , c1=c2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 ,
n1_nf2 =n2_nf3 , n1_nf3 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v1 , w1_c1 =w2_c2 , w1_c2 =w2_c3 ,
w1_c3 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext , v3_ext =v1_ext , w1_v2_ext =w2_v3_ext ,
w1_v3_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext , w2_v3_ext =w3_v1_ext , w3_v1_ext =w1_v2_ext ,
w3_v2_ext =w1_v3_ext , v1_ini = v2_ini ] endmodule

101 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , c1=c3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 ,
n1_nf2 =n3_nf1 , n1_nf3 =n3_nf2 , w1_v2 =w3_v1 , w1_v3 =w3_v2 , w1_c1 =w3_c3 , w1_c2 =w3_c1 ,
w1_c3 =w3_c2 , v1_ext =v3_ext , v2_ext =v1_ext , v3_ext =v2_ext , w1_v2_ext =w3_v1_ext ,
w1_v3_ext =w3_v2_ext , w2_v1_ext =w1_v3_ext , w2_v3_ext =w1_v2_ext , w3_v1_ext =w2_v3_ext ,
w3_v2_ext =w2_v1_ext , v1_ini =v3_ini , not_last =last] endmodule

Listing A.40: Prism Model for a system of three processes executing the 1-of-*
selection algorithm with the pessimistic* decision criterion, part (2)
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1 dtmc
2 const N=4; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c =0.5; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 4

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3
13 const v4_ini =4; // Initial value of Process 4
14 const not_last =1; // Auxiliary constant to define the next process
15 const last =0; // Auxiliary constant to define the next process
16 const o1 =4; // Oracle value is given randomely
17 const o2 =4; // Oracle value is given randomely
18 const o3 =4; // Oracle value is given randomely
19 const o4 =4; // Oracle value is given randomely
20 global v1_ext : [0..N] init 0; // Message value of Process 1
21 global v2_ext : [0..N] init 0; // Message value of Process 2
22 global v3_ext : [0..N] init 0; // Message value of Process 3
23 global v4_ext : [0..N] init 0; // Message value of Process 4
24
25 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
26 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
27 global w1_v4_ext : [0..1] init 0; // Process 1 view of Process 4
28
29 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
30 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
31 global w2_v4_ext : [0..1] init 0; // Process 2 view of Process 4
32
33 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
34 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
35 global w3_v4_ext : [0..1] init 0; // Process 3 view of Process 4
36
37 global w4_v1_ext : [0..1] init 0; // Process 4 view of Process 1
38 global w4_v2_ext : [0..1] init 0; // Process 4 view of Process 2
39 global w4_v3_ext : [0..1] init 0; // Process 4 view of Process 3
40
41 global token : [1..N] init 1; // Token used to coordinate the processes
42 formula next = N1* not_last +1; // Define the next Process in the network
43
44 formula m1_new = 1 + w1_v2 + w1_v3 + w1_v4 ; // length of view vector of process 1
45 formula m2_new = 1 + w2_v1 + w2_v3 + w2_v4 ; // length of view vector of process 2
46 formula m3_new = 1 + w3_v1 + w3_v2 + w3_v4 ; // length of view vector of process 3
47 formula m4_new = 1 + w4_v1 + w4_v2 + w4_v3 ; // length of view vector of process 4
48
49 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) , ( n1_nf3 * v3_ext ), ( n1_nf4 * v4_ext )); // Process

1 compute new value
50 formula w1_v2_new = max ( w1_v2 , n1_nf2 , ( n1_nf3 * w3_v2_ext ), ( n1_nf4 * w4_v2_ext )); // Process 1

update its view of Process 2
51 formula w1_v3_new = max ( w1_v3 , n1_nf3 , ( n1_nf2 * w2_v3_ext ), ( n1_nf4 * w4_v3_ext )); // Process 1

update its view of Process 3
52 formula w1_v4_new = max ( w1_v4 , n1_nf4 , ( n1_nf2 * w2_v4_ext ), ( n1_nf3 * w3_v4_ext )); // Process 1

update its view of Process 4
53
54 // Label definitions for property specifications
55 label " p1_AB "= (d1 =0); // Process p1 aborts

