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Abstract

The problem of constructing nanophotonic structures of arbitrary geometry with prescribed properties was

studied using an adaptive optimization algorithm. Stability estimates for the forward and adjoint problems

involved in this algorithm are presented. A numerical example illustrates the construction of nanostructure

in two dimensions.

Introduction

In this paper, we investigate the stability of a nanoparametric optimization algorithm presented in [4] for

constructing nanophotonic structures of arbitrary geometry with prescribed properties. Examples of such

structures are photonic crystals (structured in the wavelength scale), metamaterials (subwavelength struc-

tured media with new optical properties that are not available from natural materials) and plasmonic devices

[6, 8, 10]. Our goal is to solve the Coefficient Inverse Problem (CIP) for the electromagnetic wave equation

with unknown material distribution and known scattering properties. As shown in [4], the problem can be

reformulated as an optimization problem for the Tikhonov functional which is minimized on locally adap-

tively refined meshes using the Lagrangian approach. In the current work, we present the stability, or energy

estimates for the solutions of forward and adjoint problems, respectively. These estimates will involve the

stability of the whole optimization procedure.

To solve our CIP we use the conjugate gradient method. It is well-known that gradient-like methods

for minimization of the Tikhonov functional suffer from having multiple local minima and this leads to

local convergence of these methods. In order to guarantee the global convergence, a starting point should be

chosen in a small neighbourhood of the exact solution. Our numerical tests show that construction of a good

initial guess is a main challenge in the adaptive optimization algorithm with applications to nanophotonic

simulations.
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Statement of the forward and inverse problems

Let D ⊂ R2 be a convex bounded domain with a smooth boundary ∂D such that ∂D = ∂1D ∪ ∂2D ∪ ∂3D

where ∂1D and ∂2D are, respectively, top and bottom sides of the domain D, and ∂3D is the union of left

and right sides of this domain. Denote by DT := D × (0,T ), ∂DT := ∂D × (0,T ),T > 0. We also define

S 1 := ∂1D × (0,T ), S 2 := ∂2D × (0,T ) and S 3 := ∂3D × (0,T ). We consider that in S 1 we have time-

dependent backscattering observations. Let now x = (x1, x2) denote a point in D and introduce the following

spaces of real valued functions

H1
u(DT ) := {w ∈ H1(DT ) : w(·, 0) = 0}, H1

λ(DT ) := {w ∈ H1(DT ) : w(·,T ) = 0},
U1 = H1

u(DT ) × H1
λ(DT ) ×C

(
D
)
.

(1)

Thus, similarly to [4, 9], we consider the propagation of electromagnetic waves with a field polarization

and model the wave propagation by the following scalar wave equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∂
2u
∂t2 − �u = δ(x2 − x0)p(t) in DT ,

u(x, 0) = f0(x), ut(x, 0) = 0 in D,

∂nu = −∂tu on S 1,

∂nu = −∂tu on S 2,

∂nu = 0 on S 3,

(2)

where u denote the electric field generated by the plane wave p(t) which is incident at x2 = x0 and propagates

along the x2 axis, ε(x) is the spatially distributed dielectric permittivity function. Observe that we use in the

above problem the first order absorbing boundary conditions.

For the computational solution of (2) we use the domain decomposition finite element/finite difference

(FE/FD) method of [2]. This method has been applied to the solution of different CIPs for the acoustic wave

equation in [1, 2]. To apply the method of [2] we decompose D into two regions DFEM and DFDM such that

the whole domain D = DFEM ∪ DFDM , and DFEM ∩ DFDM = ∅. In DFEM we use the finite element method

(FEM), and in DFDM we will use the Finite Difference Method (FDM).

