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Abstract. A priori error estimates are derived for the streamline diffusion (SD) finite element methods for the Fermi
pencil-beam equation. Two-dimensional numerical examples confirm our theoretical investigations.

Introduction

The Boltzmann transport equation modeling the energy independent pencil beam process can be written as
a two-point boundary value problem viz,

μ
∂u
∂x
+ η
∂u
∂y
+ ξ
∂u
∂z
=

∫
S 2

σs(v · v′)[u(x, v′) − u(x, v)] d2v′, 0 < x < 1, (1)

where x = (x, y, z) and v = (μ, η, ξ) are the space and velocity vectors, respectively. The model problem
concerns sharply forward peaked beam of particles entering the spatial domain at x = 0. Fermi proposed the
following form of, projected, Fokker-Planck model of (1):

∂u
∂x
+ η
∂u
∂y
+ ξ
∂u
∂z
=
σtr

2

( ∂2

∂η2
+
∂2

∂ξ2

)
u(x, v), 0 < x < 1, (2)

with

u(0, y, z, η, ξ) = δ(y)δ(z)δ(η)δ(ξ). (3)

Extending (η, ξ) to R
2, the Fourier transformation with respect to y, z, η, and ξ, assuming constant σtr,

yields the following exact solution for the angular flux

u(x, y, z, η, ξ) =
3

π2σ2
tr x4

exp
[
−

2

σtr

(η2 + ξ2

x
− 3

yη + zξ
x2

+ 3
y2 + z2

x3

)]
. (4)

The closed form solution (4) was first derived by Fermi as referred in [5].
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Restricted to bounded phase-space domain, equation (2) can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ux + v · ∇⊥u = σtr

2
ΔVu in Ω := Ωx ×Ωv,

∇vu(x, x⊥, v) = 0 for (x, x⊥, v) ∈ Ωx × ∂Ωv,
u(0, x⊥, v) = u0(x⊥, v) for (x⊥, v) ∈ Ωx⊥ ×Ωv =: Ω⊥,
u(x, x⊥, v) = 0 on Γ−

β̃
\ {(0, x⊥, v)},

(5)

where v = (η, ξ), ∇⊥ = (∂/∂y, ∂/∂z) and

Γ−
β̃

:= {(x, x⊥, v) ∈ ∂Ω,n · β̃ < 0} (6)

is the inflow boundary with respect to β̃ := (1, v, 0, 0) and n is the outward unit normal to the boundary ∂Ω.

The model problem

We consider now a forward peaked narrow radiation beam entering into the symmetric domain Iy × Iη =
[−y0, y0] × [−η0, η0]; (y0, η0) ∈ R

2
+ at (0, 0) and penetrating in the direction of the positive x-axis. Then the

computational domain Ω is a three dimensional slab with (x, y, η) ∈ Ω = Ix × Iy × Iη where Ix = [0, L]. In this
way, the problem (5) will be transformed into the following lower dimensional model problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ux + ηuy =
1
2
σtruηη (x, y, η) ∈ Ω,

uη(x, y,±η0) = 0 (x, y) ∈ Ix × Iy,
u(0, y, η) = f (y, η) (y, η) ∈ Iy × Iη,

u(x, y, η) = 0 on Γ−β \ {(0, y, η)}.
(7)

For (7) we implement two different versions of the SD method: the semi-streamline diffusion and the char-
acteristic streamline diffusion. Both cases are discretized using linear polynomials.

The semi-streamline diffusion method
In this version we derive a discrete scheme for computing the approximate solution uh of the exact solution
u using the SD-method for discretizing the (y, η)-variables combined with the backward Euler method for
the x-variable. We start by introducing the bilinear forms a(·, ·) and b(·, ·) for the problem (7) as:

a(u,w) = (ηuy,w)⊥ + δ(ηuy, ηwy)⊥ +
1

2
(σtruη,wη)⊥

+
1

2
δ(σtruη,wy + ηwyη)⊥ −

1

2
δ

∫
Iy

σtrηuηwy

∣∣∣∣η=η0

η=−η0

dy,

b(u,w) = (u,w)⊥ + δ(u, ηwy)⊥, (·, ·)⊥ := (·, ·)Iy×Iη .