Listing A.41: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the optimistic* decision criterion, part (1)
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56 label " p2_AB "= (d2 =0); // Process p2 aborts
57 label " p3_AB "= (d3 =0); // Process p3 aborts
58 label " p4_AB "= (d4 =0); // Process p3 aborts
59 label " p1_DC "= (d1 !=0); // Process p1 decides
60 label " p2_DC "= (d2 !=0); // Process p2 decides
61 label " p3_DC "= (d3 !=0); // Process p3 decides
62 label " p4_DC "= (d4 !=0); // Process p3 decides
63
64 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
65 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
66 label " p1_NEQ_p4 " = (d1 != d4); // p1 ’s decision is not equal to p4 ’s decision
67 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
68 label " p2_NEQ_p4 " = (d2 != d4); // p2 ’s decision is not equal to p4 ’s decision
69 label " p3_NEQ_p4 " = (d3 != d4); // p3 ’s decision is not equal to p4 ’s decision
70
71 label " p1_EQ_p2 " = (d1=d2); // p1 ’s decision is equal to p2 ’s decision
72 label " p1_EQ_p3 " = (d1=d3); // p1 ’s decision is equal to p3 ’s decision
73 label " p1_EQ_p4 " = (d1=d4); // p1 ’s decision is equal to p4 ’s decision
74 label " p2_EQ_p3 " = (d2=d3); // p2 ’s decision is equal to p3 ’s decision
75 label " p2_EQ_p4 " = (d2=d4); // p2 ’s decision is equal to p4 ’s decision
76 label " p3_EQ_p4 " = (d3=d4); // p3 ’s decision is equal to p4 ’s decision
77
78 module Process_1
79 s1 : [0..N+3] init 1; // Process 1’s current state
80 RN1: [0.. RN] init 0; // Process 1’s current round
81 v1 : [0..N] init v1_ini ; // Process 1’s value
82 d1 : [0..N] init 0; // Process 1’s decision
83 m1 : [1..N] init 1; // Size of Process 1’s view vector
84
85 // Status of the messages sent from the other processs
86 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
87 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
88 n1_nf4 :[0..1] init 0; // Process 1 has not received the message of Process 4
89 // Process 1’s view of other processes
90 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
91 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
92 w1_v4 :[0..1] init 0; // Process 1 has the view of Process 4
93
94 // Process 1 sends its message ;
95 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (w1_v4_ext ’= w1_v4 ) & (RN1 ’= RN1 +1);
96 // Process 1 receives or loses the message of Process 2
97 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
98 // Process 1 receives or loses the message of Process 3
99 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);

100 // Process 1 receives or loses the message of Process 4
101 [] s1 =4 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=5) & (n1_nf4 ’=1) + Q: (s1 ’=5) & (n1_nf4 ’=0);
102 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
103 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (w1_v4 ’= w1_v4_new ) & (token ’= next);
104 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,

only for OP , updates value and views ;
105 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (w1_v4 ’= w1_v4_new ) & (token ’= next);
106 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (token ’= next);
107 // Process 1 decides -> agree or abort
108 [] s1=N+3 & token =N1 & (m1 >= (c* o1))-> 1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
109 [] s1=N+3 & token =N1 & (m1 < (c*o1))-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
110 endmodule
111 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 , n1_nf2 =n2_nf3 ,

n1_nf3 =n2_nf4 , n1_nf4 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v4 , w1_v4 =w2_v1 , w1_c2 =w2_c3 ,
w1_c3 =w2_c4 , w1_c4 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext , v3_ext =v4_ext , v4_ext =v1_ext ,
w1_v2_ext =w2_v3_ext , w1_v3_ext =w2_v4_ext , w1_v4_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext ,
w2_v3_ext =w3_v4_ext , w2_v4_ext =w3_v1_ext , w3_v1_ext =w4_v2_ext , w3_v2_ext =w4_v3_ext ,
w3_v4_ext =w4_v1_ext , w4_v1_ext =w1_v2_ext , w4_v2_ext =w1_v3_ext , w4_v3_ext =w1_v4_ext ,
v1_ini = v2_ini ] endmodule

112 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 , n1_nf2 =n3_nf4 ,
n1_nf3 =n3_nf1 , n1_nf4 =n3_nf2 , w1_v2 =w3_v4 , w1_v3 =w3_v1 , w1_v4 =w3_v2 , w1_c2 =w3_c4 ,
w1_c3 =w3_c1 , w1_c4 =w3_c2 , v1_ext =v3_ext , v2_ext =v4_ext , v3_ext =v1_ext , v4_ext =v2_ext ,
w1_v2_ext =w3_v4_ext , w1_v3_ext =w3_v1_ext , w1_v4_ext =w3_v2_ext , w2_v1_ext =w4_v3_ext ,
w2_v3_ext =w4_v1_ext , w2_v4_ext =w4_v2_ext , w3_v1_ext =w1_v3_ext , w3_v2_ext =w1_v4_ext ,
w3_v4_ext =w1_v2_ext , w4_v1_ext =w2_v3_ext , w4_v2_ext =w2_v4_ext , w4_v3_ext =w2_v1_ext ,
v1_ini = v3_ini ] endmodule

