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Abstract. We present the layer-stripping algorithm for the solution of the hyperbolic coefficient inverse problem (CIP).

Our numerical examples show quantitative reconstruction of small tumor-like inclusions in two-dimensions.

Introduction

In this work we present the layer-stripping algorithm applied for explicit reconstruction of the coefficient

in the hyperbolic equation using data resulted from a single measurement. Our algorithm is based on the

approximate globally convergent method of [4]. This method was verified on computationally simulated and

on experimental data in [5, 6, 8] and references therein.

For the numerical discretization of an approximate globally convergent method we use the finite ele-

ment method (FEM) [7]. The goal of our numerical simulations is to obtain quantitative images of small

inclusions representing cancerous tumors. Thus, in our simulations we are interested in the accurate recon-

struction of the location and the contrast of tumor-like inclusions. Examples of CIPs with applications in

medicine are inverse problems of magnetic resonance elastography (MRE) which are studied recently in

[2, 9] and references therein. The main feature of this medical imaging technique is that it allows perform

measurements internally. In our numerical examples we use internal measurements and show very accurate

and quantitative reconstruction of tumor-like inclusions which can be even of the very small sizes (for recon-

struction of point-size inclusions see [7]). In the future work we plan to extend the layer-stripping algorithm

of this paper to the case of CIPs with boundary measurements. Similarly with [1] an adaptive finite element

method can be also considered as a topic for a future research.

Statements of Forward and Inverse Problems

We consider the Cauchy problem for the hyperbolic equation

a(x)utt = Δu in R3 × (0,∞) , u (x, 0) = 0, ut (x, 0) = δ (x − x0) , (1)

where δ is the Dirac delta function. In the case of the acoustic wave equation, c(x) = 1/
√

a(x) is the

sound speed. In the electromagnetic wave propagation with a field polarization in a non-magnetic medium,

the function a(x) = ε(x), where ε(x) is the spatially distributed dielectric permittivity function. When
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the equation (1) is applied in the medical imaging with acoustic waves, the sound speed is defined as

c(x) =
√

(λ(x) + 2μ(x))/ρ(x), where ρ(x) is the density and λ(x), μ(x) are the Lamé constants of linear

elasticity [3].

Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C2. We assume that the function

a(x) of equation (1) is such that

a(x) ∈ [1,M], a(x) = 1 for x ∈ R3�Ω, (2)

where M = const. > 1 is a priori known constant.

Coefficient Inverse Problem (CIP). Suppose that the coefficient a(x) satisfies (2). Assume that the

function a(x) is unknown in the domain Ω. Determine the function a(x) for x ∈ Ω, by knowing the function

g (x, t) for a single source point x0 � Ω

u (x, t) = g (x, t) ∀ (x, t) ∈ ∂Ω × (0,∞) . (3)

The Transformation Procedure for the Hyperbolic Case

In this section we present the main steps in the derivation of the approximate globally convergent method of

[4]. First, we take the Laplace transform of the functions u in the hyperbolic equation (1):

w(x, s) =

∞∫

0

u(x, t)e−stdt for s > s = const. > 0, (4)

where s is a certain sufficiently large number, which we choose in experiments. The parameter s is called

pseudo frequency. It follows from (1) and (4) that the function w is the solution of the following problem

Δw − s2a(x)w = −δ (x − x0) , x ∈ R3, (5)

lim
|x|→∞

w (x, s) = 0, (6)

where the limit in (6) is proven in [4]. In Theorem 2.7.2 of [4] was shown that w(x, s) > 0. Hence, we can

consider functions v(x, s) defined as

v (x, s) =
ln w (x, s)

s2
. (7)

Assuming that the asymptotic behavior in Lemma 2.3 of [4] holds, substituting w = ev in (5) and noting

that the source point x0 � Ω, we obtain

Δv + s2 (∇v)2 = a(x), x ∈ Ω. (8)

Denote

q (x, s) = ∂sv (x, s) . (9)