The function ε(x) in (2) belongs to the following set of admissible parameters

Mε = {ε : ε (x) ∈ (0,M] ,M = const. > 0∀x ∈ DFEM , ε(x) = 1∀x ∈ DFDM}. (3)

We consider the following Inverse Problem (IP): Let the coefficient ε (x) in the problem (2) satisfy conditions

(3) and assume that ε (x) is unknown in the domain D�DFDM. Determine the function ε (x) in (2) for

x ∈ D�DFDM , assuming that the following function ũ (x, t) is known

u (x, t) = ũ (x, t) , ∀ (x, t) ∈ S 1. (4)

Optimization method

In this section we present the reconstruction method to solve inverse problem IP. This method is based on

the finding of the stationary point of the following Tikhonov functional

F(u, ε) =
1

2

∫
S 1

(u − ũ)2zδ(t)dσdt +
1

2
γ

∫
D

(ε − εg)2 dx, (5)
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where u satisfies the equations (2), εg is the initial guess for ε, ũ is the observed field at S 1, γ > 0 is the

regularization parameter and zδ can be chosen as in [3]. To find a minimum of (5) we use the Lagrangian

approach as in [1, 3] and define the following Lagrangian

L(v) = F(u, ε) +

∫
DT

λ

(
ε
∂2u

∂t2
− �u − δ(x2 − x0)p(t)

)
dxdt, (6)

where v = (u, λ, ε) ∈ U1, and search for a stationary point with respect to v satisfying ∀v̄ = (ū, λ̄, ε̄) ∈ U1

L′(v)(v̄) = 0, (7)

where L′(v)(v̄) is the Jacobian of L at v. The adjoint problem will be the following [1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∂
2λ
∂t2 − �λ = −(u − ũ)zδ x ∈ S 1,

λ(·,T ) = ∂λ
∂t

(·,T ) = 0,

∂nλ = ∂tλ on S 1,

∂nλ = ∂tλ on S 2,

∂nλ = 0 on S 3.

(8)

Stability estimates

Stability estimates for the forward problem (2) and adjoint problem (8) follow from the stability estimate of

[2] and can be derived using the technique of [7]. The only difference reside in the integration in time; (0,T )

for the forward problem and (T, t) for the adjoint problem, respectively. For the analysis we first introduce

the L2 inner product and the norm over DT and D, correspondingly, as

((u, v))DT
=

∫
DT

uv dxdt, ‖u‖2L2(DT ) = ((u, u))DT
, (u, v)D =

∫
D

uv dx, ‖u‖2L2(D) = (u, u)D.

We can prove the following stability estimates for the forward problem (2) and adjoint problem (8).

Theorem 1. Assume that condition (3) for the functions ε(x) holds. For any t ∈ (0,T ) we define Dt =

D × (0, t) . Assume that there exists a solution u ∈ H2(DT ) of the problem (2). Then u is unique and there

exists a positive constant A = A(‖ε‖D, t) such that the following energy estimate is true for every t ∈ (0,T )

∥∥∥√ε ∂tu(x, t)
∥∥∥2

L2(D)
+ ‖∇u(x, t)‖2L2(D) ≤ A

[
‖p(t)δ(x2 − x0)‖2L2(Dt)

+ ‖∇ f0‖2L2(D)

]
. (9)

Theorem 2. Assume that condition (3) for the functions ε(x) holds. For any t ∈ (T, 0) we define Dta =

D × (T, t) . Assume that there exists a solution λ ∈ H2(DT ) of the problem (8) and a solution u ∈ H2(DT )

of the problem (2) which satisfy to the Theorem 1. Then λ is unique and there exists a positive constant

B = B(‖ε‖D, t) such that the following energy estimate is true for every t ∈ (T, 0)

∥∥∥√ε ∂tλ(x, t)
∥∥∥2

L2(D)
+ ‖∇λ(x, t)‖2L2(D) ≤ B ‖(ũ − u)zδ‖2L2(Dta )

. (10)
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a) εg = 0.5 b) εg = 1.5

FIGURE 1. Reconstructions in three times adaptively refined mesh for different εg.

Numerical results

In this section we show how to enable a nanophotonic structure computational design, generating reflections

as small as possible. We formulate our problem as IP and reconstruct a function ε(x) inside a domain DFEM

using the adaptive optimization algorithm of [4]. Our computational set-up is the same as in [4]. As initial

guess εg(x) we take different constant values of the function ε(x) inside the domain to be designed, on the

coarse non-refined mesh, and we take ε(x) = 1.0 everywhere else in D. We choose three different constant

values of εg(x) = {0.5, 1.5, 2.0} in (5). Our tests show that designed structures are sensitive to the choice of

the initial guess εg(x), and all guesses on the interval εg ∈ [0.5, 1.5] gives significant reduction of reflections.

Figure 1 presents zoomed views of final designed domains obtained on a three times locally adaptively

refined mesh.
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