113 module Process_4 = Process_1 [N1=N4 , s1=s4 , m1=m4 , o1=o4 , v1=v4 , d1=d4 , RN1=RN4 , n1_nf2 =n4_nf1 ,
n1_nf3 =n4_nf2 , n1_nf4 =n4_nf3 , w1_v2 =w4_v1 , w1_v3 =w4_v2 , w1_v4 =w4_v3 , w1_c2 =w4_c1 ,
w1_c3 =w4_c2 , w1_c4 =w4_c3 , v1_ext =v4_ext , v2_ext =v1_ext , v3_ext =v2_ext , v4_ext =v3_ext ,
w1_v2_ext =w4_v1_ext , w1_v3_ext =w4_v2_ext , w1_v4_ext =w4_v3_ext , w2_v1_ext =w1_v4_ext ,
w2_v3_ext =w1_v2_ext , w2_v4_ext =w1_v3_ext , w3_v1_ext =w2_v4_ext , w3_v2_ext =w2_v1_ext ,
w3_v4_ext =w2_v3_ext , w4_v1_ext =w3_v4_ext , w4_v2_ext =w3_v1_ext , w4_v3_ext =w3_v2_ext ,
v1_ini =v4_ini , not_last =last] endmodule

Listing A.42: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the optimistic* decision criterion, part (2)
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1 dtmc
2 const N=4; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c =0.5; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 4

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3
13 const v4_ini =4; // Initial value of Process 4
14 const not_last =1; // Auxiliary constant to define the next process
15 const last =0; // Auxiliary constant to define the next process
16 const o1 =4; // Oracle value is given randomely
17 const o2 =4; // Oracle value is given randomely
18 const o3 =4; // Oracle value is given randomely
19 const o4 =4; // Oracle value is given randomely
20 global v1_ext : [0..N] init 0; // Message value of Process 1
21 global v2_ext : [0..N] init 0; // Message value of Process 2
22 global v3_ext : [0..N] init 0; // Message value of Process 3
23 global v4_ext : [0..N] init 0; // Message value of Process 4
24
25 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
26 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
27 global w1_v4_ext : [0..1] init 0; // Process 1 view of Process 4
28
29 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
30 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
31 global w2_v4_ext : [0..1] init 0; // Process 2 view of Process 4
32
33 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
34 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
35 global w3_v4_ext : [0..1] init 0; // Process 3 view of Process 4
36
37 global w4_v1_ext : [0..1] init 0; // Process 4 view of Process 1
38 global w4_v2_ext : [0..1] init 0; // Process 4 view of Process 2
39 global w4_v3_ext : [0..1] init 0; // Process 4 view of Process 3
40
41 global token : [1..N] init 1; // Token used to coordinate the processes
42 formula next = N1* not_last +1; // Define the next Process in the network
43
44 formula m1_new = 1 + w1_v2 + w1_v3 + w1_v4 ; // length of view vector of process 1
45 formula m2_new = 1 + w2_v1 + w2_v3 + w2_v4 ; // length of view vector of process 2
46 formula m3_new = 1 + w3_v1 + w3_v2 + w3_v4 ; // length of view vector of process 3
47 formula m4_new = 1 + w4_v1 + w4_v2 + w4_v3 ; // length of view vector of process 4
48
49 // formula c1_new = w1_c2 + w1_c3 + w1_c4 ; // length of view vector of process 1
50 // formula c2_new = w2_c1 + w2_c3 + w2_c4 ; // length of view vector of process 2
51 // formula c3_new = w3_c1 + w3_c2 + w3_c4 ; // length of view vector of process 3
52 // formula c4_new = w4_c1 + w4_c2 + w3_c3 ; // length of view vector of process 4
53
54 formula c1_new = 1 + w1_c2 + w1_c3 + w1_c4 ; // length of view vector of process 1
55 formula c2_new = 1 + w2_c1 + w2_c3 + w2_c4 ; // length of view vector of process 2
56 formula c3_new = 1 + w3_c1 + w3_c2 + w3_c4 ; // length of view vector of process 3
57 formula c4_new = 1 + w4_c1 + w4_c2 + w4_c3 ; // length of view vector of process 4
58
59 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) , ( n1_nf3 * v3_ext ), ( n1_nf4 * v4_ext )); // Process