Using the asymptotic behavior in Lemma 2.3 of [4] and (9) we get

v (x, s) = −
∞∫

s

q (x, τ) dτ,
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which can be rewritten as

v (x, s) = −
s∫

s

q (x, τ) dτ + V (x, s) , (10)

where V(x, s) is the unknown “tail” function. In [5, 6] we describe how this function can be approximated in

computations. Differentiating this equation with respect to s and using (9) and (10), we obtain the following

nonlinear integro-differential equation

Δq−2s2∇q

s∫
s

∇q (x, τ) dτ+2s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
s∫

s

∇q (x, τ) dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

+2s2∇q∇V −4s∇V

s∫
s

∇q (x, τ) dτ+2s (∇V)2 = 0, x ∈ Ω.

(11)

Assume now that we can solve (11) and find approximations for functions q and V in Ω together with

their derivatives Dαx q,Dαx V, |α| ≤ 2. Then the the function a(x) can be found explicitly via (8).

The Layer Stripping Algorithm

In this section we present the reduced version of the layer stripping algorithm for the solution of the integro-

differential equation (11). We refer to [7] for the full details of it. To do that we make partition of the pseudo

frequency interval [s, s̄] into N sub-intervals s̄ = s0 > s1 > · · · > sN = s such that

s = sN < sN−1 < ... < s1 < s0 = s, si−1 − si = h,

where h is the step size of every interval and q (x, s) = qn (x) for s ∈ (sn+1, sn], n = 0, ...,N. To solve (11) on

every pseudo-frequency interval (sn+1, sn], we use the following algorithm:

• Initialization: set q0 ≡ 0 and compute the first tail function V0 as described in [4, 5].

• For n = 1, 2, . . . , N

1. Set qn, 0 = qn−1, Vn, 1 = Vn−1

2. For i = 1, 2, . . . , mn

◦ Find qn, i by solving (11) on the interval (sn+1, sn] with Vn := Vn, i.

◦ Compute vn,i = −hqn, i − h
∑n−1

j=0 q j + Vn, i.

◦ Compute an,i via FEM discretization of (8) with a := an,i and v := vn,i. Then solve the

forward problem (1) with the new computed coefficient a := an,i, compute w := wn, i and

update the tail Vn, i+1.

3. Set qn = qn,mn
, an = an,mn

, Vn = Vn,mn+1
and go to the next frequency interval (sn+1, sn] if n < N.

If n = N, then stop.

The stopping criteria for iterations mn and n and step 3 in the above algorithm is derived computationally

in [8]. The global convergence theorem was proven in [4, 5].

Numerical experiments in 2D

In this section we present the reconstruction of the function a(x) at different values of pseudo-frequency s for

the the case when the measured function g(x, t) is known inside the domain of interest. Measuring of the field

internally is allowed in some cases of medical imaging: for example, in medical resonance elastic imaging
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a) exact function a(x) b) s = 19 c) s = 10 d) s = 5

FIGURE 1. a) The exact location of tumors. b), c), d) The reconstructed wave speed function a(x) at different values

of pseudo frequency s. On b) maximal reconstructed values of this function are 5.15 in tumor-like targets and a(x) = 1

outside of imaged targets what corresponds to the background medium. The image is highly accurate: compare with exact

image on a) where maximal values of the exact function are 5. Again, on d) we observe that the image is deteriorated at

pseudo frequency s = 5.

[2]. For the full details of numerical implementation of the layer-stripping algorithm using FEM as well as

for the more numerical results we refer to [7]. Here we present the reconstruction of the function a(x) of

Figure 1-a). On Figures 1-b), c) we observe almost perfect reconstruction when pseudo frequency s is taken

as s = 10 and s = 19. Our numerical tests show that on the interval of pseudo frequencies s = [8; 19] we

get reconstruction similar to the exact one obtained on Figure 1-b). However, for pseudo-frequencies on the

interval s = [1; 7] we obtain reconstructed function a(x) similar to the obtained on Figure 1-d). We observe

that the image of Figure 1-d) is deteriorated for this value of pseudo-frequency.
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