(8)

The continuous problem: for each x ∈ (0, L], find u(x, ·) ∈ H1
β such that

b(ux,w) + a(u,w) = 0, ∀w ∈ H1
β,

where
H1
β := {w ∈ H1(Iy × Iη); w = 0 on Γ−β },

and
Γ−β := {(y, η) ∈ Γ := ∂(Iy × Iη), with n · β < 0}, (9)
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with β = (η, 0). Then the semi-streamline diffusion method for the continuous problem (7) reads as follows:
for each x ∈ (0, L], find uh(x, ·) ∈ Vh,β such that,

b(uh,x,w) + a(uh,w) = 0, ∀w ∈ Vh,β, (10)

whereVh,β ⊂ H1
β consists of continuous piecewise linear functions. Writing the discrete solution as

uh(x, y, η) =
N∑

j=1

U j(x)φ j(y, η), (11)

where N is the number of nodes in the mesh, and inserting (11) into (10) with w = φi for i = 1, 2, . . . ,N we
get the following discrete system of equations in a matrix form

[B + kmA]Um+1 = BUm, (12)

where m is the number of iteration in a backward Euler’s scheme. Here, U = [U1, ...,UN]T , B = (bi j), bi j =

b(φ j, φi) and A = (ai j), ai j = a(φ j, φi), i, j = 1, 2, . . . ,N.

Characteristic Streamline Diffusion Method
In this part we construct an oriented phase-space mesh to obtain the characteristic streamline diffusion
method. Here, we need to construct a new subdivision ofΩ = Ix× Iy× Iη. To this end and for m = 1, 2, . . . ,M,
we define a subdivision of Ωm = [xm−1, xm] × Iy × Iη := Im × Iy × Iη into elements

τ̂m = {(x, y + (x − xm)η, η) : (y, η) ∈ τ ∈ Th, x ∈ Im},

where Th is a previous triangulation of I⊥. Then we introduce, slabwise, the function spaces

V̂m = {ŵ ∈ C(Ωm) : ŵ(x, y, η) = w(y + (x − xm)η, η),w ∈ Vh,β}.

In other words V̂m consists of continuous functions ŵ(x, y, η) on Ωm such that ŵ is constant along char-
acteristics (ŷ, η̂) = (y + xη, η) parallel to the sides of the elements τ̂m, meaning that the derivative in the
characteristic direction: ŵx + ηŵy = 0. The SD method can now be reduced to the following formulation

(where only the σtr-term survives): find ûh such that, for each m = 1, 2, . . . ,M, ûh|Ωm ∈ V̂m

1

2

∫
Ωm

σtrûh,ηwη dxdydη +
∫

I⊥
ûh,+(xm−1, y, η)w+(xm−1, y, η) dydη

=

∫
I⊥

ûh,−(xm−1, y, η)w+(xm−1, y, η) dydη, ∀w ∈ V̂m.

(13)

Numerical examples

In this section we will demonstrate the performance of an adaptive finite element method for the solution
of the model problem (7) using module LIVE LINK MATLAB in Matlab COMSOL Multiphysics. The
computational domainΩ⊥ = Iy× Iη is chosen asΩ⊥ = {(y, η) ∈ (−1.0, 1.0) × (−1.0, 1.0)}. We have performed
tests with a fixed diffusion coefficient σtr = 0.002 and used the backward Euler scheme (12) with the
time step km = 0.01. Note that [2] shows oscillatory behavior of the solution uh when the semi-streamline
diffusion method was used, and layer behavior when the standard FEM was applied to solve the problem
(7). Our numerical tests show significant improvement of results of [2] since we have applied adaptive finite
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TABLE 1. Absolute en = ‖u−un
h‖L2(Ω⊥) and relatives en/en+1 errors on the adaptively

refined meshes. Here, un
h is computed using semi-streamline diffusion method with

γ̃ = 0.5 in the adaptive algorithm, see [3] for details.

Nr. of Nr. of Nr. of DOF en = ‖u − un
h‖L2

en/en+1

refinement, n elements vertices

0 272 157 1285 1.565e-05
1 1271 597 5115 9.732e-07 16.08
2 5084 2267 20937 6.052e-08 16.08
3 20336 9075 79825 3.771e-09 16.05

TABLE 2. Absolute en = ‖u− un
h‖L2(Ω⊥) and relative en/en+1 errors on the adaptively

refined meshes. Here, un
h is computed using semi-streamline diffusion method with

γ̃ = 0.7 in the adaptive algorithm, see [3] for details.

Nr. of Nr. of Nr. of DOF en = ‖u − un
h‖L2

en/en+1

refinement, n elements vertices

0 272 157 1285 1.565e-05
1 1088 585 5017 1.484e-06 15.98
2 4352 2257 19825 9.289e-07 16.02
3 17408 8865 78817 5.799e-08 16.02

element algorithm for computations, see [3] for details of this algorithm and additional numerical tests. We
have compared our computations with the analytic solution for the problem (7) given by

u(x, y, η) =

√
3

πσtr x2
exp

[
−

2

σtr

(
3y2

x3
−

3yη
x2
+
η2

x

)]
, (14)

when the initial data is given by u(0, y, η) = δ(y)δ(η). Tables show results of our computations on a local
adaptivelly refined meshes when we solved the problem (7) with a “hyperbolic type” initial condition

u(0, y, η) = f (y, η) =
1√

y2 + η2 + α
, (y, η) ∈ Ω⊥, α = 0.19. (15)
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