1 compute new value
60 formula w1_v2_new = max ( w1_v2 , n1_nf2 , ( n1_nf3 * w3_v2_ext ), ( n1_nf4 * w4_v2_ext )); // Process 1

update its view of Process 2
61 formula w1_v3_new = max ( w1_v3 , n1_nf3 , ( n1_nf2 * w2_v3_ext ), ( n1_nf4 * w4_v3_ext )); // Process 1

update its view of Process 3
62 formula w1_v4_new = max ( w1_v4 , n1_nf4 , ( n1_nf2 * w2_v4_ext ), ( n1_nf3 * w3_v4_ext )); // Process 1

update its view of Process 4
63
64 // Process 1 knows that Process 2 view is complete
65 formula w1_c2_new = (( n1_nf2 * ( w2_v1_ext + w2_v3_ext + w2_v4_ext + 1)) >=(c*o1)|( n1_nf2 =0)) ?1:0;
66 // Process 1 knows that Process 3 view is complete
67 formula w1_c3_new = (( n1_nf3 * ( w3_v1_ext + w3_v2_ext + w3_v4_ext + 1)) >=(c*o1)|( n1_nf3 =0)) ?1:0;
68 // Process 1 knows that Process 2 view is complete
69 formula w1_c4_new = (( n1_nf4 * ( w4_v1_ext + w4_v2_ext + w4_v3_ext + 1)) >=(c*o1)|( n1_nf4 =0)) ?1:0;

Listing A.43: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the moderately pessimistic* decision criterion, part (1)
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71 // Abort
72 label " p1_AB " = (d1 =0); // Process p1 aborts
73 label " p2_AB " = (d2 =0); // Process p2 aborts
74 label " p3_AB " = (d3 =0); // Process p3 aborts
75 // Decide
76 label " p1_DC " = (d1 !=0); // Process p1 decides
77 label " p2_DC " = (d2 !=0); // Process p2 decides
78 label " p3_DC " = (d3 !=0); // Process p3 decides
79
80 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
81 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
82 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision
83
84 module Process_1
85 s1 : [0..N+3] init 1; // Process 1 current state
86 RN1: [0.. RN] init 0; // Current round
87 v1 : [0..N] init v1_ini ; // Process 1 value
88 d1 : [0..N] init 0; // Process 1 decision
89 m1 : [1..N] init 1;
90 c1 : [0..N] init 0;
91
92 // Status of the message from the other processs
93 n1_nf2 :[0..1] init 1; // Process 1 has not received the message of Process 2
94 n1_nf3 :[0..1] init 1; // Process 1 has not received the message of Process 3
95 // Process 1 view of other processes
96 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
97 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
98 // Process 1 has confirmation that other processes have complete view
99 w1_c1 :[0..1] init 0; // Process 1 has confirmation from Process 1

100 w1_c2 :[0..1] init 0; // Process 1 has confirmation from Process 2
101 w1_c3 :[0..1] init 0; // Process 1 has confirmation from Process 3
102
103 // Process 1 sends its message ;
104 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (RN1 ’= RN1 +1);
105 // Process 1 receives or loses the message of Process 2
106 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
107 // Process 1 receives or loses the message of Process 3
108 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
109 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
110 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new )& (token ’= next);
111 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,

only for OP , updates value and views ;
112 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) &

(token ’= next);
113 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (c1 ’= c1_new ) & (m1 ’= m1_new ) & (token ’= next);
114 // Process 1 decides -> agree or abort
115 // [] s1=N+2 & token =N1 -> 1: (s1 ’=0) & (token ’= next) & (d1 ’= decision_Orc );
116 // Process 1 decides -> agree or abort &
117 [] s1=N+3 & token =N1 & (m1 >= (c*o1)) & (c1 >= (c*( o1))) ->1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
118 [] s1=N+3 & token =N1 & ( (m1 < (c*o1)) | (c1 < (c*( o1))) )-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
119 endmodule
120 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , c1=c2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 ,

n1_nf2 =n2_nf3 , n1_nf3 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v1 , w1_c1 =w2_c2 , w1_c2 =w2_c3 ,
w1_c3 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext , v3_ext =v1_ext , w1_v2_ext =w2_v3_ext ,
w1_v3_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext , w2_v3_ext =w3_v1_ext , w3_v1_ext =w1_v2_ext ,
w3_v2_ext =w1_v3_ext , v1_ini = v2_ini ] endmodule

121 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , c1=c3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 ,
n1_nf2 =n3_nf1 , n1_nf3 =n3_nf2 , w1_v2 =w3_v1 , w1_v3 =w3_v2 , w1_c1 =w3_c3 , w1_c2 =w3_c1 ,
w1_c3 =w3_c2 , v1_ext =v3_ext , v2_ext =v1_ext , v3_ext =v2_ext , w1_v2_ext =w3_v1_ext ,
w1_v3_ext =w3_v2_ext , w2_v1_ext =w1_v3_ext , w2_v3_ext =w1_v2_ext , w3_v1_ext =w2_v3_ext ,
w3_v2_ext =w2_v1_ext , v1_ini =v3_ini , not_last =last] endmodule

Listing A.44: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the moderately pessimistic* decision criterion, part (2)
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1 dtmc
2 const N=4; // Number of processes in the network (N cannot be modified )
3 const RN =2; // Number of rounds in the protocol (RN >=2)
4 const double Q; // Probability of losing a message (0 <=q <=1)
5 const double c =0.5; // Crrection parametr
6 const N1 =1; // Identity number of Process 1
7 const N2 =2; // Identity number of Process 2
8 const N3 =3; // Identity number of Process 3
9 const N4 =4; // Identity number of Process 4

10 const v1_ini =1; // Initial value of Process 1
11 const v2_ini =2; // Initial value of Process 2
12 const v3_ini =3; // Initial value of Process 3
13 const v4_ini =4; // Initial value of Process 4
14 const not_last =1; // Auxiliary constant to define the next process
15 const last =0; // Auxiliary constant to define the next process
16 const o1 =4; // Oracle value is given randomely
17 const o2 =4; // Oracle value is given randomely
18 const o3 =4; // Oracle value is given randomely
19 const o4 =4; // Oracle value is given randomely
20 global v1_ext : [0..N] init 0; // Message value of Process 1
21 global v2_ext : [0..N] init 0; // Message value of Process 2
22 global v3_ext : [0..N] init 0; // Message value of Process 3
23 global v4_ext : [0..N] init 0; // Message value of Process 4
24
25 global w1_v2_ext : [0..1] init 0; // Process 1 view of Process 2
26 global w1_v3_ext : [0..1] init 0; // Process 1 view of Process 3
27 global w1_v4_ext : [0..1] init 0; // Process 1 view of Process 4
28
29 global w2_v1_ext : [0..1] init 0; // Process 2 view of Process 1
30 global w2_v3_ext : [0..1] init 0; // Process 2 view of Process 3
31 global w2_v4_ext : [0..1] init 0; // Process 2 view of Process 4
32
33 global w3_v1_ext : [0..1] init 0; // Process 3 view of Process 1
34 global w3_v2_ext : [0..1] init 0; // Process 3 view of Process 2
35 global w3_v4_ext : [0..1] init 0; // Process 3 view of Process 4
36
37 global w4_v1_ext : [0..1] init 0; // Process 4 view of Process 1
38 global w4_v2_ext : [0..1] init 0; // Process 4 view of Process 2
39 global w4_v3_ext : [0..1] init 0; // Process 4 view of Process 3

Listing A.45: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the pessimistic* decision criterion, part (1)
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41 global token : [1..N] init 1; // Token used to coordinate the processes
42 formula next = N1* not_last +1; // Define the next Process in the network
43
44 formula m1_new = 1 + w1_v2 + w1_v3 + w1_v4 ; // length of view vector of process 1
45 formula m2_new = 1 + w2_v1 + w2_v3 + w2_v4 ; // length of view vector of process 2
46 formula m3_new = 1 + w3_v1 + w3_v2 + w3_v4 ; // length of view vector of process 3
47 formula m4_new = 1 + w4_v1 + w4_v2 + w4_v3 ; // length of view vector of process 4
48
49 formula c1_new = w1_c2 + w1_c3 + w1_c4 ; // length of view vector of process 1
50 formula c2_new = w2_c1 + w2_c3 + w2_c4 ; // length of view vector of process 2
51 formula c3_new = w3_c1 + w3_c2 + w3_c4 ; // length of view vector of process 3
52 formula c4_new = w4_c1 + w4_c2 + w3_c3 ; // length of view vector of process 3
53
54 formula v1_new = max (v1 , ( n1_nf2 * v2_ext ) , ( n1_nf3 * v3_ext ), ( n1_nf4 * v4_ext )); // Process

1 compute new value
55 formula w1_v2_new = max ( w1_v2 , n1_nf2 , ( n1_nf3 * w3_v2_ext ), ( n1_nf4 * w4_v2_ext )); // Process 1

update its view of Process 2
56 formula w1_v3_new = max ( w1_v3 , n1_nf3 , ( n1_nf2 * w2_v3_ext ), ( n1_nf4 * w4_v3_ext )); // Process 1

update its view of Process 3
57 formula w1_v4_new = max ( w1_v4 , n1_nf4 , ( n1_nf2 * w2_v4_ext ), ( n1_nf3 * w3_v4_ext )); // Process 1

update its view of Process 4
58
59 // Process 1 knows that Process 2 view is complete
60 formula w1_c2_new = (( w1_c2 =1) |( n1_nf2 *( w2_v1_ext + w2_v3_ext + w2_v4_ext + 1)) >=(c*o1)) ?1:0;
61 // Process 1 knows that Process 3 view is complete
62 formula w1_c3_new = (( w1_c3 =1) |( n1_nf3 *( w3_v1_ext + w3_v2_ext + w3_v4_ext + 1)) >=(c*o1)) ?1:0;
63 // Process 1 knows that Process 2 view is complete
64 formula w1_c4_new = (( w1_c4 =1) |( n1_nf4 *( w4_v1_ext + w4_v2_ext + w4_v3_ext + 1)) >=(c*o1)) ?1:0;
65
66 // Label definitions for property specifications
67 label " p1_AB "= (d1 =0); // Process p1 aborts
68 label " p2_AB "= (d2 =0); // Process p2 aborts
69 label " p3_AB "= (d3 =0); // Process p3 aborts
70 label " p4_AB "= (d4 =0); // Process p4 aborts
71
72 label " p1_DC "= (d1 !=0); // Process p1 decides
73 label " p2_DC "= (d2 !=0); // Process p2 decides
74 label " p3_DC "= (d3 !=0); // Process p3 decides
75 label " p4_DC "= (d4 !=0); // Process p4 decides
76
77 label " p1_NEQ_p2 " = (d1 != d2); // p1 ’s decision is not equal to p2 ’s decision
78 label " p1_NEQ_p3 " = (d1 != d3); // p1 ’s decision is not equal to p3 ’s decision
79 label " p1_NEQ_p4 " = (d1 != d4); // p1 ’s decision is not equal to p4 ’s decision
80 label " p2_NEQ_p3 " = (d2 != d3); // p2 ’s decision is not equal to p3 ’s decision

Listing A.46: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the pessimistic* decision criterion, part (2)
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81 label " p2_NEQ_p4 " = (d2 != d4); // p2 ’s decision is not equal to p4 ’s decision
82 label " p3_NEQ_p4 " = (d3 != d4); // p3 ’s decision is not equal to p4 ’s decision
83
84 label " p1_EQ_p2 " = (d1=d2); // p1 ’s decision is equal to p2 ’s decision
85 label " p1_EQ_p3 " = (d1=d3); // p1 ’s decision is equal to p3 ’s decision
86 label " p1_EQ_p4 " = (d1=d4); // p1 ’s decision is equal to p4 ’s decision
87 label " p2_EQ_p3 " = (d2=d3); // p2 ’s decision is equal to p3 ’s decision
88 label " p2_EQ_p4 " = (d2=d4); // p2 ’s decision is equal to p4 ’s decision
89 label " p3_EQ_p4 " = (d3=d4); // p3 ’s decision is equal to p4 ’s decision
90
91 module Process_1
92 s1 : [0..N+3] init 1; // Process 1’s current state
93 RN1: [0.. RN] init 0; // Process 1’s current round
94 v1 : [0..N] init v1_ini ; // Process 1’s value
95 d1 : [0..N] init 0; // Process 1’s decision
96 m1 : [1..N] init 1; // Size of Process 1’s view vector
97 c1 : [0..N] init 0;
98
99 // Status of the messages sent from the other processs

100 n1_nf2 :[0..1] init 0; // Process 1 has not received the message of Process 2
101 n1_nf3 :[0..1] init 0; // Process 1 has not received the message of Process 3
102 n1_nf4 :[0..1] init 0; // Process 1 has not received the message of Process 4
103 // Process 1’s view of other processes
104 w1_v2 :[0..1] init 0; // Process 1 has the view of Process 2
105 w1_v3 :[0..1] init 0; // Process 1 has the view of Process 3
106 w1_v4 :[0..1] init 0; // Process 1 has the view of Process 4
107 // Process 1 has confirmation that other processes have complete view
108 w1_c1 :[0..1] init 0; // Process 1 has confirmation from Process 1
109 w1_c2 :[0..1] init 0; // Process 1 has confirmation from Process 2
110 w1_c3 :[0..1] init 0; // Process 1 has confirmation from Process 3
111 w1_c4 :[0..1] init 0; // Process 1 has confirmation from Process 4
112 // Process 1 sends its message ;
113 [] s1 =1 & token =N1 & RN1 <RN -> 1:(s1 ’=2) & (token ’= next) & (v1_ext ’= v1) & (w1_v2_ext ’= w1_v2 ) &

(w1_v3_ext ’= w1_v3 ) & (w1_v4_ext ’= w1_v4 ) & (RN1 ’= RN1 +1);
114 // Process 1 receives or loses the message of Process 2
115 [] s1 =2 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=3) & (n1_nf2 ’=1) + Q: (s1 ’=3) & (n1_nf2 ’=0);
116 // Process 1 receives or loses the message of Process 3
117 [] s1 =3 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=4) & (n1_nf3 ’=1) + Q: (s1 ’=4) & (n1_nf3 ’=0);
118 // Process 1 receives or loses the message of Process 4
119 [] s1 =4 & token =N1 & RN1 <= RN -> (1-Q): (s1 ’=5) & (n1_nf4 ’=1) + Q: (s1 ’=5) & (n1_nf4 ’=0);
120 // Not last round , Process 1 computes the messages of other processes : updates its value , views

and confirmations ;
121 [] s1=N+1 & token =N1 & RN1 <RN -> 1: (s1 ’=1) & (v1 ’= v1_new ) & (w1_v2 ’= w1_v2_new ) &

(w1_v3 ’= w1_v3_new ) & (w1_v4 ’= w1_v4_new ) & (w1_c2 ’= w1_c2_new ) & (w1_c3 ’= w1_c3_new ) &
(w1_c4 ’= w1_c4_new ) & (token ’= next);

122 // Last round , Process 1 computes the messages of other processes : updates its confirmations and ,
only for OP , updates value and views ;

123 [] s1=N+1 & token =N1 & RN1=RN -> 1: (s1 ’=N+2) & (v1 ’= v1_new ) & (w1_c2 ’= w1_c2_new ) &
(w1_c3 ’= w1_c3_new ) & (w1_c4 ’= w1_c4_new ) & (token ’= next);

124 [] s1=N+2 & token =N1 & RN1=RN -> 1: (s1 ’=N+3) & (m1 ’= m1_new ) & (c1 ’= c1_new )& (token ’= next);
125 // Process 1 decides -> agree or abort
126 [] s1=N+3 & token =N1 & (m1 >= (c*o1)) & (c1 >= ( (c*o1) -1)) ->1: (s1 ’=0) & (token ’= next) & (d1 ’= v1);
127 [] s1=N+3 & token =N1 & (( m1 < (c*o1))| (c1 < ((c*o1) -1)))-> 1: (s1 ’=0) & (token ’= next) & (d1 ’=0);
128 endmodule
129 module Process_2 = Process_1 [N1=N2 , s1=s2 , m1=m2 , c1=c2 , o1=o2 , v1=v2 , d1=d2 , RN1=RN2 ,

n1_nf2 =n2_nf3 , n1_nf3 =n2_nf4 , n1_nf4 =n2_nf1 , w1_v2 =w2_v3 , w1_v3 =w2_v4 , w1_v4 =w2_v1 ,
w1_c1 =w2_c2 , w1_c2 =w2_c3 , w1_c3 =w2_c4 , w1_c4 =w2_c1 , v1_ext =v2_ext , v2_ext =v3_ext ,
v3_ext =v4_ext , v4_ext =v1_ext , w1_v2_ext =w2_v3_ext , w1_v3_ext = w2_v4_ext ,
w1_v4_ext =w2_v1_ext , w2_v1_ext =w3_v2_ext , w2_v3_ext =w3_v4_ext , w2_v4_ext =w3_v1_ext ,
w3_v1_ext =w4_v2_ext , w3_v2_ext =w4_v3_ext , w3_v4_ext =w4_v1_ext , w4_v1_ext =w1_v2_ext ,
w4_v2_ext =w1_v3_ext , w4_v3_ext =w1_v4_ext , v1_ini = v2_ini ] endmodule

130 module Process_3 = Process_1 [N1=N3 , s1=s3 , m1=m3 , c1=c3 , o1=o3 , v1=v3 , d1=d3 , RN1=RN3 ,
n1_nf2 =n3_nf4 , n1_nf3 =n3_nf1 , n1_nf4 =n3_nf2 , w1_v2 =w3_v4 , w1_v3 =w3_v1 , w1_v4 =w3_v2 ,
w1_c1 =w3_c3 , w1_c2 =w3_c4 , w1_c3 =w3_c1 , w1_c4 =w3_c2 , v1_ext =v3_ext , v2_ext =v4_ext ,
v3_ext =v1_ext , v4_ext =v2_ext , w1_v2_ext =w3_v4_ext , w1_v3_ext = w3_v1_ext ,
w1_v4_ext =w3_v2_ext , w2_v1_ext =w4_v3_ext , w2_v3_ext =w4_v1_ext , w2_v4_ext =w4_v2_ext ,
w3_v1_ext =w1_v3_ext , w3_v2_ext =w1_v4_ext , w3_v4_ext =w1_v2_ext , w4_v1_ext =w2_v3_ext ,
w4_v2_ext =w2_v4_ext , w4_v3_ext =w2_v1_ext , v1_ini = v3_ini ] endmodule

131 module Process_4 = Process_1 [N1=N4 , s1=s4 , m1=m4 , c1=c4 , o1=o4 , v1=v4 , d1=d4 , RN1=RN4 ,
n1_nf2 =n4_nf1 , n1_nf3 =n4_nf2 , n1_nf4 =n4_nf3 , w1_v2 =w4_v1 , w1_v3 =w4_v2 , w1_v4 =w4_v3 ,
w1_c1 =w4_c4 , w1_c2 =w4_c1 , w1_c3 =w4_c2 , w1_c4 =w4_c3 , v1_ext =v4_ext , v2_ext =v1_ext ,
v3_ext =v2_ext , v4_ext =v3_ext , w1_v2_ext =w4_v1_ext , w1_v3_ext = w4_v2_ext ,
w1_v4_ext =w4_v3_ext , w2_v1_ext =w1_v4_ext , w2_v3_ext =w1_v2_ext , w2_v4_ext =w1_v3_ext ,
w3_v1_ext =w2_v4_ext , w3_v2_ext =w2_v1_ext , w3_v4_ext =w2_v3_ext , w4_v1_ext =w3_v4_ext ,
w4_v2_ext =w3_v1_ext , w4_v3_ext =w3_v2_ext , v1_ini =v4_ini , not_last =last] endmodule

Listing A.47: Prism Model for a system of four processes executing the 1-of-*
selection algorithm with the pessimistic* decision criterion, part (3)
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A.6 Results for 1-of-* Selection Algorithms

A.6.1 Varying the correction parameter (c)

Fig. A.1 shows the probability of agreement on a leader and on abort
for the optimistic* selection algorithm as a function of Q with different
settings of the correction parameter (c) in the range of 0 to 1 for systems
of n = 3 and n = 4 processes and R = 2 and correct oracles. As we see
from the results given in A.1(a), the probability of agreement on a leader
for similar ranges of c in general is higher for system of three processes
(i.e. n = 3) compare to the system of four processes (i.e. n = 4).

From the results given in A.1(b), the probability of agreement on
abort for similar ranges of c in general is lower for the system of three
processes (i.e. n = 3) compare to the system of four processes (i.e. n = 4).

Fig. A.2 shows the probability of having disagreement among pro-
cesses for systems of three and four processes executing the 1-of-* selec-
tion in two rounds as a function of Q using the optimistic* algorithm.
The given results are for the same settings of the c values as given in
Fig. A.1 and correct oracles.

Fig. A.2(a) shows the probability of unsafe disagreement and Fig. A.2(b)
shows the probability of safe disagreement for both systems of three and
four processes. From the results in Fig. A.2(a), we see that the proba-
bility of unsafe disagreement for similar ranges of c values is higher for
the system of four processes compare to the system of three processes.
From the results given in Fig. A.2(b) we see that in most of the cases we
have lower probabilities of safe disagreement for similar ranges of the c

parameter for a system of four processes compare to the system of three
processes.
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(a) Agreement on a leader

(b) Agreement to abort

Figure A.1: Probability of agreement for the optimistic* algorithm as a func-
tion of Q with different values of c for systems of n = 3 and n = 4 processes
and R = 2 and oi = n.
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(a) Unsafe Disagreement

(b) Safe Disagreement

Figure A.2: Probability of disagreement for the optimistic* algorithm as a
function of Q with different values of c for systems of n = 3 and n = 4 processes
and R = 2 and oi = n.
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(a) Agreement on a leader

(b) Agreement to abort

Figure A.3: Probability of agreement for the moderately pessimistic* algo-
rithm as a function of Q with different values of c for systems of n = 3 and
n = 4 processes and R = 2 and oi = n.
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(a) Unsafe Disagreement

(b) Safe Disagreement

Figure A.4: Probability of disagreement for the moderately pessimistic*
algorithm as a function of Q with different values of c for systems of n = 3 and
n = 4 processes and R = 2 and oi = n
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(a) Agreement on a leader

(b) Agreement to abort

Figure A.5: Probability of agreement for the pessimistic* algorithm as a
function of Q with different values of c for systems of n = 3 and n = 4 processes
and R = 2 and oi = n

For the explanation of the results refer to Fig. 4.5 and Fig. 4.6 in
Section 4. R = 2 is a specific case for the pessimistic and moderately
pessimistic decision criteria. For R = 2, increasing the size of the system
we have lower probabilities of disagreement for the 1-of-n selection algo-
rithm. Here, we see the same trend for the 1-of-* selection algorithm.
So, it must be interesting to compare the outcomes of the 1-of-* selection
algorithm for larger values of R and different sizes of the system.
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(a) Unsafe Disagreement

(b) Safe Disagreement

Figure A.6: Probability of disagreement the pessimistic* algorithm as a func-
tion of Q with different values of c for systems of n = 3 and n = 4 and R = 2
and oi = n
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